151
|
Ocaña-Morgner C, Wong KA, Rodriguez A. Interactions between dendritic cells and CD4+ T cells during Plasmodium infection. Malar J 2008; 7:88. [PMID: 18495039 PMCID: PMC2423365 DOI: 10.1186/1475-2875-7-88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 05/21/2008] [Indexed: 12/02/2022] Open
Abstract
Background During infection, dendritic cells (DCs) encounter pathogenic microorganisms that can modulate their function and shape the T cell responses generated. During the process of T cell activation, DCs establish strong, long-lasting interactions with naïve T cells. Methods Using a mouse malaria model, the interactions of DCs and naïve CD4+ T cells have been analysed. Results DCs, either incubated in vitro with infected erythrocytes or isolated from infected mice, are able to present exogenous antigens by MHC-II, but are not able to establish prolonged effective interactions with naïve CD4+ T cells and do not induce T cell activation. It was also found that effective T cell activation of naïve CD4+ T cells is impaired during late Plasmodium yoelii infection. Conclusion These data may provide a mechanism for the lack of effective adaptive immune responses induced by the Plasmodium parasite.
Collapse
Affiliation(s)
- Carlos Ocaña-Morgner
- New York University School of Medicine, Department of Medical Parasitology, 341 E 25th street, New York, NY 10010, USA.
| | | | | |
Collapse
|
152
|
Salvadó E, Jesús Pinazo M, Muñoz J, Alonso D, Naniche D, Mayor A, Quintó L, Gascón J. Presentación clínica y complicaciones de malaria importada por Plasmodium falciparum en dos grupos de población: viajeros e inmigrantes. Enferm Infecc Microbiol Clin 2008; 26:282-4. [DOI: 10.1157/13120415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
153
|
Huaman MC, Martin LB, Malkin E, Narum DL, Miller LH, Mahanty S, Long CA. Ex vivo cytokine and memory T cell responses to the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 in vaccinated volunteers. THE JOURNAL OF IMMUNOLOGY 2008; 180:1451-61. [PMID: 18209040 DOI: 10.4049/jimmunol.180.3.1451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of blood-stage malaria Ags are under development as vaccine candidates, but knowledge of the cellular responses to these vaccines in humans is limited. We evaluated the nature and specificity of cellular responses in healthy American volunteers vaccinated with a portion of the major merozoite surface protein-1 (MSP1) of Plasmodium falciparum, MSP1(42), formulated on Alhydrogel. Volunteers were vaccinated three times with 80 microg of either MSP1(42)-FVO/Alhydrogel or MSP1(42)-3D7/Alhydrogel. Cells collected 2 wk after the third vaccination produced Th1 cytokines, including IFN-gamma and IL-2 following Ag stimulation, and greater levels of the Th2 cytokines IL-5 and IL-13; the anti-inflammatory cytokine IL-10 and the molecule CD25 (IL-2Ralpha) were also detected. The volunteers were evaluated for the MSP1(42)-FVO or MSP1(42)-3D7 specificity of their T cell responses. Comparison of their responses to homologous and heterologous Ags showed ex vivo IFN-gamma and IL-5 levels that were significantly higher to homologous rather than to heterologous Ags. The epitopes involved in this stimulation were shown to be present in the dimorphic MSP1(33) portion of the larger MSP1(42)-3D7 polypeptide, and indirect experiment suggests the same for the MSP1(42)-FVO polypeptide. This contrasts with B cell responses, which were primarily directed to the conserved MSP1(19) portion. Furthermore, we explored the maturation of memory T cells and found that 46% of vaccinees showed specific memory T cells defined as CD4(+)CD45RO(+)CD40L(+) after long-term in vitro culture. The identification of human-specific CD4(+) memory T cells provides the foundation for future studies of these cells both after vaccination and in field studies.
Collapse
Affiliation(s)
- Maria Cecilia Huaman
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Hepatosplenomegaly is associated with low regulatory and Th2 responses to schistosome antigens in childhood schistosomiasis and malaria coinfection. Infect Immun 2008; 76:2212-8. [PMID: 18285496 DOI: 10.1128/iai.01433-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatosplenomegaly among Kenyan schoolchildren has been shown to be exacerbated where there is transmission of both Schistosoma mansoni and Plasmodium falciparum. This highly prevalent and chronic morbidity often occurs in the absence of ultrasound-detectable periportal fibrosis and may be due to immunological inflammation. For a cohort of school-age children, whole-blood cultures were stimulated with S. mansoni soluble egg antigen (SEA) or soluble worm antigen (SWA). Responses to SWA were found to be predominantly Th2 cytokines; however, they were not significantly associated with either hepatosplenomegaly or infection with S. mansoni or P. falciparum. In comparison, SEA-specific Th2 cytokine responses were low, and the levels were negatively correlated with S. mansoni infection intensities and were lower among children who were coinfected with P. falciparum. Tumor necrosis factor alpha levels in response to stimulation with SEA were high, and a negative association between presentation with hepatomegaly and the levels of the regulatory cytokines interleukin-6 and transforming growth factor beta(1) suggests that a possible mechanism for childhood hepatomegaly in areas where both malaria and schistosomiasis are endemic is poor regulation of an inflammatory response to schistosome eggs.
Collapse
|
155
|
Duration of naturally acquired antibody responses to blood-stage Plasmodium falciparum is age dependent and antigen specific. Infect Immun 2008; 76:1748-55. [PMID: 18212081 DOI: 10.1128/iai.01333-07] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally acquired antibody responses provide partial protection from clinical malaria, and blood-stage parasite vaccines under development aim to prime such responses. To investigate the determinants of antibody response longevity, immunoglobulin G (IgG) antibodies to several blood-stage vaccine candidate antigens in the sera of two cohorts of children of up to 6 years of age during the dry seasons of 2003 and 2004 in The Gambia were examined. The first cohort showed that most antibodies were lost within less than 4 months of the first sampling if a persistent infection was not present, so the study of the second-year cohort involved collecting samples from individuals every 2 weeks over a 3-month period. Antibody responses in the second cohort were also influenced by persistent malaria infection, so analysis focused particularly on children in whom parasites were not detected after the first time point. Antibodies to most antigens declined more slowly in children in the oldest age group (>5 years old) and more rapidly in children in the youngest group (<3 years old). However, antibodies to merozoite surface protein 2 were shorter lived than antibodies to other antigens and were not more persistent in older children. The age-specific and antigen-specific differences were not explained by different IgG subclass response profiles, indicating the probable importance of differential longevities of plasma cell populations rather than antibody molecules. It is likely that young children mostly have short-lived plasma cells and thus experience rapid declines in antibody levels but that older children have longer-lasting antibody responses that depend on long-lived plasma cells.
