151
|
Hartman ES, Brindley EC, Papoin J, Ciciotte SL, Zhao Y, Peters LL, Blanc L. Increased Reactive Oxygen Species and Cell Cycle Defects Contribute to Anemia in the RASA3 Mutant Mouse Model s cat. Front Physiol 2018; 9:689. [PMID: 29922180 PMCID: PMC5996270 DOI: 10.3389/fphys.2018.00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023] Open
Abstract
RASA3 is a Ras GTPase activating protein that plays a critical role in blood formation. The autosomal recessive mouse model scat (severe combined anemia and thrombocytopenia) carries a missense mutation in Rasa3. Homozygotes present with a phenotype characteristic of bone marrow failure that is accompanied by alternating episodes of crisis and remission. The mechanism leading to impaired erythropoiesis and peripheral cell destruction as evidenced by membrane fragmentation in scat is unclear, although we previously reported that the mislocalization of RASA3 to the cytosol of reticulocytes and mature red cells plays a role in the disease. In this study, we further characterized the bone marrow failure in scat and found that RASA3 plays a central role in cell cycle progression and maintenance of reactive oxygen species (ROS) levels during terminal erythroid differentiation, without inducing apoptosis of the precursors. In scat mice undergoing crises, there is a consistent pattern of an increased proportion of cells in the G0/G1 phase at the basophilic and polychromatophilic stages of erythroid differentiation, suggesting that RASA3 is involved in the G1 checkpoint. However, this increase in G1 is transient, and either resolves or becomes indiscernible by the orthochromatic stage. In addition, while ROS levels are normal early in erythropoiesis, there is accumulation of superoxide levels at the reticulocyte stage (DHE increased 40% in scat; p = 0.02) even though mitochondria, a potential source for ROS, are eliminated normally. Surprisingly, apoptosis is significantly decreased in the scat bone marrow at the proerythroblastic (15.3%; p = 0.004), polychromatophilic (8.5%; p = 0.01), and orthochromatic (4.2%; p = 0.02) stages. Together, these data indicate that ROS accumulation at the reticulocyte stage, without apoptosis, contributes to the membrane fragmentation observed in scat. Finally, the cell cycle defect and increased levels of ROS suggest that scat is a model of bone marrow failure with characteristics of aplastic anemia.
Collapse
Affiliation(s)
- Emily S Hartman
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Elena C Brindley
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | | | - Yue Zhao
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
152
|
Maurer M, Altrichter S, Schmetzer O, Scheffel J, Church MK, Metz M. Immunoglobulin E-Mediated Autoimmunity. Front Immunol 2018; 9:689. [PMID: 29686678 PMCID: PMC5900004 DOI: 10.3389/fimmu.2018.00689] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
The study of autoimmunity mediated by immunoglobulin E (IgE) autoantibodies, which may be termed autoallergy, is in its infancy. It is now recognized that systemic lupus erythematosus, bullous pemphigoid (BP), and chronic urticaria, both spontaneous and inducible, are most likely to be mediated, at least in part, by IgE autoantibodies. The situation in other conditions, such as autoimmune uveitis, rheumatoid arthritis, hyperthyroid Graves’ disease, autoimmune pancreatitis, and even asthma, is far less clear but evidence for autoallergy is accumulating. To be certain of an autoallergic mechanism, it is necessary to identify both IgE autoantibodies and their targets as has been done with the transmembrane protein BP180 and the intracellular protein BP230 in BP and IL-24 in chronic spontaneous urticaria. Also, IgE-targeted therapies, such as anti-IgE, must have been shown to be of benefit to patients as has been done with both of these conditions. This comprehensive review of the literature on IgE-mediated autoallergy focuses on three related questions. What do we know about the prevalence of IgE autoantibodies and their targets in different diseases? What do we know about the relevance of IgE autoantibodies in different diseases? What do we know about the cellular and molecular effects of IgE autoantibodies? In addition to providing answers to these questions, based on a broad review of the literature, we outline the current gaps of knowledge in our understanding of IgE autoantibodies and describe approaches to address them.
Collapse
Affiliation(s)
- Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Altrichter
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Schmetzer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin K Church
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Metz
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
153
|
Yang WH, Heithoff DM, Aziz PV, Sperandio M, Nizet V, Mahan MJ, Marth JD. Recurrent infection progressively disables host protection against intestinal inflammation. Science 2018; 358:358/6370/eaao5610. [PMID: 29269445 DOI: 10.1126/science.aao5610] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Intestinal inflammation is the central pathological feature of colitis and the inflammatory bowel diseases. These syndromes arise from unidentified environmental factors. We found that recurrent nonlethal gastric infections of Gram-negative Salmonella enterica Typhimurium (ST), a major source of human food poisoning, caused inflammation of murine intestinal tissue, predominantly the colon, which persisted after pathogen clearance and irreversibly escalated in severity with repeated infections. ST progressively disabled a host mechanism of protection by inducing endogenous neuraminidase activity, which accelerated the molecular aging and clearance of intestinal alkaline phosphatase (IAP). Disease was linked to a Toll-like receptor 4 (TLR4)-dependent mechanism of IAP desialylation with accumulation of the IAP substrate and TLR4 ligand, lipopolysaccharide-phosphate. The administration of IAP or the antiviral neuraminidase inhibitor zanamivir was therapeutic by maintaining IAP abundance and function.
Collapse
Affiliation(s)
- Won Ho Yang
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Douglas M Heithoff
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Peter V Aziz
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Markus Sperandio
- Walter-Brendel-Centre for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Mahan
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jamey D Marth
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. .,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
154
|
Manzoni F, Ryde U. Assessing the stability of free-energy perturbation calculations by performing variations in the method. J Comput Aided Mol Des 2018. [PMID: 29536221 PMCID: PMC5889414 DOI: 10.1007/s10822-018-0110-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2-3 kJ/mol and a correlation coefficient (R2) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates). However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty than if performing only one calculation with a single computational setup.
Collapse
Affiliation(s)
- Francesco Manzoni
- Theoretical Chemistry, Department of Chemistry, Chemical Centre, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Ulf Ryde
- Theoretical Chemistry, Department of Chemistry, Chemical Centre, Lund University, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
155
|
Immunohistochemical Analysis of Galectins-1, -3, and -7 in Periapical Granulomas, Radicular Cysts, and Residual Radicular Cysts. J Endod 2018; 44:728-733. [PMID: 29510866 DOI: 10.1016/j.joen.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/04/2017] [Accepted: 01/19/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Galectins play important roles in immunoinflammatory responses, but their participation in the development of periapical lesions remains unclear. This study aimed to evaluate the expressions of galectins-1, -3, and -7 in periapical lesions, correlating them with the intensity of the inflammatory infiltrate and the pattern of the cystic epithelium. METHODS Twenty periapical granulomas (PGs), 20 radicular cysts (RCs), and 20 residual radicular cysts (RRCs) were submitted to immunohistochemistry using anti-galectin-1, -3, and -7 antibodies. The percentage of immunopositive cells in epithelial and connective tissues was determined. RESULTS In connective tissue, PGs exhibited higher cytoplasmic/membrane expression of galectins-1 and -7 than RCs and RRCs (P < .05). There was higher nuclear expression of galectin-1 in PGs compared with RCs and RRCs (P < .05). The expression of galectins-1 and -7 in connective tissue was higher in lesions with grade III inflammation (P < .05). No significant differences in galectin-3 immunoexpression were observed for any of the parameters evaluated (P > .05). In the epithelial component, a higher nuclear expression of galectin-7 was detected in RRCs (P < .05), and a higher cytoplasmic/membrane expression of this protein was found in cysts with hyperplastic epithelium (P < .05). Positive correlations were observed between the nuclear and cytoplasmic/membrane expression of galectin-1 in connective tissue (P < .05) as well as between the nuclear and cytoplasmic/membrane expression of galectin-7 in epithelial tissue of cysts (P < .05). CONCLUSIONS Galectins-1 and -7 may play important roles in the pathogenesis of PGs, RCs, and RRCs. On the other hand, the present results suggest only a minor involvement of galectin-3 in the development of these lesions.
