151
|
Hernández CA, Sangil C, Fanai A, Hernández JC. Macroalgal response to a warmer ocean with higher CO 2 concentration. MARINE ENVIRONMENTAL RESEARCH 2018; 136:99-105. [PMID: 29478765 DOI: 10.1016/j.marenvres.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions.
Collapse
Affiliation(s)
- Celso A Hernández
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Sección Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| | - Carlos Sangil
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Sección Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | | | - José Carlos Hernández
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Sección Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
152
|
Effects of seawater acidification and alkalization on the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta), grown under different irradiance conditions. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
153
|
Aires T, Serebryakova A, Viard F, Serrão EA, Engelen AH. Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency. PeerJ 2018; 6:e4377. [PMID: 29610702 PMCID: PMC5880178 DOI: 10.7717/peerj.4377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/26/2018] [Indexed: 01/28/2023] Open
Abstract
Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased seaweeds, suggesting that acidification may facilitate opportunistic/pathogenic bacteria. In the gut of S. nadejda, the bacterial genus Planctomycetia increased abundance under elevated CO2. This shift might be associated to changes in food (S. muticum) quality under acidification. Planctomycetia are slow-acting decomposers of algal polymers that could be providing the isopod with an elevated algal digestion and availability of inorganic compounds to compensate the shifted C/N ratio under acidification in their food. In conclusion, our results indicate that even after only three weeks of acidified conditions, bacterial communities associated to ungrazed seaweed and to an isopod grazer show specific, differential shifts in associated bacterial community. These have potential consequences for seaweed health (as shown in corals) and isopod food digestion. The observed changes in the gut microbiome of the grazer seem to reflect changes in the seaweed chemistry rather than its microbial composition.
Collapse
Affiliation(s)
- Tania Aires
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Alexandra Serebryakova
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal.,Sorbonne Université, CNRS, Lab Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU), Station Biologique de Roscoff, Roscoff, France
| | - Frédérique Viard
- Sorbonne Université, CNRS, Lab Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU), Station Biologique de Roscoff, Roscoff, France.,CNRS, UMR 7144, Divco Team, Station Biologique de Roscoff, Roscoff, France
| | - Ester A Serrão
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Aschwin H Engelen
- Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
154
|
Rugiu L, Manninen I, Rothäusler E, Jormalainen V. Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions. MARINE ENVIRONMENTAL RESEARCH 2018; 134:76-84. [PMID: 29331243 DOI: 10.1016/j.marenvres.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
Climate change is threating species' persistence worldwide. To predict species responses to climate change we need information not just on their environmental tolerance but also on its adaptive potential. We tested how the foundation species of rocky littoral habitats, Fucus vesiculosus, responds to combined hyposalinity and warming projected to the Baltic Sea by 2070-2099. We quantified responses of replicated populations originating from the entrance, central, and marginal Baltic regions. Using replicated individuals, we tested for the presence of within-population tolerance variation. Future conditions hampered growth and survival of the central and marginal populations whereas the entrance populations fared well. Further, both the among- and within-population variation in responses to climate change indicated existence of genetic variation in tolerance. Such standing genetic variation provides the raw material necessary for adaptation to a changing environment, which may eventually ensure the persistence of the species in the inner Baltic Sea.
Collapse
Affiliation(s)
- Luca Rugiu
- Section of Ecology, Department of Biology, University of Turku, FIN-20014, Turku, Finland.
| | - Iita Manninen
- Section of Ecology, Department of Biology, University of Turku, FIN-20014, Turku, Finland
| | - Eva Rothäusler
- Section of Ecology, Department of Biology, University of Turku, FIN-20014, Turku, Finland
| | - Veijo Jormalainen
- Section of Ecology, Department of Biology, University of Turku, FIN-20014, Turku, Finland
| |
Collapse
|
155
|
Minich JJ, Morris MM, Brown M, Doane M, Edwards MS, Michael TP, Dinsdale EA. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLoS One 2018; 13:e0192772. [PMID: 29474389 PMCID: PMC5825054 DOI: 10.1371/journal.pone.0192772] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 'future conditions', with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production.
Collapse
Affiliation(s)
- Jeremiah J. Minich
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Megan M. Morris
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Matt Brown
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Michael Doane
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | - Matthew S. Edwards
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| | | | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
156
|
Pfister CA, Betcher SP. Climate drivers and animal host use determine kelp performance over decadal scales in the kelp Pleurophycus gardneri (Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2018; 54:1-11. [PMID: 29072316 DOI: 10.1111/jpy.12601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Primary producers respond to climate directly and indirectly due to effects on their consumers. In the temperate coastal ocean, the highly productive brown algae known as kelp have both strong climate and grazer linkages. We analyzed the demographic response of the kelp Pleurophycus gardneri over a 25-year span to determine the interaction between ocean climate indicators and invertebrate infestation rates. Pleurophycus hosts amphipod species that burrow in the stipe, increasing mortality. Although kelp performance is generally greater with more negative values of the Pacific Decadal Oscillation (PDO) and colder seawater temperatures, Pleurophycus showed the opposite pattern. When we compared the 1990s, a period of positive values for the PDO and warmer sea surface temperatures, with the following decade, a period characterized by negative PDO values, we documented a contradictory outcome for proxies of kelp fitness. In the 1990s, Pleurophycus unexpectedly showed greater longevity, faster growth, greater reproductive effort, and a trend toward decreased amphipod infestation compared with the 2006-2012 period. In contrast, the period from 2006 to 2012 showed opposite kelp performance patterns and with a trend toward greater amphipod infestation. Pleurophycus performance metrics suggest that some coastal primary producers will respond differently to climate drivers, particularly if they interact strongly with grazers.
Collapse
Affiliation(s)
- Catherine A Pfister
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, Illinois, USA
| | - Samuel P Betcher
- The College, University of Chicago, 1101 E 57th St, Chicago, Illinois, USA
| |
Collapse
|
157
|
Zhang P, Grutters BMC, van Leeuwen CHA, Xu J, Petruzzella A, van den Berg RF, Bakker ES. Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1947. [PMID: 30671079 PMCID: PMC6331454 DOI: 10.3389/fpls.2018.01947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 05/10/2023]
Abstract
Global warming is expected to strengthen herbivore-plant interactions leading to enhanced top-down control of plants. However, latitudinal gradients in plant quality as food for herbivores suggest lower palatability at higher temperatures, but the underlying mechanisms are still unclear. If plant palatability would decline with temperature rise, then this may question the expectation that warming leads to enhanced top-down control. Therefore, experiments that directly test plant palatability and the traits underlying palatability along a temperature gradient are needed. Here we experimentally tested the impact of temperature on aquatic plant growth, plant chemical traits (including stoichiometry) and plant palatability. We cultured three aquatic plant species at three temperatures (15, 20, and 25°C), measured growth parameters, determined chemical traits and performed feeding trial assays using the generalist consumer Lymnaea stagnalis (pond snail). We found that rising temperature significantly increased the growth of all three aquatic plants. Plant nitrogen (N) and phosphorus (P) content significantly decreased, and carbon (C):N and C:P stoichiometry increased as temperature increased, for both Potamogeton lucens and Vallisneria spiralis, but not for Elodea nuttallii. By performing the palatability test, we found that rising temperatures significantly decreased plant palatability in P. lucens, which could be explained by changes in the underlying chemical plant traits. In contrast, the palatability of E. nuttallii and V. spiralis was not affected by temperature. Overall, P. lucens and V. spiralis were always more palatable than E. nuttallii. We conclude that warming generally stimulates aquatic plant growth, whereas the effects on chemical plant traits and plant palatability are species-specific. These results suggest that the outcome of the impact of temperature rise on macrophyte stoichiometry and palatability from single-species studies may not be broadly applicable. In contrast, the plant species tested consistently differed in palatability, regardless of temperature, suggesting that palatability may be more strongly linked to species identity than to intraspecific variation in plant stoichiometry.