Collapse
|
156
|
Okwor I, Uzonna J. Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies. Immunol Res 2008; 41:123-36. [PMID: 18389179 DOI: 10.1007/s12026-008-8016-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Despite a plethora of publications on the murine model of cutaneous leishmaniasis and their contribution to our understanding of the factors that regulate the development of CD4+ T cell immunity in vivo, there is still no effective vaccine against the human disease. While recovery from natural or experimental infection with Leishmania major, the causative agent of human cutaneous leishmaniasis, results in persistence of parasites at the primary infection site and the development of long-lasting immunity to reinfection, vaccination with killed parasites or recombinant proteins induces only short-term protection. The reasons for the difference in protective immunity following recovery from live infection and vaccination with heat-killed parasites are not known. This may in part be related to persistence of live parasites following healing of primary cutaneous lesions, because complete clearance of parasites leads to rapid loss of infection-induced immunity. Recent reports indicate that in addition to persistent parasites, IL-10-producing natural regulatory T cells may also play critical roles in the maintenance and loss of infection-induced immunity. This review focuses on current understanding of the factors that regulate the development, maintenance and loss of anti-Leishmania memory responses and highlights the role of persistent parasites and regulatory T cells in this process. Understanding these factors is crucial for designing effective vaccines and vaccination strategies against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ifeoma Okwor
- Parasite Vaccines Development Laboratory, Department of Immunology, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
157
|
Filipe JAN, Riley EM, Drakeley CJ, Sutherland CJ, Ghani AC. Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol 2007; 3:e255. [PMID: 18166074 PMCID: PMC2230683 DOI: 10.1371/journal.pcbi.0030255] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 11/13/2007] [Indexed: 11/18/2022] Open
Abstract
Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of protection. Using mathematical models, we seek to better understand the processes that determine observed epidemiological patterns. We have developed an age-structured mathematical model of malaria transmission in which acquired immunity can act in three ways ("immunity functions"): reducing the probability of clinical disease, speeding the clearance of parasites, and increasing tolerance to subpatent infections. Each immunity function was allowed to vary in efficacy depending on both age and malaria transmission intensity. The results were compared to age patterns of parasite prevalence and clinical disease in endemic settings in northeastern Tanzania and The Gambia. Two types of immune function were required to reproduce the epidemiological age-prevalence curves seen in the empirical data; a form of clinical immunity that reduces susceptibility to clinical disease and develops with age and exposure (with half-life of the order of five years or more) and a form of anti-parasite immunity which results in more rapid clearance of parasitaemia, is acquired later in life and is longer lasting (half-life of >20 y). The development of anti-parasite immunity better reproduced observed epidemiological patterns if it was dominated by age-dependent physiological processes rather than by the magnitude of exposure (provided some exposure occurs). Tolerance to subpatent infections was not required to explain the empirical data. The model comprising immunity to clinical disease which develops early in life and is exposure-dependent, and anti-parasite immunity which develops later in life and is not dependent on the magnitude of exposure, appears to best reproduce the pattern of parasite prevalence and clinical disease by age in different malaria transmission settings. Understanding the effector mechanisms underlying these two immune functions will assist in the design of transmission-reducing interventions against malaria.
Collapse
Affiliation(s)
- João A. N Filipe
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Azra C Ghani
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
158
|
Abstract
Malaria remains an important public health problem throughout the tropical world causing immense human suffering and impeding economic development. Despite extensive research for > 100 years, options for preventing malaria remain limited to vector control and chemoprophylaxis. The complexity of the organism and its life cycle have, thus far, thwarted vaccine development and exacerbated the perennial problems of drug resistance. Nevertheless, development of a vaccine against malaria that reduces morbidity and mortality, and ideally also reduces transmission, has long been seen as an essential component of a sustainable malaria control strategy. In this article the authors review the biological challenges of malaria vaccine development, summarise some of the recent advances and offer some immunological insights which might facilitate further research.
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- Chiang Mai University, Research Institute for Health Sciences, PO Box 80 CMU, Chiang Mai 50202, Thailand
| | | |
Collapse
|
159
|
Corran P, Coleman P, Riley E, Drakeley C. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 2007; 23:575-82. [PMID: 17988945 DOI: 10.1016/j.pt.2007.08.023] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
To estimate the burden of malarial disease, and evaluate the likely effects of control strategies, requires reliable predictions of malaria transmission intensity. It has long been suggested that antimalarial antibody prevalences could provide a more accurate estimate of transmission intensity than traditional measures such as parasite prevalence or entomological inoculation rates, but there has been no systematic evaluation of this approach. Now, the availability of well characterized malarial antigens allows us to test whether serological measurements provide a practical method for estimating transmission. Here we present a suggested methodology, highlight the advantages and shortcomings of serological measurements of malaria transmission and identify areas in which further work is desirable.
Collapse
Affiliation(s)
- Patrick Corran
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel St, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
160
|
Barbedo MB, Ricci R, Jimenez MCS, Cunha MG, Yazdani SS, Chitnis CE, Rodrigues MM, Soares IS. Comparative recognition by human IgG antibodies of recombinant proteins representing three asexual erythrocytic stage vaccine candidates of Plasmodium vivax. Mem Inst Oswaldo Cruz 2007; 102:335-9. [PMID: 17568939 DOI: 10.1590/s0074-02762007005000040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/24/2007] [Indexed: 11/21/2022] Open
Abstract
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Collapse
Affiliation(s)
- Mayara B Barbedo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Súo Paulo, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Minigo G, Scalzo K, Flanagan KL, Plebanski M. Predicting memory: a prospective readout for malaria vaccines? Trends Parasitol 2007; 23:341-3. [PMID: 17586093 DOI: 10.1016/j.pt.2007.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 11/16/2022]
Abstract
Malaria vaccines aim to induce long lasting protective immunity. Bejon and colleagues propose that levels of rapidly induced (effector memory) interleukin-2 and interferon gamma producing T-cells after vaccination with leading pre-erythrocytic stage vaccines predict the induction of resting memory responses (central memory). Herein we discuss Bejon's findings in the context of current thinking on the generation and maintenance of T cell memory, with particular emphasis on the role of cytokines.