Collapse
|
156
|
Sundblad V, Quintar AA, Morosi LG, Niveloni SI, Cabanne A, Smecuol E, Mauriño E, Mariño KV, Bai JC, Maldonado CA, Rabinovich GA. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients. Front Immunol 2018; 9:379. [PMID: 29545799 PMCID: PMC5837985 DOI: 10.3389/fimmu.2018.00379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Galectins, a family of animal lectins characterized by their affinity for N-acetyllactosamine-enriched glycoconjugates, modulate several immune cell processes shaping the course of innate and adaptive immune responses. Through interaction with a wide range of glycosylated receptors bearing complex branched N-glycans and core 2-O-glycans, these endogenous lectins trigger distinct signaling programs thereby controling immune cell activation, differentiation, recruitment and survival. Given the unique features of mucosal inflammation and the differential expression of galectins throughout the gastrointestinal tract, we discuss here key findings on the role of galectins in intestinal inflammation, particularly Crohn’s disease, ulcerative colitis, and celiac disease (CeD) patients, as well as in murine models resembling these inflammatory conditions. In addition, we present new data highlighting the regulated expression of galectin-1 (Gal-1), a proto-type member of the galectin family, during intestinal inflammation in untreated and treated CeD patients. Our results unveil a substantial upregulation of Gal-1 accompanying the anti-inflammatory and tolerogenic response associated with gluten-free diet in CeD patients, suggesting a major role of this lectin in favoring resolution of inflammation and restoration of mucosal homeostasis. Thus, a coordinated network of galectins and their glycosylated ligands, exerting either anti-inflammatory or proinflammatory responses, may influence the interplay between intestinal epithelial cells and the highly specialized gut immune system in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Amado A Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Luciano G Morosi
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sonia I Niveloni
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Ana Cabanne
- Unidad de Patología, Hospital de Gastroenterología, Bonorino Udaondo, Buenos Aires, Argentina
| | - Edgardo Smecuol
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Eduardo Mauriño
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julio C Bai
- Sección Intestino Delgado, Departamento de Medicina, Hospital de Gastroenterología Dr. C. Bonorino Udaondo, Buenos Aires, Argentina.,Instituto de Investigaciones, Universidad del Salvador, Buenos Aires, Argentina
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
157
|
Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res 2018; 26:429-41. [PMID: 27455380 DOI: 10.1097/cmr.0000000000000281] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Galectin-9, a β-galactoside-binding protein, is defined as a negative regulator of T helper 1 (Th1) immune responses, favoring Th2 bias. Systemic immunity in patients with metastatic melanoma is predominantly Th2 biased. We hypothesized that galectin-9 can modulate systemic immunity toward Th2 polarization in patients with advanced melanoma. The presence or concentration of galectin-9 was assessed in tumors and plasma, in patients with metastatic melanoma. The immunomodulatory function of galectin-9 was determined by exposing human peripheral blood mononuclear cells to galectin-9 in vitro. Galectin-9 was expressed in 57% of tumors and was significantly (3.6-fold) increased in the plasma of patients with advanced melanoma compared with healthy controls (P<0.001). High plasma galectin-9 concentration was associated with systemic Th2 polarization and reduced 2-year survival compared with low/no galectin-9 expression. In-vitro, galectin-9 reduced proliferation of healthy peripheral blood mononuclear cells, and promoted Th1 cell apoptosis, Th2-biased cell phenotypes, and cytokine secretion. Galectin-9 also stimulated monocyte differentiation toward an M2 macrophage phenotype, as assessed by chemokine/cytokine secretion and CD206 expression, observed both in vitro as well as in patients with metastatic melanoma. Elevated galectin-9 in patient plasma correlated with Th2 systemic bias and less favorable clinical outcomes for patients with metastatic melanoma. This Th2 bias appears to be not only a feature of the known mechanisms of Th1 apoptosis by T-cell immunoglobulin and mucin-domain containing-3 binding, but also mediated by myeloid cell differentiation toward an M2 phenotype, that favors tumor progression. These data support galectin-9 as a novel therapeutic target for patients with metastatic melanoma.
Collapse
|
158
|
Andrade FEC, Covre JL, Ramos L, Hazarbassanov RM, Santos MSD, Campos M, Gomes JÁP, Gil CD. Evaluation of galectin-1 and galectin-3 as prospective biomarkers in keratoconus. Br J Ophthalmol 2018; 102:700-707. [DOI: 10.1136/bjophthalmol-2017-311495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 01/13/2023]
Abstract
AimsTo evaluate the expression of β-galactoside-binding proteins galectin (Gal)-1 and Gal-3 in patients with keratoconus (KC) and postcorneal collagen cross-linking (CXL) treatment in vitro.MethodsTear fluid, cornea samples and conjunctival impression cytology specimens from control and KC patients were used to evaluate Gal-1 and Gal-3 expressions. Primary keratocytes were isolated by collagenase digestion from surgically removed corneas of five normal or KC human corneal buttons and cultured in Dulbecco’s modified eagle medium/Ham’s F12 medium supplemented with 2% fetal bovine serum. These cells were evaluated under two experimental conditions: control and submitted to the application of ultraviolet A light and riboflavin 0.1% (CXL) for 30 min.ResultsPatients with KC displayed increased levels of Gal-1 and Gal-3 in conjunctival epithelial cells compared with control. Furthermore, KC corneas were associated with intense expression of Gal-1 in the stroma, released by keratocytes. Ultrastructural analysis of keratocytes showed a marked increase of endogenous Gal-3 levels, but not Gal-1, in KC. In vitro, CXL induced significant release of Gal-1 in keratocyte supernatants (116±18 ng/mL, P<0.05) and decreased inflammatory biomarkers as interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-2 and MMP-9. Gal-3 levels were not detected in the keratocyte supernatants.ConclusionGal-1 and Gal-3 represent new interesting KC biomarkers as revealed by their different expression patterns in KC and control corneal samples. CXL has an immunosuppressive effect on keratocytes by reducing the release of cytokines and MMPs and increased expression of anti-inflammatory protein Gal-1.
Collapse
|
159
|
Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain Sci 2018; 8:brainsci8020030. [PMID: 29414883 PMCID: PMC5836049 DOI: 10.3390/brainsci8020030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is known as one of the most devastating diseases in the central nervous system. In the past few decades, research on SAH has focused on cerebral vasospasm to prevent post-SAH delayed cerebral ischemia (DCI) and to improve outcomes. However, increasing evidence has suggested that early brain injury (EBI) is an important mechanism contributing to DCI, cerebral vasospasm as well as poor outcomes. Though the mechanism of EBI is very complex, inflammation is thought to play a pivotal role in EBI. Galectin-3 is a unique chimera type in the galectin family characterized by its β-galactoside-binding lectin, which mediates various pathologies, such as fibrosis, cell adhesion, and inflammation. Recently, two clinical studies revealed galectin-3 to be a possible prognostic biomarker in SAH patients. In addition, our recent report suggested that higher acute-stage plasma galectin-3 levels correlated with subsequent development of delayed cerebral infarction that was not associated with vasospasm in SAH patients. We review the possible role and molecular mechanisms of inflammation as well as galectin-3 in brain injuries, especially focusing on EBI after SAH, and discuss galectin-3 as a potential new therapeutic or research target in post-SAH brain injuries.
Collapse
|
160
|
Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT. Galectin-3 Enhances Avian H5N1 Influenza A Virus-Induced Pulmonary Inflammation by Promoting NLRP3 Inflammasome Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1031-1042. [PMID: 29366678 DOI: 10.1016/j.ajpath.2017.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
Highly pathogenic avian influenza A H5N1 virus causes pneumonia and acute respiratory distress syndrome in humans. Virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. Galectin-3, a β-galactoside-binding protein widely distributed in immune and epithelial cells, regulates various immune functions and modulates microbial infections. Here, we describe galectin-3 up-regulation in mouse lung tissue after challenges with the H5N1 influenza virus. We investigated the effects of endogenous galectin-3 on H5N1 infection and found that survival of galectin-3 knockout (Gal-3KO) mice was comparable with wild-type (WT) mice after infections. Compared with infected WT mice, infected Gal-3KO mice exhibited less inflammation in the lungs and reduced IL-1β levels in bronchoalveolar lavage fluid. In addition, the bone marrow-derived macrophages (BMMs) from Gal-3KO mice exhibited reduced oligomerization of apoptosis-associated speck-like proteins containing caspase-associated recruitment domains and secreted less IL-1β compared with BMMs from WT mice. However, similar levels of the inflammasome component of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were observed in two genotypes of BMMs. Co-immunoprecipitation data indicated galectin-3 and NLRP3 interaction in BMMs infected with H5N1. An association was also observed between galectin-3 and NLRP3/apoptosis-associated speck-like proteins containing caspase-associated recruitment domain complex. Combined, our results suggest that endogenous galectin-3 enhances the effects of H5N1 infection by promoting host inflammatory responses and regulating IL-1β production by macrophages via interaction with NLRP3.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsiang Hong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
161
|
Abstract
Abstract
Heart failure is nowadays a common condition associated with high mortality and increased healthcare-related costs. Over the years, the research on heart failure management has been extensive in order to better diagnose and treat the condition. Since the progression of left ventricular dysfunction is a consequence of myocardial inflammation, apopotosis, and fibrosis leading to myocardium remodelling, several molecules that are involved in the inflammation pathways have been explored as possible biomarkers for the condition. The study of biomarkers and their key roles in inflammation could allow early identification of patients with heart failure, improve prognostic assessment, and provide a target for future therapies. Among currently studied biomarkers, extensive research has been conducted on galectin-3, a galactoside-binding lectin, which is synthetised and secreted when cardiomyocytes and fibroblasts are submitted to mechanical stress. Accordingly, it has been hypothesised that galectin-3 could be a promoter of left ventricular dysfunction. Galectin-3 has been shown to mediate inflammation by several different pathways which are further detailed in the current review. Also, we aimed to provide a comprehensive overview of existing evidence on the utility of galectin-3 in clinical settings associated with heart failure.
Collapse
|
162
|
Peterson K, Kumar R, Stenström O, Verma P, Verma PR, Håkansson M, Kahl-Knutsson B, Zetterberg F, Leffler H, Akke M, Logan DT, Nilsson UJ. Systematic Tuning of Fluoro-galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity. J Med Chem 2018; 61:1164-1175. [PMID: 29284090 DOI: 10.1021/acs.jmedchem.7b01626] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Symmetrical and asymmetrical fluorinated phenyltriazolyl-thiodigalactoside derivatives have been synthesized and evaluated as inhibitors of galectin-1 and galectin-3. Systematic tuning of the phenyltriazolyl-thiodigalactosides' fluoro-interactions with galectin-3 led to the discovery of inhibitors with exceptional affinities (Kd down to 1-2 nM) in symmetrically substituted thiodigalactosides as well as unsurpassed combination of high affinity (Kd 7.5 nM) and selectivity (46-fold) over galectin-1 for asymmetrical thiodigalactosides by carrying one trifluorphenyltriazole and one coumaryl moiety. Studies of the inhibitor-galectin complexes with isothermal titration calorimetry and X-ray crystallography revealed the importance of fluoro-amide interaction for affinity and for selectivity. Finally, the high affinity of the discovered inhibitors required two competitive titration assay tools to be developed: a new high affinity fluorescent probe for competitive fluorescent polarization and a competitive ligand optimal for analyzing high affinity galectin-3 inhibitors with competitive isothermal titration calorimetry.
