151
|
Zhuang L, Zuo H, Wu Z, Wang Y, Fang D, Jiang D. Enhanced Electrochemical Nanoring Electrode for Analysis of Cytosol in Single Cells. Anal Chem 2014; 86:11517-22. [DOI: 10.1021/ac502437d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lihong Zhuang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Huanzhen Zuo
- Key State Laboratory of Analytical Chemistry
for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zengqiang Wu
- Key State Laboratory of Analytical Chemistry
for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yu Wang
- Key State Laboratory of Analytical Chemistry
for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Dechen Jiang
- Key State Laboratory of Analytical Chemistry
for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
152
|
Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo. Proc Natl Acad Sci U S A 2014; 111:15804-9. [PMID: 25331880 DOI: 10.1073/pnas.1408484111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.
Collapse
|
153
|
Electrochemical Detection of Nitric Oxide and Peroxynitrite Anion in Microchannels at Highly Sensitive Platinum-Black Coated Electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
154
|
Silva EL, Silva RF, Zheludkevich M, Oliveira FJ. Novel electrochemical method of fast and reproducible fabrication of metallic nanoelectrodes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:095109. [PMID: 25273774 DOI: 10.1063/1.4895639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel electrochemical wire etching method of fabrication of ultrasharp nanoelectrodes is reported. Tungsten wires can be sharpened to less than 10 nm tip radius in a reproducible manner in less than 1 min by using controllable hydrodynamic electrolyte flow combined with optimized electrochemical etching parameters. The method relies on the variations of the electric field at the surface of a metal wire, while the electrolyte solution is in motion, rather than on the ionic gradient generated in a static solution.
Collapse
Affiliation(s)
- E L Silva
- CICECO - Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro, Portugal
| | - R F Silva
- CICECO - Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro, Portugal
| | - M Zheludkevich
- CICECO - Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro, Portugal
| | - F J Oliveira
- CICECO - Department of Materials and Ceramics Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
155
|
Narayanan TN, Vusa CSR, Alwarappan S. Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets. NANOTECHNOLOGY 2014; 25:335702. [PMID: 25061018 DOI: 10.1088/0957-4484/25/33/335702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atomically thin molybdenum disulfide (MoS₂) sheets were synthesized and isolated via solvent-assisted chemical exfoliation. The charge-dependent electrochemical activities of these MoS₂ sheets were studied using positively charged hexamine ruthenium (III) chloride and negatively charged ferricyanide/ferrocyanide redox probes. Ultrathin MoS₂ sheet-based electrodes were employed for the electrochemical detection of an important neurotransmitter, namely dopamine (DA), in the presence of ascorbic acid (AA). MoS₂ electrodes were identified as being capable of distinguishing the coexistence of the DA and the AA with an excellent stability. Moreover, the enzymatic detection of the glucose was studied by immobilizing glucose oxidase on the MoS₂. This study opens enzymatic and non-enzymatic electrochemical biosensing applications of atomic MoS₂ sheets, which will supplement their established electronic applications.
Collapse
|
156
|
Kai T, Chen S, Monterroso E, Hailu A, Zhou F. Microconcentric ring electrode/injector assembly for sensitive voltammetric analysis in single droplets of ultrasmall volumes. Anal Chem 2014; 86:8037-41. [PMID: 25065999 DOI: 10.1021/ac502316p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes the construction of a microring electrode concentric to an inner injection capillary for voltammetric determination of trace analytes in nanoliter- to picoliter-sized droplets. The gold microring is sandwiched between a pulled fused-silica capillary and borosilicate glass tubing. Compared to polymer-coated microring electrodes, the glass-encapsulated electrode is more robust and does not swell in organic solvents. Consequently, the microring electrode is suitable for voltammetric studies of redox-active species and their accompanying ion transfers between two immiscible solvents. Droplets of variable sizes can be conveniently dispensed from front-loaded sample plugs into an immiscible liquid, greatly simplifying the experimental procedure and facilitating analysis of samples of limited availability. The size of the microring and the volume of the droplet deduced from well-defined voltammograms correlate well with those estimated from their geometric dimensions. The thin-layer cell behavior can be attained with well-defined voltammetric peaks and small capacitive current. Exhaustive electrolysis in single droplets can be accomplished in short times (e.g., ∼85 s in a droplet of 1.42 nL at a microring of 11.4 μm in radius). Anodic stripping voltammetry of Ag deposited onto the microring electrode resulted in a detection limit of 0.13 fmol (14 fg) of Ag(+). The microring electrode/injector assembly can be polished repeatedly and is versatile for various applications (e.g., sample plugs can also be back-loaded via a rotary injection valve and an HPLC pump for flow injection analysis).