Collapse
Affiliation(s)
- Gabriela Minigo
- Department of Immunology, Monash University, The Alfred Medical Research and Education Precinct, Prahran, Victoria 3181, Australia
| | | | | | | |
Collapse
|
162
|
Abstract
The observation that individuals living in malaria endemic areas fail to develop sterilizing immunity to malaria infection has led to the assumption that malaria-specific immune responses are sub-optimal. Recently, T cell receptor (TCR) transgenic mice specific for the sporozoite and blood stages of the malaria parasite have been developed. Studies using these models have found that, unexpectedly, T cell memory in malaria is not noticeably defective. However, if T cell memory is 'normal' why are people not better protected? We suggest this is because protective immunity and T cell memory do not always correlate; moreover, T cells alone may simply not be able to provide the type of antibody-mediated sterilizing immunity induced by traditional vaccines.
Collapse
Affiliation(s)
- Ian A Cockburn
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
163
|
McIntosh RS, Shi J, Jennings RM, Chappel JC, de Koning-Ward TF, Smith T, Green J, van Egmond M, Leusen JHW, Lazarou M, van de Winkel J, Jones TS, Crabb BS, Holder AA, Pleass RJ. The importance of human FcgammaRI in mediating protection to malaria. PLoS Pathog 2007; 3:e72. [PMID: 17511516 PMCID: PMC1868954 DOI: 10.1371/journal.ppat.0030072] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022] Open
Abstract
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria. Malaria rivals HIV and tuberculosis as the world's most deadly infection killing a child every 30 seconds. Antibodies and their receptors (Fc-receptors) have been shown to be vital for the development of protective immunity, and as such they act as correlates of protection in studies aimed at defining the best antigens to incorporate into current vaccines. Understanding antibody types and Fc-receptors that optimally induce immunity is therefore vital to developing the best vaccines. Surrogate markers of antibody efficacy currently rely on in vitro assays that are laborious and difficult to reproduce. It remains unclear if such in vitro assays are predictive of functional immunity in humans due to the lack of suitable animal models permissive for Plasmodium falciparum. Here, we create a transgenic in vivo mouse model that has significant advantage over the use of new world primates, the only other model for human malaria. We demonstrate that this model defines an Fc-dependent mechanism of parasite destruction that cannot be assessed in current in vitro assays. The model provides both a test for therapeutic antibody efficacy prior to clinical trials in humans and an important tool in malaria vaccine development.
Collapse
Affiliation(s)
- Richard S McIntosh
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Jianguo Shi
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Richard M Jennings
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Jonathan C Chappel
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
- Medical Research Council Technology, London, United Kingdom
| | | | - Tim Smith
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Judith Green
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU Medical Centre, Amsterdam, Netherlands
| | - Jeanette H. W Leusen
- Immunotherapy Laboratory, Department of Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Maria Lazarou
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
| | - Jan van de Winkel
- Immunotherapy Laboratory, Department of Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
- Genmab, Utrecht, Netherlands
| | - Tarran S Jones
- Medical Research Council Technology, London, United Kingdom
| | - Brendan S Crabb
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anthony A Holder
- Division of Parasitology, National Institute for Medical Research, Medical Research Council, London, United Kingdom
- * To whom correspondence should be addressed. E-mail: (AAH); (RJP)
| | - Richard J Pleass
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, United Kingdom
- * To whom correspondence should be addressed. E-mail: (AAH); (RJP)
| |
Collapse
|
164
|
Gray JC, Corran PH, Mangia E, Gaunt MW, Li Q, Tetteh KKA, Polley SD, Conway DJ, Holder AA, Bacarese-Hamilton T, Riley EM, Crisanti A. Profiling the antibody immune response against blood stage malaria vaccine candidates. Clin Chem 2007; 53:1244-53. [PMID: 17510307 DOI: 10.1373/clinchem.2006.081695] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complexity and diversity of the antibody immune response to the antigen repertoire of a pathogen has long been appreciated. Although it has been recognized that the detection of antibodies against multiple antigens dramatically improves the clinical sensitivity and specificity of diagnostic assays, the prognostic value of serum reactivity profiles against multiple microbial antigens in protection has not been investigated. METHODS Using malaria as a model we investigated whether antigen reactivity profiles in serum of children with different levels of clinical immunity to Plasmodium falciparum malaria correlated with protection. We developed a microarray immunoassay of 18 recombinant antigens derived from 4 leading blood-stage vaccine candidates for P. falciparum [merozoite surface protein 1 (MSP1), MSP2, MSP3, and apical membrane antigen (AMA)-1]. Associations between observed reactivity profiles and clinical status were sought using k-means clustering and phylogenetic networks. RESULTS The antibody immune response was unexpectedly complex, with different combinations of antigens recognized in different children. Serum reactivity to individual antigens did not correlate with immune status. By contrast, combined recognition of AMA-1 and allelic variants of MSP2 was significantly associated with protection against clinical malaria. This finding was confirmed independently by k-means clustering and phylogenetic networking. CONCLUSIONS The analysis of reactivity profiles provides a wealth of novel information about the immune response against microbial organisms that would pass unnoticed in analysis of reactivity to antigens individually. Extension of this approach to a large fraction of the proteome may expedite the identification of correlates of protection and vaccine development against microbial diseases.
Collapse
Affiliation(s)
- Julian C Gray
- Faulty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Carvalho LJM, Ferreira-da-Cruz MF, Daniel-Ribeiro CT, Pelajo-Machado M, Lenzi HL. Germinal center architecture disturbance during Plasmodium berghei ANKA infection in CBA mice. Malar J 2007; 6:59. [PMID: 17506896 PMCID: PMC1890294 DOI: 10.1186/1475-2875-6-59] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/16/2007] [Indexed: 11/30/2022] Open
Abstract
Background Immune responses to malaria blood stage infection are in general defective, with the need for long-term exposure to the parasite to achieve immunity, and with the development of immunopathology states such as cerebral malaria in many cases. One of the potential reasons for the difficulty in developing protective immunity is the poor development of memory responses. In this paper, the potential association of cellular reactivity in lymphoid organs (spleen, lymph nodes and Peyer's patches) with immunity and pathology was evaluated during Plasmodium berghei ANKA infection in CBA mice. Methods CBA mice were infected with 1 × 106 P. berghei ANKA-parasitized erythrocytes and killed on days 3, 6–8 and 10 of infection. The spleen, lymph nodes and Peyer's patches were collected, fixed in Carson's formalin, cut in 5 μm sections, mounted in glass slides, stained with Lennert's Giemsa and haematoxylin-eosin and analysed with bright-field microscopy. Results Early (day 3) strong activation of T cells in secondary lymphoid organs was observed and, on days 6–8 of infection, there was overwhelming activation of B cells, with loss of conventional germinal center architecture, intense centroblast activation, proliferation and apoptosis but little differentiation to centrocytes. In the spleen, the marginal zone disappeared and the limits between the disorganized germinal center and the red pulp were blurred. Intense plasmacytogenesis was observed in the T cell zone. Conclusion The observed alterations, especially the germinal center architecture disturbance (GCAD) with poor centrocyte differentiation, suggest that B cell responses during P. berghei ANKA infection in mice are defective, with potential impact on B cell memory responses.