Collapse
Affiliation(s)
- Kristoffer Peterson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Rohit Kumar
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Olof Stenström
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Priya Verma
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Prashant R Verma
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB , Medicon Village, SE-223 63 Lund, Sweden
| | - Barbro Kahl-Knutsson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b , Klinikgatan 28, 221 84 Lund, Sweden
| | - Fredrik Zetterberg
- Galecto Biotech AB , Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b , Klinikgatan 28, 221 84 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| | - Derek T Logan
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden.,SARomics Biostructures AB , Medicon Village, SE-223 63 Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
163
|
Galectin-12 in Cellular Differentiation, Apoptosis and Polarization. Int J Mol Sci 2018; 19:ijms19010176. [PMID: 29316658 PMCID: PMC5796125 DOI: 10.3390/ijms19010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Galectin-12 is a member of a family of mammalian lectins characterized by their affinity for β-galactosides and consensus amino acid sequences. The protein structure consists of a single polypeptide chain containing two carbohydrate-recognition domains joined by a linker region. Galectin-12 is predominantly expressed in adipose tissue, but is also detected in macrophages and other leukocytes. Downregulation of galectin-12 in mouse 3T3-L1 cells impairs their differentiation into adipocytes. Conversely, overexpression of galectin-12 in vitro induces cell cycle arrest in G1 and apoptosis. Upregulation of galectin-12 and initiation of G1 cell cycle arrest are associated with driving pre-adipocytes toward terminal differentiation. Galectin-12 deficiency increases insulin sensitivity and glucose tolerance in obese animals. Galectin-12 inhibits macrophage polarization to the M2 population, enhancing inflammation and decreasing insulin sensitivity in adipocytes. Galectin-12 also affects myeloid differentiation, which is associated with chemotherapy resistance. In addition to highlighting the above-mentioned aspects, this review also discusses the potential clinical applications of modulating the function of galectin-12.
Collapse
|
164
|
Dencker M, Arvidsson D, Karlsson MK, Wollmer P, Andersen LB, Thorsson O. Galectin-3 levels relate in children to total body fat, abdominal fat, body fat distribution, and cardiac size. Eur J Pediatr 2018; 177:461-467. [PMID: 29327139 PMCID: PMC5816767 DOI: 10.1007/s00431-017-3079-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022]
Abstract
UNLABELLED Galectin-3 has recently been proposed as a novel biomarker for cardiovascular disease in adults. The purpose of this investigation was to assess relationships between galectin-3 levels and total body fat, abdominal fat, body fat distribution, aerobic fitness, blood pressure, left ventricular mass, left atrial size, and increase in body fat over a 2-year period in a population-based sample of children. Our study included 170 children aged 8-11 years. Total fat mass and abdominal fat were measured by dual-energy x-ray absorptiometry (DXA). Body fat distribution was expressed as abdominal fat/total fat mass. Maximal oxygen uptake was assessed by indirect calorimetry during a maximal exercise test and scaled to body mass. Systolic and diastolic blood pressure and pulse pressure were measured. Left atrial size, left ventricular mass, and relative wall thickness were measured by echocardiography. Frozen serum samples were analyzed for galectin-3 by the Proximity Extension Assay technique. A follow-up DXA scan was performed in 152 children 2 years after the baseline exam. Partial correlations, with adjustment for sex and age, between galectin-3 versus body fat measurements indicated weak to moderate relationships. Moreover, left atrial size, left ventricular mass, and relative wall thickness and pulse pressure were also correlated with galectin-3. Neither systolic blood pressure nor maximal oxygen uptake was correlated with galectin-3. There was also a correlation between galectin-3 and increase in total body fat over 2 years, while no such correlations were found for the other fat measurements. CONCLUSION More body fat and abdominal fat, more abdominal body fat distribution, more left ventricular mass, and increased left atrial size were all associated with higher levels of galectin-3. Increase in total body fat over 2 years was also associated with higher levels of galectin-3. What is Known: • Galectin-3 has been linked to obesity and been proposed to be a novel biomarker for cardiovascular disease in adults. • Information on this subject in children is very scarce. What is New: • The present study demonstrates a relationship between galectin-3 levels and total body fat, abdominal fat, body fat distribution, cardiac size and geometry, and increase in total body fat over 2 years in young children.
Collapse
Affiliation(s)
- Magnus Dencker
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| | - Daniel Arvidsson
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden ,Center for Health and Performance, Department of Food and Nutrition, and Sports Science, University of Gothenburg, Gothenburg, Sweden
| | - Magnus K. Karlsson
- Department of Clinical Sciences and Orthopaedics, Clinical and Molecular Osteoporosis Research Unit, Skåne University Hospital, Lund University, Lund, Sweden
| | - Per Wollmer
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Lars B. Andersen
- Department of Teacher Education and Sport, Sogn and Fjordane University College, Sogndal, Norway ,Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ola Thorsson
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
165
|
Ahn SS, Park Y, Lee DD, Bothwell ALM, Jung SM, Song JJ, Park YB, Lee SW. SerumWisteria floribundaagglutinin-positive Mac-2-binding protein can reflect systemic lupus erythematosus activity. Lupus 2017; 27:771-779. [DOI: 10.1177/0961203317747719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S S Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D D Lee
- Seoul International School, Seongnam, Republic of Korea
| | - A L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S M Jung
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J J Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y-B Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - S-W Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
166
|
Feigerlová E, Battaglia-Hsu SF, Hauet T, Guéant JL. Extracellular vesicles as immune mediators in response to kidney injury. Am J Physiol Renal Physiol 2017; 314:F9-F21. [PMID: 28855190 DOI: 10.1152/ajprenal.00336.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Important progress has been made on cytokine signaling in response to kidney injury in the past decade, especially cytokine signaling mediated by extracellular vesicles (EVs). For example, EVs released by injured renal tubular epithelial cells (TECs) can regulate intercellular communications and influence tissue recovery via both regulating the expression and transferring cytokines, growth factors, as well as other bioactive molecules at the site of injury. The effects of EVs on kidney tissue seem to vary depending on the sources of EVs; however, the literature data are often inconsistent. For example, in rodents EVs derived from mesenchymal stem cells (MSC-EVs) and endothelial progenitor cells (EPC-EVs) can have both beneficial and harmful effects on injured renal tissue. Caution is thus needed in the interpretation of these data as contradictory findings on EVs may not only be related to the origin of EVs, they can also be caused by the different methods used for EV isolation and the physiological and pathological states of the tissues/cells under which they were obtained. Here, we review and discuss our current understanding related to the immunomodulatory function of EVs in renal tubular repair in the hope of encouraging further investigations on mechanisms related to their antiinflammatory and reparative role to better define the therapeutic potential of EVs in renal diseases.
