151
|
de los Reyes BG, Mohanty B, Yun SJ, Park MR, Lee DY. Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. RICE (NEW YORK, N.Y.) 2015; 8:14. [PMID: 25844119 PMCID: PMC4385054 DOI: 10.1186/s12284-015-0041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/12/2015] [Indexed: 05/23/2023]
Abstract
Dissecting the upstream regulatory architecture of rice genes and their cognate regulator proteins is at the core of network biology and its applications to comparative functional genomics. With the rapidly advancing comparative genomics resources in the genus Oryza, a reference genome annotation that defines the various cis-elements and trans-acting factors that interface each gene locus with various intrinsic and extrinsic signals for growth, development, reproduction and adaptation must be established to facilitate the understanding of phenotypic variation in the context of regulatory networks. Such information is also important to establish the foundation for mining non-coding sequence variation that defines novel alleles and epialleles across the enormous phenotypic diversity represented in rice germplasm. This review presents a synthesis of the state of knowledge and consensus trends regarding the various cis-acting and trans-acting components that define spatio-temporal regulation of rice genes based on representative examples from both foundational studies in other model and non-model plants, and more recent studies in rice. The goal is to summarize the baseline for systematic upstream sequence annotation of the rapidly advancing genome sequence resources in Oryza in preparation for genus-wide functional genomics. Perspectives on the potential applications of such information for gene discovery, network engineering and genomics-enabled rice breeding are also discussed.
Collapse
Affiliation(s)
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Song Joong Yun
- />Department of Crop Science and Institute of Agricultural Science and Technology, Chonbuk National University, Chonju, 561-756 Korea
| | - Myoung-Ryoul Park
- />School of Biology and Ecology, University of Maine, Orono, ME 04469 USA
| | - Dong-Yup Lee
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| |
Collapse
|
152
|
Jung KH, Kim SR, Giong HK, Nguyen MX, Koh HJ, An G. Genome-wide identification and functional analysis of genes expressed ubiquitously in rice. MOLECULAR PLANT 2015; 8:276-89. [PMID: 25624149 DOI: 10.1016/j.molp.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 05/10/2023]
Abstract
Genes that are expressed ubiquitously throughout all developmental stages are thought to be necessary for basic biological or cellular functions. Therefore, determining their biological roles is a great challenge. We identified 4034 of these genes in rice after studying the results of Agilent 44K and Affymetrix meta-anatomical expression profiles. Among 105 genes that were characterized by loss-of-function analysis, 79 were classified as members of gene families, the majority of which were predominantly expressed. Using T-DNA insertional mutants, we examined 43 genes and found that loss of expression of six genes caused developing seed- or seedling-defective phenotypes. Of these, three are singletons without similar family members and defective phenotypes are expected from mutations. Phylogenomic analyses integrating genome-wide transcriptome data revealed the functional dominance of three ubiquitously expressed family genes. Among them, we investigated the function of Os03g19890, which is involved in ATP generation within the mitochondria during endosperm development. We also created and evaluated functional networks associated with this gene to understand the molecular mechanism. Our study provides a useful strategy for pheonome analysis of ubiquitously expressed genes in rice.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea.
| | - Sung-Ruyl Kim
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Hoi-Khoanh Giong
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Minh Xuan Nguyen
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Hyun-Jung Koh
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea.
| |
Collapse
|
153
|
Eriksson ME, Hoffman D, Kaduk M, Mauriat M, Moritz T. Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation. THE NEW PHYTOLOGIST 2015; 205:1288-1295. [PMID: 25382585 DOI: 10.1111/nph.13144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
Bioactive gibberellins (GAs) have been implicated in short day (SD)-induced growth cessation in Populus, because exogenous applications of bioactive GAs to hybrid aspens (Populus tremula × tremuloides) under SD conditions delay growth cessation. However, this effect diminishes with time, suggesting that plants may cease growth following exposure to SDs due to a reduction in sensitivity to GAs. In order to validate and further explore the role of GAs in growth cessation, we perturbed GA biosynthesis or signalling in hybrid aspen plants by overexpressing AtGA20ox1, AtGA2ox2 and PttGID1.3 (encoding GA biosynthesis enzymes and a GA receptor). We found trees with elevated concentrations of bioactive GA, due to overexpression of AtGA20ox1, continued to grow in SD conditions and were insensitive to the level of FLOWERING LOCUS T2 (FT2) expression. As transgenic plants overexpressing the PttGID1.3 GA receptor responded in a wild-type (WT) manner to SD conditions, this insensitivity did not result from limited receptor availability. As high concentrations of bioactive GA during SD conditions were sufficient to sustain shoot elongation growth in hybrid aspen trees, independent of FT2 expression levels, we conclude elongation growth in trees is regulated by both GA- and long day-responsive pathways, similar to the regulation of flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Maria E Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Daniel Hoffman
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Mateusz Kaduk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Mélanie Mauriat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden
| |
Collapse
|
154
|
Du X, Hussain N, Li Z, Chen X, Hua S, Zhang D, Jiang L. Effect of Gibberellin on the biosynthesis of tocopherols in Oilseed rape (Brassica napus L.) and arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:360-9. [PMID: 25514635 DOI: 10.1021/jf505312c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Elevating the yield and altering the composition of seed tocopherols (Toc’s) are important to rapeseed breeding and production. However, little is known about the biosynthesis of Toc’s in response to environmental signals. In this study, we investigated the effects of exogenous gibberellin (GA3) and paclobutrazol (PAC) on Toc biosynthesis. We also explored the interactive effects between the two plant growth regulators (PGRs) and other factors, such as PGR treatment duration, genotype, and growing location on the total Toc yield and composition in oilseed rape seed. GA3 significantly enhanced the production of Toc’s and elevated the α-/γ-Toc ratio in a time- and genotype-dependent manner. By contrast, PAC significantly reduced Toc yield. Genotypic differences were observed in the effects of GA3 on Toc yield and composition in the seeds. GA3 significantly increased the Toc yield and α-/γ-Toc ratio in Zheyou-50, a genotype with a low proportion of very long chain fatty acids (VLCFAs). However, GA3 did not significantly influence these parameters in Jiu-Er-13Xi, a genotype with a high VLCFA proportion. The increased Toc yield induced by GA3 was mediated by the upregulation of genes (BnPDS1 and BnVTE1) that catalyze the production of Toc precursors. Therefore, applying GA3 can improve rapeseed quality by increasing Toc yield and improving Toc composition.