Collapse
Affiliation(s)
- Leonardo JM Carvalho
- Laboratory of Malaria Research, Department of Immunology, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Maria F Ferreira-da-Cruz
- Laboratory of Malaria Research, Department of Immunology, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Claudio T Daniel-Ribeiro
- Laboratory of Malaria Research, Department of Immunology, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | | | - Henrique L Lenzi
- Department of Pathology, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| |
Collapse
|
166
|
Donovan MJ, Messmore AS, Scrafford DA, Sacks DL, Kamhawi S, McDowell MA. Uninfected mosquito bites confer protection against infection with malaria parasites. Infect Immun 2007; 75:2523-30. [PMID: 17339356 PMCID: PMC1865743 DOI: 10.1128/iai.01928-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research and multiple initiatives, malaria continues to be one of the world's most debilitating infectious diseases. New insights for malaria control and vaccine development will be essential to thwart the staggering worldwide impact of this disease (A. Bjorkman and A. Bhattarai, Acta Trop. 94:163-169, 2005); ultimately successful vaccine strategies will undoubtedly be multifactorial, incorporating multiple antigens and targeting diverse aspects of the malaria parasites' biology (M. F. Good et al., Immunol. Rev. 201:254-267, 2004). Using a murine model of malaria infection, we show here that exposure to bites from uninfected mosquitoes prior to Plasmodium yoelii infection influences the local and systemic immune responses and limits parasite development within the host. In hosts preexposed to bites from uninfected mosquitoes, reduced parasite burdens in the livers were detected early, and during the blood-stage of the life cycle, these burdens remained lower than those in hosts that received mosquito bites only at the time of infection. Repeated exposure to bites from uninfected mosquitoes skewed the immune response towards a T-helper 1 (Th1) phenotype as indicated by increased levels of interleukin-12, gamma interferon, and inducible nitric oxide synthase. These data suggest that the addition of mosquito salivary components to antimalaria vaccines may be a viable strategy for creating a Th1-biased environment known to be effective against malaria infection. Furthermore, this strategy may be important for the development of vaccines to combat other mosquito-transmitted pathogens.
Collapse
Affiliation(s)
- Michael J Donovan
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| | | | | | | | | | | |
Collapse
|
167
|
Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 2007; 5:e42. [PMID: 17311470 PMCID: PMC1802755 DOI: 10.1371/journal.pbio.0050042] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 12/12/2006] [Indexed: 11/20/2022] Open
Abstract
The prospects for the success of malaria control depend, in part, on the basic reproductive number for malaria, R0. Here, we estimate R0 in a novel way for 121 African populations, and thereby increase the number of R0 estimates for malaria by an order of magnitude. The estimates range from around one to more than 3,000. We also consider malaria transmission and control in finite human populations, of size H. We show that classic formulas approximate the expected number of mosquitoes that could trace infection back to one mosquito after one parasite generation, Z0(H), but they overestimate the expected number of infected humans per infected human, R0(H). Heterogeneous biting increases R0 and, as we show, Z0(H), but we also show that it sometimes reduces R0(H); those who are bitten most both infect many vectors and absorb infectious bites. The large range of R0 estimates strongly supports the long-held notion that malaria control presents variable challenges across its transmission spectrum. In populations where R0 is highest, malaria control will require multiple, integrated methods that target those who are bitten most. Therefore, strategic planning for malaria control should consider R0, the spatial scale of transmission, human population density, and heterogeneous biting.
Collapse
Affiliation(s)
- David L Smith
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
168
|
Lindell DM, Ballinger MN, McDonald RA, Toews GB, Huffnagle GB. Immunologic homeostasis during infection: coexistence of strong pulmonary cell-mediated immunity to secondary Cryptococcus neoformans infection while the primary infection still persists at low levels in the lungs. THE JOURNAL OF IMMUNOLOGY 2006; 177:4652-61. [PMID: 16982904 DOI: 10.4049/jimmunol.177.7.4652] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maintenance of immunity to persistent pathogens is poorly understood. In this study, we used a murine model of persistent pulmonary fungal infection to study the ongoing cell-mediated immune response. CBA/J mice with low-level persistent Cryptococcus neoformans infection had CD4+ T cells of effector memory phenotype present in their lungs. Although unable to eliminate the primary infection to sterility, these mice displayed hallmarks of immunologic memory in response to rechallenge with C. neoformans: 1) the secondary cryptococcal challenge was controlled much more rapidly, 2) the inflammatory response developed and resolved more rapidly, 3) CD4+ T and CD8+ T cell responses were higher in magnitude, and 4) effector cytokine production by T cells was greatly enhanced. Depletion of CD4+ T cells at the time of secondary challenge adversely affected clearance of C. neoformans from the lungs. These results demonstrate that persistent low-level infection with C. neoformans does not impair the cell-mediated response to the fungus. Although they are relatively free of overt disease, these mice can respond with a rapid secondary immune response if the burden of C. neoformans increases. These data support the concept that immunologically healthy individuals can maintain low numbers of cryptococci that can become a nidus for re-activation disease during immunodeficient states such as AIDS.