Collapse
Affiliation(s)
- Eva Feigerlová
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine, Lorraine, France.,Medical Faculty, University of Lorraine, Lorraine, France.,INSERM, UMR 1082, Poitiers , France.,Medical and Pharmaceutical Faculty, University of Poitiers , Poitiers , France
| | - Shyue-Fang Battaglia-Hsu
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine, Lorraine, France.,Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Thierry Hauet
- INSERM, UMR 1082, Poitiers , France.,Medical and Pharmaceutical Faculty, University of Poitiers , Poitiers , France.,Service de Biochimie, Pôle BIOSPHARM, CHU de Poitiers, Poitiers , France
| | - Jean-Louis Guéant
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine, Lorraine, France.,Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| |
Collapse
|
167
|
Nishikawa H, Nakatsuka Y, Shiba M, Kawakita F, Fujimoto M, Suzuki H. Increased Plasma Galectin-3 Preceding the Development of Delayed Cerebral Infarction and Eventual Poor Outcome in Non-Severe Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2017; 9:110-119. [PMID: 28831694 DOI: 10.1007/s12975-017-0564-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
A matricellular protein galectin-3 is involved in tissue injury and inflammation, but the role of galectin-3 remains unclear in aneurysmal subarachnoid hemorrhage (SAH). The purpose of this study was to assess whether acute-stage galectin-3 levels were associated with the subsequent development of neurovascular events and outcome after SAH. This study included 83 consecutive patients diagnosed with aneurysmal SAH of resuscitated World Federation of Neurological Surgeons (WFNS) grades 1-3. Plasma galectin-3 levels were once measured on days 1-3 (the day after clipping or coiling). Fifteen patients had poor outcomes, which were associated with increasing age, female, pre-onset morbidity, worse WFNS grade, modified Fisher computed tomography scale, acute hydrocephalus, and higher galectin-3 levels compared with good outcomes. Multivariate analyses revealed that plasma galectin-3 was an independent determinant for poor outcome (odds ratio, 3.08; 95% confidence interval, 1.58-6.00; p = 0.001). Among post-SAH neurovascular events occurring on day 4 and thereafter, delayed cerebral ischemia and infarction, but not angiographic vasospasm and shunt-dependent hydrocephalus, showed significantly higher plasma galectin-3 levels on days 1-3. The receiver operating characteristic curve indicated that plasma galectin-3 with a cutoff value of 3.30 or 3.48 ng/ml predicted delayed cerebral infarction development or poor outcome (specificity, 62.5%, 70.6%; sensitivity, 90.9%, 73.3%, respectively). The findings suggest that plasma galectin-3 levels on days 1-3 would be a useful biomarker for predicting subsequent development of delayed cerebral infarction and eventual poor outcome and provide a new candidate, which may mediate between post-SAH early brain injury or inflammation and delayed cerebral infarction without vasospasm.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
168
|
Vinnai JR, Cumming RC, Thompson GJ, Timoshenko AV. The association between oxidative stress-induced galectins and differentiation of human promyelocytic HL-60 cells. Exp Cell Res 2017; 355:113-123. [DOI: 10.1016/j.yexcr.2017.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022]
|
169
|
Brooks AK, Janda TM, Lawson MA, Rytych JL, Smith RA, Ocampo-Solis C, McCusker RH. Desipramine decreases expression of human and murine indoleamine-2,3-dioxygenases. Brain Behav Immun 2017; 62:219-229. [PMID: 28212884 PMCID: PMC5382643 DOI: 10.1016/j.bbi.2017.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Abundant evidence connects depression symptomology with immune system activation, stress and subsequently elevated levels of kynurenine. Anti-depressants, such as the tricyclic norepinephrine/serotonin reuptake inhibitor desipramine (Desip), were developed under the premise that increasing extracellular neurotransmitter level was the sole mechanism by which they alleviate depressive symptomologies. However, evidence suggests that anti-depressants have additional actions that contribute to their therapeutic potential. The Kynurenine Pathway produces tryptophan metabolites that modulate neurotransmitter activity. This recognition identified another putative pathway for anti-depressant targeting. Considering a recognized role of the Kynurenine Pathway in depression, we investigated the potential for Desip to alter expression of rate-limiting enzymes of this pathway: indoleamine-2,3-dioxygenases (Ido1 and Ido2). Mice were administered lipopolysaccharide (LPS) or synthetic glucocorticoid dexamethasone (Dex) with Desip to determine if Desip alters indoleamine-dioxygenase (DO) expression in vivo following a modeled immune and stress response. This work was followed by treating murine and human peripheral blood mononuclear cells (PBMCs) with interferon-gamma (IFNγ) and Desip. In vivo: Desip blocked LPS-induced Ido1 expression in hippocampi, astrocytes, microglia and PBMCs and Ido2 expression by PBMCs. Ex vivo: Desip decreased IFNγ-induced Ido1 and Ido2 expression in murine PBMCs. This effect was directly translatable to the human system as Desip decreased IDO1 and IDO2 expression by human PBMCs. These data demonstrate for the first time that an anti-depressant alters expression of Ido1 and Ido2, identifying a possible new mechanism behind anti-depressant activity. Furthermore, we propose the assessment of PBMCs for anti-depressant responsiveness using IDO expression as a biomarker.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robin A Smith
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Cecilia Ocampo-Solis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
170
|
Interleukin-7 and Immunosenescence. J Immunol Res 2017; 2017:4807853. [PMID: 28484723 PMCID: PMC5397725 DOI: 10.1155/2017/4807853] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 12/21/2022] Open
Abstract
The age of an individual is an important, independent risk factor for many of the most common diseases afflicting modern societies. Interleukin-7 (IL-7) plays a central, critical role in the homeostasis of the immune system. Recent studies support a critical role for IL-7 in the maintenance of a vigorous healthspan. We describe the role of IL-7 and its receptor in immunosenescence, the aging of the immune system. An understanding of the role that IL-7 plays in aging may permit parsimonious preventative or therapeutic solutions for diverse conditions. Perhaps IL-7 might be used to "tune" the immune system to optimize human healthspan and longevity.
Collapse
|
171
|
Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T, Johnson AMF, Sears D, Shen Z, Cui B, Kong L, Hou S, Liang X, Iovino S, Watkins SM, Ying W, Osborn O, Wollam J, Brenner M, Olefsky JM. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 2017; 167:973-984.e12. [PMID: 27814523 DOI: 10.1016/j.cell.2016.10.025] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/08/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
In obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice. In vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and 3T3-L1 adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Importantly, we found that Gal3 can bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidate a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach to treat insulin resistance.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China; Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Min Lu
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Diabetes Early Discovery, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Gautum Bandyopadhyay
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dayoung Oh
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Takeshi Imamura
- Pharmacology, Department of Medicine, Shiga University of Medical Science, 1 Tsukinowa, Seta, Otsu-city, Shiga 520-2192, Japan
| | - Andrew M F Johnson
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dorothy Sears
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiao Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Salvatore Iovino
- Diabetes Early Discovery, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Wei Ying
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joshua Wollam
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Martin Brenner
- Diabetes Early Discovery, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, UC, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
172
|
Andersen MN, Ludvigsen M, Abildgaard N, Petruskevicius I, Hjortebjerg R, Bjerre M, Honoré B, Møller HJ, Andersen NF. Serum galectin-1 in patients with multiple myeloma: associations with survival, angiogenesis, and biomarkers of macrophage activation. Onco Targets Ther 2017; 10:1977-1982. [PMID: 28435287 PMCID: PMC5388249 DOI: 10.2147/ott.s124321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-1 (Gal-1) is known to regulate cell signaling within the immune system and may be a target for new anticancer immune therapy. In patients with chronic lymphocytic leukemia (CLL) and classical Hodgkin lymphoma (cHL), high levels of Gal-1 within the tumor microenvironment were associated with worse disease state or poor outcome. Gal-1 can be secreted from cells by an unknown mechanism, and levels in blood samples were associated with high tumor burden and worse disease state in cHL and CLL patients. However, serum levels of Gal-1 have never been investigated in patients with multiple myeloma (MM). We measured serum Gal-1 levels in samples from patients with treatment demanding MM at the time of diagnosis (n=102) and after treatment (n=24) and examined associations of serum Gal-1 with clinicopathological information obtained from patient medical records, as well as data on bone marrow angiogenesis and the macrophage activation biomarkers soluble CD163 (sCD163) and soluble mannose receptor. Serum Gal-1 levels were not elevated in patients with MM at diagnosis compared with healthy donors (median values 8.48 vs 11.93 ng/mL, P=0.05), which is in contrast to results in cHL and CLL. Furthermore, Gal-1 levels did not show association with bone marrow angiogenesis, clinicopathological parameters, overall survival, or response to treatment. There was a statically significant association between Gal-1 and sCD163 levels (R=0.24, P=0.02), but not with soluble mannose receptor (P=0.92). In conclusion, our results indicate that Gal-1 is not an important serum biomarker in MM, which is in contrast to data from patients with cHL and CLL. However, the association with sCD163 is in line with previous data showing that Gal-1 may be involved in alternative (M2-like) activation of macrophages.
Collapse
Affiliation(s)
- Morten Nørgaard Andersen
- Department of Biomedicine, Faculty of Health, Aarhus University.,Department of Clinical Biochemistry.,Department of Hematology, Aarhus University Hospital, Aarhus
| | - Maja Ludvigsen
- Department of Biomedicine, Faculty of Health, Aarhus University.,Department of Hematology, Aarhus University Hospital, Aarhus
| | | | | | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Bent Honoré
- Department of Biomedicine, Faculty of Health, Aarhus University
| | | | | |
Collapse
|
173
|
Galectins expressed differently in genetically susceptible C57BL/6 and resistant BALB/c mice during acute ocularToxoplasma gondiiinfection. Parasitology 2017; 144:1064-1072. [DOI: 10.1017/s0031182017000270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SUMMARYOcular toxoplasmosis (OT) caused byToxoplasma gondiiis a major cause of infectious uveitis, however little is known about its immunopathological mechanism. Susceptible C57BL/6 (B6) and resistant BALB/c mice were intravitreally infected with 500 tachyzoites of the RH strain ofT. gondii. B6 mice showed more severe ocular pathology and higher parasite loads in the eyes. The levels of galectin (Gal)-9 and its receptors (Tim-3 and CD137), interferon (IFN)-γ, IL-6 and IL-10 were significantly higher in the eyes of B6 mice than those of BALB/c mice; however, the levels of IFN-αand -βwere significantly decreased in the eyes and CLNs of B6 mice but significantly increased in BALB/c mice after infection. After blockage of galectin–receptor interactions byα-lactose, neither ocular immunopathology nor parasite loads were different from those of infected BALB/c mice withoutα-lactose treatment. Although the expressions of Gal-9/receptor were significantly increased in B6 mice and Gal-1 and -3 were upregulated in both strains of mice upon ocularT. gondiiinfection, blockage of galectins did not change the ocular pathogenesis of genetic resistant BALB/c mice. However, IFN-αand -βwere differently expressed in B6 and BALB/c mice, suggesting that type I IFNs may play a protective role in experimental OT.