Collapse
|
155
|
Schelkle KM, Griesbaum T, Ollech D, Becht S, Buckup T, Hamburger M, Wombacher R. Lichtinduzierte Proteindimerisierung in lebenden Zellen durch Ein- und Zweiphotonenaktivierung von Gibberellinsäurederivaten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
156
|
Schelkle KM, Griesbaum T, Ollech D, Becht S, Buckup T, Hamburger M, Wombacher R. Light-Induced Protein Dimerization by One- and Two-Photon Activation of Gibberellic Acid Derivatives in Living Cells. Angew Chem Int Ed Engl 2015; 54:2825-9. [DOI: 10.1002/anie.201409196] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Indexed: 01/02/2023]
|
157
|
Hedden P, Sponsel V. A Century of Gibberellin Research. JOURNAL OF PLANT GROWTH REGULATION 2015; 34:740-60. [PMID: 26523085 PMCID: PMC4622167 DOI: 10.1007/s00344-015-9546-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 05/17/2023]
Abstract
Gibberellin research has its origins in Japan in the 19th century, when a disease of rice was shown to be due to a fungal infection. The symptoms of the disease including overgrowth of the seedling and sterility were later shown to be due to secretions of the fungus Gibberella fujikuroi (now reclassified as Fusarium fujikuroi), from which the name gibberellin was derived for the active component. The profound effect of gibberellins on plant growth and development, particularly growth recovery in dwarf mutants and induction of bolting and flowering in some rosette species, prompted speculation that these fungal metabolites were endogenous plant growth regulators and this was confirmed by chemical characterisation in the late 1950s. Gibberellins are now known to be present in vascular plants, and some fungal and bacterial species. The biosynthesis of gibberellins in plants and the fungus has been largely resolved in terms of the pathways, enzymes, genes and their regulation. The proposal that gibberellins act in plants by removing growth limitation was confirmed by the demonstration that they induce the degradation of the growth-inhibiting DELLA proteins. The mechanism by which this is achieved was clarified by the identification of the gibberellin receptor from rice in 2005. Current research on gibberellin action is focussed particularly on the function of DELLA proteins as regulators of gene expression. This review traces the history of gibberellin research with emphasis on the early discoveries that enabled the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- />Rothamsted Research, West Common, Harpenden, AL5 2JQ Hertfordshire UK
| | - Valerie Sponsel
- />Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| |
Collapse
|
158
|
Nelis S, Conti L, Zhang C, Sadanandom A. A functional Small Ubiquitin-like Modifier (SUMO) interacting motif (SIM) in the gibberellin hormone receptor GID1 is conserved in cereal crops and disrupting this motif does not abolish hormone dependency of the DELLA-GID1 interaction. PLANT SIGNALING & BEHAVIOR 2015; 10:e987528. [PMID: 25761145 PMCID: PMC4623406 DOI: 10.4161/15592324.2014.987528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants survive adversity by modulating their growth in response to changing environmental signals. The phytohormone Gibberellic acid (GA) plays a central role in regulating these adaptive responses by stimulating the degradation of growth repressing DELLA proteins which accumulate during stress. The current model for GA signaling describes how this hormone binds to its receptor GID1 so promoting association of GID1 with DELLA, which then undergoes ubiquitin-mediated proteasomal degradation. Recent data revealed that conjugation of DELLAs to the Small Ubiquitin-like Modifier (SUMO) protein enables plants to modulate its abundance during environmental stress. This is achieved by SUMOylated DELLAs sequestering GID1 via its SUMO interacting motif (SIM) allowing non-SUMOylated DELLAs to accumulate leading to growth restraint under stress and potential yield loss. We demonstrate that GID1 proteins across the major cereal crops contain a functional SIM able to bind SUMO1. Site directed mutagenesis and yeast 2 hybrid experiments reveal that it is possible to disrupt the SIM-SUMO interaction motif without affecting the GA dependent DELLA-GID1 interaction and thereby uncoupling SUMO-mediated inhibition from DELLA degradation. Arabidopsis plants overexpressing a SIM mutant allele of GID1 perform better at relieving DELLA restraint than wild-type GID1. This evidence suggests that manipulating the SIM motif in the GA receptor may provide a possible route to developing stress tolerant crops plants.
Collapse
Affiliation(s)
- Stuart Nelis
- School of Biological and Biomedical Sciences; Durham University; Durham, UK
| | - Lucio Conti
- School of Biological and Biomedical Sciences; Durham University; Durham, UK
- Department of Biosciences; Università degli Studi di Milano; Milano, Italy
| | - Cunjin Zhang
- School of Biological and Biomedical Sciences; Durham University; Durham, UK
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences; Durham University; Durham, UK
- Correspondence to: Ari Sadanandom;
| |
Collapse
|
159
|
Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. THE PLANT CELL 2014; 26:4376-93. [PMID: 25371548 PMCID: PMC4277228 DOI: 10.1105/tpc.114.132092] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 09/14/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hongning Tong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linchuan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Yun Jin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
160
|
Dunker AK, Bondos SE, Huang F, Oldfield CJ. Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 2014; 37:44-55. [PMID: 25307499 DOI: 10.1016/j.semcdb.2014.09.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) and IDP regions lack stable tertiary structure yet carry out numerous biological functions, especially those associated with signaling, transcription regulation, DNA condensation, cell division, and cellular differentiation. Both post-translational modifications (PTMs) and alternative splicing (AS) expand the functional repertoire of IDPs. Here we propose that an "IDP-based developmental toolkit," which is comprised of IDP regions, PTMs, especially multiple PTMs, within these IDP regions, and AS events within segments of pre-mRNA that code for these same IDP regions, allows functional diversification and environmental responsiveness for molecules that direct the development of complex metazoans.
Collapse
Affiliation(s)
- A Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| | - Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, United States.
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| | - Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| |
Collapse
|
161
|
Xu H, Liu Q, Yao T, Fu X. Shedding light on integrative GA signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:89-95. [PMID: 25061896 DOI: 10.1016/j.pbi.2014.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 05/21/2023]
Abstract
Gibberellic acid (GA) regulates a diversity of processes associated with plant growth and development. The DELLA proteins act as repressors of GA signaling, and are destabilized by GA. Although it is known that GA signaling integrates various endogenous and environmental signals, the molecular basis of their modulation of plant growth and development is only now beginning to be understood. The current suggestion is that the DELLA proteins act as one possible quantitative modulator of plant growth, achieved by integrating multiple environmental and hormonal signals via protein-protein interactions. This review discusses recent elaborations of the de-repression model proposed to describe the GA response, and focuses on integrative networks thought to regulate plant growth, development and the adaptation to a fluctuating environment.