Collapse
Affiliation(s)
- Dennis M Lindell
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
169
|
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine 2006; 25:1567-80. [PMID: 17045367 DOI: 10.1016/j.vaccine.2006.09.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
The last several years have seen significant progress in the development of vaccines against malaria. Most recently, proof-of-concept of vaccine-induced protection from malaria infection and disease was demonstrated in African children. Pursued by various groups and on many fronts, several other candidate vaccines are in early clinical trials. Yet, despite the optimism and promise, an effective malaria vaccine is not yet available, in part because of the lack of understanding of the types of immune responses needed for protection, added to the difficulty of identifying, selecting and producing the appropriate protective antigens from a parasite with a genome of well over five thousand genes and to the frequent need to enhance the immunogenicity of purified antigens through the use of novel adjuvants or delivery systems. Insufficient clinical trial capacity and normative research functions such as local ethical committee reviews also contribute to slow down the development process. This article attempts to summarize the state of the art of malaria vaccine development.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, 39 rue Seignemartin, FR-69008 Lyon, France.
| | | | | | | |
Collapse
|
170
|
Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger J, Dietz K, Tanner M. Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: Overview. Am J Trop Med Hyg 2006; 75:1-10. [PMID: 16931810 DOI: 10.4269/ajtmh.2006.75.2_suppl.0750001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report a major project to develop integrated mathematical models for predicting the epidemiologic and economic effects of malaria vaccines both at the individual and population level. The project has developed models of the within-host dynamics of Plasmodium falciparum that have been fitted to parasite density profiles from malaria therapy patients, and simulations of P. falciparum epidemiology fitted to field malariologic datasets from a large ensemble of settings across Africa. The models provide a unique platform for predicting both the short- and long-term effects of malaria vaccines on the burden of disease, allowing for the temporal dynamics of effects on immunity and transmission. We discuss how the models can be used to obtain robust cost-effectiveness estimates for a wide range of malaria vaccines and vaccination delivery strategies in different eco-epidemiologic settings. This paper outlines for a non-mathematical audience the approach we have taken and its underlying rationale.
Collapse
|
171
|
Chandler CIR, Drakeley CJ, Reyburn H, Carneiro I. The effect of altitude on parasite density case definitions for malaria in northeastern Tanzania. Trop Med Int Health 2006; 11:1178-84. [PMID: 16903881 DOI: 10.1111/j.1365-3156.2006.01672.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Malaria clinical trials need precise endpoints to measure efficacy. In endemic areas where asymptomatic parasitaemia is common, 'fever plus parasitaemia' may not differentiate between malaria cases and non-cases. Case definitions based on parasite cut-off densities may be more appropriate but may vary with age and transmission intensity. This study examines appropriate case definitions from parasitological surveys conducted over a broad range of transmission intensities, using altitude as a proxy for transmission intensity. METHODS Cross-sectional data collected from 24 villages at different altitudes in an endemic area of northeastern Tanzania were used to calculate malaria-attributable fractions using a modified Poisson regression method. We modelled fever as a function of parasite density and determined the optimum cut-off densities of parasites to cause fever using sensitivity and specificity analyses. RESULTS The optimum cut-off density varied by altitude in children aged under 5 years: a case definition of 4,000 parasites per mul at altitudes <600 m (high transmission intensity) was most appropriate, compared with 1,000 parasites per mul at altitudes >600 m (low transmission intensity). In children aged over 5 years and adults, there was little variation by altitude and a case definition of any parasites plus fever was the most appropriate. CONCLUSIONS Locally appropriate case definitions of malaria should be used for research purposes. In our setting, these varied independently with age and transmission intensity.
Collapse
Affiliation(s)
- Clare I R Chandler
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | |
Collapse
|
172
|
Drakeley CJ, Bousema JT, Akim NIJ, Teelen K, Roeffen W, Lensen AH, Bolmer M, Eling W, Sauerwein RW. Transmission-reducing immunity is inversely related to age in Plasmodium falciparum gametocyte carriers. Parasite Immunol 2006; 28:185-90. [PMID: 16629703 DOI: 10.1111/j.1365-3024.2005.00818.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunity to the sexual stages of Plasmodium falciparum is induced during natural infections and can significantly reduce the transmission of parasites to mosquitoes (transmission reducing activity; TRA) but little is known about how these responses develop with increasing age/exposure to malaria. Routinely TRA is measured in the standard membrane feeding assay (SMFA). Sera were collected from a total of 199 gametocyte carriers (median age 4 years, quartiles 2 and 9 years) near Ifakara, Tanzania; 128 samples were tested in the SMFA and generated TRA data classified as a reduction of > 50% and > 90% of transmission. TRA of > 50% was highest in young children (aged 1-2) with a significant decline with age (chi(2) trend = 5.79, P = 0.016) and in logistic regression was associated with prevalence of antibodies to both Pfs230 and Pfs48/45 (OR 4.03, P = 0.011 and OR 2.43 P = 0.059, respectively). A TRA of > 90% reduction in transmission was not age related but was associated with antibodies to Pfs48/45 (OR 2.36, P = 0.055). Our data confirm that antibodies are an important component of naturally induced TRA. However, whilst a similar but small proportion of individuals at all ages have TRA > 90%, the gradual deterioration of TRA > 50% with age suggests decreased antibody concentration or affinity. This may be due to decreased exposure to gametocytes, probably as a result of increased asexual and/or gametocyte specific immunity.
Collapse
Affiliation(s)
- C J Drakeley
- Ifakara Health Research and Development Centre, Ifakara, Tanzania.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Walther M, Thompson FM, Dunachie S, Keating S, Todryk S, Berthoud T, Andrews L, Andersen RF, Moore A, Gilbert SC, Poulton I, Dubovsky F, Tierney E, Correa S, Huntcooke A, Butcher G, Williams J, Sinden RE, Hill AVS. Safety, immunogenicity, and efficacy of prime-boost immunization with recombinant poxvirus FP9 and modified vaccinia virus Ankara encoding the full-length Plasmodium falciparum circumsporozoite protein. Infect Immun 2006; 74:2706-16. [PMID: 16622207 PMCID: PMC1459746 DOI: 10.1128/iai.74.5.2706-2716.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterologous prime-boost immunization with DNA and various recombinant poxviruses encoding malaria antigens is capable of inducing strong cell-mediated immune responses and partial protection in human sporozoite challenges. Here we report a series of trials assessing recombinant fowlpox virus and modified vaccinia virus Ankara encoding the Plasmodium falciparum circumsporozoite protein in various prime-boost combinations, doses, and application routes. For the first time, these vaccines were administered intramuscularly and at doses of up to 5 x 10(8) PFU. Vaccines containing this antigen proved safe and induced modest immune responses but showed no evidence of efficacy in a sporozoite challenge.