Collapse
Affiliation(s)
- Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan P. R. China 410083
| | | | | | | | | |
Collapse
|
157
|
Kätelhön E, Mayer D, Banzet M, Offenhäusser A, Wolfrum B. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1137-1143. [PMID: 25161846 PMCID: PMC4143123 DOI: 10.3762/bjnano.5.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on the wafer surface. At each intersection, the crossing bars are separated by a ca. 65 nm high nanocavity, which is stabilized by the surrounding passivation layer. During operation, perpendicular bar electrodes are biased to potentials above and below the redox potential of species under investigation, thus, enabling repeated subsequent reactions at the two electrodes. By this means, a redox cycling current is formed across the gap that can be measured externally. As the nanocavity devices feature a very high current amplification in redox cycling mode, individual sensing spots can be addressed in parallel, enabling high-throughput electrochemical imaging. This paper introduces the design of the device, discusses the fabrication process and demonstrates its capabilities in sequential and parallel data acquisition mode by using a hexacyanoferrate probe.
Collapse
Affiliation(s)
- Enno Kätelhön
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany. Current address: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Dirk Mayer
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marko Banzet
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
158
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
159
|
Zhu X, Qiao Y, Zhang X, Zhang S, Yin X, Gu J, Chen Y, Zhu Z, Li M, Shao Y. Fabrication of metal nanoelectrodes by interfacial reactions. Anal Chem 2014; 86:7001-8. [PMID: 24958198 DOI: 10.1021/ac501119z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite great improvements in the past decades, the controllable fabrication of metal nanoelectrodes still remains very challenging. In this work, a simple and general way to fabricate metal nanoelectrodes (Ag, Au, and Pt) is developed. On the basis of interfacial reactions at nano-liquid/liquid interfaces supported at nanopipettes, the nanoparticles can be formed in situ and have been used to block the orifices of pipettes to make nanoelectrodes. The effect of the driving force for interfacial reaction at the liquid/liquid interface, the ratio of redox species in organic and aqueous phases, and the surface charge of the inner wall of a pipette have been studied. The fabricated nanoelectrodes have been characterized by scanning electron microscopy (SEM) and electrochemical techniques. A silver electrode with about 10 nm in radius has been employed as the scanning electrochemical microscopy (SECM) probe to explore the thickness of a water/nitrobenzene (W/NB) interface, and this value is equal to 0.8 ± 0.1 nm (n = 5). This method of fabrication of nanoelectrodes can be extended to other metal or semiconductor electrodes.
Collapse
Affiliation(s)
- Xinyu Zhu
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Liu W, Wang N, Lin X, Ma Y, Lin JM. Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal Chem 2014; 86:7128-34. [PMID: 24949883 DOI: 10.1021/ac501678q] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the establishment of a microdialysis-paper spray ionization-mass spectrometry (MS) system was described. A homemade microdialysis module was employed for sampling, and microdroplets were generated at the outlet of the capillary conducting the dialysate. Online MS analysis of each microdroplet was immediately accomplished, interfacing by paper spray ionization. Analytical performance of the method was investigated and improved through the introduction of thinner capillary tubes and the optimization of spray solvent and paper substrate. For microdroplets with concentrated salt at 50 nL, the limit of detection at 0.8 ppm (or 40 pg absolute) and a highest resolution at about 1.5 s were achieved. The integrated system was applied into the online monitoring of glucose concentration in cell culture mediums. A satisfactory linearity of the calibration curve between the relative MS intensity and the glucose concentration was observed. Furthermore, as a model, hormone regulation of the glucose concentration was investigated. This work demonstrated the potential application of the label-free, online "MS sensor" into studies on cellular metabolism.