Collapse
Affiliation(s)
- Peiyu Zhang
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- *Correspondence: Peiyu Zhang
| | - Bart M. C. Grutters
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Casper H. A. van Leeuwen
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Antonella Petruzzella
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Reinier F. van den Berg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Elisabeth S. Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
158
|
Hughes BB, Lummis SC, Anderson SC, Kroeker KJ. Unexpected resilience of a seagrass system exposed to global stressors. GLOBAL CHANGE BIOLOGY 2018; 24:224-234. [PMID: 28752587 DOI: 10.1111/gcb.13854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Despite a growing interest in identifying tipping points in response to environmental change, our understanding of the ecological mechanisms underlying nonlinear ecosystem dynamics is limited. Ecosystems governed by strong species interactions can provide important insight into how nonlinear relationships between organisms and their environment propagate through ecosystems, and the potential for environmentally mediated species interactions to drive or protect against sudden ecosystem shifts. Here, we experimentally determine the functional relationships (i.e., the shapes of the relationships between predictor and response variables) of a seagrass assemblage with well-defined species interactions to ocean acidification (enrichment of CO2 ) in isolation and in combination with nutrient loading. We demonstrate that the effect of ocean acidification on grazer biomass (Phyllaplysia taylori and Idotea resecata) was quadratic, with the peak of grazer biomass at mid-pH levels. Algal grazing was negatively affected by nutrients, potentially due to low grazer affinity for macroalgae (Ulva intestinalis), as recruitment of both macroalgae and diatoms were favored in elevated nutrient conditions. This led to an exponential increase in macroalgal and epiphyte biomass with ocean acidification, regardless of nutrient concentration. When left unchecked, algae can cause declines in seagrass productivity and persistence through shading and competition. Despite quadratic and exponential functional relationships to stressors that could cause a nonlinear decrease in seagrass biomass, productivity of our model seagrass-the eelgrass (Zostera marina)- remained highly resilient to increasing acidification. These results suggest that important species interactions governing ecosystem dynamics may shift with environmental change, and ecosystem state may be decoupled from ecological responses at lower levels of organization.
Collapse
Affiliation(s)
- Brent B Hughes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Sarah C Lummis
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sean C Anderson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
159
|
Hudson J, Gardiner M, Deshpande N, Egan S. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction. Mol Ecol 2017; 27:1820-1832. [PMID: 29215165 DOI: 10.1111/mec.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae.
Collapse
Affiliation(s)
- Jennifer Hudson
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Melissa Gardiner
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
160
|
Davis KL, Coleman MA, Connell SD, Russell BD, Gillanders BM, Kelaher BP. Ecological performance of construction materials subject to ocean climate change. MARINE ENVIRONMENTAL RESEARCH 2017; 131:177-182. [PMID: 28988853 DOI: 10.1016/j.marenvres.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages.
Collapse
Affiliation(s)
- Kay L Davis
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia.
| | - Melinda A Coleman
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia; New South Wales Fisheries, Department of Primary Industries, PO Box 4321, Coffs Harbour, NSW, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, South Australia, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, South Australia, Australia
| | - Brendan P Kelaher
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
161
|
Umanzor S, Ladah L, Zertuche-González JA. The influence of species, density, and diversity of macroalgal aggregations on microphytobenthic settlement. JOURNAL OF PHYCOLOGY 2017; 53:1060-1071. [PMID: 28708294 DOI: 10.1111/jpy.12565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Intertidal macroalgae can modulate their biophysical environment by ameliorating physical conditions and creating habitats. Exploring how seaweed aggregations made up of different species at different densities modify the local environment may help explain how associated organisms respond to the attenuation of extreme physical conditions. Using Silvetia compressa, Chondracanthus canaliculatus, and Pyropia perforata, we constructed monocultures representing the leathery, corticated and foliose functional forms as well as a mixed tri-culture assemblage including the former three, at four densities. Treatment quadrats were installed in the intertidal where we measured irradiance, temperature, particle retention, and water motion underneath the canopies. Additionally, we examined the abundance and richness of the understory microphytobenthos with settlement slides. We found that the density and species composition of the assemblages modulated the amelioration of extreme physical conditions, with macroalgal aggregations of greater structural complexity due to their form and density showing greater physical factor attenuation. However, increasing the number of species within a patch did not directly result in increased complexity and therefore, did not necessarily cause greater amelioration of the environment. Microphytobenthic composition was also affected by species composition and density, with higher abundances under S. compressa and C. canaliculatus canopies at high and mid densities. These results support the idea that the environmental modifications driven by these macroalgae have a significant effect on the dynamics of the intertidal environment by promoting distinct temporal and spatial patchiness in the microphytobenthos, with potentially significant effects on the overall productivity of these ecosystems.
Collapse
Affiliation(s)
- Schery Umanzor
- Department of Marine Ecology, CICESE, Carretera Ensenada-Tijuana #3918, Zona Playitas, Ensenada, Baja California, CP 22860, Mexico
| | - Lydia Ladah
- Department of Biological Oceanography, CICESE, Carretera Ensenada-Tijuana #3918, Zona Playitas, Ensenada, Baja California, CP 22860, Mexico
| | - José A Zertuche-González
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| |
Collapse
|
162
|
King NG, Wilcockson DC, Webster R, Smale DA, Hoelters LS, Moore PJ. Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate. Funct Ecol 2017; 32:288-299. [PMID: 29576672 PMCID: PMC5856065 DOI: 10.1111/1365-2435.12977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022]
Abstract
Climate change is driving range contractions and local population extinctions across the globe. When this affects ecosystem engineers the vacant niches left behind are likely to alter the wider ecosystem unless a similar species can fulfil them. Here, we explore the stress physiology of two coexisting kelps undergoing opposing range shifts in the Northeast Atlantic and discuss what differences in stress physiology may mean for future niche filling. We used chlorophyll florescence (Fv/Fm) and differentiation of the heat shock response (HSR) to determine the capacity of the expanding kelp, Laminaria ochroleuca, to move into the higher shore position of the retreating kelp, Laminaria digitata. We applied both single and consecutive exposures to immersed and emersed high and low temperature treatments, replicating low tide exposures experienced in summer and winter. No interspecific differences in HSR were observed which was surprising given the species’ different biogeographic distributions. However, chlorophyll florescence revealed clear differences between species with L. ochroleuca better equipped to tolerate high immersed temperatures but showed little capacity to tolerate frosts or high emersion temperatures. Many patterns observed were only apparent after consecutive exposures. Such cumulative effects have largely been overlooked in tolerance experiments on intertidal organisms despite being more representative of the stress experienced in natural habitats. We therefore suggest future experiments incorporate consecutive stress into their design. Climate change is predicted to result in fewer ground frosts and increased summer temperatures. Therefore, L. ochroleuca may be released from its summer cold limit in winter but still be prevented from moving up the shore due to desiccation in the summer. Laminaria ochroleuca will, however, likely be able to move into tidal pools. Therefore, only partial niche filling by L. ochroleuca will be possible in this system as climate change advances.
A plain language summary is available for this article.
Collapse
Affiliation(s)
- Nathan G King
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University Aberystwyth UK
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University Aberystwyth UK
| | - Richard Webster
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University Aberystwyth UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom The Laboratory Plymouth UK
| | - Laura S Hoelters
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University Aberystwyth UK
| | - Pippa J Moore
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University Aberystwyth UK.,Centre for Marine Ecosystems Research School of Natural Sciences Edith Cowan University Joondalup WA Australia
| |
Collapse
|
163
|
Celis-Plá PSM, Martínez B, Korbee N, Hall-Spencer JM, Figueroa FL. Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO 2 and temperature. MARINE ENVIRONMENTAL RESEARCH 2017; 130:157-165. [PMID: 28764959 DOI: 10.1016/j.marenvres.2017.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 05/16/2023]
Abstract
Global warming and ocean acidification are increasingly affecting coastal ecosystems, with impacts that vary regionally depending upon local biogeography. Ocean acidification drives shifts in seaweed community dominance that depend on interactions with other factors such as light and nutrients. In this study, we investigated the photophysiological responses in the brown macroalgae species Cystoseira tamariscifolia (Hudson) Papenfuss with important structural role in the coastal Mediterranean communities. These algae were collected in the Cabo de Gata-Nijar Natural Park in ultraoligotrophic waters (algae exposed under high irradiance and less nutrient conditions) vs. those collected in the La Araña beach in oligotrophic waters (algae exposed at middle nutrient and irradiance conditions) in the Mediterranean Sea. They were incubated in mesocosms, under two levels of CO2; ambient (400-500 ppm) and high CO2 (1200-1300 ppm), combined with two temperatures (ambient temperature; 20 °C and ambient temperature + 4 °C; 24 °C) and the same nutrient conditions of the waters of the origin of macroalgae. Thalli from two sites on the Spanish Mediterranean coast were significantly affected by increases in pCO2 and temperature. The carotenoids (fucoxanthin, violaxanthin and β-carotene) contents were higher in algae from oligotrophic than that from ultraoligotrophic water, i.e., algae collected under higher nutrient conditions respect to less conditions, increase photoprotective pigments content. Thalli from both locations upregulated photosynthesis (as Fv/Fm) at increased pCO2 levels. Our study shows that ongoing ocean acidification and warming can increase photoprotection and photosynthesis in intertidal macroalgae.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Laboratory of Costal Environmental Research, Centre of Advanced Studies, University of Playa Ancha, 2581782 Viña del Mar, Chile; Department of Ecology, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain.