Collapse
|
174
|
Hornung Á, Monostori É, Kovács L. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function. Lupus 2017; 26:339-347. [PMID: 28100106 DOI: 10.1177/0961203316686846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galectin-1 is an endogenous immunoregulatory lectin-type protein. Its most important effects are the inhibition of the differentiation and cytokine production of Th1 and Th17 cells, and the induction of apoptosis of activated T-cells. Galectin-1 has been identified as a key molecule in antitumor immune surveillance, and data are accumulating about the pathogenic role of its deficiency, and the beneficial effects of its administration in various autoimmune disease models. Initial animal and human studies strongly suggest deficiencies in both galectin-1 production and responsiveness in systemic lupus erythematosus (SLE) T-cells. Since lupus features widespread abnormalities in T-cell activation, differentiation and viability, in this review the authors wished to highlight potential points in T-cell signalling processes that may be influenced by galectin-1. These points include GM-1 ganglioside-mediated lipid raft aggregation, early activation signalling steps involving p56Lck, the exchange of the CD3 ζ-ZAP-70 to the FcRγ-Syk pathway, defective mitogen-activated protein kinase pathway activation, impaired regulatory T-cell function, the failure to suppress the activity of interleukin 17 (IL-17) producing T-cells, and decreased suppression of the PI3K-mTOR pathway by phosphatase and tensin homolog (PTEN). These findings place galectin-1 into the group of potential pathogenic molecules in SLE.
Collapse
Affiliation(s)
- Á Hornung
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| | - É Monostori
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - L Kovács
- 2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| |
Collapse
|
175
|
Zhang Y, Kou X, Jiang N, Liu Y, Tay FR, Zhou Y. Effect of intraoral mechanical stress application on the expression of a force-responsive prognostic marker associated with system disease progression. J Dent 2016; 57:57-65. [PMID: 27979689 DOI: 10.1016/j.jdent.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Malocclusion may be corrected nonsurgically by mechanical tooth movement. The plasma protein profiles of human subjects receiving the first phase of orthodontic treatment were examined to test the hypothesis that application of mechanical stresses to teeth induces systemic proteomic alterations. METHODS Tandem mass tag-based liquid chromatography-mass spectrometry (LC-MS/MS) was used to examine systemic proteomic alterations in subjects undergoing controlled stress application (N=10) and in volunteers not receiving treatment (N=7) at 3 time intervals within 24h. Proteins differentially expressed by the tooth movement group were functionally analyzed with "Gene Ontology" (GO) and "Search Tool to Retrieve Interacting Genes/proteins" (STRING) softwares. Enzyme-Linked Immunosorbent Assay and Western-blot were used to validate the in vivo protein alterations. An in vitro model consisting of human periodontal ligament cells (hPDLCs) under compression was used to validate the force-responsive characteristics of galectin-3 binding protein (LGALS3BP). RESULTS Sixteen out of the 294 proteins identified by LC-MS/MS were differentially expressed in the plasma of subjects receiving controlled mechanical stresses for moving teeth. Those proteins were clustered in biological processes related to acute inflammatory response and vesicle-related transportation. Serotransferrin, fibronectin and LGALS3BP were processed for confirmation in vivo; LGALS3BP was significantly increased in the tooth movement group. In vitro secretion of LGALS3BP in PDLCs was force-responsive. CONCLUSIONS Regional application of mechanical stresses stimulates systemic proteomic changes. Because serum LGALS3BP is over-expressed in different systemic diseases, including cancer, further work is needed to examine how systemic up-regulation of LGALS3BP affects the progression of those diseases.
Collapse
Affiliation(s)
- Yimei Zhang
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoxing Kou
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Nan Jiang
- The Center of Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Liu
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA.
| | - Yanheng Zhou
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
176
|
Pang J, Nguyen VT, Rhodes DH, Sullivan ME, Braunschweig C, Fantuzzi G. Relationship of galectin-3 with obesity, IL-6, and CRP in women. J Endocrinol Invest 2016; 39:1435-1443. [PMID: 27444618 DOI: 10.1007/s40618-016-0515-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the association of galectin-3 (Gal3) with obesity and inflammatory status in a cohort of metabolically healthy, predominantly African-American women with varying cardiovascular disease (CVD) risk as determined by CRP levels. METHODS We assessed the association between BMI and serum levels of Gal3, IL-6, CRP, and adiponectin in metabolically healthy women (N = 97) to determine the overall association between Gal3, obesity, and inflammation in groups at different CVD risk. RESULTS Obese women had significantly higher serum Gal3 compared to non-obese participants (P = 0.0016), although Gal3 levels were comparable among different classes of obesity. BMI (R 2 = 0.1406, P = 0.0013), IL-6 (R 2 = 0.0689, P = 0.035), and CRP (R 2 = 0.0468, P = 0.0419), but not adiponectin, positively predicted the variance of Gal3 levels in the total study population. However, the predicting effect of BMI (R 2 = 0.2923, P = 0.0125) and inflammation (R 2 = 0.3138, P = 0.038) on Gal3 was only present in women at low/moderate risk of CVD (CRP ≤ 3 µg/mL). CONCLUSIONS Gal3 is positively correlated with obesity and inflammation in women, while the presence of elevated CVD risk may disturb the strength of Gal3 as a biomarker of inflammation.
Collapse
Affiliation(s)
- J Pang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
| | - V T Nguyen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
| | - D H Rhodes
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
| | - M E Sullivan
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
| | - C Braunschweig
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
| | - G Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
177
|
Manzoni F, Saraboji K, Sprenger J, Kumar R, Noresson AL, Nilsson UJ, Leffler H, Fisher SZ, Schrader TE, Ostermann A, Coates L, Blakeley MP, Oksanen E, Logan DT. Perdeuteration, crystallization, data collection and comparison of five neutron diffraction data sets of complexes of human galectin-3C. Acta Crystallogr D Struct Biol 2016; 72:1194-1202. [PMID: 27841752 PMCID: PMC5108347 DOI: 10.1107/s2059798316015540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/03/2016] [Indexed: 11/11/2022] Open
Abstract
Galectin-3 is an important protein in molecular signalling events involving carbohydrate recognition, and an understanding of the hydrogen-bonding patterns in the carbohydrate-binding site of its C-terminal domain (galectin-3C) is important for the development of new potent inhibitors. The authors are studying these patterns using neutron crystallography. Here, the production of perdeuterated human galectin-3C and successive improvement in crystal size by the development of a crystal-growth protocol involving feeding of the crystallization drops are described. The larger crystals resulted in improved data quality and reduced data-collection times. Furthermore, protocols for complete removal of the lactose that is necessary for the production of large crystals of apo galectin-3C suitable for neutron diffraction are described. Five data sets have been collected at three different neutron sources from galectin-3C crystals of various volumes. It was possible to merge two of these to generate an almost complete neutron data set for the galectin-3C-lactose complex. These data sets provide insights into the crystal volumes and data-collection times necessary for the same system at sources with different technologies and data-collection strategies, and these insights are applicable to other systems.
Collapse
Affiliation(s)
- Francesco Manzoni
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
- European Spallation Source ERIC, Box 176, S-221 00 Lund, Sweden
| | - Kadhirvel Saraboji
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Janina Sprenger
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Rohit Kumar
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Ann-Louise Noresson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, S-221 00 Lund, Sweden
| | - S. Zoë Fisher
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Esko Oksanen
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
- European Spallation Source ERIC, Box 176, S-221 00 Lund, Sweden
| | - Derek T. Logan
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| |
Collapse
|
178
|
Brooks AK, Lawson MA, Rytych JL, Yu KC, Janda TM, Steelman AJ, McCusker RH. Immunomodulatory Factors Galectin-9 and Interferon-Gamma Synergize to Induce Expression of Rate-Limiting Enzymes of the Kynurenine Pathway in the Mouse Hippocampus. Front Immunol 2016; 7:422. [PMID: 27799931 PMCID: PMC5065983 DOI: 10.3389/fimmu.2016.00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Elevated levels of circulating pro-inflammatory cytokines are associated with symptomology of several psychiatric disorders, notably major depressive disorder. Symptomology has been linked to inflammation/cytokine-dependent induction of the Kynurenine Pathway. Galectins, like pro-inflammatory cytokines, play a role in neuroinflammation and the pathogenesis of several neurological disorders but without a clearly defined mechanism of action. Their involvement in the Kynurenine Pathway has not been investigated. Thus, we searched for a link between galectins and the Kynurenine Pathway using in vivo and ex vivo models. Mice were administered LPS and pI:C to determine if galectins (Gal's) were upregulated in the brain following in vivo inflammatory challenges. We then used organotypic hippocampal slice cultures (OHSCs) to determine if Gal's, alone or with inflammatory mediators [interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), interleukin-1beta (IL-1β), polyinosine-polycytidylic acid (pI:C), and dexamethasone (Dex; synthetic glucocorticoid)], would increase expression of indoleamine/tryptophan-2,3-dioxygenases (DO's: Ido1, Ido2, and Tdo2; Kynurenine Pathway rate-limiting enzymes). In vivo, hippocampal expression of cytokines (IL-1β, TNFα, and IFNγ), Gal-3, and Gal-9 along with Ido1 and Ido2 were increased by LPS and pI:C (bacterial and viral mimetics). Of the cytokines induced in vivo, only IFNγ increased expression of two Ido1 transcripts (Ido1-FL and Ido1-v1) by OHSCs. Although ineffective alone, Gal-9 accentuated IFNγ-induced expression of only Ido1-FL. Similarly, IFNγ induced expression of several Ido2 transcripts (Ido2-v1, Ido2-v3, Ido2-v4, Ido2-v5, and Ido2-v6). Gal-9 accentuated IFNγ-induced expression of only Ido2-v1. Surprisingly, Gal-9 alone, slightly but significantly, induced expression of Tdo2 (Tdo2-v1 and Tdo2-v2, but not Tdo2-FL). These effects were specific to Gal-9 as Gal-1 and Gal-3 did not alter DO expression. These results are the first to show that brain Gal-9 is increased during LPS- and pI:C-induced neuroinflammation. Increased expression of Gal-9 may be critical for neuroinflammation-dependent induction of DO expression, either acting alone (Tdo2-v1 and Tdo2-v2) or to enhance IFNγ activity (Ido1-FL and Ido2-v1). Although these novel actions of Gal-9 are described for hippocampus, they have the potential to operate as DO-dependent immunomodulatory processes outside the brain. With the expanding implications of Kynurenine Pathway activation across multiple immune and psychiatric disorders, this synergy provides a new target for therapeutic development.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin C Yu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
179
|
Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev 2016; 16:34-47. [PMID: 27666815 DOI: 10.1016/j.autrev.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Galectins are evolutionary conserved β-galactoside binding proteins with a carbohydrate-recognition domain (CRD) of approximately 130 amino acids. In mammals, 15 members of the galectin family have been identified and classified into three subtypes according to CRD organization: prototype, tandem repeat-type and chimera-type galectins. Galectin-3 (gal-3) is the only chimera type galectin in vertebrates containing one CRD linked to an unusual long N-terminal domain which displays non-lectin dependent activities. Although recent studies revealed unique, pleiotropic and context-dependent functions of gal-3 in both extracellular and intracellular space, gal-3 specific pathways and its ligands have not been clearly defined yet. In the kidney gal-3 is involved in later stages of nephrogenesis as well as in renal cell cancer. However, gal-3 has recently been associated with lupus glomerulonephritis, with Familial Mediterranean Fever-induced proteinuria and renal amyloidosis. Gal-3 has been studied in experimental acute kidney damage and in the subsequent regeneration phase as well as in several models of chronic kidney disease, including nephropathies induced by aging, ischemia, hypertension, diabetes, hyperlipidemia, unilateral ureteral obstruction and chronic allograft injury. Because of the pivotal role of gal-3 in the modulation of immune system, wound repair, fibrosis and tumorigenesis, it is not surprising that gal-3 can be an intriguing prognostic biomarker as well as a promising therapeutic target in a great variety of diseases, including chronic kidney disease, chronic heart failure and cardio-renal syndrome. This review summarizes the functions of gal-3 in kidney pathophysiology focusing on the reported role of gal-3 in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Saccon
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Leonardo Punzi
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy.