Collapse
Affiliation(s)
- Hao Xu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Tao Yao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
162
|
Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Angeles-Shim RB, Kitano H, Nagai K, Ashikari M. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. PLANT, CELL & ENVIRONMENT 2014; 37:2313-24. [PMID: 24891164 PMCID: PMC4282320 DOI: 10.1111/pce.12377] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 05/17/2023]
Abstract
Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice.
Collapse
Affiliation(s)
- Madoka Ayano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Angeles-Shim RB, Kitano H, Nagai K, Ashikari M. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. PLANT, CELL & ENVIRONMENT 2014. [PMID: 24891164 DOI: 10.1111/pce.12377.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice.
Collapse
Affiliation(s)
- Madoka Ayano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 2014; 24:1923-8. [PMID: 25127215 DOI: 10.1016/j.cub.2014.07.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/07/2014] [Accepted: 07/03/2014] [Indexed: 11/22/2022]
Abstract
Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging. Here, we show that DELLAs directly regulate the activity of the plant-specific class I TCP transcription factor family, key regulators of cell proliferation. Our results demonstrate that class I TCP factors directly bind the promoters of core cell-cycle genes in Arabidopsis inflorescence shoot apices while DELLAs block TCP function by binding to their DNA-recognition domain. GAs antagonize such repression by promoting DELLA destruction and therefore cause a concomitant accumulation of TCP factors on promoters of cell-cycle genes. Consistent with this model, the quadruple mutant tcp8 tcp14 tcp15 tcp22 exhibits severe dwarfism and reduced responsiveness to GA action. Altogether, we conclude that GA-regulated DELLA-TCP interactions in inflorescence shoot apex provide a novel mechanism to control plant height.
Collapse
|
165
|
Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. THE PLANT CELL 2014; 26:2920-38. [PMID: 25035403 PMCID: PMC4145123 DOI: 10.1105/tpc.114.125690] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/11/2014] [Accepted: 06/25/2014] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are essential regulators of plant development, and DELLAs are negative regulators of GA signaling. The mechanism of GA-dependent transcription has been explained by DELLA-mediated titration of transcriptional activators and their release through the degradation of DELLAs in response to GA. However, the effect of GA on genome-wide expression is predominantly repression, suggesting the existence of unknown mechanisms of GA function. In this study, we identified an Arabidopsis thaliana DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 shows high homology to INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS. GA responsiveness was decreased in the double mutant gaf1 idd1, whereas it was enhanced in a GAF1 overexpressor. GAF1 binds to genes that are subject to GA feedback regulation. Furthermore, we found that GAF1 interacts with the corepressor TOPLESS RELATED (TPR) and that DELLAs and TPR act as coactivators and a corepressor of GAF1, respectively. GA converts the GAF1 complex from transcriptional activator to repressor via the degradation of DELLAs. These results indicate that DELLAs turn on or off two sets of GA-regulated genes via dual functions, namely titration and coactivation, providing a mechanism for the integrative regulation of plant growth and GA homeostasis.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Satoru Murakoshi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kei Nasuno
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naotaka Nishida
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Michiteru Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
166
|
Fujikawa Y, Nakanishi T, Kawakami H, Yamasaki K, Sato MH, Tsuji H, Matsuoka M, Kato N. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format. RICE (NEW YORK, N.Y.) 2014; 7:11. [PMID: 24987490 PMCID: PMC4077619 DOI: 10.1186/s12284-014-0011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/27/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. RESULTS A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. CONCLUSIONS A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome.
Collapse
Affiliation(s)
- Yukichi Fujikawa
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| | - Takahiro Nakanishi
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| | - Hiroko Kawakami
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| | - Kanako Yamasaki
- Faculty of Human Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Masa H Sato
- Faculty of Human Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hiroyuki Tsuji
- Department of Plant Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Nara, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi 464-8601, Japan
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, 226 Life Sciences Building, Baton Rouge 70803, LA, USA
| |
Collapse
|
167
|
Nagai K, Kondo Y, Kitaoka T, Noda T, Kuroha T, Angeles-Shim RB, Yasui H, Yoshimura A, Ashikari M. QTL analysis of internode elongation in response to gibberellin in deepwater rice. AOB PLANTS 2014; 6:plu028. [PMID: 24946943 PMCID: PMC4086424 DOI: 10.1093/aobpla/plu028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/19/2014] [Indexed: 05/21/2023]
Abstract
Gibberellin (GA) is a plant hormone that has important roles in numerous plant developmental phases. Rice plants known as deepwater rice respond to flooding by elongating their internodes to avoid anoxia. Previous studies reported that GA is essential for internode elongation in deepwater rice. Quantitative trait locus (QTL) analyses identified QTLs regulating internode elongation in response to deepwater conditions. However, the interaction between internode elongation and regulators of GA sensitivity in deepwater rice is unknown. In this study, we applied GA to recombinant inbred lines of T65 (non-deepwater rice) and Bhadua (deepwater rice), and performed a QTL analysis of internode elongation in response to GA. GA-induced internode elongation was detected only in deepwater rice. Our QTL analysis revealed two major QTLs on chromosomes 3 and 9 regulating total internode length, lowest elongated internode and number of elongated internodes. Furthermore, the QTL on chromosome 3 acted as an enhancer of other QTLs (e.g. the QTL on chromosome 12). Nearly isogenic lines of deepwater rice carrying the QTL regions from chromosomes 3 and 12 of the deepwater rice C9285 showed internode elongation in response to GA. Thus, these QTLs may regulate GA responsiveness in deepwater rice. This study furthers our understanding of the mechanism of internode elongation in rice.
Collapse
Affiliation(s)
- Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yuma Kondo
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Takuya Kitaoka
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tomonori Noda
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Rosalyn B Angeles-Shim
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Kyushu University, 6-10-1 Hakozaki-ku, Higashi, Fukuoka 812-8581, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Kyushu University, 6-10-1 Hakozaki-ku, Higashi, Fukuoka 812-8581, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
168
|
Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. PLANT & CELL PHYSIOLOGY 2014; 55:897-912. [PMID: 24486766 DOI: 10.1093/pcp/pcu023] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The organ size of flowering plants is determined by two post-embryonic developmental events: cell proliferation and cell expansion. In this study, we identified a new rice loss-of-function mutant, small organ size1 (smos1), that decreases the final size of various organs due to decreased cell size and abnormal microtubule orientation. SMOS1 encodes an unusual APETALA2 (AP2)-type transcription factor with an imperfect AP2 domain, and its product belongs to the basal AINTEGUMENTA (ANT) lineage, including WRINKLED1 (WRI1) and ADAP. SMOS1 expression was induced by exogenous auxin treatment, and the auxin response element (AuxRE) of the SMOS1 promoter acts as a cis-motif through interaction with auxin response factor (ARF). Furthermore, a functional fluorophore-tagged SMOS1 was localized to the nucleus, supporting the role of SMOS1 as a transcriptional regulator for organ size control. Microarray analysis showed that the smos1 mutation represses expression of several genes involved in microtubule-based movement and DNA replication. Among the down-regulated genes, we demonstrated by gel-shift and chromatin immunoprecipitation (ChIP) experiments that OsPHI-1, which is involved in cell expansion, is a target of SMOS1. SMOS1 homologs in early-diverged land plants partially rescued the smos1 phenotype of rice. We propose that SMOS1 acts as an auxin-dependent regulator for cell expansion during organ size control, and that its function is conserved among land plants.