| | - Brezo Martínez
- Biodiversity and Conservation Unit, Rey Juan Carlos University, 28933 Mostoles, Spain
| | - Nathalie Korbee
- Department of Ecology, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, Plymouth University, UK; Shimoda Marine Research Centre, Tsukuba University, Japan
| | - Félix L Figueroa
- Department of Ecology, Faculty of Sciences, University of Malaga, 29071 Malaga, Spain
| |
Collapse
|
164
|
Harley CDG, Connell SD, Doubleday ZA, Kelaher B, Russell BD, Sarà G, Helmuth B. Conceptualizing ecosystem tipping points within a physiological framework. Ecol Evol 2017; 7:6035-6045. [PMID: 28808563 PMCID: PMC5551099 DOI: 10.1002/ece3.3164] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Connecting the nonlinear and often counterintuitive physiological effects of multiple environmental drivers to the emergent impacts on ecosystems is a fundamental challenge. Unfortunately, the disconnect between the way "stressors" (e.g., warming) is considered in organismal (physiological) and ecological (community) contexts continues to hamper progress. Environmental drivers typically elicit biphasic physiological responses, where performance declines at levels above and below some optimum. It is also well understood that species exhibit highly variable response surfaces to these changes so that the optimum level of any environmental driver can vary among interacting species. Thus, species interactions are unlikely to go unaltered under environmental change. However, while these nonlinear, species-specific physiological relationships between environment and performance appear to be general, rarely are they incorporated into predictions of ecological tipping points. Instead, most ecosystem-level studies focus on varying levels of "stress" and frequently assume that any deviation from "normal" environmental conditions has similar effects, albeit with different magnitudes, on all of the species within a community. We consider a framework that realigns the positive and negative physiological effects of changes in climatic and nonclimatic drivers with indirect ecological responses. Using a series of simple models based on direct physiological responses to temperature and ocean pCO 2, we explore how variation in environment-performance relationships among primary producers and consumers translates into community-level effects via trophic interactions. These models show that even in the absence of direct mortality, mismatched responses resulting from often subtle changes in the physical environment can lead to substantial ecosystem-level change.
Collapse
Affiliation(s)
- Christopher D. G. Harley
- Department of Zoology and Institute for the Oceans and FisheriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sean D. Connell
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences & Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Zoë A. Doubleday
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences & Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Brendan Kelaher
- National Marine Science Centre & Centre for Coastal Biogeochemistry ResearchSchool of Environment, Science and EngineeringSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Bayden D. Russell
- The Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong
| | - Gianluca Sarà
- Laboratorio di Ecologia SperimentaleDipartimento di Scienze della Terra e del MareUniversità degli Studi di PalermoPalermoItaly
| | - Brian Helmuth
- Department of Marine and Environmental Sciences and School of Public Policy and Urban AffairsNortheastern UniversityBostonMAUSA
| |
Collapse
|
165
|
Vizzini S, Martínez-Crego B, Andolina C, Massa-Gallucci A, Connell SD, Gambi MC. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Sci Rep 2017. [PMID: 28642608 PMCID: PMC5481442 DOI: 10.1038/s41598-017-03802-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Increasing oceanic uptake of CO2 is predicted to drive ecological change as both a resource (i.e. CO2 enrichment on primary producers) and stressor (i.e. lower pH on consumers). We use the natural ecological complexity of a CO2 vent (i.e. a seagrass system) to assess the potential validity of conceptual models developed from laboratory and mesocosm research. Our observations suggest that the stressor-effect of CO2 enrichment combined with its resource-effect drives simplified food web structure of lower trophic diversity and shorter length. The transfer of CO2 enrichment from plants to herbivores through consumption (apparent resource-effect) was not compensated by predation, because carnivores failed to contain herbivore outbreaks. Instead, these higher-order consumers collapsed (apparent stressor-effect on carnivores) suggesting limited trophic propagation to predator populations. The dominance of primary producers and their lower-order consumers along with the loss of carnivores reflects the duality of intensifying ocean acidification acting both as resource-effect (i.e. bottom-up control) and stressor-effect (i.e. top-down control) to simplify community and trophic structure and function. This shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides new insights into how the trophic dynamics might stabilize against or propagate future environmental change.
Collapse
Affiliation(s)
- S Vizzini
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy. .,CoNISMa, Roma, Italy.
| | | | - C Andolina
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy.,Department of Environmental Sciences, Informatics and Statistics, DAIS, University Ca' Foscari, Venice, Italy
| | - A Massa-Gallucci
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn Benthic Ecology Center (Ischia), Naples, Italy
| | - S D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, South Australia, Australia
| | - M C Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn Benthic Ecology Center (Ischia), Naples, Italy
| |
Collapse
|
166
|
Nogueira P, Gambi MC, Vizzini S, Califano G, Tavares AM, Santos R, Martínez-Crego B. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO 2 vents. MARINE ENVIRONMENTAL RESEARCH 2017; 127:102-111. [PMID: 28413104 DOI: 10.1016/j.marenvres.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/25/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
Ocean acidification (OA) predicted for 2100 is expected to shift seagrass epiphyte communities towards the dominance of more tolerant non-calcifying taxa. However, little is known about the indirect effects of such changes on food provision to key seagrass consumers. We found that epiphyte communities of the seagrass Posidonia oceanica in two naturally acidified sites (i.e. north and south sides of a volcanic CO2 vent) and in a control site away from the vent at the Ischia Island (NW Mediterranean Sea) significantly differed in composition and abundance. Such differences involved a higher abundance of non-calcareous crustose brown algae and a decline of calcifying polychaetes in both acidified sites. A lower epiphytic abundance of crustose coralline algae occurred only in the south side of the vents, thus suggesting that OA may alter epiphyte assemblages in different ways due to interaction with local factors such as differential fish herbivory or hydrodynamics. The OA effects on food items (seagrass, epiphytes, and algae) indirectly propagated into food provision to the sea urchin Paracentrotus lividus, as reflected by a reduced P. oceanica exploitation (i.e. less seagrass and calcareous epiphytes in the diet) in favour of non-calcareous green algae in both vent sites. In contrast, we detected no difference close and outside the vents neither in the composition of sea urchin diet nor in the total abundance of calcareous versus non-calcareous taxa. More research, under realistic scenarios of predicted pH reduction (i.e. ≤ 0.32 units of pH by 2100), is still necessary to better understand cascading effects of this altered urchin exploitation of food resources under acidified conditions on ecosystem diversity and function.