Collapse
Affiliation(s)
- Wu Liu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
161
|
Wang L, Zhang X, Xu H, Zhou L, Jiao R, Liu W, Zhu F, Kang X, Liu B, Teng S, Wu Q, Li M, Dou H, Zuo P, Wang C, Wang S, Zhou Z. Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice. J Physiol 2014; 592:3559-76. [PMID: 24973407 DOI: 10.1113/jphysiol.2014.271825] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Striatal dopamine (DA) is critically involved in major brain functions such as motor control and deficits such as Parkinson's disease. DA is released following stimulation by two pathways: the nigrostriatal pathway and the cholinergic interneuron (ChI) pathway. The timing of synaptic transmission is critical in striatal circuits, because millisecond latency changes can reverse synaptic plasticity from long-term potentiation to long-term depression in a DA-dependent manner. Here, we determined the temporal components of ChI-driven DA release in striatal slices from optogenetic ChAT-ChR2-EYFP mice. After a light stimulus at room temperature, ChIs fired an action potential with a delay of 2.8 ms. The subsequent DA release mediated by nicotinic acetylcholine (ACh) receptors had a total latency of 17.8 ms, comprising 7.0 ms for cholinergic transmission and 10.8 ms for the downstream terminal DA release. Similar latencies of DA release were also found in striatal slices from wild-type mice. The latency of ChI-driven DA release was regulated by inhibiting the presynaptic vesicular ACh release. Moreover, we describe the time course of recovery of DA release via the two pathways and that of vesicle replenishment in DA terminals. Our work provides an example of unravelling the temporal building blocks during fundamental synaptic terminal-terminal transmission in motor regulation.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Huadong Xu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Li Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ruiying Jiao
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Wei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xinjiang Kang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Bin Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Sasa Teng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Mingli Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Haiqiang Dou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Panli Zuo
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Changhe Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shirong Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| |
Collapse
|
162
|
Grahn PJ, Mallory GW, Khurram OU, Berry BM, Hachmann JT, Bieber AJ, Bennet KE, Min HK, Chang SY, Lee KH, Lujan JL. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci 2014; 8:169. [PMID: 25009455 PMCID: PMC4070176 DOI: 10.3389/fnins.2014.00169] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Obaid U Khurram
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - B Michael Berry
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Allan J Bieber
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Neurology, Mayo Clinic Rochester, MN, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Division of Engineering, Mayo Clinic Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - J L Lujan
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
163
|
Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression-related behaviors. J Neurosci 2014; 34:6352-66. [PMID: 24790206 DOI: 10.1523/jneurosci.3673-13.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) govern reward and motivation and dysregulated dopaminergic transmission may account for anhedonia and other symptoms of depression. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that regulates a broad range of brain functions through phosphorylation of a myriad of substrates, including tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis. We investigated whether and how Cdk5 activity in VTA dopamine neurons regulated depression-related behaviors in mice. Using the Cre/LoxP system to selectively delete Cdk5 in the VTA or in midbrain dopamine neurons in Cdk5(loxP/loxP) mice, we showed that Cdk5 loss of function in the VTA induced anxiety- and depressive-like behaviors that were associated with decreases in TH phosphorylation at Ser31 and Ser40 in the VTA and dopamine release in its target region, the nucleus accumbens. The decreased phosphorylation of TH at Ser31 was a direct effect of Cdk5 deletion, whereas decreased phosphorylation of TH at Ser40 was likely caused by impaired cAMP/protein kinase A (PKA) signaling, because Cdk5 deletion decreased cAMP and phosphorylated cAMP response element-binding protein (p-CREB) levels in the VTA. Using Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology, we showed that selectively increasing cAMP levels in VTA dopamine neurons increased phosphorylation of TH at Ser40 and CREB at Ser133 and reversed behavioral deficits induced by Cdk5 deletion. The results suggest that Cdk5 in the VTA regulates cAMP/PKA signaling, dopaminergic neurotransmission, and depression-related behaviors.