Collapse
Affiliation(s)
- Michael Walther
- Centre for Clinical Vaccinology & Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Haddad D, Maciel J, Kumar N. Infection with Plasmodium berghei boosts antibody responses primed by a DNA vaccine encoding gametocyte antigen Pbs48/45. Infect Immun 2006; 74:2043-51. [PMID: 16552033 PMCID: PMC1418885 DOI: 10.1128/iai.74.4.2043-2051.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important consideration in the development of a malaria vaccine for individuals living in areas of endemicity is whether vaccine-elicited immune responses can be boosted by natural infection. To investigate this question, we used Plasmodium berghei ANKA blood-stage parasites for the infection of mice that were previously immunized with a DNA vaccine encoding the P. berghei sexual-stage antigen Pbs48/45. Intramuscular immunization in mice with one or two doses of DNA-Pbs48/45 or of empty DNA vaccine as control did not elicit detectable anti-Pbs48/45 antibodies as determined by enzyme-linked immunosorbent assay. An infection with P. berghei ANKA 6 weeks after DNA vaccination elicited comparable anti-Pbs48/45 antibody levels in mice which had been primed with DNA-Pbs48/45 or with empty DNA vaccine. However, a repeat infection with P. berghei ANKA resulted in significantly higher anti-Pbs48/45 antibody levels in mice which had been primed with the DNA-Pbs48/45 vaccine than the levels in the mock DNA-vaccinated mice. In parallel and as an additional control to distinguish the boosting of Pbs48/45 antibodies exclusively by gametocytes during infection, a separate group of mice primed with DNA-Pbs48/45 received an infection with P. berghei ANKA clone 2.33, which was previously described as a "nongametocyte producer." To our surprise, this parasite clone too elicited antibody levels comparable to those induced by the P. berghei gametocyte producer clone. We further demonstrate that the nongametocyte producer P. berghei clone is in fact a defective gametocyte producer that expresses Pbs48/45, much like the gametocyte producer clone, and is therefore capable of boosting antibody levels to Pbs48/45. Taken together, these results indicate that vaccine-primed antibodies can be boosted during repeat infections and warrant further investigation with additional malaria antigens.
Collapse
Affiliation(s)
- Diana Haddad
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | |
Collapse
|
175
|
O'Meara WP, Smith DL, McKenzie FE. Potential impact of intermittent preventive treatment (IPT) on spread of drug-resistant malaria. PLoS Med 2006; 3:e141. [PMID: 16573365 PMCID: PMC1440294 DOI: 10.1371/journal.pmed.0030141] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 01/13/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Treatment of asymptomatic individuals, regardless of their malaria infection status, with regularly spaced therapeutic doses of antimalarial drugs has been proposed as a method for reducing malaria morbidity and mortality. This strategy, called intermittent preventive treatment (IPT), is currently employed for pregnant women and is being studied for infants (IPTi) as well. As with any drug-based intervention strategy, it is important to understand how implementation may affect the spread of drug-resistant parasites. This is a difficult issue to address experimentally because of the limited size and duration of IPTi trials as well as the intractability of distinguishing the spread of resistance due to conventional treatment of malaria episodes versus that due to IPTi when the same drug is used in both contexts. METHODS AND FINDINGS Using a mathematical model, we evaluated the possible impact of treating individuals with antimalarial drugs at regular intervals regardless of their infection status. We translated individual treatment strategies and drug pharmacokinetics into parasite population dynamic effects and show that immunity, treatment rate, drug decay kinetics, and presumptive treatment rate are important factors in the spread of drug-resistant parasites. Our model predicts that partially resistant parasites are more likely to spread in low-transmission areas, but fully resistant parasites are more likely to spread under conditions of high transmission, which is consistent with some epidemiological observations. We were also able to distinguish between spread of resistance due to treatment of symptomatic infections and that due to IPTi. We showed that IPTi could accelerate the spread of resistant parasites, but this effect was only likely to be significant in areas of low or unstable transmission. CONCLUSIONS The results presented here demonstrate the importance of considering both the half-life of a drug and the existing level of resistance when choosing a drug for IPTi. Drugs to which little or no resistance exists are not advisable for IPT in high-transmission areas, but IPTi is not likely to significantly impact the spread of highly resistant parasites in areas where partial resistance is already established. IPTi is more likely to accelerate the spread of resistance in high-transmission areas than is IPT in adults (i.e., pregnant women).
Collapse
Affiliation(s)
- Wendy Prudhomme O'Meara
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
176
|
Alves J, Roque AL, Cravo P, Valdez T, Jelinek T, do Rosário VE, Arez AP. Epidemiological characterization of Plasmodium falciparum in the Republic of Cabo Verde: implications for potential large-scale re-emergence of malaria. Malar J 2006; 5:32. [PMID: 16630349 PMCID: PMC1464146 DOI: 10.1186/1475-2875-5-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria has come near eradication at archipelago of Cabo Verde in 1970. Infections are now only observed in Santiago, where outbreaks occur. In these islands, malaria is considered by the international community as being of limited risk and, therefore, no prophylaxis is recommended. Since the understanding of factors that determine malaria outbreaks are crucial for controlling the disease, the present study aimed to investigate if the malaria infections observed in Santiago Island are maintained in isolated foci and in asymptomatic individuals. METHODS The occurrence of asymptomatic carriers in villages with history of malaria as well as the level of exposure of these populations were investigated using PCR and serological analyses. RESULTS Results indicate that malaria is maintained as asymptomatic and sub-patent infections and that the majority of the circulating parasite populations harbour chloroquine-resistant mutations. CONCLUSION These observations highlight the alarming prospect of malaria to become a serious public health problem and underscore the need for a tighter surveillance.
Collapse
Affiliation(s)
- Joana Alves
- Direcção Geral de Saúde, Ministério da Saúde, Palácio do Governo, CP 47, Cabo Verde
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisboa, Portugal
| | - Ana Luísa Roque
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisboa, Portugal
| | - Pedro Cravo
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisboa, Portugal
- UEI Biologia Molecular, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisboa, Portugal
| | - Tomás Valdez
- Direcção Geral de Saúde, Ministério da Saúde, Palácio do Governo, CP 47, Cabo Verde
| | - Tomas Jelinek
- Berlin Institute of Tropical Medicine, Spandauer Damm 130, 14050 Berlin, Germany
| | - Virgílio E do Rosário
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisboa, Portugal
| | - Ana Paula Arez
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96, 1349-008 Lisboa, Portugal
| |
Collapse
|
177
|
Stephens R, Langhorne J. Priming of CD4+ T cells and development of CD4+ T cell memory; lessons for malaria. Parasite Immunol 2006; 28:25-30. [PMID: 16438673 DOI: 10.1111/j.1365-3024.2006.00767.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 T cells play a central role in the immune response to malaria. They are required to help B cells produce the antibody that is essential for parasite clearance. They also produce cytokines that amplify the phagocytic and parasitocidal response of the innate immune system, as well as dampening this response later on to limit immunopathology. Therefore, understanding the mechanisms by which T helper cells are activated and the requirements for development of specific, and effective, T cell memory and immunity is essential in the quest for a malaria vaccine. In this paper on the CD4 session of the Immunology of Malaria Infections meeting, we summarize discussions of CD4 cell priming and memory in malaria and in vaccination and outline critical future lines of investigation. B. Stockinger and M.K. Jenkins proposed cutting edge experimental systems to study basic T cell biology in malaria. Critical parameters in T cell activation include the cell types involved, the route of infection and the timing and location and cell types involved in antigen presentation. A new generation of vaccines that induce CD4 T cell activation and memory are being developed with new adjuvants. Studies of T cell memory focus on differentiation and factors involved in maintenance of antigen specific T cells and control of the size of that population. To improve detection of T cell memory in the field, efforts will have to be made to distinguish antigen-specific responses from cytokine driven responses.