| |
Collapse
|
180
|
Bai Z, Zhao L, Chen X, Li Q, Li J. A galectin from Hyriopsis cumingii involved in the innate immune response against to pathogenic microorganism and its expression profiling during pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2016; 56:127-135. [PMID: 27403593 DOI: 10.1016/j.fsi.2016.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Hyriopsis cumingii is the most important freshwater pearl mussel cultured in China. The operation for implantation is one necessary technical step for pearl culture. However, implantation-induced trauma results in a series of immune responses and can enable the invasion of pathogenic microbes. Lectin proteins are found widely in nature and play important roles in innate immunity. Galectins are members of the lectin superfamily and are characterized by one or several carbohydrate recognition domains (CRDs) that produce multiple sugar binding sites on the protein. Here we cloned and characterized the H. cumingii galectin gene HcGal1, which encodes a 312 amino acid galectin protein. The HcGal1 transcript was detected in all tested H. cumingii tissues and showed higher expression specifically in immune tissues. The significant upregulation of HcGal1 expression was observed after challenging the mussel with lipopolysaccharide or Gram-negative and Gram-positive bacteria. After implantation, significant downregulation of the HcGal1 transcript was noted in the mantle, hemocytes, and pearl sac in the acute-stress stage (0-24 h) and the stage of wound healing and pearl-sac formation (24 h-7 d). In addition, significant upregulation of HcGal1 expression was observed in the liver in the stage of wound healing and pearl-sac formation. In the pearl-secretion stage (7-35 d), the HcGal1 transcript levels returned to normal in all tested tissues. We also show that recombinantly expressed and purified HcGal1 can agglutinate some Gram-negative and Gram-positive bacteria. In addition, in vivo experiments showed that the recombinant protein HcGal1 could promote phagocytosis by hemocytes. Our data suggest that HcGal1 plays a role in innate immune responses involved in pathogen recognition and wound healing.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Xiajun Chen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Qingqing Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, PR China.
| |
Collapse
|
181
|
Liu J, Huang S, Su XZ, Song J, Lu F. Blockage of Galectin-receptor Interactions by α-lactose Exacerbates Plasmodium berghei-induced Pulmonary Immunopathology. Sci Rep 2016; 6:32024. [PMID: 27554340 PMCID: PMC4995515 DOI: 10.1038/srep32024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria-associated acute lung injury (ALI) is a frequent complication of severe malaria that is often caused by "excessive" immune responses. To better understand the mechanism of ALI in malaria infection, here we investigated the roles of galectin (Gal)-1, 3, 8, 9 and the receptors of Gal-9 (Tim-3, CD44, CD137, and PDI) in malaria-induced ALI. We injected alpha (α)-lactose into mice-infected with Plasmodium berghei ANKA (PbANKA) to block galectins and found significantly elevated total proteins in bronchoalveolar lavage fluid, higher parasitemia and tissue parasite burden, and increased numbers of CD68(+) alveolar macrophages as well as apoptotic cells in the lungs after blockage. Additionally, mRNA levels of Gal-9, Tim-3, CD44, CD137, and PDI were significantly increased in the lungs at day 5 after infection, and the levels of CD137, IFN-α, IFN-β, IFN-γ, IL-4, and IL-10 in the lungs were also increased after α-lactose treatment. Similarly, the levels of Gal-9, Tim-3, IFN-α, IFN-β, IFN-γ, and IL-10 were all significantly increased in murine peritoneal macrophages co-cultured with PbANKA-infected red blood cells in vitro; but only IFN-α and IFN-β were significantly increased after α-lactose treatment. Our data indicate that Gal-9 interaction with its multiple receptors play an important role in murine malaria-associated ALI.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China
| | - Shiguang Huang
- School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States of America.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianping Song
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, 436 Chentai Road, Baiyun District, Guangzhou 510445, Guangdong, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China
| |
Collapse
|
182
|
Herath TDK, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts. Sci Rep 2016; 6:29829. [PMID: 27538450 PMCID: PMC4990928 DOI: 10.1038/srep29829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis.
Collapse
Affiliation(s)
- Thanuja D K Herath
- National Dental Centre Singapore, Singapore.,Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Cun-Yu Wang
- School of Dentistry, University of California Los Angeles, Los Angeles, USA
| | - Yu Wang
- Department of Pharmacology &Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
183
|
Delaine T, Collins P, MacKinnon A, Sharma G, Stegmayr J, Rajput VK, Mandal S, Cumpstey I, Larumbe A, Salameh BA, Kahl-Knutsson B, van Hattum H, van Scherpenzeel M, Pieters RJ, Sethi T, Schambye H, Oredsson S, Leffler H, Blanchard H, Nilsson UJ. Galectin-3-Binding Glycomimetics that Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. Chembiochem 2016; 17:1759-70. [PMID: 27356186 DOI: 10.1002/cbic.201600285] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/12/2022]
Abstract
Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.
Collapse
Affiliation(s)
- Tamara Delaine
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Patrick Collins
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Alison MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Sharma
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - John Stegmayr
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Vishal K Rajput
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Santanu Mandal
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Ian Cumpstey
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Amaia Larumbe
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden
| | - Bader A Salameh
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden.,Chemistry Department, The Hashemite University, P. O. Box 150459, Zarka, 13115, Jordan
| | - Barbro Kahl-Knutsson
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Hilde van Hattum
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, Netherlands
| | - Monique van Scherpenzeel
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, Netherlands.,Translational Metabolic Laboratory, 51 Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, Netherlands
| | - Roland J Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, Netherlands
| | - Tariq Sethi
- Department of Respiratory Medicine and Allergy, Kings College, 41 Denmark Hill Campus, Bessemer Road, London, SE5 9RJ, UK
| | - Hans Schambye
- Galecto Biotech ApS, COBIS, Ole Maaloes vej 3, Copenhagen N, 2200, Denmark
| | - Stina Oredsson
- Department of Biology, Lund University, P. O. Box 118, 221 00, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
184
|
Salvagno GL, Pavan C. Prognostic biomarkers in acute coronary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:258. [PMID: 27500159 DOI: 10.21037/atm.2016.06.36] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acute coronary syndrome (ACS) is a leading cause of death around the globe. Beside a still high mortality rate, additional complications of ACS include arrhythmias, left ventricular mural thrombus, cardiac fibrosis, heart failure (HF), cardiogenic shock, mitral valve dysfunction, aneurysms, up to cardiac rupture. Despite many prognostic tools have been developed over the past decades, efforts are still ongoing to identify reliable and predictive biomarkers, which may help predict the prognosis of these patients and especially the risk of HF. Recent evidence suggests that the value of a discrete number of biomarkers of myocardial fibrosis, namely the soluble form of suppression of tumorigenicity 2 (sST2) and galectin-3 (GAL-3), may be predictive of HF and death in patients with ACS. Interestingly, the already promising predictive value of these biomarkers when measured alone was shown to be consistently magnified when combined with other and well-established cardiac biomarkers such natriuretic peptides and cardiac troponins. This article is hence aimed to review the current knowledge about cardiac biomarkers of fibrosis and adverse remodeling.