Collapse
|
164
|
Rothe J, Frey O, Stettler A, Chen Y, Hierlemann A. Fully integrated CMOS microsystem for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second. Anal Chem 2014; 86:6425-32. [PMID: 24941330 DOI: 10.1021/ac500862v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microelectrode arrays offer the potential to electrochemically monitor concentrations of molecules at high spatial resolution. However, current systems are limited in the number of sensor sites, signal resolution, and throughput. Here, we present a fully integrated complementary metal oxide semiconductor (CMOS) system with an array of 32 × 32 working electrodes to perform electrochemical measurements like amperometry and voltammetry. The array consists of platinum electrodes with a center-to-center distance of 100 μm and electrode diameters of 5 to 50 μm. Currents in the range from 10 μA down to pA can be measured. The current is digitized by sigma-delta converters at a maximum resolution of 13.3 bits. The integrated noise is 220 fA for a bandwidth of 100 Hz, allowing for detection of pA currents. Currents can be continuously acquired at up to 1 kHz bandwidth, or the whole array can be read out rapidly at a frame rate of up to 90 Hz. The results of the electrical characterization meet the requirements of a wide range of electrochemical methods including cyclic voltammograms and amperometric images of high spatial and temporal resolution.
Collapse
Affiliation(s)
- Joerg Rothe
- ETH Zurich , Mattenstrasse 26, Basel, 4058, Switzerland
| | | | | | | | | |
Collapse
|
165
|
Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.150] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
166
|
Okada S, Mizukami S, Sakata T, Matsumura Y, Yoshioka Y, Kikuchi K. Ratiometric MRI sensors based on core-shell nanoparticles for quantitative pH imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2989-2992. [PMID: 24453039 DOI: 10.1002/adma.201305018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Ratiometric MRI sensors consist of paramagnetic cores and pH-sensitive polymer shells. The core-shell nanostructure enables the coexistence of two incompatible NMR relaxation properties in one particle. The sensors show pH sensitivity in transverse relaxivity (r2 ), but not in longitudinal relaxivity (r1 ). Quantitative pH imaging is achieved by measuring the r2 /r1 value with a clinical 3 T MRI scanner.
Collapse
Affiliation(s)
- Satoshi Okada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
167
|
Wang L, Shang S, Kang X, Teng S, Zhu F, Liu B, Wu Q, Li M, Liu W, Xu H, Zhou L, Jiao R, Dou H, Zuo P, Zhang X, Zheng L, Wang S, Wang C, Zhou Z. Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat Commun 2014; 5:3925. [PMID: 24968237 DOI: 10.1038/ncomms4925] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/17/2014] [Indexed: 12/16/2022] Open
Abstract
Striatal dopamine (DA) release can be independently triggered not only by action potentials (APs) in dopaminergic axons but also APs in cholinergic interneurons (ChIs). Nicotine causes addiction by modulating DA release, but with paradoxical findings. Here, we investigate how physiologically relevant levels of nicotine modulate striatal DA release. The optogenetic stimulation of ChIs elicits DA release, which is potently inhibited by nicotine with an IC50 of 28 nM in the dorsal striatum slice. This ChI-driven DA release is predominantly mediated by α6β2* nAChRs. Local electrical stimulus (Estim) activates both dopaminergic axons and ChIs. Nicotine does not affect the AP(DA)-dependent DA release (AP(DA), AP of dopaminergic axon). During burst Estim, nicotine permits the facilitation of DA release by prevention of DA depletion. Our work indicates that cholinergic stimulation-induced DA release is profoundly modulated by physiologically relevant levels of nicotine and resolves the paradoxical observation of nicotine's effects on striatal DA release.
Collapse
Affiliation(s)
- Li Wang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China [2]
| | - Shujiang Shang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China [2]
| | - Xinjiang Kang
- 1] State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China [2]
| | - Sasa Teng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bin Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Mingli Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Wei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Huadong Xu
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Li Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ruiying Jiao
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Haiqiang Dou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Panli Zuo
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Shirong Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
168
|
Xiang L, Yu P, Zhang M, Hao J, Wang Y, Zhu L, Dai L, Mao L. Platinized Aligned Carbon Nanotube-Sheathed Carbon Fiber Microelectrodes for In Vivo Amperometric Monitoring of Oxygen. Anal Chem 2014; 86:5017-23. [DOI: 10.1021/ac500622m] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ling Xiang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Yuexiang Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Lin Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Liming Dai
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| |
Collapse
|
169
|
Development of a disposable electrode modified with carbonized, graphene-loaded nanofiber for the detection of dopamine in human serum. J Appl Polym Sci 2014. [DOI: 10.1002/app.40858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
170
|
Sun M, Kaplan SV, Gehringer RC, Limbocker RA, Johnson MA. Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal Chem 2014; 86:4151-6. [PMID: 24734992 PMCID: PMC4018083 DOI: 10.1021/ac5008927] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
use of fast scan cyclic voltammetry (FSCV) to measure the release
and uptake of dopamine (DA) as well as other biogenic molecules in
viable brain tissue slices has gained popularity over the last 2 decades.