Collapse
Affiliation(s)
- Patricia Nogueira
- Centre of Marine Sciences (CCMAR), University of Algarve-Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn, Dept of Integrative Marine Ecology, Villa Dohrn. Benthic Ecology Center (Ischia), Villa Comunale, 80121 Naples, Italy
| | - Salvatrice Vizzini
- Department of Earth and Marine Sciences, University of Palermo, CoNISMa, Via Archirafi 18, 90123 Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Gianmaria Califano
- Friederich-Schiller-University Jena (FSU), Lessingstr. 8, D-07743 Jena, Germany
| | - Ana Mafalda Tavares
- Centre of Marine Sciences (CCMAR), University of Algarve-Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rui Santos
- Centre of Marine Sciences (CCMAR), University of Algarve-Campus de Gambelas, 8005-139 Faro, Portugal
| | - Begoña Martínez-Crego
- Centre of Marine Sciences (CCMAR), University of Algarve-Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
167
|
Phelps CM, Boyce MC, Huggett MJ. Future climate change scenarios differentially affect three abundant algal species in southwestern Australia. MARINE ENVIRONMENTAL RESEARCH 2017; 126:69-80. [PMID: 28254623 DOI: 10.1016/j.marenvres.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Three species of macroalgae (Ecklonia radiata, Sargassum linearifolium, and Laurencia brongniartii) were subjected to future climate change conditions, tested directly for changes in their physiology and chemical ecology, and used in feeding assays with local herbivores to identify the indirect effects of climatic stressors on subsequent levels of herbivory. Each alga had distinct physical and chemical responses to the changes in environmental conditions. In high temperature conditions, S. linearifolium exhibited high levels of bleaching and low maximum quantum yield. For E. radiata, the alga became more palatable to herbivores and the C:N ratios were either higher or lower, dependent on the treatment. Laurencia brongniartii was effected in all manipulations when compared to controls, with increases in bleaching, blade density, and C:N ratios and decreases in growth, maximum quantum yield, blade toughness, total phenolics and consumption by mesograzers. The differential responses we observed in each species have important implications for benthic communities in projected climate change conditions and we suggest that future studies target multi-species assemblage responses.
Collapse
Affiliation(s)
- Charlie M Phelps
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, 6027, Australia.
| | - Mary C Boyce
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, 6027, Australia
| | - Megan J Huggett
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, 6027, Australia; Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, 6027, Australia
| |
Collapse
|
168
|
Kumar A, AbdElgawad H, Castellano I, Lorenti M, Delledonne M, Beemster GTS, Asard H, Buia MC, Palumbo A. Physiological and Biochemical Analyses Shed Light on the Response of Sargassum vulgare to Ocean Acidification at Different Time Scales. FRONTIERS IN PLANT SCIENCE 2017; 8:570. [PMID: 28469628 PMCID: PMC5396147 DOI: 10.3389/fpls.2017.00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a "natural laboratory" to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans.
Collapse
Affiliation(s)
- Amit Kumar
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| | - Maurizio Lorenti
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | | | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Maria Cristina Buia
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| |
Collapse
|
169
|
Thibaut T, Blanfuné A, Boudouresque CF, Personnic S, Ruitton S, Ballesteros E, Bellan-Santini D, Bianchi CN, Bussotti S, Cebrian E, Cheminée A, Culioli JM, Derrien-Courtel S, Guidetti P, Harmelin-Vivien M, Hereu B, Morri C, Poggiale JC, Verlaque M. An ecosystem-based approach to assess the status of Mediterranean algae-dominated shallow rocky reefs. MARINE POLLUTION BULLETIN 2017; 117:311-329. [PMID: 28189369 DOI: 10.1016/j.marpolbul.2017.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
A conceptual model was constructed for the functioning the algae-dominated rocky reef ecosystem of the Mediterranean Sea. The Ecosystem-Based Quality Index (reef-EBQI) is based upon this model. This index meets the objectives of the EU Marine Strategy Framework Directive. It is based upon (i) the weighting of each compartment, according to its importance in the functioning of the ecosystem; (ii) biological parameters assessing the state of each compartment; (iii) the aggregation of these parameters, assessing the quality of the ecosystem functioning, for each site; (iv) and a Confidence Index measuring the reliability of the index, for each site. The reef-EBQI was used at 40 sites in the northwestern Mediterranean. It constitutes an efficient tool, because it is based upon a wide set of functional compartments, rather than upon just a few species; it is easy and inexpensive to implement, robust and not redundant with regard to already existing indices.
Collapse
Affiliation(s)
- Thierry Thibaut
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France. thierry.thibaut@univ.-amu.fr
| | - Aurélie Blanfuné
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | - Charles F Boudouresque
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | - Sébastien Personnic
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | - Sandrine Ruitton
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | | | - Denise Bellan-Santini
- Aix-Marseille University, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), UMR 7263, Station Marine d'Endoume, rue de la batterie des lions, 13007 Marseille, France
| | - Carlo Nike Bianchi
- DiSTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Simona Bussotti
- Université Nice Sophia Antipolis, CNRS, FRE 3729 ECOMERS, Parc Valrose, 28 avenue Valrose, 06108 Nice cedex 02, France
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes - CSIC, 17300 Blanes, Spain
| | - Adrien Cheminée
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France; Université de Perpignan, CNRS, Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 66860 Perpignan cedex 9, France
| | - Jean-Michel Culioli
- Office de l'Environnement de la Corse, Riserva Naturali di i Bucchi di Bunifaziu, Rundinara, 20169 Bonifacio, Corsica, France
| | | | - Paolo Guidetti
- Université Nice Sophia Antipolis, CNRS, FRE 3729 ECOMERS, Parc Valrose, 28 avenue Valrose, 06108 Nice cedex 02, France
| | - Mireille Harmelin-Vivien
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | - Bernat Hereu
- Departament d'Ecologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Carla Morri
- DiSTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Jean-Christophe Poggiale
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| | - Marc Verlaque
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, IRD, UM 110, Campus universitaire de Luminy, case 901, 13288 Marseille cedex 09, France
| |
Collapse
|
170
|
Duarte CM, Wu J, Xiao X, Bruhn A, Krause-Jensen D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? FRONTIERS IN MARINE SCIENCE 2017; 4. [DOI: 10.3389/fmars.2017.00100] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
171
|
Krumhansl KA, Bergman JN, Salomon AK. Assessing the ecosystem-level consequences of a small-scale artisanal kelp fishery within the context of climate-change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:799-813. [PMID: 27984678 DOI: 10.1002/eap.1484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Coastal communities worldwide rely on small-scale artisanal fisheries as a means of increasing food security and alleviating poverty. Even small-scale fishing activities, however, are prone to resource depletion and environmental degradation, which can erode livelihoods in the long run. Thus, there is a pressing need to identify viable and resilient artisanal fisheries, and generate knowledge to support management within the context of a rapidly changing climate. We examined the ecosystem-level consequences of an artisanal kelp fishery (Macrocystis pyrifera), finding small-scale harvest of this highly productive species poses minimal impacts on kelp recovery rates, survival, and biomass dynamics, and abundances of associated commercial and culturally important fish species. These results suggest that small-scale harvest poses minimal trade-offs for the other economic benefits provided by these ecosystems, and their inherent, spiritual, and cultural value to humans. However, we detected a negative impact of warmer seawater temperatures on kelp recovery rates following harvest, indicating that the viability of harvest, even at small scales, may be threatened by future increases in global ocean temperature. This suggests that negative impacts of artisanal fisheries may be more likely to arise in the context of a warming climate, further highlighting the widespread effects of global climate change on coastal fisheries and livelihoods.