Collapse
Affiliation(s)
- Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
169
|
Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H, Watanabe M, Matsuoka M, Higashitani A. Reduction of gibberellin by low temperature disrupts pollen development in rice. PLANT PHYSIOLOGY 2014; 164:2011-9. [PMID: 24569847 PMCID: PMC3982758 DOI: 10.1104/pp.113.234401] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/24/2014] [Indexed: 05/18/2023]
Abstract
Microsporogenesis in rice (Oryza sativa) plants is susceptible to moderate low temperature (LT; approximately 19°C) that disrupts pollen development and causes severe reductions in grain yields. Although considerable research has been invested in the study of cool-temperature injury, a full understanding of the molecular mechanism has not been achieved. Here, we show that endogenous levels of the bioactive gibberellins (GAs) GA4 and GA7, and expression levels of the GA biosynthesis genes GA20ox3 and GA3ox1, decrease in the developing anthers by exposure to LT. By contrast, the levels of precursor GA12 were higher in response to LT. In addition, the expression of the dehydration-responsive element-binding protein DREB2B and SLENDER RICE1 (SLR1)/DELLA was up-regulated in response to LT. Mutants involved in GA biosynthetic and response pathways were hypersensitive to LT stress, including the semidwarf mutants sd1 and d35, the gain-of-function mutant slr1-d, and gibberellin insensitive dwarf1. The reduction in the number of sporogenous cells and the abnormal enlargement of tapetal cells occurred most severely in the GA-insensitive mutant. Application of exogenous GA significantly reversed the male sterility caused by LT, and simultaneous application of exogenous GA with sucrose substantially improved the extent of normal pollen development. Modern rice varieties carrying the sd1 mutation are widely cultivated, and the sd1 mutation is considered one of the greatest achievements of the Green Revolution. The protective strategy achieved by our work may help sustain steady yields of rice under global climate change.
Collapse
|
170
|
Zhang Y, Liu B, Yang S, An J, Chen C, Zhang X, Ren H. A cucumber DELLA homolog CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes. PLoS One 2014; 9:e91804. [PMID: 24632777 PMCID: PMC3954735 DOI: 10.1371/journal.pone.0091804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023] Open
Abstract
In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucumber, and we found that CsGAIP is highly expressed in stem and male flower buds. In situ hybridization showed that CsGAIP is greatly enriched in the stamen primordia, especially during the hermaphrodite stage of flower development. Further, CsGAIP protein is located in nucleus. CsGAIP can partially rescue the plant height, stamen development and fertility phenotypes of Arabidopsis rga-24/gai-t6 mutant, and ectopic expression of CsGAIP in wide-type Arabidopsis results in reduced number of stamens and decreased transcription of B class floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI). Our data suggest that monoecious CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes in Arabidopsis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Sen Yang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Jingbo An
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Chunhua Chen
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Xiaolan Zhang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
- * E-mail: (XZ); (HR)
| | - Huazhong Ren
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
- * E-mail: (XZ); (HR)
| |
Collapse
|
171
|
El-Sharkawy I, Sherif S, El Kayal W, Mahboob A, Abubaker K, Ravindran P, Jyothi-Prakash PA, Kumar PP, Jayasankar S. Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development. PLANT MOLECULAR BIOLOGY 2014; 84:399-413. [PMID: 24142379 DOI: 10.1007/s11103-013-0139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/03/2013] [Indexed: 05/11/2023]
Abstract
Fruit growth is a coordinated, complex interaction of cell division, differentiation and expansion. Gibberellin (GA) involvement in the reproductive events is an important aspect of GA effects. Perennial fruit-trees such as plum (Prunus salicina L.) have distinct features that are economically important and provide opportunities to dissect specific GA mechanisms. Currently, very little is known on the molecular mechanism(s) mediating GA effects on fruit development. Determination of bioactive GA content during plum fruit ontogeny revealed that GA1 and GA4 are critical for fruit growth and development. Further, characterization of several genes involved in GA-signalling showed that their transcriptional regulation are generally GA-dependent, confirming their involvement in GA-signalling. Based on these results, a model is presented elucidating how the potential association between GA and other hormones may contribute to fruit development. PslGID1 proteins structure, Y2H and BiFC assays indicated that plum GA-receptors can form a complex with AtDELLA-repressors in a GA-dependent manner. Moreover, phenotypical-, molecular- and GA-analyses of various Arabidopsis backgrounds ectopically expressing PslGID1 sequences provide evidence on their role as active GA-signalling components that mediate GA-responsiveness. Our findings support the critical contribution of GA alone or in association with other hormones in mediating plum fruit growth and development.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N., P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 2014; 9:e86870. [PMID: 24586255 PMCID: PMC3929325 DOI: 10.1371/journal.pone.0086870] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.
Collapse
|
173
|
Schmidt R, Schippers JHM, Mieulet D, Watanabe M, Hoefgen R, Guiderdoni E, Mueller-Roeber B. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. MOLECULAR PLANT 2014; 7:404-21. [PMID: 24046061 DOI: 10.1093/mp/sst131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
174
|
Expression and purification of a GRAS domain of SLR1, the rice DELLA protein. Protein Expr Purif 2014; 95:248-58. [PMID: 24463428 DOI: 10.1016/j.pep.2014.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
GRAS proteins belong to a plant specific protein family that participates in diverse and important functions in growth and development. GRAS proteins are typically composed of a variable N-terminal domain and highly conserved C-terminal GRAS domain. Despite the importance of the GRAS domain, little biochemical or structural analyses have been reported, mainly due to difficulties with purification of sufficient quality and quantity of protein. This study is focused on one of the most extensively studied GRAS proteins, the rice DELLA protein (SLR1), which is known to be involved in gibberellin (GA) signaling. Using a baculovirus-insect cell expression system we have achieved overproduction and purification of full-length SLR1. Limited proteolysis of the full-length SLR1 indicated that a region including the entire GRAS domain (SLR1(206-625)) is protease resistant. Based on those results, we have constructed an expression and purification system of the GRAS domain (SLR1(206-625)) in Escherichia coli. Several physicochemical assays have indicated that the folded structure of the GRAS domain is rich in secondary structural elements and that alanine substitutions for six cysteine residues improves protein folding without impairing function. Furthermore, by NMR spectroscopy we have observed direct interaction between the purified GRAS domain and the GA receptor GID1. Taken together, our purified preparation of the GRAS domain of SLR1 is suitable for further structural and functional studies that will contribute to precise understanding of the plant regulation mechanism through DELLA and GRAS proteins.