Brain slices have the advantage of maintaining the functional three-dimensional
architecture of the neuronal network while also allowing researchers
to obtain multiple sets of measurements from a single animal. In this
work, we describe a simple, easy-to-fabricate perfusion device designed
to focally deliver pharmacological agents to brain slices. The device
incorporates a microfluidic channel that runs under the perfusion
bath and a microcapillary that supplies fluid from this channel up
to the slice. We measured electrically evoked DA release in brain
slices before and after the administration of two dopaminergic stimulants,
cocaine and GBR-12909. Measurements were collected at two locations,
one directly over and the other 500 μm away from the capillary
opening. Using this approach, the controlled delivery of drugs to
a confined region of the brain slice and the application of this chamber
to FSCV measurements, were demonstrated. Moreover, the consumption
of drugs was reduced to tens of microliters, which is thousands of
times less than traditional perfusion methods. We expect that this
simply fabricated device will be useful in providing spatially resolved
delivery of drugs with minimum consumption for voltammetric and electrophysiological
studies of a variety of biological tissues both in vitro and ex vivo.
Collapse
Affiliation(s)
- Meng Sun
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas , Lawrence, Kansas 66045 United States
| | | | | | | | | |
Collapse
|
171
|
Xiang L, Yu P, Hao J, Zhang M, Zhu L, Dai L, Mao L. Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo. Anal Chem 2014; 86:3909-14. [DOI: 10.1021/ac404232h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Xiang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lin Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Liming Dai
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
172
|
Messina P, Lemaître F, Huet F, Ngo KA, Vivier V, Labbé E, Buriez O, Amatore C. Monitoring and Quantifying the Passive Transport of Molecules Through Patch-Clamp Suspended Real and Model Cell Membranes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
173
|
Messina P, Lemaître F, Huet F, Ngo KA, Vivier V, Labbé E, Buriez O, Amatore C. Monitoring and quantifying the passive transport of molecules through patch-clamp suspended real and model cell membranes. Angew Chem Int Ed Engl 2014; 53:3192-6. [PMID: 24519879 DOI: 10.1002/anie.201308990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/06/2013] [Indexed: 11/11/2022]
Abstract
Transport of active molecules across biological membranes is a central issue for the success of many pharmaceutical strategies. Herein, we combine the patch-clamp principle with amperometric detection for monitoring fluxes of redox-tagged molecular species across a suspended membrane patched from a macrophage. Solvent- and protein-free lipid bilayers (DPhPC, DOPC, DOPG) patched from single-wall GUV have been thoroughly investigated and the corresponding fluxes measurements quantified. The quality of the patches and their proper sealing were successfully characterized by electrochemical impedance spectroscopy. This procedure appears versatile and perfectly adequate to allow the investigation of transport and quantification of the transport properties through direct measurement of the coefficients of partition and diffusion of the compound in the membrane, thus offering insight on such important biological and pharmacological issues.
Collapse
Affiliation(s)
- Pierluca Messina
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640 "PASTEUR", 24 rue Lhomond, 75231 Paris cedex 05 (France)
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, Takahashi Y, López Córdoba A, Novak P, Shevchuck AI, Dougan JA, Kazarian SG, Gorelkin PV, Erofeev AS, Yaminsky IV, Unwin PR, Schuhmann W, Klenerman D, Rusakov DA, Sviderskaya EV, Korchev YE. Electrochemical nanoprobes for single-cell analysis. ACS NANO 2014; 8:875-84. [PMID: 24377306 DOI: 10.1021/nn405612q] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells.