Collapse
Affiliation(s)
- Kira A Krumhansl
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Hakai Institute, P.O. Box 309, Heriot Bay, British Columbia, V0P 1H0, Canada
| | - Jordanna N Bergman
- Florida Fish and Wildlife Research Institute, 100 8th Avenue, St. Petersburg, Florida, 33701, USA
| | - Anne K Salomon
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Hakai Institute, P.O. Box 309, Heriot Bay, British Columbia, V0P 1H0, Canada
| |
Collapse
|
172
|
Menge BA, Bracken MES, Lubchenco J, Leslie HM. Alternative state? Experimentally induced
F
ucus
canopy persists 38 yr in an
A
scophyllum‐
dominated community. Ecosphere 2017. [DOI: 10.1002/ecs2.1725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bruce A. Menge
- Department of Integrative Biology Oregon State University Cordley Hall 3029 Corvallis Oregon 97331 USA
| | - Matthew E. S. Bracken
- Department of Ecology and Evolutionary Biology University of California 321 Steinhaus Hall Irvine California 92697 USA
| | - Jane Lubchenco
- Department of Integrative Biology Oregon State University Cordley Hall 3029 Corvallis Oregon 97331 USA
| | - Heather M. Leslie
- Darling Marine Center and School of Marine Sciences University of Maine 193 Clarks Cove Road Walpole Maine 04573 USA
| |
Collapse
|
173
|
Colvard N, Helmuth B. Nutrients influence the thermal ecophysiology of an intertidal macroalga: multiple stressors or multiple drivers? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:669-681. [PMID: 27875010 DOI: 10.1002/eap.1475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Urbanization of coastlines is leading to increased introduction of nutrients from the terrestrial environment to nearshore habitats. While such nutrient influxes can be detrimental to coastal marine organisms due to increased eutrophication and subsequent reduced oxygen, they could also have positive effects (i.e., increased food availability) on species that are nitrogen-limited such as macroalgae. Nutrient enrichment in this environment thus has the potential to counteract some of the negative impacts of increasing temperatures, at least for some species. Characterizing the physiological response of organisms to simultaneous changes in multiple drivers such as these is an important first step in predicting how global climate change may lead to ecological responses at more local levels. We evaluated how nutrient enrichment (i.e., nitrogen availability) affected the growth of Fucus vesiculosus, a foundational macroalgal species in the North Atlantic rocky intertidal zone, and found that nutrient-enriched algal blades showed a significant increase in tissue growth compared to individuals grown under ambient conditions. We further quantified net photosynthesis by ambient and nutrient-enriched tissues at saturating irradiance over a range of temperature conditions (6-30°C). Respiration was unaffected by nutrient treatment; however, there was a significant increase in photosynthetic oxygen production for nutrient-enriched tissue compared to ambient, but only at elevated (≥18°C) temperatures. This study contributes to a growing body of literature showing the complexity of responses to changes in multiple drivers, and highlights the importance of studying the impacts of global climate change within the context of more local environmental conditions.
Collapse
Affiliation(s)
- Nicholas Colvard
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| | - Brian Helmuth
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
174
|
Raddatz S, Guy-Haim T, Rilov G, Wahl M. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). JOURNAL OF PHYCOLOGY 2017; 53:44-58. [PMID: 27711971 DOI: 10.1111/jpy.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
Collapse
Affiliation(s)
- Stefanie Raddatz
- Department of Benthic Ecology, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Tamar Guy-Haim
- Department of Marine Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa, 31080, Israel
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | - Gil Rilov
- Department of Marine Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa, 31080, Israel
| | - Martin Wahl
- Department of Benthic Ecology, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
175
|
Manikandan B, Ravindran J. Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3912-3922. [PMID: 27905045 DOI: 10.1007/s11356-016-8136-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Coral reef ecosystems are disturbed in tandem by climatic and anthropogenic stressors. A number of factors act synergistically to reduce the live coral cover and threaten the existence of reefs. Continuous monitoring of the coral communities during 2012-2014 captured an unprecedented growth of macroalgae as a bloom at Gulf of Mannar (GoM) and Palk Bay (PB) which are protected and unprotected reefs, respectively. The two reefs varying in their protection level enabled to conduct an assessment on the response of coral communities and their recovery potential during and after the macroalgal bloom. Surveys in 2012 revealed a live coral cover of 36.8 and 14.6% in GoM and PB, respectively. Live coral cover was lost at an annual rate of 4% in PB due to the Caulerpa racemosa blooms that occurred in 2013 and 2014. In GoM, the loss of live coral cover was estimated to be 16.5% due to C. taxifolia bloom in 2013. Tissue regeneration by the foliose and branching coral morphotypes aided the recovery of live coral cover in GoM, whereas the chances for the recovery of live coral cover in PB reef were low, primarily due to frequent algal blooms, and the existing live coral cover was mainly due to the abundance of slow-growing massive corals. In combination, results of this study suggested that the recovery of a coral reef after a macroalgal bloom largely depends on coral species composition and the frequency of stress events. A further study linking macroalgal bloom to its specific cause is essential for the successful intervention and management.
Collapse
Affiliation(s)
- B Manikandan
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Panaji, Goa -, 403004, India
| | - J Ravindran
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Panaji, Goa -, 403004, India.
| |
Collapse
|
176
|
Nydam ML, Giesbrecht KB, Stephenson EE. Origin and Dispersal History of Two Colonial Ascidian Clades in the Botryllus schlosseri Species Complex. PLoS One 2017; 12:e0169944. [PMID: 28107476 PMCID: PMC5249052 DOI: 10.1371/journal.pone.0169944] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022] Open
Abstract
Human-induced global warming and species introductions are rapidly altering the composition and functioning of Earth’s marine ecosystems. Ascidians (Phylum Chordata, Subphylum Tunicata, Class Ascidiacea) are likely to play an increasingly greater role in marine communities. The colonial ascidian B. schlosseri is a cryptic species complex comprising five genetically divergent clades (A-E). Clade A is a global species, and Clade E has so far been identified in European waters only. Using the largest mitochondrial cytochrome oxidase I datasets yet assembled, we determine the origin and dispersal history of these species. Nucleotide diversity and Approximate Bayesian Computation analyses support a Pacific origin for Clade A, with two likely dispersal scenarios that both show the northwestern Atlantic populations establishing early in the history of the species. Both Discrete Phylogeographic Analysis and Approximate Bayesian Computation support an origin of Clade E on the French side of the English Channel. An unsampled lineage evolved from the French lineage, which reflects the conclusion from the median joining network that not all Clade E lineages have been sampled. This unsampled lineage gave rise to the haplotypes on the English side of the English Channel, which were the ancestors to the Mediterranean and Bay of Biscay populations. Clade E has a wider geographic range than previously thought, and shows evidence of recent range expansion. Both Clade A and Clade E should be considered widespread species: Clade A globally and Clade E within Europe.
Collapse
Affiliation(s)
- Marie L. Nydam
- Division of Science and Mathematics, Centre College, Danville, Kentucky, United States of America
- * E-mail:
| | - Kirsten B. Giesbrecht
- Division of Science and Mathematics, Centre College, Danville, Kentucky, United States of America
| | - Emily E. Stephenson
- Division of Science and Mathematics, Centre College, Danville, Kentucky, United States of America
| |
Collapse
|
177
|
Porzio L, Buia MC, Lorenti M, De Maio A, Arena C. Physiological responses of a population of Sargassum vulgare (Phaeophyceae) to high pCO 2/low pH: implications for its long-term distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:917-925. [PMID: 27865121 DOI: 10.1016/j.scitotenv.2016.10.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Ocean Acidification (OA) is likely to affect macroalgal diversity in the future with species-specific responses shaping macroalgal communities. In this framework, it is important to focus research on the photosynthetic response of habitat-forming species which have an important structural and functional role in coastal ecosystems. Most of the studies on the impacts of OA involve short-term laboratory or micro/mesocosm experiments. It is more challenging to assess the adaptive responses of macroalgal community to decreasing ocean pH over long-term periods, as they represent the basis of trophic dynamics in marine environments. This work aims to study the physiological traits of a population of Sargassum vulgare that lives naturally in the high pCO2 vents system in Ischia (Italy), in order to predict the species behaviour in a possible OA future scenario. With this purpose, the photosynthetic performance of S. vulgare was studied in a wild, natural population living at low pH (6.7) as well as in a population transplanted from native (6.7) to ambient pH (8.1) for three weeks. The main results show that the photochemical activity and Rubisco expression decreased by 30% after transplanting, whereas the non-photochemical dissipation mechanisms and the photosynthetic pigment content increased by 50% and 40% respectively, in order to compensate for the decrease in photochemical efficiency at low pH. Our data indicated a stress condition for the S. vulgare population induced by pH variation, and therefore a reduced acclimation capability at different pH conditions. The decline of the PSII maximum quantum yield (Fv/Fm) and the increase of PARP enzyme activity in transplanted thalli further supported this hypothesis. The absence of the species at ambient pH conditions close to the vent system, as well as the differences in physiological traits, suggest a local adaptation of S. vulgare at pH6.7, through optimization of photosynthetic performance.