Collapse
|
175
|
|
176
|
Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. SIGNALING PATHWAYS IN PLANTS 2014; 35:1-25. [DOI: 10.1016/b978-0-12-801922-1.00001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
177
|
Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin. Dev Cell 2014; 28:102-10. [DOI: 10.1016/j.devcel.2013.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/20/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022]
|
178
|
Li A, Yang W, Lou X, Liu D, Sun J, Guo X, Wang J, Li Y, Zhan K, Ling HQ, Zhang A. Novel natural allelic variations at the Rht-1 loci in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1026-37. [PMID: 23992198 DOI: 10.1111/jipb.12103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 05/25/2023]
Abstract
Plant height is an important agronomic trait. Dramatic increase in wheat yield during the "green revolution" is mainly due to the widespread utilization of the Reduced height (Rht)-1 gene. We analyzed the natural allelic variations of three homoeologous loci Rht-A1, Rht-B1, and Rht-D1 in Chinese wheat (Triticum aestivum L.) micro-core collections and the Rht-B1/D1 genotypes in over 1,500 bred cultivars and germplasms using a modified EcoTILLING. We identified six new Rht-A1 allelic variations (Rht-A1b-g), eight new Rht-B1 allelic variations (Rht-B1h-o), and six new Rht-D1 allelic variations (Rht-D1e-j). These allelic variations contain single nucleotide polymorphisms (SNPs) or small insertions and deletions in the coding or uncoding regions, involving two frame-shift mutations and 15 missenses. Of which, Rht-D1e and Rht-D1h resulted in the loss of interactions of GID1-DELLA-GID2, Rht-B1i could increase plant height. We found that the Rht-B1h contains the same SNPs and 197 bp fragment insertion as reported in Rht-B1c. Further detection of Rht-B1h in Tibet wheat germplasms and wheat relatives indicated that Rht-B1c may originate from Rht-B1h. These results suggest rich genetic diversity at the Rht-1 loci and provide new resources for wheat breeding.
Collapse
Affiliation(s)
- Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Giacomelli L, Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4403-19. [PMID: 24006417 PMCID: PMC3808322 DOI: 10.1093/jxb/ert251] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts.
Collapse
Affiliation(s)
- Lisa Giacomelli
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| | - Omar Rota-Stabelli
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| | - Domenico Masuero
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| | | | - Marco Moretto
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| | - Lorenzo Caputi
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| | - Urska Vrhovsek
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| | - Claudio Moser
- Research and Innovation Centre-Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
| |
Collapse
|
180
|
Nomura T, Magome H, Hanada A, Takeda-Kamiya N, Mander LN, Kamiya Y, Yamaguchi S. Functional Analysis of Arabidopsis CYP714A1 and CYP714A2 Reveals That They are Distinct Gibberellin Modification Enzymes. ACTA ACUST UNITED AC 2013; 54:1837-51. [DOI: 10.1093/pcp/pct125] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
181
|
Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:305-17. [PMID: 23893173 PMCID: PMC3762652 DOI: 10.1104/pp.113.223933] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Arabidopsis (Arabidopsis thaliana) SWI/SNF CRCs, interferes with normal functioning of several plant hormone pathways and alters transcriptional regulation of key genes of gibberellin (GA) biosynthesis. The resulting reduction of GA4 causes severe inhibition of hypocotyl and root elongation, which can be rescued by exogenous GA treatment. In addition, the swi3c mutation inhibits DELLA-dependent transcriptional activation of GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptor genes. Down-regulation of GID1a in parallel with the DELLA repressor gene REPRESSOR OF GA1-3 1 in swi3c indicates that lack of SWI3C also leads to defects in GA signaling. Together with the recent demonstration of function of SWI/SNF ATPase BRAHMA in the GA pathway, these results reveal a critical role of SWI/SNF CRC in the regulation of GA biosynthesis and signaling. Moreover, we demonstrate that SWI3C is capable of in vitro binding to, and shows in vivo bimolecular fluorescence complementation interaction in cell nuclei with, the DELLA proteins RGA-LIKE2 and RGA-LIKE3, which affect transcriptional activation of GID1 and GA3ox (GIBBERELLIN 3-OXIDASE) genes controlling GA perception and biosynthesis, respectively. Furthermore, we show that SWI3C also interacts with the O-GlcNAc (O-linked N-acetylglucosamine) transferase SPINDLY required for proper functioning of DELLAs and acts hypostatically to (SPINDLY) in the GA response pathway. These findings suggest that DELLA-mediated effects in GA signaling as well as their role as a hub in hormonal cross talk may be, at least in part, dependent on their direct physical interaction with complexes responsible for modulation of chromatin structure.
Collapse
|
182
|
Duan H, Li D, Liu H, Liang D, Yang X. Computational insight into novel molecular recognition mechanism of different bioactive GAs and the Arabidopsis receptor GID1A. J Mol Model 2013; 19:4613-24. [PMID: 23982476 DOI: 10.1007/s00894-013-1971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Gibberellin (GA) is an essential plant hormone and plays a significant role during the growth and development of the higher plants. The molecular recognition mode between GA and receptor Arabidopsis thaliana GIBBERELLIN INSENSITIVE DWARF1 A (AtGID1A) was investigated by molecular docking and dynamics simulations to clarify the selective perceived mechanism of different bioactive GA molecules to AtGID1A. The 6-COOH group of GA, especially its β configuration, was found to be an indispensable pharmacophore group for GA recognition and binding to AtGID1A. Not only does a strong salt bridge interaction between the 6β-COOH group of GA and Arg244 of AtGID1A play a very important role in the GA recognition of the receptor, but also an indirect water bridge interaction between the pharmacophore group 6β-COOH of GA and the residue Tyr322 of AtGID1A is essential for the GA binding to the receptor. The site-directed residues mutant modeling study on the receptor-binding pocket confirmed that the mutations of Arg244 and Tyr322 decreased the GA binding activity due to the disappearances of the salt bridge and the hydrogen bond interaction. The 3β-OH group of GA was well known to be necessary for the GA bioactivity due to its forming a unique hydrogen bond with Tyr127 of AtGID1A. In addition, the hydrophobic interaction between GA and AtGID1A was considered a necessary factor to lock the GA active conformation and stabilize the GA-GID1A complex structure. The novel molecular recognition mode will be beneficial in elucidating the GA regulation function on the growth and development of the higher plants.