Collapse
Affiliation(s)
- Paolo Actis
- Department of Medicine, Imperial College London , London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Siciliano G, Pasquali L, Mancuso M, Murri L. Molecular diagnostics and mitochondrial dysfunction: a future perspective. Expert Rev Mol Diagn 2014; 8:531-49. [DOI: 10.1586/14737159.8.4.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
176
|
Abstract
Centri-voltammetry is a novel method that combines centrifuge with voltammetry. In the present work centri-voltammetric detection of DA has been mad e for the first time.
Collapse
Affiliation(s)
- Sinan Cemgil Sultan
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kötekli/Muğla, Turkey
| | - Esma Sezer
- Istanbul Teknik University
- Faculty of Science
- Chemistry Department
- Maslak/Istanbul, Turkey
| | - Yudum Tepeli
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kötekli/Muğla, Turkey
| | - Ulku Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- Kötekli/Muğla, Turkey
| |
Collapse
|
177
|
Hrbac J, Jakubec P, Halouzka V, Matejka P, Pour M, Kopecky J, Vacek J. The permselective layer prepared onto carbon and gold surfaces by electropolymerization of phenolic cyclopentenedione-nostotrebin 6. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
178
|
Patel BA, Luk CC, Leow PL, Lee AJ, Zaidi W, Syed NI. A planar microelectrode array for simultaneous detection of electrically evoked dopamine release from distinct locations of a single isolated neuron. Analyst 2013; 138:2833-9. [PMID: 23462822 DOI: 10.1039/c3an36770c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotransmission is a key process of communication between neurons. Although much is known about this process and the influence it has on the function of the body, little is understood about the dynamics of signalling from structural regions of a single neuron. In this study we have fabricated and characterised a microelectrode array (MEA) which was utilised for simultaneous multi-site recordings of dopamine release from an isolated single neuron. The MEA consisted of gold electrodes that were created in plane with the insulation layer using a chemical mechanical planarization process. The detection limit for dopamine measurements was 11 ± 3 nM and all the gold electrodes performed in a consistent fashion during amperometric recordings of 100 nM dopamine. Fouling of the gold electrode was investigated, where no significant change in the current was observed over 4 hours when monitoring 100 nM dopamine. The MEA was accessed using freshly isolated dopaminergic somas from the pond snail, Lymnaea stagnalis, where electrically evoked dopamine release was clearly observed. Measurements were conducted at four structural locations of a single isolated neuron, where electrically evoked dopamine release was observed from the cell body, axonal regions and the terminal. Over time, the release of dopamine varied over the structural regions of the neuron. Such information can provide an insight into the signalling mechanism of neurons and how they potentially form synaptic connections.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK.
| | | | | | | | | | | |
Collapse
|
179
|
Suárez G, Santschi C, Slaveykova VI, Martin OJF. Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media. Sci Rep 2013; 3:3447. [PMID: 24316586 PMCID: PMC3856402 DOI: 10.1038/srep03447] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/15/2013] [Indexed: 12/05/2022] Open
Abstract
Reactive oxygen species play a key role in cell signalling and oxidative stress mechanisms, therefore, sensing their production by living organisms is of fundamental interest. Here we describe a novel biosensing method for extracellular detection of endogenous hydrogen peroxide (H2O2). The method is based on the enhancement of the optical absorption spectrum of the hemoprotein cytochrome c when loaded into a highly scattering random medium. Such a configuration enables, in contrast to existing techniques, non-invasive and dynamic detection of the oxidation of cyt c in the presence of H2O2 with unprecedented sensitivity. Dynamic information on the modification of the cell oxidative status of Chlamydomonas reinhardtii, an aquatic green algae, was obtained under oxidative stress conditions induced by the presence of trace concentrations of Cd(II). Furthermore, the dynamics of H2O2 production was investigated under different lighting conditions confirming the impact of Cd(II) on the photosynthetic activity of those phytoplanktonic cells.