Collapse
Affiliation(s)
- Lucia Porzio
- Stazione Zoologica Anton Dohrn of Naples, Integrative Marine Ecology Department, Branch office 'Villa Dohrn', Punta S. Pietro, 80077, Ischia, Naples, Italy.
| | - Maria Cristina Buia
- Stazione Zoologica Anton Dohrn of Naples, Integrative Marine Ecology Department, Branch office 'Villa Dohrn', Punta S. Pietro, 80077, Ischia, Naples, Italy
| | - Maurizio Lorenti
- Stazione Zoologica Anton Dohrn of Naples, Integrative Marine Ecology Department, Branch office 'Villa Dohrn', Punta S. Pietro, 80077, Ischia, Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; Institute for Sustainable Plant Protection, The National Research Council of Italy, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
178
|
Effects of Ocean Warming and Acidification on Rhodolith/Maërl Beds. RHODOLITH/MAËRL BEDS: A GLOBAL PERSPECTIVE 2017. [DOI: 10.1007/978-3-319-29315-8_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
179
|
Provost EJ, Kelaher BP, Dworjanyn SA, Russell BD, Connell SD, Ghedini G, Gillanders BM, Figueira W, Coleman MA. Climate-driven disparities among ecological interactions threaten kelp forest persistence. GLOBAL CHANGE BIOLOGY 2017; 23:353-361. [PMID: 27392308 DOI: 10.1111/gcb.13414] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs.
Collapse
Affiliation(s)
- Euan J Provost
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Brendan P Kelaher
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - Giulia Ghedini
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - WillIAM Figueira
- Marine Ecology Laboratories, School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Melinda A Coleman
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Department of Primary Industries, New South Wales Fisheries, PO Box 4321, Coffs Harbour, NSW, Australia
| |
Collapse
|
180
|
Charrier B, Coates JC, Stavridou I. Surfing amongst Oil-Tankers: Connecting Emerging Research Fields to the Current International Landscape. TRENDS IN PLANT SCIENCE 2017; 22:1-3. [PMID: 27914718 DOI: 10.1016/j.tplants.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/13/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
The COST Action Phycomorph (FA1406) was initiated in 2015 from a handful of academic researchers, and now joins together 19 European countries and nine international partners. Phycomorph's goal is to coordinate and develop research on developmental biology in macroalgae. This is an ambitious project, as the related scientific community is small, the concepts are complex, and there is currently limited knowledge of these organisms and there are few technologies to study them. Here we report the first step in achieving this enterprise, the creation of the Phycomorph network. We share the associated strengths, pitfalls, and prospects for setting up the network in the hope that this might guide similar efforts in other fields.
Collapse
Affiliation(s)
- Bénédicte Charrier
- 'Morphogenesis of Macroalgae', UMR8227, CNRS-UPMC, Station Biologique, 29680 Roscoff, France.
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
181
|
Olischläger M, Iñiguez C, Koch K, Wiencke C, Gordillo FJL. Increased pCO 2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima. PLANTA 2017; 245:119-136. [PMID: 27654952 DOI: 10.1007/s00425-016-2594-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION The Arctic population of the kelp Saccharina latissima differs from the Helgoland population in its sensitivity to changing temperature and CO 2 levels. The Arctic population does more likely benefit from the upcoming environmental scenario than its Atlantic counterpart. The previous research demonstrated that warming and ocean acidification (OA) affect the biochemical composition of Arctic (Spitsbergen; SP) and cold-temperate (Helgoland; HL) Saccharina latissima differently, suggesting ecotypic differentiation. This study analyses the responses to different partial pressures of CO2 (380, 800, and 1500 µatm pCO2) and temperature levels (SP population: 4, 10 °C; HL population: 10, 17 °C) on the photophysiology (O2 production, pigment composition, D1-protein content) and carbon assimilation [Rubisco content, carbon concentrating mechanisms (CCMs), growth rate] of both ecotypes. Elevated temperatures stimulated O2 production in both populations, and also led to an increase in pigment content and a deactivation of CCMs, as indicated by 13C isotopic discrimination of algal biomass (ε p) in the HL population, which was not observed in SP thalli. In general, pCO2 effects were less pronounced than temperature effects. High pCO2 deactivated CCMs in both populations and produced a decrease in the Rubisco content of HL thalli, while it was unaltered in SP population. As a result, the growth rate of the Arctic ecotype increased at elevated pCO2 and higher temperatures and it remained unchanged in the HL population. Ecotypic differentiation was revealed by a significantly higher O2 production rate and an increase in Chl a, Rubisco, and D1 protein content in SP thalli, but a lower growth rate, in comparison to the HL population. We conclude that both populations differ in their sensitivity to changing temperatures and OA and that the Arctic population is more likely to benefit from the upcoming environmental scenario than its Atlantic counterpart.
Collapse
Affiliation(s)
- Mark Olischläger
- Department of Functional Ecology, Alfred-Wegener-Institute, Helmholtz Center for Marine and Polar Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Concepción Iñiguez
- Department of Ecology, Faculty of Sciences, University of Malaga, Bulevar Louis Pasteur s/n, 29010, Malaga, Spain
| | - Kristina Koch
- Marine Botany and Bremen Marine Ecology-Center for Research and Education (BreMarE), University of Bremen, LeobenerStr. NW2, 28359, Bremen, Germany
| | - Christian Wiencke
- Department of Functional Ecology, Alfred-Wegener-Institute, Helmholtz Center for Marine and Polar Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | | |
Collapse
|
182
|
Padilla-Gamiño JL, Gaitán-Espitia JD, Kelly MW, Hofmann GE. Physiological plasticity and local adaptation to elevated pCO 2 in calcareous algae: an ontogenetic and geographic approach. Evol Appl 2016; 9:1043-1053. [PMID: 27695514 PMCID: PMC5039319 DOI: 10.1111/eva.12411] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
To project how ocean acidification will impact biological communities in the future, it is critical to understand the potential for local adaptation and the physiological plasticity of marine organisms throughout their entire life cycle, as some stages may be more vulnerable than others. Coralline algae are ecosystem engineers that play significant functional roles in oceans worldwide and are considered vulnerable to ocean acidification. Using different stages of coralline algae, we tested the hypothesis that populations living in environments with higher environmental variability and exposed to higher levels of pCO 2 would be less affected by high pCO 2 than populations from a more stable environment experiencing lower levels of pCO 2. Our results show that spores are less sensitive to elevated pCO 2 than adults. Spore growth and mortality were not affected by pCO 2 level; however, elevated pCO 2 negatively impacted the physiology and growth rates of adults, with stronger effects in populations that experienced both lower levels of pCO 2 and lower variability in carbonate chemistry, suggesting local adaptation. Differences in physiological plasticity and the potential for adaptation could have important implications for the ecological and evolutionary responses of coralline algae to future environmental changes.
Collapse
Affiliation(s)
- Jacqueline L Padilla-Gamiño
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA; Department of Biology California State University Dominguez Hills Carson CA USA
| | - Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Valdivia Chile; CSIRO Oceans and Atmosphere Hobart TAS Australia
| | - Morgan W Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Gretchen E Hofmann
- Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
183
|
Iveša L, Djakovac T, Devescovi M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. MARINE POLLUTION BULLETIN 2016; 106:162-73. [PMID: 26975612 DOI: 10.1016/j.marpolbul.2016.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
An exploration of historical data suggested that eutrophication patterns might drive long-term fluctuations in Cystoseira populations along the west Istrian Coast (northern Adriatic Sea, Croatia). The regimes of northern Italian rivers, which flow approximately 100km west of the study area, mainly modulate the eutrophication levels of the northern Adriatic Sea. A regression of Cystoseira populations from the 1970s through the 1990s corresponded to increased levels of eutrophication in the study area. During the late 1990s, the density of sea urchins, which are efficacious macroalgal predators, decreased, likely due to an intense formation of pelagic mucilage aggregates that resulted in mass mortality episodes of macrozoobenthic species. During the 2000-2013 period, an oligotrophication of the northern Adriatic formed the basis for the recovery of Cystoseira taxa, whose abundances from 2009 to 2013 were similar to those characterising the most flourishing Mediterranean Cystoseira assemblages.