Collapse
Affiliation(s)
- Hongxia Duan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, People's Republic of China, 100193,
| | | | | | | | | |
Collapse
|
183
|
Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM. Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. PLANT PHYSIOLOGY 2013; 162:2125-39. [PMID: 23818171 PMCID: PMC3729787 DOI: 10.1104/pp.113.219451] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCF(SLY1) E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination.
Collapse
|
184
|
Niu S, Li Z, Yuan H, Fang P, Chen X, Li W. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3411-24. [PMID: 23918971 PMCID: PMC3733162 DOI: 10.1093/jxb/ert186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bioactive gibberellins (GAs) are involved in many developmental aspects of the life cycle of plants, acting either directly or through interaction with other hormones. Accumulating evidence suggests that GAs have an important effect on root growth; however, there is currently little information on the specific regulatory mechanism of GAs during adventitious root development. A study was conducted on tobacco (Nicotiana tabacum) plants for altered rates of biosynthesis, catabolism, and GA signalling constitutively or in specific tissues using a transgenic approach. In the present study, PtGA20ox, PtGA2ox1, and PtGAI were overexpressed under the control of the 35S promoter, vascular cambium-specific promoter (LMX5), or root meristem-specific promoter (TobRB7), respectively. Evidence is provided that the precise localization of bioactive GA in the stem but not in the roots is required to regulate adventitious root development in tobacco. High levels of GA negatively regulate the early initiation step of root formation through interactions with auxin, while a proper and mobile GA signal is required for the emergence and subsequent long-term elongation of established primordia. The results demonstrated that GAs have an inhibitory effect on adventitious root formation but a stimulatory effect on root elongation.
Collapse
Affiliation(s)
- Shihui Niu
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhexin Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Pan Fang
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaoyang Chen
- Laboratory of Bio-technology of Tropical and Subtropical Forestry, College of Forestry, South China Agriculture University, Guangzhou, 510642, PR China
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
185
|
Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One 2013; 8:e70080. [PMID: 23922914 PMCID: PMC3726760 DOI: 10.1371/journal.pone.0070080] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022] Open
Abstract
Fruit set of plants largely depends on the biosynthesis and crosstalk of phytohormones. To date the role of cytokinins (CKs) in the fruit development is less understood. Here, we showed that parthenocarpic fruit could be induced by 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU, an active CK) in tomato (Solanumlycopersicum cv. Micro-Tom). The fresh weight of CPPU-induced parthenocarpic fruits was comparable with that induced by GA3. Importantly, CPPU-induced parthenocarpy was found to be compromised by simultaneous application of paclobutrazol (a GA biosynthesis inhibitor), and this effect could be restored by exogenous GA3. Like pollination, CPPU-induced fruit showed enhanced accumulation of GA1+3 and indole-3-acetic (IAA), which were accompanied by elevated expression of GA biosynthesis genes like SlGPS, SlGA20ox1, SlGA20ox2 and SlGA3ox1, and IAA biosynthesis gene ToFZY. Elevated GAs level in CPPU-induced fruits was also associated with down-regulation of GA inactivation genes, namely SlGA2ox1,2,3,4,5 in comparison with untreated control. These results suggested that CKs may induce parthenocarpy in tomato partially through modulation of GA and IAA metabolisms.
Collapse
Affiliation(s)
- Jiangang Ding
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People’s Republic of China
| | - Biwei Chen
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Weihua Mao
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail:
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agricultural, Hangzhou, People’s Republic of China
| |
Collapse
|
186
|
Wang C, Bao Y, Wang Q, Zhang H. Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2847-57. [PMID: 23667043 PMCID: PMC3697953 DOI: 10.1093/jxb/ert127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rice (Oryza sativa) OsCYP714D1 gene (also known as EUI) encodes a cytochrome P450 monooxygenase which functions as a gibberellin (GA)-deactivating enzyme, catalysing 16α, 17-epoxidation of non-13-hydroxylated GAs. To understand whether it would also reduce the production of active GAs and depress the growth rate in transgenic trees, we constitutively expressed OsCYP714D1 in the aspen hybrid clone Populus alba×P. berolinensis. Unexpectedly, ectopic expression of OsCYP714D1 in aspen positively regulated the biosynthesis of GAs, including the active GA1 and GA4, leading to promotion of the growth rate and biomass production in transgenic plants. Transgenic lines which showed significant expression of the introduced OsCYP714D1 gene accumulated a higher GA level and produced more numerous and longer xylem fibres than did the wild-type plants. Quantitative real-time PCR indicated that transcription of most homologous PtCYP714 genes was suppressed in these transgenic lines. Therefore, the promoted GA and biomass production in transgenic trees constitutively expressing OsCYP714D1 is probably attributed to the down-regulated expression of the native PtCYP714 homologues involved in the GA biosynthesis pathway, although their precise functions are yet to be further elucidated.
Collapse
Affiliation(s)
| | | | - Qiuqing Wang
- Present address: Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
187
|
Raorane ML, Mutte SK, Varadarajan AR, Pabuayon IM, Kohli A. Protein SUMOylation and plant abiotic stress signaling: in silico case study of rice RLKs, heat-shock and Ca(2+)-binding proteins. PLANT CELL REPORTS 2013; 32:1053-65. [PMID: 23666184 DOI: 10.1007/s00299-013-1452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 05/25/2023]
Abstract
Plants respond to stress conditions through early stress-response factors (ESRF), which serve the function of stress sensing and/or signal transduction. These mainly comprise qualitative and/or quantitative flux in the redox molecules, calcium ions (Ca(2+)), phosphatidic acid, hexose sugars and phytohormones. The role of resident proteins such as phytohormone receptors and G-proteins as first messengers under stress is well established. Yet, within the modern omics context, most of the stress response at the protein level is injudiciously attributed to substantial up- or down-regulation of expression measured at the RNA or protein level. Proteins such as kinases and transcription factors (TFs) that exhibit cascade effects are primary candidates for studies in plant stress tolerance. However, resident-protein post-translational modification (PTM), specifically in response to particular conditions such as stress, is a candidate for immediate and potent 'quick reaction force' (QRF) kind of effects. Stress-mediated SUMOylation of TFs and other proteins have been observed. SUMOylation can change the rate of activity, function or location of the modified protein. Early SUMOylation of resident proteins can act in the stress signal transduction or in adaptive response. Here, we consider brief background information on ESRFs to establish the crosstalk between these factors that impinge on PTMs. We then illustrate connections of protein SUMOylation to phytohormones and TFs. Finally, we present results of an in silico analysis of rice Receptor-Like Kinases, heat-shock and calcium-binding proteins to identify members of these gene families, whose basal expression under drought but potential SUMOylation presents them as QRF candidates for roles in stress signaling/response.