Collapse
Affiliation(s)
- Guillaume Suárez
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015 Lausanne, Switzerland
- These authors contributed equally to this work
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015 Lausanne, Switzerland
- These authors contributed equally to this work
| | - Vera I. Slaveykova
- Institute F. A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Route de Suisse 10, CH-1290 Versoix, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015 Lausanne, Switzerland
| |
Collapse
|
180
|
Ren QQ, Yuan XJ, Huang XR, Wen W, Zhao YD, Chen W. In vivo monitoring of oxidative burst on aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode. Biosens Bioelectron 2013; 50:318-24. [DOI: 10.1016/j.bios.2013.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/14/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022]
|
181
|
Carminati M, Ferrari G, Bianchi D, Sampietro M. Femtoampere integrated current preamplifier for low noise and wide bandwidth electrochemistry with nanoelectrodes. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
182
|
Gong K. Vertically-aligned Prussian blue/carbon nanotube nanocomposites on a carbon microfiber as a biosensing scaffold for ultrasensitively detecting glucose. J Colloid Interface Sci 2013; 410:152-7. [DOI: 10.1016/j.jcis.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
|
183
|
Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens Bioelectron 2013; 49:270-5. [DOI: 10.1016/j.bios.2013.05.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
|
184
|
Abstract
Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.
Collapse
|
185
|
Chang SY, Kimble CJ, Kim I, Paek SB, Kressin KR, Boesche JB, Whitlock SV, Eaker DR, Kasasbeh A, Horne AE, Blaha CD, Bennet KE, Lee KH. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation. J Neurosurg 2013; 119:1556-65. [PMID: 24116724 DOI: 10.3171/2013.8.jns122142] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS "smart" device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). METHODS To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between -0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of -0.4 V between scans. RESULTS By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. CONCLUSIONS Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application.
Collapse
|
186
|
Heterogeneous reaction rate constants by steady-state microelectrode techniques and fast scan voltammetry. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
187
|
Duan X, Lieber CM. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues. Chem Asian J 2013; 8:2304-14. [PMID: 23946279 PMCID: PMC3785380 DOI: 10.1002/asia.201300630] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Indexed: 11/11/2022]
Abstract
High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted.
Collapse
Affiliation(s)
- Xiaojie Duan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, and School of Engineering & Applied Sciences, Harvard University Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
188
|
Picollo F, Gosso S, Vittone E, Pasquarelli A, Carbone E, Olivero P, Carabelli V. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4696-700. [PMID: 23847004 DOI: 10.1002/adma.201300710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/07/2013] [Indexed: 05/15/2023]
Abstract
An MeV ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular biosensor based on graphitic microchannels embedded in a single-crystal diamond matrix. The device is functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors.
Collapse
Affiliation(s)
- Federico Picollo
- Department of Physics, NIS Centre of Excellence, CNISM Research Unit - University of Torino, INFN Sez. Torino, via P. Giuria 1, Torino, 10125, Italy.
| | | | | | | | | | | | | |
Collapse
|
189
|
Development of a scanning electrochemical microscopy-based micropipette and its application to analysis of topographic change of single-cell. Bioelectrochemistry 2013; 92:1-5. [DOI: 10.1016/j.bioelechem.2013.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/17/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022]
|
190
|
Yakushenko A, Kätelhön E, Wolfrum B. Parallel On-Chip Analysis of Single Vesicle Neurotransmitter Release. Anal Chem 2013; 85:5483-90. [DOI: 10.1021/ac4006183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexey Yakushenko
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Enno Kätelhön
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
| | - Bernhard Wolfrum
- Institute of Bioelectronics
(PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich,
Germany
- IV. Institute of
Physics, RWTH Aachen University, 52074
Aachen, Germany
| |
Collapse
|
191
|
Wang J, Trouillon R, Lin Y, Svensson MI, Ewing AG. Individually addressable thin-film ultramicroelectrode array for spatial measurements of single vesicle release. Anal Chem 2013; 85:5600-8. [PMID: 23627439 DOI: 10.1021/ac4009385] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thin-film platinum ultramicroelectrode arrays (MEAs) with subcellular microelectrodes were developed for the spatial measurement of neurotransmitter release across single cells or clusters of single cells. MEAs consisting of 16, 25, and 36 square ultramicroelectrodes with respective widths of 4, 3, and 2 μm were fabricated on glass substrates by photolithography, thin-film deposition, and reactive ion etching. The electrodes in each MEA are tightly defined in a 30 μm × 30 μm square, which is potentially useful to measure exocytosis across a single cell or clusters of single cells. These MEAs have been characterized with scanning electron microscopy and cyclic voltammetry and show excellent stability and reproducibility. Culturing PC12 cells on top of the MEAs has been achieved by modifying the array with a poly(dimethylsiloxane) chamber and coating a thin layer of collagen IV on top of the electrode surface. The electrochemical response to dopamine has been characterized after coating the surface with the cell-adhering molecules and then with cells attached. Amperometric detection demonstrates that individual exocytotic events can be recorded at these arrays with spatial resolution for dynamic electrochemical measurements near 2 μm. In contrast to previous single-cell experiments, the effect of dopaminergic drugs on imaging single vesicle exocytotic release from PC12 cell clusters is presented at cell clusters incubated with the dopamine precursor and Parkinson's therapy agent, L-3,4-dihydroxyphenylalanine, and at cell clusters incubated with the vesicular monoamine transport inhibitor, reserpine. The results of electrochemical imaging demonstrate that the drug effect on PC12 cell clusters is consistent with previous single-cell experiments.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
192
|
Ferris MJ, Calipari ES, Yorgason JT, Jones SR. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices. ACS Chem Neurosci 2013; 4:693-703. [PMID: 23581570 DOI: 10.1021/cn400026v] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.