Collapse
Affiliation(s)
- R Stephens
- National Institute for Medical Research, Division of Parasitology, London, UK
| | | |
Collapse
|
178
|
Libonati RMF, Cunha MG, Souza JM, Santos MVN, Oliveira SG, Daniel-Ribeiro CT, Carvalho LJM, do Nascimento JLM. Estradiol, but not dehydroepiandrosterone, decreases parasitemia and increases the incidence of cerebral malaria and the mortality in plasmodium berghei ANKA-infected CBA mice. Neuroimmunomodulation 2006; 13:28-35. [PMID: 16699290 DOI: 10.1159/000093271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/17/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The effect of castration and subsequent replacement of dehydroepiandrosterone (DHEA) or estradiol on parasitemia, mortality and incidence of cerebral malaria (CM) was evaluated in CBA mice infected with Plasmodium berghei ANKA. METHODS Female mice were castrated, and groups of 12-15 animals received daily injections of DHEA, estradiol or saline. Four days after the start of treatment, mice were inoculated with 1 x 10(6)P. berghei ANKA-parasitized erythrocytes. DHEA treatment was continued during the 5 days after infection, and estradiol was administered during the follow-up. Parasitemia was evaluated daily in Giemsa-stained blood smears. Signs of CM were determined by the manifestation of coma, limb paralysis and/or convulsions. Plasma TNF-alpha levels were evaluated by sandwich ELISA. Nitric oxide synthase (NOS) activity in the brain of moribund mice was measured by the method of Bredt and Snyder. RESULTS In non-castrated infected mice, the incidence of CM was 50%, and plasma TNF-alpha increased and brain NOS activity decreased compared to non-infected controls. Castration had no major effect on the parameters analyzed (parasitemia, mortality, CM incidence, TNF-alpha levels or NOS activity). Estradiol replacement caused a decrease in parasitemia but resulted in higher CM incidence and faster mortality, with an increase in NOS activity. CONCLUSIONS Estradiol modulated the immune response of P. berghei ANKA-infected CBA mice, decreasing parasitemia and increasing NOS activity, and impacted negatively on survival and CM incidence, showing that neuroimmunoendocrine interactions are important in the physiopathogenesis of malaria infections.
Collapse
|
179
|
Abstract
The optimal outcome of a malaria infection is that parasitized cells are killed and degraded without inducing significant pathology. Since much of the pathology of malaria infection can be immune-mediated, this implies that immune responses have to be carefully regulated. The mechanisms by which anti-malarial immune responses are believed to be regulated were discussed at the recent Malaria Immunology Workshop (Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; February 2005). Potential regulatory mechanisms include regulatory T cells, which have been shown to significantly modify cellular immune responses to various protozoan infections, including leishmania and malaria; neutralising antibodies to pro-inflammatory malarial toxins such as glycosylphosphatidylinositol and haemozoin; and self-regulating networks of effector molecules. Innate and adaptive immune responses are further moderated by the broader immunological environment, which is influenced by both the genetic background of the host and by co-infection with other pathogens. A detailed understanding of the interplay between these different immunoregulatory processes may facilitate the rationale design of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- E M Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | |
Collapse
|
180
|
Abstract
Leishmania major infections induce solid immunity to reinfection. Experimental studies in mice indicate that the CD4+ T cells responsible for this immunity include two populations: parasite-dependent T effector cells and parasite-independent central memory T (Tcm) cells. While there currently is no vaccine for leishmaniasis, the existence of a long-lived population of Tcm cells that does not require the continued presence of live parasites suggests that a vaccine that expands these cells might be efficacious.
Collapse
Affiliation(s)
- Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
181
|
Wykes MN, Zhou YH, Liu XQ, Good MF. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:2510-6. [PMID: 16081823 DOI: 10.4049/jimmunol.175.4.2510] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malaria is a serious cause of morbidity and mortality for people living in endemic areas, but unlike many other infections, individuals exposed to the parasite do not rapidly become resistant to subsequent infections. High titers of Ab against the 19-kDa C-terminal fragment of the merozoite surface protein-1 can mediate complete protection in model systems; however, previous studies had not determined whether this vaccine generated long-term protection. In this study, we report that functional memory cells generated by merozoite surface protein-1, per se, do not offer any protection. This is because the parasite induces deletion of vaccine-specific memory B cells as well as long-lived plasma cells including those specific for bystander immune responses. Our study demonstrates a novel mechanism by which Plasmodium ablates immunological memory of vaccines, which would leave the host immuno-compromised.