Collapse
Affiliation(s)
- Ljiljana Iveša
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia.
| | - Tamara Djakovac
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Massimo Devescovi
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
184
|
Young CS, Gobler CJ. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae. PLoS One 2016; 11:e0155152. [PMID: 27176637 PMCID: PMC4866684 DOI: 10.1371/journal.pone.0155152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/25/2016] [Indexed: 12/02/2022] Open
Abstract
While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p<0.05), but were unaffected by nutrient enrichment. In contrast, the growth response of Ulva was more complex as this alga experienced significantly (p<0.05) increased growth rates in response to both elevated pCO2 and elevated nutrients and, in two cases, pCO2 and nutrients interacted to provide a synergistically enhanced growth rate for Ulva. Across all experiments, elevated pCO2 significantly increased Ulva growth rates by 30% (p<0.05), while the response to nutrients was smaller (p>0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades.
Collapse
Affiliation(s)
- Craig S. Young
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, New York, United States of America
| | - Christopher J. Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, New York, United States of America
| |
Collapse
|
185
|
Scherner F, Pereira CM, Duarte G, Horta PA, e Castro CB, Barufi JB, Pereira SMB. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae. PLoS One 2016; 11:e0154844. [PMID: 27158820 PMCID: PMC4861303 DOI: 10.1371/journal.pone.0154844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the highly variable environment they inhabit.
Collapse
Affiliation(s)
- Fernando Scherner
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171–900, Recife, PE, Brazil
- * E-mail:
| | - Cristiano Macedo Pereira
- Instituto Coral Vivo, Estrada da Balsa, km 4,5, Arraial d'Ajuda, 45816–000, Porto Seguro, BA, Brazil
| | - Gustavo Duarte
- Instituto Coral Vivo, Estrada da Balsa, km 4,5, Arraial d'Ajuda, 45816–000, Porto Seguro, BA, Brazil
- Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa Vista, s/n, São Cristóvão, 20940–040, Rio de Janeiro, RJ, Brazil
| | - Paulo Antunes Horta
- Instituto Coral Vivo, Estrada da Balsa, km 4,5, Arraial d'Ajuda, 45816–000, Porto Seguro, BA, Brazil
- Universidade Federal de Santa Catarina, Departamento de Botânica, Trindade, 88010–970, Florianópolis, SC, Brazil
| | - Clovis Barreira e Castro
- Instituto Coral Vivo, Estrada da Balsa, km 4,5, Arraial d'Ajuda, 45816–000, Porto Seguro, BA, Brazil
- Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Inverterbrados, Quinta da Boa Vista, s/n, São Cristóvão, 20940–040, Rio de Janeiro, RJ, Brazil
| | - José Bonomi Barufi
- Universidade Federal de Santa Catarina, Departamento de Botânica, Trindade, 88010–970, Florianópolis, SC, Brazil
| | - Sonia Maria Barreto Pereira
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171–900, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Programa de Pós-graduação em Saúde Humana e Meio Ambiente, Rua Alto do Reservatório, s/n, 55608–680, Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
186
|
Jueterbock A, Smolina I, Coyer JA, Hoarau G. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecol Evol 2016; 6:1712-24. [PMID: 27087933 PMCID: PMC4801954 DOI: 10.1002/ece3.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/15/2016] [Accepted: 01/23/2016] [Indexed: 11/25/2022] Open
Abstract
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of F. distichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of F. distichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of F. distichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between F. distichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.
Collapse
Affiliation(s)
- Alexander Jueterbock
- Faculty of Biosciences and Aquaculture Nord University Universitetsalleen 11 8049 Bodø Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture Nord University Universitetsalleen 11 8049 Bodø Norway
| | - James A Coyer
- Shoals Marine Laboratory University of New Hampshire Durham New Hampshire 03824 USA
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture Nord University Universitetsalleen 11 8049 Bodø Norway
| |
Collapse
|
187
|
Herbert RJH, Ma L, Marston A, Farnham WF, Tittley I, Cornes RC. The calcareous brown alga Padina pavonica in southern Britain: population change and tenacity over 300 years. MARINE BIOLOGY 2016; 163:46. [PMID: 26900178 PMCID: PMC4749647 DOI: 10.1007/s00227-015-2805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Understanding long-term persistence and variability in species populations can help to predict future survival, growth and distribution; however, sustained observations are exceedingly rare. We examine and interpret a remarkable record of the calcareous brown alga Padina pavonica (Phaeophyceae) at its northern limit on the south coast of England (50°N, 1-3°W) from 1680 to 2014, which is probably the longest compilation and review of any marine algal species. Over this period, which extends from the middle of the Little Ice Age to the present, there has been considerable variability in temperature and storminess. We identified a significant number of site extinctions in the second half of the nineteenth century, which coincided with cooler conditions and stormier weather. To interpret these changes, we measured recruitment, growth and production of tetraspores at sheltered and exposed sites in 2012-2014, years which had low and high spring temperatures. Potential spore production was greater at the sheltered site due to a longer growing period and survival of larger fronds. Delayed growth in the cooler spring resulted in smaller fronds and lower potential production of tetraspores by early summer. Yet in the warmer year, rapid initial growth caused higher sensitivity to damage and dislodgement by summer storms, which also limited potential spore production. Antagonistic responses to multiple stressors and disturbances make future predictions of survival and distribution difficult. Fronds of Padinapavonica are sensitive to both temperature and physical disturbances, yet vegetative perennation appears to have enabled population persistence and explained the longevity of remaining populations.
Collapse
Affiliation(s)
- Roger J. H. Herbert
- />Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB UK
| | - Lisha Ma
- />Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB UK
| | - Anne Marston
- />Isle of Wight Local Records Centre, Seaclose Offices, Fairlee Road, Newport, Isle of Wight PO30 2QS UK
| | - William F. Farnham
- />Institute of Marine Sciences, School of Biological Sciences, Portsmouth University, Ferry Road, Eastney, Portsmouth, PO1 2DY UK
| | - Ian Tittley
- />The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Richard C. Cornes
- />Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
188
|
Krueger-Hadfield SA, Hoban SM. The importance of effective sampling for exploring the population dynamics of haploid-diploid seaweeds. JOURNAL OF PHYCOLOGY 2016; 52:1-9. [PMID: 26987084 DOI: 10.1111/jpy.12366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The mating system partitions genetic diversity within and among populations and the links between life history traits and mating systems have been extensively studied in diploid organisms. As such most evolutionary theory is focused on species for which sexual reproduction occurs between diploid male and diploid female individuals. However, there are many multicellular organisms with biphasic life cycles in which the haploid stage is prolonged and undergoes substantial somatic development. In particular, biphasic life cycles are found across green, brown and red macroalgae. Yet, few studies have addressed the population structure and genetic diversity in both the haploid and diploid stages in these life cycles. We have developed some broad guidelines with which to develop population genetic studies of haploid-diploid macroalgae and to quantify the relationship between power and sampling strategy. We address three common goals for studying macroalgal population dynamics, including haploid-diploid ratios, genetic structure and paternity analyses.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd, Charleston, South Carolina, 29412, USA
| | - Sean M Hoban
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
189
|
Carey N, Harianto J, Byrne M. Urchins in a high CO2 world: partitioned effects of body-size, ocean warming and acidification on metabolic rate. J Exp Biol 2016; 219:1178-86. [DOI: 10.1242/jeb.136101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/08/2016] [Indexed: 01/18/2023]
Abstract
Body-size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad body-size range (two-to-three orders of magnitude difference in body mass) we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for east Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23 °C) and two pH (7.5 and 8.0), and maintained for two months. That a new physiological steady-state had been reached, otherwise know as acclimation, was validated through identical experimental trials separated by several weeks. The relationship between body-size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate; 20% for temperature and 19% for pH. Combined effects were additive; a 44% increase in metabolism. Body-size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body-size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma near-future climate change will incur a substantial energetic cost.