Collapse
Affiliation(s)
| | - Chiara Pavan
- Geriatric Medicine Division, Ospedale Mater Salutis, Legnago, Verona, Italy
| |
Collapse
|
185
|
|
186
|
Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc Natl Acad Sci U S A 2016; 113:E4837-46. [PMID: 27457925 DOI: 10.1073/pnas.1601958113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galectin-1 (Gal-1), a glycan-binding protein with broad antiinflammatory activities, functions as a proresolving mediator in autoimmune and chronic inflammatory disorders. However, its role in allergic airway inflammation has not yet been elucidated. We evaluated the effects of Gal-1 on eosinophil function and its role in a mouse model of allergic asthma. Allergen exposure resulted in airway recruitment of Gal-1-expressing inflammatory cells, including eosinophils, as well as increased Gal-1 in extracellular spaces in the lungs. In vitro, extracellular Gal-1 exerted divergent effects on eosinophils that were N-glycan- and dose-dependent. At concentrations ≤0.25 µM, Gal-1 increased eosinophil adhesion to vascular cell adhesion molecule-1, caused redistribution of integrin CD49d to the periphery and cell clustering, but inhibited ERK(1/2) activation and eotaxin-1-induced migration. Exposure to concentrations ≥1 µM resulted in ERK(1/2)-dependent apoptosis and disruption of the F-actin cytoskeleton. At lower concentrations, Gal-1 did not alter expression of adhesion molecules (CD49d, CD18, CD11a, CD11b, L-selectin) or of the chemokine receptor CCR3, but decreased CD49d and CCR3 was observed in eosinophils treated with higher concentrations of this lectin. In vivo, allergen-challenged Gal-1-deficient mice exhibited increased recruitment of eosinophils and CD3(+) T lymphocytes in the airways as well as elevated peripheral blood and bone marrow eosinophils relative to corresponding WT mice. Further, these mice had an increased propensity to develop airway hyperresponsiveness and displayed significantly elevated levels of TNF-α in lung tissue. This study suggests that Gal-1 can limit eosinophil recruitment to allergic airways and suppresses airway inflammation by inhibiting cell migration and promoting eosinophil apoptosis.
Collapse
|
187
|
Galectin-8 is associated with recurrence and survival of patients with non-metastatic gastric cancer after surgery. Tumour Biol 2016; 37:12635-12642. [PMID: 27444274 DOI: 10.1007/s13277-016-5175-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/12/2016] [Indexed: 01/28/2023] Open
Abstract
The expression of galectin family has been unraveled in many malignant tumors and related with clinical outcomes. Our current study aims to investigate the prognostic value of galectin-8 expression and refine the current risk stratification system in non-metastatic gastric cancer patients. We retrospectively enrolled 421 patients with gastric cancer from Zhongshan Hospital, Fudan University in 2008. The expression of galectin-8 was detected by immunohistochemistry, and its association with clinicopathological features and prognostic outcomes were assessed. We found that galectin-8 expression was significantly associated with tumor size (P = 0.007), T stage (P = 0.001), N stage (P < 0.001), and tumor node metastasis (TNM) stage (P < 0.001). In addition, low galectin-8 expression indicated poor overall survival (OS) (P < 0.001) and disease-free survival (DFS) (P < 0.001). Furthermore, galectin-8 expression level was identified as an independent favorable prognostic factor for OS (P < 0.001). A predictive nomogram was generated with identified independent prognosticators to evaluate patient OS at 3 and 5 years. Our study suggested that galectin-8 is a potential independent favorable prognostic biomarker for survival and recurrence of patients with gastric cancer after surgical resection and the integration of intratumoral galectin-8 expression level into current TNM staging system would help to refine individual risk stratification.
Collapse
|
188
|
Fermino ML, Dylon LSD, Cecílio NT, Santos SN, Toscano MA, Dias-Baruffi M, Roque-Barreira MC, Rabinovich GA, Bernardes ES. Lack of galectin-3 increases Jagged1/Notch activation in bone marrow-derived dendritic cells and promotes dysregulation of T helper cell polarization. Mol Immunol 2016; 76:22-34. [PMID: 27344022 DOI: 10.1016/j.molimm.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Abstract
Galectin-3, an endogenous glycan-binding protein, is abundantly expressed at sites of inflammation and immune cell activation. Although this lectin has been implicated in the control of T helper (Th) polarization, the mechanisms underlying this effect are not well understood. Here, we investigated the role of endogenous galectin-3 during the course of experimental Leishmania major infection using galectin-3-deficient (Lgals3(-/-)) mice in a BALB/c background and the involvement of Notch signaling pathway in this process. Lgals3(-/-) mice displayed an augmented, although mixed Th1/Th2 responses compared with wild-type (WT) mice. Concomitantly, lymph node and footpad lesion cells from infected Lgals3(-/-) mice showed enhanced levels of Notch signaling components (Notch-1, Jagged1, Jagged2 and Notch target gene Hes-1). Bone marrow-derived dendritic cells (BMDCs) from uninfected Lgals3(-/-) mice also displayed increased expression of the Notch ligands Delta-like-4 and Jagged1 and pro-inflammatory cytokines. In addition, activation of Notch signaling in BMDCs upon stimulation with Jagged1 was more pronounced in Lgals3(-/-) BMDCs compared to WT BMDCs; this condition resulted in increased production of IL-6 by Lgals3(-/-) BMDCs. Finally, addition of exogenous galectin-3 to Lgals3(-/-) BMDCs partially reverted the increased sensitivity to Jagged1 stimulation. Our results suggest that endogenous galectin-3 regulates Notch signaling activation in BMDCs and influences polarization of T helper responses, thus increasing susceptibility to L. major infection.
Collapse
Affiliation(s)
- Marise L Fermino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - L Sebastian D Dylon
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Cientificas y Técnicas, C1428 Buenos Aires, Argentina
| | - Nerry T Cecílio
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sofia N Santos
- Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| | - Marta A Toscano
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Cientificas y Técnicas, C1428 Buenos Aires, Argentina
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maria C Roque-Barreira
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Cientificas y Técnicas, C1428 Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Buenos Aires, Argentina
| | | |
Collapse
|
189
|
Thiemann S, Baum LG. Galectins and Immune Responses—Just How Do They Do Those Things They Do? Annu Rev Immunol 2016; 34:243-64. [DOI: 10.1146/annurev-immunol-041015-055402] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Thiemann
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| |
Collapse
|
190
|
Abstract
CA19-9 (carbohydrate antigen 19-9, also called cancer antigen 19-9 or sialylated Lewis a antigen) is the most commonly used and best validated serum tumor marker for pancreatic cancer diagnosis in symptomatic patients and for monitoring therapy in patients with pancreatic adenocarcinoma. Normally synthesized by normal human pancreatic and biliary ductal cells and by gastric, colon, endometrial and salivary epithelia, CA 19-9 is present in small amounts in serum, and can be over expressed in several benign gastrointestinal disorders. Importantly, it exhibits a dramatic increase in its plasmatic levels during neoplastic disease. However, several critical aspects for its clinical use, such as false negative results in subjects with Lewis (a-b-) genotype and false positive elevation, occasional and transient, in patients with benign diseases, together with its poor positive predictive value (72.3 %), do not make it a good cancer-specific marker and renders it impotent as a screening tool. In the last years a large number of putative biomarkers for pancreatic cancer have been proposed, most of which is lacking of large scale validation. In addition, none of these has showed to possess the requisite sensitivity/specificity to be introduced in clinical use. Therefore, although with important limitations we well-know, CA 19-9 continues being the only pancreatic cancer marker actually in clinical use.
Collapse
|
191
|
Immunohistochemical Studies on Galectin Expression in Colectomised Patients with Ulcerative Colitis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5989128. [PMID: 26885508 PMCID: PMC4739479 DOI: 10.1155/2016/5989128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Introduction. The aetiology and pathogenesis of ulcerative colitis (UC) are essentially unknown. Galectins are carbohydrate-binding lectins involved in a large number of physiological and pathophysiological processes. Little is known about the role of galectins in human UC. In this immunohistochemical exploratory study, both epithelial and inflammatory cell galectin expression were studied in patients with a thoroughly documented clinical history and were correlated with inflammatory activity. Material and Methods. Surgical whole intestinal wall colon specimens from UC patients (n = 22) and controls (n = 10) were studied. Clinical history, pharmacological treatment, and modified Mayo-score were recorded. Tissue inflammation was graded, and sections were stained with antibodies recognizing galectin-1, galectin-2, galectin-3, and galectin-4. Results. Galectin-1 was undetectable in normal and UC colonic epithelium, while galectin-2, galectin-3, and galectin-4 were strongly expressed. A tendency towards diminished epithelial expression with increased inflammatory grade for galectin-2, galectin-3, and galectin-4 was also found. In the inflammatory cells, a strong expression of galectin-2 and a weak expression of galectin-3 were seen. No clear-cut correlation between epithelial galectin expression and severity of the disease was found. Conclusion. Galectin expression in patients with UC seems to be more dependent on disease focality and individual variation than on degree of tissue inflammation.
Collapse
|
192
|
Fichorova RN, Yamamoto HS, Fashemi T, Foley E, Ryan S, Beatty N, Dawood H, Hayes GR, St-Pierre G, Sato S, Singh BN. Trichomonas vaginalis Lipophosphoglycan Exploits Binding to Galectin-1 and -3 to Modulate Epithelial Immunity. J Biol Chem 2016; 291:998-1013. [PMID: 26589797 PMCID: PMC4705417 DOI: 10.1074/jbc.m115.651497] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.