Collapse
Affiliation(s)
- Michelle N Wykes
- Molecular Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
182
|
Weidanz WP, Batchelder JM, Flaherty P, LaFleur G, Wong C, van der Heyde HC. Plasmodium chabaudi adami: use of the B-cell-deficient mouse to define possible mechanisms modulating parasitemia of chronic malaria. Exp Parasitol 2005; 111:97-104. [PMID: 16087175 DOI: 10.1016/j.exppara.2005.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 06/23/2005] [Accepted: 06/26/2005] [Indexed: 11/25/2022]
Abstract
Our previous observation that B-cell-deficient JH-/- mice utilize T cell-dependent immunity to suppress acute Plasmodium chabaudi adami-induced malaria but then develop chronic low-level parasitemia prompted this study of control mechanisms for chronic parasitemia. When we infected JH-/- mice with blood-stage parasites, chronic parasitemia exacerbated after the 6th month and persisted for up to 17 months. This exacerbation of parasitemia could not be attributed to host aging because the time-course of acute infection in naïve aged mice was nearly identical to that seen in young mice. Nor could exacerbated parasitemia be attributed to mutation in the parasite genome resulting in increased virulence; when subinoculated into naïve JH-/- mice, parasites from chronically infected JH-/- mice with exacerbated parasitemia produced acute stage parasitemia profiles in most recipients comparable to those seen in JH-/- mice upon infection with the original stabilate material. Of the pro-inflammatory cytokines measured, including IFNgamma, TNFalpha, IL-12p70, and MCP-1beta, none were significantly different in the sera of mice with exacerbated parasitemia compared to uninfected controls. Levels of IL-6 were significantly (P=0.002) less in the sera of mice with exacerbated parasitemia. Serum levels of the anti-inflammatory cytokine, TGFbeta, were significantly depressed in chronically infected JH-/- mice compared to uninfected controls. In contrast, IL-10 levels were markedly increased. These findings suggest that the cytokine balance may be disturbed during chronic malaria, thereby impacting on mechanisms that modulate levels of parasitemia.
Collapse
Affiliation(s)
- William P Weidanz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 1532, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Ginsburg H. Should chloroquine be laid to rest? Acta Trop 2005; 96:16-23. [PMID: 16054105 DOI: 10.1016/j.actatropica.2005.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
Chloroquine (CQ) has been the front line antimalarial drug due to its efficacy, low cost and scanty side effects, until resistance has evolved. Although its use has been officially discontinued in most malaria-affected countries, it is still widely used. Practical and pharmacological considerations indicate that it could be still used in semi-immune adults and that more efficient treatment protocols could be devised to treat even patients infected with CQ-resistant parasite strains. Since its antimalarial activity is pleiotropic, drug resistance may be due to different mechanisms, each amenable to reversal by drug combination.
Collapse
Affiliation(s)
- Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
184
|
Abstract
Vaccine development has historically relied on approaches such as live attenuated, subunit, and whole-cell vaccine designs to present antigens to the immune system. These strategies are no longer nimble enough to rapidly address public health threats, particularly emerging infectious diseases. New vaccines will require a strong scientific base partnered with the leveraging of emerging and enabling technologies so that candidate vaccines can be developed more rapidly and with the greatest chance of proving effective. This paper focuses on new strategies, technologies, and immunologic research that will provide important opportunities for the development of new and improved vaccines.
Collapse
Affiliation(s)
- Sarah Landry
- National Vaccine Program Office, U.S. Department of Health and Human Services, in Washington, D.C., USA
| | | |
Collapse
|
185
|
Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, Malima R, Lusingu J, Manjurano A, Nkya WMM, Lemnge MM, Cox J, Reyburn H, Riley EM. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A 2005; 102:5108-13. [PMID: 15792998 PMCID: PMC555970 DOI: 10.1073/pnas.0408725102] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The implementation and evaluation of malaria control programs would be greatly facilitated by new tools for the rapid assessment of malaria transmission intensity. Because acquisition and maintenance of antimalarial antibodies depend on exposure to malaria infection, such antibodies might be used as proxy measures of transmission intensity. We have compared the prevalence of IgG antibodies with three Plasmodium falciparum asexual stage antigens in individuals of all ages living at varying altitudes encompassing a range of transmission intensities from hyper- to hypoendemic in northeastern Tanzania, with alternative measures of transmission intensity. The prevalence of antibodies to merozoite surface protein-1(19) was significantly more closely correlated with altitude than either point-prevalence malaria parasitemia or single measures of hemoglobin concentration. Analysis of age-specific seroprevalence rates enabled differentiation of recent (seasonal) changes in transmission intensity from longer-term transmission trends and, using a mathematical model of the annual rate of seroconversion, estimation of the longevity of the antibody response. Thus, serological tools allow us to detect variations in malaria transmission over time. Such tools will be invaluable for monitoring trends in malaria endemicity and the effectiveness of malaria control programs.
Collapse
Affiliation(s)
- C J Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Angell SY, Behrens RH. Risk assessment and disease prevention in travelers visiting friends and relatives. Infect Dis Clin North Am 2005; 19:49-65. [PMID: 15701546 DOI: 10.1016/j.idc.2004.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although VFR travelers are at risk for acquiring infections and experiencing illness while traveling, many of these diseases are preventable. A comprehensive approach to decreasing their travel-related morbidity requires continued surveillance, data collection, systematic analysis, and action. A review of the literature provides few examples of interventions designed specifically to address VFR travel needs. Given the geographic and cultural diversity of these populations, models grounded in health behavior theory provide the best potential for clinically relevant replication. Outreach aimed at improving knowledge and care-seeking behaviors among VFR travelers may be facilitated through community-based campaigns in areas with large foreign-born populations. In developed countries, policies must be reviewed to ensure that travel-related services are accessible, affordable, and appropriate for these diverse populations. In the clinical setting, providers must develop culturally appropriate methods of communicating with traveling populations to influence behavior. In particular, primary care providers should take an active approach through screening for high-risk travel, and increasing their competency in travel medicine. Special attention should be given to illness that is prevented by routine childhood immunization (eg, varicella, measles, and hepatitis B); by disease prevented by travel vaccines (eg, typhoid fever and hepatitis A); and disease that can be prevented by careful avoidance measures or compliance with preventive medication (eg, malaria and tuberculosis). With increased immigration from developing to developed regions and widely affordable travel, the number of VFR travelers is expected to increase. As such, increased efforts to prevent VFR traveler morbidity serve the individual while also contributing to global public health.
Collapse
Affiliation(s)
- Sonia Y Angell
- Cardiovascular Disease Prevention and Control, New York City Department of Health and Mental Hygiene, New York, NY 10007, USA.
| | | |
Collapse
|
187
|
Abstract
The Roll Back Malaria campaign vowed to halve the global burden of malaria in ten years but, midway into that campaign, few new malaria control tools have been introduced, and many established methods appear to be failing with effective chemotherapy being perhaps the most problematic. It has been repeatedly argued that the discovery and implementation of a safe and effective vaccine against malaria is a major priority in the control of the disease. Indeed, many malaria control experts believe that sustainable reductions in malaria control will be nigh on impossible in the absence of such a vaccine. While most would agree that we are still some way from being able to introduce a vaccine, steady progress is being made. We review here some new approaches and developments in vaccine research that were discussed at the Molecular Approaches to Malaria conference held 1-5 February 2004 in Lorne, Australia.
Collapse
Affiliation(s)
- Jon Eric Tongren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|