Collapse
Affiliation(s)
- Manish L Raorane
- Plant Molecular Biology Laboratory, Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO 7777 Metro Manila, Philippines
| | | | | | | | | |
Collapse
|
188
|
Hao GF, Yang SG, Yang GF, Zhan CG. Computational gibberellin-binding channel discovery unraveling the unexpected perception mechanism of hormone signal by gibberellin receptor. J Comput Chem 2013; 34:2055-64. [PMID: 23765254 DOI: 10.1002/jcc.23355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/01/2013] [Accepted: 05/23/2013] [Indexed: 11/10/2022]
Abstract
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA-binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008, 456, 459] involving two conformational states ("OPEN" and "CLOSED") of GID1. According to the new perception mechanism, GA acts as a "conformational stabilizer," rather than the previously speculated "allosteric inducer," to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism-based rational design of novel, potent growth regulators that target crops and ornamental plants.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | | | | | | |
Collapse
|
189
|
Schmitz AJ, Folsom JJ, Jikamaru Y, Ronald P, Walia H. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. THE NEW PHYTOLOGIST 2013; 198:1060-1070. [PMID: 23496140 DOI: 10.1111/nph.12202] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 05/20/2023]
Abstract
· Submergence 1A (SUB1A), is an ethylene response factor (ERF) that confers submergence tolerance in rice (Oryza sativa) via limiting shoot elongation during the inundation period. SUB1A has been proposed to restrict shoot growth by modulating gibberellic acid (GA) signaling. · Our transcriptome analysis indicated that SUB1A differentially regulates genes associated with brassinosteroid (BR) synthesis during submergence. Consistent with the gene expression data, the SUB1A genotype had higher brassinosteroid levels after submergence compared to the intolerant genotype. Tolerance to submergence can be activated in the intolerant genotype by pretreatment with exogenous brassinolide, which results in restricted shoot elongation during submergence. · BR induced a GA catabolic gene, resulting in lower GA levels in SUB1A plants. BR treatment also induced the DELLA protein SLR1, a known repressor of GA responses such as shoot elongation. We propose that BR limits GA levels during submergence in the SUB1A rice through a GA catabolic enzyme as part of an early response and may repress GA responses by inducing SLR1 after several days of submergence. · Our results suggest that BR biosynthesis is regulated in a SUB1A-dependent manner during submergence and is involved in modulating the GA signaling and homeostasis.
Collapse
Affiliation(s)
- Aaron J Schmitz
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jing J Folsom
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Yusuke Jikamaru
- RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
190
|
Abstract
The plant hormone gibberellin (GA) regulates major aspects of plant growth and development. The role of GA in determining plant stature had major impacts on agriculture in the 1960s, and the development of semi-dwarf varieties that show altered GA responses contributed to a huge increase in grain yields during the ‘green revolution’. The past decade has brought great progress in understanding the molecular basis of GA action, with the cloning and characterization of GA signaling components. Here, we review the molecular basis of the GA signaling pathway, from the perception of GA to the regulation of downstream genes.
Collapse
Affiliation(s)
- Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l’Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
191
|
Kim W, Lee Y, Park J, Lee N, Choi G. HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis. ACTA ACUST UNITED AC 2013; 54:555-72. [DOI: 10.1093/pcp/pct017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
192
|
Kuang Q, Li L, Peng J, Sun S, Wang X. Transcriptome analysis of Gerbera hybrida ray florets: putative genes associated with gibberellin metabolism and signal transduction. PLoS One 2013; 8:e57715. [PMID: 23472101 PMCID: PMC3589416 DOI: 10.1371/journal.pone.0057715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
In this study, the transcriptome of the Gerbera hybrida ray floret was constructed using a high-throughput Illumina sequencing platform. All 47,104 UniGenes with an average length of 845 nt and an N50 equaling 1321 nt were generated from 72,688,546 total primary reads after filtering and assembly. A total of 36,693 transcripts were annotated by comparison with non-redundant National Center for Biotechnology Information (NCBI) protein (Nr), non-redundant NCBI nucleotide (Nt), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after removing exogenous contaminated sequences. The majority of the genes that are associated with gibberellin metabolism and signal transduction were identified. The targets for signal transduction of other plant hormones were also enumerated. Our study provides a systematic overview of the hormone signal transduction genes that are involved in ray floral development in Asteraceae and should facilitate further understanding of the crucial roles of phytohormones in plant growth.
Collapse
Affiliation(s)
- Qi Kuang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Lingfei Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianzong Peng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Shulan Sun
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaojing Wang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail:
| |
Collapse
|
193
|
Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM. Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. PLANT MOLECULAR BIOLOGY 2013; 81:347-61. [PMID: 23329372 DOI: 10.1007/s11103-012-0006-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/26/2012] [Indexed: 05/18/2023]
Abstract
Germination followed by seedling growth constitutes two essential steps in the initiation of a new life cycle in plants, and in cereals, completion of these steps is regulated by sugar starvation and the hormone gibberellin. A calcium-dependent protein kinase 1 gene (OsCDPK1) was identified by differential screening of a cDNA library derived from sucrose-starved rice suspension cells. The expression of OsCDPK1 was found to be specifically activated by sucrose starvation among several stress conditions tested as well as activated transiently during post-germination seedling growth. In gain- and loss-of-function studies performed with transgenic rice overexpressing a constitutively active or RNA interference gene knockdown construct, respectively, OsCDPK1 was found to negatively regulate the expression of enzymes essential for GA biosynthesis. In contrast, OsCDPK1 activated the expression of a 14-3-3 protein, GF14c. Overexpression of either constitutively active OsCDPK1 or GF14c enhanced drought tolerance in transgenic rice seedlings. Hence, our studies demonstrated that OsCDPK1 transduces the post-germination Ca(2+) signal derived from sugar starvation and GA, refines the endogenous GA concentration and prevents drought stress injury, all essential functions to seedling development at the beginning of the life cycle in rice.