Collapse
Affiliation(s)
- Raina N Fichorova
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| | - Hidemi S Yamamoto
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Titilayo Fashemi
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Evan Foley
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Stanthia Ryan
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Noah Beatty
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hassan Dawood
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Gary R Hayes
- the Departments of Biochemistry and Molecular Biology and Obstetrics and Gynecology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Guillaume St-Pierre
- the Laboratory of Glycobiology and Bioimaging, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | - Sachiko Sato
- the Laboratory of Glycobiology and Bioimaging, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | - Bibhuti N Singh
- the Departments of Biochemistry and Molecular Biology and Obstetrics and Gynecology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| |
Collapse
|
193
|
Nio-Kobayashi J, Hashiba K, Sano M, Okuda K, Duncan WC, Iwanaga T. Expression Profiles and Possible Roles of Galectins in the Corpus Luteum. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1416.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| | - Kazuhisa Hashiba
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Masahiro Sano
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - W. Colin Duncan
- MRC Centre for Reproductive Health, The Queenʼs Medical Research Institute, The University of Edinburgh
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
194
|
Nio-Kobayashi J, Hashiba K, Sano M, Okuda K, Duncan WC, Iwanaga T. Expression Profiles and Possible Roles of Galectins in the Corpus Luteum. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1416.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| | - Kazuhisa Hashiba
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Masahiro Sano
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University
| | - W. Colin Duncan
- MRC Centre for Reproductive Health, The Queenʼs Medical Research Institute, The University of Edinburgh
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| |
Collapse
|
195
|
Benatar AF, García GA, Bua J, Cerliani JP, Postan M, Tasso LM, Scaglione J, Stupirski JC, Toscano MA, Rabinovich GA, Gómez KA. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells. PLoS Negl Trop Dis 2015; 9:e0004148. [PMID: 26451839 PMCID: PMC4599936 DOI: 10.1371/journal.pntd.0004148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. METHODOLOGY AND PRINCIPAL FINDINGS Here we investigated the contribution of galectin-1 (Gal-1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL-1 cardiac cells to Gal-1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal-1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL-1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal-1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal-1 to the cell surface. Consistent with these data, Gal-1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. CONCLUSION/SIGNIFICANCE Our results indicate that Gal-1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.
Collapse
Affiliation(s)
- Alejandro F. Benatar
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gabriela A. García
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Jacqeline Bua
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Juan P. Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Laura M. Tasso
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Jorge Scaglione
- Hospital Pedro de Elizalde, Servicio de Cardiología, Sección Electrofisiología, Buenos Aires, Argentina
| | - Juan C. Stupirski
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Marta A. Toscano
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina A. Gómez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LabMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
196
|
Issa SF, Christensen AF, Lottenburger T, Junker K, Lindegaard H, Hørslev-Petersen K, Junker P. Within-day variation and influence of physical exercise on circulating Galectin-3 in patients with rheumatoid arthritis and healthy individuals. Scand J Immunol 2015; 82:70-5. [PMID: 25857722 DOI: 10.1111/sji.12301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/28/2015] [Indexed: 01/16/2023]
Abstract
Galectin-3 has been suggested as a pro-inflammatory mediator in rheumatoid arthritis (RA). Previous studies have reported overexpression of Galectin-3 in RA synovitis and increased levels in synovial fluid and serum in long-standing RA compared with osteoarthritis and healthy controls. Our objectives were to study whether serum Galectin-3 (1) exhibits circadian variation and/or (2) responds to exercise in RA and controls. The study on circadian patterns (1) comprised eleven patients with newly diagnosed RA, disease duration less than 6 months (ERA), 10 patients with long-standing RA [5-15 years (LRA)] and 16 self-reportedly healthy control subjects. During 24 h, 7 blood samples were drawn at 3-h intervals starting at 10 a.m. through 10 p.m. and at 7 and 10 a.m. on the following day. The study on the effect of physical activity (2) included 10 patients with ERA, 10 with LRA and 14 controls. The participants underwent a standardized exercise programme and four blood samples were drawn before, during and after exercise. Serum Galectin-3 was quantified by ELISA (R&D systems). (1) Galectin-3 was increased at baseline in both RA subsets (P = 0.08). There were no diurnal oscillations (P = 0.85). Day-to-day variation amounted to 3%. (2) Baseline Galectin-3 was increased in LRA versus controls and ERA (P < 0.01 and 0.05). Physical exercise induced 10-15% Galectin-3 increments in RA and controls (P < 0.001) peaking after 1-3 h. To conclude, Galectin-3 did not exhibit circadian variation. Day-to-day variation was 3%. Exercise elicited comparable increments in patients with RA of short and long duration and controls, approaching normal after 1-3 h.
Collapse
Affiliation(s)
- S F Issa
- Department of Rheumatology, Odense University Hospital, Odense C, Denmark
| | | | - T Lottenburger
- Department of Rheumatology, Vejle Hospital, Vejle, Denmark
| | - K Junker
- Institute of Molecular Medicine, Dept. Cancer & Inflammation, University of Southern Denmark, Odense C, Denmark
| | - H Lindegaard
- Department of Rheumatology, Odense University Hospital, Odense C, Denmark
| | | | - P Junker
- Department of Rheumatology, Odense University Hospital, Odense C, Denmark
| |
Collapse
|
197
|
Muniz JM, Bibiano Borges CR, Beghini M, de Araújo MS, Miranda Alves P, de Lima LMB, Pereira SADL, Nogueira RD, Napimoga MH, Rodrigues V, Rodrigues DBR. Galectin-9 as an important marker in the differential diagnosis between oral squamous cell carcinoma, oral leukoplakia and oral lichen planus. Immunobiology 2015; 220:1006-11. [DOI: 10.1016/j.imbio.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
|
198
|
Choy YJ, Hong SY, Pack SJ, Woo RS, Baik TK, Song DY. Changes of gene expression of Gal3, Hsp27, Lcn2, and Timp1 in rat substantia nigra following medial forebrain bundle transection using a candidate gene microarray. J Chem Neuroanat 2015; 66-67:10-8. [DOI: 10.1016/j.jchemneu.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 11/24/2022]
|
199
|
Sugaya S, Chen WS, Cao Z, Kenyon KR, Yamaguchi T, Omoto M, Hamrah P, Panjwani N. Comparison of galectin expression signatures in rejected and accepted murine corneal allografts. Cornea 2015; 34:675-681. [PMID: 25961492 PMCID: PMC4430336 DOI: 10.1097/ico.0000000000000439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Although members of the galectin family of carbohydrate-binding proteins are thought to play a role in the immune response and regulation of allograft survival, little is known about the galectin expression signature in failed corneal grafts. The aim of this study was to compare the galectin expression pattern in accepted and rejected murine corneal allografts. METHODS Using BALB/c mice as recipients and C57BL/6 mice as donors, a total of 57 transplants were successfully performed. One week after transplantation, the grafts were scored for opacity by slit-lamp microscopy. Opacity scores of 3+ or greater on postoperative week 4 were considered rejected. Grafted corneas were harvested on postoperative week 4, and their galectin expressions were analyzed by Western blot and immunofluorescence staining. RESULTS As determined by the Western blot analyses, galectins-1, 3, 7, 8 and 9 were expressed in normal corneas. Although in both accepted and rejected grafts, expression levels of the 5 lectins were upregulated compared with normal corneas, there were distinct differences in the expression levels of galectins-8 and 9 between accepted and rejected grafts, as both the Western blot and immunofluorescence staining revealed that galectin-8 is upregulated, whereas galectin-9 is downregulated in the rejected grafts compared with the accepted grafts. CONCLUSIONS Our findings that corneal allograft rejection is associated with increased galectin-8 expression and reduced galectin-9 expression, support the hypothesis that galectin-8 may reduce graft survival, whereas galectin-9 may promote graft survival. As a potential therapeutic intervention, inhibition of galectin-8 and/or treatment with exogenous galectin-9 may enhance corneal allograft survival rates.
Collapse
Affiliation(s)
- Satoshi Sugaya
- New England Eye Center/Department of Ophthalmology, Tufts University, Boston, MA, USA
| | - Wei-Sheng Chen
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Zhiyi Cao
- New England Eye Center/Department of Ophthalmology, Tufts University, Boston, MA, USA
| | - Kenneth R Kenyon
- New England Eye Center/Department of Ophthalmology, Tufts University, Boston, MA, USA
- Schepens Eye Research Institute / Massachusetts Eye and Ear, Boston, USA
| | - Takefumi Yamaguchi
- Schepens Eye Research Institute / Massachusetts Eye and Ear, Boston, USA
| | - Masashiro Omoto
- Schepens Eye Research Institute / Massachusetts Eye and Ear, Boston, USA
| | - Pedram Hamrah
- Schepens Eye Research Institute / Massachusetts Eye and Ear, Boston, USA
| | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology, Tufts University, Boston, MA, USA
- Program in Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| |
Collapse
|
200
|
Sumida M, Hane M, Yabe U, Shimoda Y, Pearce OMT, Kiso M, Miyagi T, Sawada M, Varki A, Kitajima K, Sato C. Rapid Trimming of Cell Surface Polysialic Acid (PolySia) by Exovesicular Sialidase Triggers Release of Preexisting Surface Neurotrophin. J Biol Chem 2015; 290:13202-14. [PMID: 25750127 PMCID: PMC4505574 DOI: 10.1074/jbc.m115.638759] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.
Collapse
Affiliation(s)
- Mizuki Sumida
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masaya Hane
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Uichiro Yabe
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka 940-2188 Japan
| | - Oliver M T Pearce
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0687
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 981-8558, Sendai, Japan, and
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0687
| | - Ken Kitajima
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan,
| | - Chihiro Sato
- From the Bioscience and Biotechnology Center and School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan,
| |
Collapse
|