Collapse
Affiliation(s)
- Nicholas Carey
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd., Pacific Grove, CA 93950, USA
| | - Januar Harianto
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
190
|
Nannini M, De Marchi L, Lombardi C, Ragazzola F. Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N-W Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2015; 112:11-19. [PMID: 26004519 DOI: 10.1016/j.marenvres.2015.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Coralline algae are calcareous algae able to build biogenic structures, thus playing a key-role as marine biodiversity promoters and calcium carbonate producers. The aim was to estimate the growth of Ellisolandia elongata under thermal stress. E. elongata were cultured for 2, 4 and 6 months under "natural" temperature (Tc) and increased temperature (Ti = Tc + 3 °C). In order to determine a possible culturing effect, growth in the field was also measured. For the first time, Alizarin Red S dye was used in high energy shallow water environments. Thallus linear extension was higher in the cultured specimens (Tc and Ti) compared to the field specimens. The carbonate mass in the field was higher than in Ti and Tc after 2, 4 months but decreased after 6 months. Partly unknown in situ environmental factors could have affected growth and calcification rates in the field while thermal adaptation could explain growth rates in the culturing experiment.
Collapse
Affiliation(s)
- Matteo Nannini
- Environment Research Centre ENEA Via Santa Teresa, 19032 Pozzuolo di Lerici, La Spezia, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy; Association For-Mare for Applied Ecological Sciences, Via Lovati 33, 27100 Pavia, Italy.
| | - Lucia De Marchi
- Association For-Mare for Applied Ecological Sciences, Via Lovati 33, 27100 Pavia, Italy; Istituto di Scienze Marine-Consiglio Nazionale delle Ricerche (CNR-ISMAR), Pozzuolo di Lerici, 19032 Lerici, La Spezia, Italy
| | - Chiara Lombardi
- Environment Research Centre ENEA Via Santa Teresa, 19032 Pozzuolo di Lerici, La Spezia, Italy
| | - Federica Ragazzola
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
191
|
Roleda MY, Cornwall CE, Feng Y, McGraw CM, Smith AM, Hurd CL. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage. PLoS One 2015; 10:e0140394. [PMID: 26469945 PMCID: PMC4607452 DOI: 10.1371/journal.pone.0140394] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65) and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.
Collapse
Affiliation(s)
| | | | - Yuanyuan Feng
- Department of Botany, University of Otago, Dunedin, New Zealand
| | | | - Abigail M. Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Catriona L. Hurd
- Department of Botany, University of Otago, Dunedin, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
192
|
Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Edwards MD, Critchley AT. Prospects and challenges for industrial production of seaweed bioactives. JOURNAL OF PHYCOLOGY 2015; 51:821-837. [PMID: 26986880 DOI: 10.1111/jpy.12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/09/2015] [Indexed: 06/05/2023]
Abstract
Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products.
Collapse
Affiliation(s)
- Jeff T Hafting
- Acadian Seaplants Limited, 30 Brown Avenue, Cornwallis, Nova Scotia, Canada
| | - James S Craigie
- Acadian Seaplants Limited, 30 Brown Avenue, Cornwallis, Nova Scotia, Canada
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences & Ryan Institute for Environmental, Galway, Ireland
| | - Rafael R Loureiro
- Department of Biology, Ave Maria University, Ave Maria, Florida, USA
| | | | - Charles Yarish
- Department of Ecology & Evolutionary Biology, University of Conneticut, Stamford, Connecticut, USA
| | | | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Cornwallis, Nova Scotia, Canada
| |
Collapse
|
193
|
Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JH, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG. Ocean acidification through the lens of ecological theory. Ecology 2015; 96:3-15. [PMID: 26236884 DOI: 10.1890/14-0802.1] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.
Collapse
|
194
|
Mrowicki RJ, O'Connor NE. Wave action modifies the effects of consumer diversity and warming on algal assemblages. Ecology 2015; 96:1020-9. [PMID: 26230022 DOI: 10.1890/14-0577.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea, and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial.
Collapse
|
195
|
Marcelino VR, Verbruggen H. Ecological niche models of invasive seaweeds. JOURNAL OF PHYCOLOGY 2015; 51:606-620. [PMID: 26986785 DOI: 10.1111/jpy.12322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/09/2015] [Indexed: 06/05/2023]
Abstract
Ecological niche models (ENMs) are commonly used to calculate habitat suitability from species' occurrence and macroecological data. In invasive species biology, ENMs can be applied to anticipate whether invasive species are likely to establish in an area, to identify critical routes and arrival points, to build risk maps and to predict the extent of potential spread following an introduction. Most studies using ENMs focus on terrestrial organisms and applications in the marine realm are still relatively rare. Here, we review some common methods to build ENMs and their application in seaweed invasion biology. We summarize methods and concepts involved in the development of niche models, show examples of how they have been applied in studies on algae and discuss the application of ENMs in invasive algae research and to predict effects of climate change on seaweed distributions.
Collapse
Affiliation(s)
- Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
196
|
Disturbance effects of kelp thalli on structure and diversity of a coastal Arctic marine soft-bottom assemblage. Polar Biol 2015. [DOI: 10.1007/s00300-015-1714-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
197
|
|
198
|
Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Biol Sci 2015; 281:20140846. [PMID: 25009065 DOI: 10.1098/rspb.2014.0846] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.
Collapse
Affiliation(s)
- Adriana Vergés
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Peter D Steinberg
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia Advanced Environmental Biotechnology Centre, Nanyang Technical University, Singapore 637551, Republic of Singapore
| | - Mark E Hay
- School of Biology and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alistair G B Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Alexandra H Campbell
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Enric Ballesteros
- Centre d'Estudis Avançats de Blanes-CSIC, Blanes, Girona 17300, Spain
| | - Kenneth L Heck
- Dauphin Island Sea Laboratory and University of South Alabama, Mobile, AL 36688-0002, USA
| | - David J Booth
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of the Environment, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Melinda A Coleman
- Department of Primary Industries, NSW Fisheries, PO Box 4321, Coffs Harbour, New South Wales 2450, Australia
| | - David A Feary
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of the Environment, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Will Figueira
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tim Langlois
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Toni Mizerek
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohei Nakamura
- Graduate School of Kuroshio Science, Kochi University, Kochi 783-8502, Japan
| | - Moninya Roughan
- School of Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Erik van Sebille
- Climate Change Research Centre and ARC Centre of Excellence for Climate, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alex Sen Gupta
- Climate Change Research Centre and ARC Centre of Excellence for Climate, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dan A Smale
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Esporles, Illes Balears 07190, Spain Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331-3803, USA
| | - Thomas Wernberg
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun K Wilson
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Department of Parks and Wildlife, Kensington, Western Australia 6151, Australia
| |
Collapse
|
199
|
Haigh R, Ianson D, Holt CA, Neate HE, Edwards AM. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific. PLoS One 2015; 10:e0117533. [PMID: 25671596 PMCID: PMC4324998 DOI: 10.1371/journal.pone.0117533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022] Open
Abstract
As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.
Collapse
Affiliation(s)
- Rowan Haigh
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Debby Ianson
-
Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British Columbia, V8L 4B2, Canada
- * E-mail:
| | - Carrie A. Holt
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Holly E. Neate
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
-
Department of Biology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Andrew M. Edwards
-
Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
-
Department of Biology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, British Columbia, V8W 2Y2, Canada
| |
Collapse
|
200
|
Young RM, Schoenrock KM, von Salm JL, Amsler CD, Baker BJ. Structure and Function of Macroalgal Natural Products. Methods Mol Biol 2015; 1308:39-73. [PMID: 26108497 DOI: 10.1007/978-1-4939-2684-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Since the initial discovery of marine phyco-derived secondary metabolites in the 1950s there has been a rapid increase in the description of new algal natural products. These metabolites have multiple ecological roles as well as commercial value as potential drugs or lead compounds. With the emergence of resistance to our current arsenal of drugs as well as the development of new chemotherapies for currently untreatable diseases, new compounds must be sourced. As outlined in this chapter algae produce a diverse range of chemicals many of which have potential for the treatment of human afflictions.In this chapter we outline the classes of metabolites produced by this chemically rich group of organisms as well as their respective ecological roles in the environment. Algae are found in nearly every environment on earth, with many of these organisms possessing the ability to shape the ecosystem they inhabit. With current challenges to climate stability, understanding how these important organisms interact with their environment as well as one another might afford better insight into how they respond to a changing climate.
Collapse
Affiliation(s)
- Ryan M Young
- Department of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, 33620, USA
| | | | | | | | | |
Collapse
|