Collapse
Affiliation(s)
- Shin-Lon Ho
- Department of Agronomy, National Chiayi University, Chiayi, 600, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Li A, Yang W, Li S, Liu D, Guo X, Sun J, Zhang A. Molecular characterization of three GIBBERELLIN-INSENSITIVE DWARF1 homologous genes in hexaploid wheat. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:432-443. [PMID: 23261263 DOI: 10.1016/j.jplph.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
GIBBERELLIN-INSENSITIVE DWARF1 (GID1) functions as a gibberellin (GA) receptor and is a key component in the GA signaling pathway. In this paper, three TaGID1 genes, orthologous to rice OsGID1 (the first identified GA receptor GID1 gene), were isolated from hexaploid wheat using homology cloning. Like OsGID1, the three homologous TaGID1 genes consisted of two exons and one intron. Physical location analyses using nullisomic-tetrasomic and deletion lines derived from the wheat cultivar Chinese Spring revealed that the three homologous TaGID1 genes reside in the chromosome bins 1AL3-0.61-1, 1BL1-0.47-0.69, and 1DL2-0.41-1. Accordingly, they were named TaGID1-A1, TaGID1-B1, and TaGID1-D1, respectively. The expression patterns of the three TaGID1 genes were determined by real-time PCR in various wheat tissues at the heading stage, including flag leaves, young spikes, peduncles, and the third and fourth internodes. The three TaGID1 genes had similar transcript patterns, and all exhibited greater expression in flag leaves than in the other tissues. Moreover, they were all down-regulated after treatment with exogenous gibberellic acid (GA(3)) in young seedlings, suggesting a feedback regulation of TaGID1 in wheat. Yeast two-hybrid assays demonstrated strong interactions between each putative TaGID1 and the wheat DELLA proteins RHT-A1, RHT-B1, and RHT-D1 in the presence of GA(3), and weak interactions in the absence of GA(3) in yeast cells. Furthermore, over-expression of each TaGID1 gene in the Arabidopsis double mutant gid1a/1c partially rescued the dwarf phenotype. These results suggest that the three TaGID1 homologous genes are all functional GA receptor genes in wheat.
Collapse
Affiliation(s)
- Aixia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
195
|
CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci U S A 2013; 110:1947-52. [PMID: 23319637 DOI: 10.1073/pnas.1215788110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.
Collapse
|
196
|
Kay P, Groszmann M, Ross JJ, Parish RW, Swain SM. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:73-87. [PMID: 23126654 DOI: 10.1111/j.1469-8137.2012.04373.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/31/2012] [Indexed: 05/03/2023]
Abstract
Disrupting pollen tube growth and fertilization in Arabidopsis plants leads to reduced seed set and silique size, providing a powerful genetic system with which to identify genes with important roles in plant fertility. A transgenic Arabidopsis line with reduced pollen tube growth, seed set and silique growth was used as the progenitor in a genetic screen to isolate suppressors with increased seed set and silique size. This screen generated a new allele of INDEHISCENT (IND), a gene originally identified by its role in valve margin development and silique dehiscence (pod shatter). IND forms part of a regulatory network that involves several other transcriptional regulators and involves the plant hormones GA and auxin. Using GA and auxin mutants that alter various aspects of reproductive development, we have identified novel roles for IND, its paralogue HECATE3, and the MADS box proteins SHATTERPROOF1/2 in flower and fruit development. These results suggest that modified forms of the regulatory network originally described for the Arabidopsis valve margin, which include these genes and/or their recently evolved paralogs, function in multiple components of GA/auxin-regulated reproductive development.
Collapse
Affiliation(s)
- P Kay
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
- Department of Botany, La Trobe University, Bundoora, VIC, 3086, Australia
| | - M Groszmann
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| | - J J Ross
- School of Plant Science, University of Tasmania, Hobart, TAS, 7001, Australia
| | - R W Parish
- Department of Botany, La Trobe University, Bundoora, VIC, 3086, Australia
| | - S M Swain
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| |
Collapse
|
197
|
Chen M, Du X, Zhu Y, Wang Z, Hua S, Li Z, Guo W, Zhang G, Peng J, Jiang L. Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. PLANT, CELL & ENVIRONMENT 2012; 35:2155-69. [PMID: 22632271 DOI: 10.1111/j.1365-3040.2012.02546.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies based on microarray analysis have found that DELLAs down-regulate several GDSL genes in unopened flowers and/or imbibed seeds. This suggests the role of DELLAs in seed fatty acid (FA) metabolism. In the present study, enhancement of gibberellin (GA) signalling through DELLA mutation or exogenous gibberellin acid A3 (GA(3) ) resulted in the up-regulated expression of transcription factors for embryogenesis and seed development, genes involved in the FA biosynthesis pathway, and five GDSL-type Seed Fatty Acid Reducer (SFAR) genes. SFAR overexpression reduced the total seed FA content and led to a particular pattern of seed FA composition. This 'SFAR footprint' can also be found in plants with enhanced GA(3) signalling. By contrast, the loss of SFAR function dramatically increases the seed FA content. The transgenic lines that overexpress SFAR were less sensitive to stressful environments, reflected by a higher germination rate and better seedling establishment compared with the wild type (WT) plants. The GDSL-type hydrolyzer is a family of proteins largely uncharacterized in Arabidopsis. Their biological function remains poorly understood. SFAR reduces seed FA storage and acts downstream of the GA signalling pathway. We provide the first evidence that some GDSL proteins are somehow involved in FA degradation in Arabidopsis seeds.
Collapse
Affiliation(s)
- Mingxun Chen
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, College of Agriculture and Biotechnology, Hangzhou 310012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Meldau S, Erb M, Baldwin IT. Defence on demand: mechanisms behind optimal defence patterns. ANNALS OF BOTANY 2012; 110:1503-14. [PMID: 23022676 PMCID: PMC3503495 DOI: 10.1093/aob/mcs212] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. SCOPE This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. CONCLUSIONS Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| | | | | |
Collapse
|
199
|
Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Østergaard L. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. THE PLANT CELL 2012; 24:3982-96. [PMID: 23064323 PMCID: PMC3517231 DOI: 10.1105/tpc.112.103192] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/17/2012] [Accepted: 09/24/2012] [Indexed: 05/18/2023]
Abstract
Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1-mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction.
Collapse
Affiliation(s)
- Sara Fuentes
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, S-901 83 Umea, Sweden
| | - Karim Sorefan
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Elizabeth Alvey
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| |
Collapse
|
200
|
Hauvermale AL, Ariizumi T, Steber CM. Gibberellin signaling: a theme and variations on DELLA repression. PLANT PHYSIOLOGY 2012; 160:83-92. [PMID: 22843665 PMCID: PMC3440232 DOI: 10.1104/pp.112.200956] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 05/17/2023]
|