Collapse
Affiliation(s)
- Mark J. Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Erin S. Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jordan T. Yorgason
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
193
|
Croushore CA, Sweedler JV. Microfluidic systems for studying neurotransmitters and neurotransmission. LAB ON A CHIP 2013; 13:1666-76. [PMID: 23474943 PMCID: PMC3632338 DOI: 10.1039/c3lc41334a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neurotransmitters and neuromodulators are molecules within the nervous system that play key roles in cell-to-cell communication. Upon stimulation, neurons release these signaling molecules, which then act at local or distant locations to elicit a physiological response. Ranging from small molecules, such as diatomic gases and amino acids, to larger peptides, these chemical messengers are involved in many functional processes including growth, reproduction, memory and behavior. Understanding signaling molecules and the conditions that govern their release in healthy or damaged networks promises to deliver insights into neural network formation and function. Microfluidic devices can provide optimal cell culture conditions, reduced volume systems, and precise control over the chemical and physical nature of the extracellular environment, making them well-suited for studying neurotransmission and other forms of cell-to-cell signaling. Here we review selected microfluidic approaches that are suitable for monitoring cell-to-cell signaling molecules. We highlight devices that improve in vivo sample collection as well as compartmentalized devices designed to isolate individual neurons or co-cultures in vitro, including a focus on systems used for studying neural injury and regeneration, and devices that allow selective chemical stimulations and the characterization of released molecules.
Collapse
Affiliation(s)
- Callie A. Croushore
- Department of Chemistry and the Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana IL 61801,
USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana IL 61801,
USA
| |
Collapse
|
194
|
Taskin MB, Sasso L, Dimaki M, Svendsen WE, Castillo-León J. Combined cell culture-biosensing platform using vertically aligned patterned peptide nanofibers for cellular studies. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3323-8. [PMID: 23537161 DOI: 10.1021/am400390g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This Article presents the development of a combined cell culture-biosensing platform using vertically aligned self-assembled peptide nanofibers. Peptide nanofibers were patterned on a microchip containing gold microelectrodes to provide the cells with a 3D environment enabling them to grow and proliferate. Gold microelectrodes were functionalized with conductive polymers for the electrochemical detection of dopamine released from PC12 cells. The combined cell culture-biosensing platform assured a close proximity of the release site, the cells and the active surface of the sensor, thereby rendering it possible to avoid a loss of sensitivity because of the diffusion of the sample. The obtained results showed that the peptide nanofibers were suitable as a cell culturing substrate for PC12 cells. The peptide nanofibers could be employed as an alternative biological material to increase the adherence properties of PC12 cells. Dopamine was amperometrically detected at a value of 168 fmole.
Collapse
Affiliation(s)
- Mehmet B Taskin
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsted Plads 345B. 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
195
|
|
196
|
Hunter RA, Storm WL, Coneski PN, Schoenfisch MH. Inaccuracies of nitric oxide measurement methods in biological media. Anal Chem 2013; 85:1957-63. [PMID: 23286383 PMCID: PMC3565040 DOI: 10.1021/ac303787p] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite growing reports on the biological action of nitric oxide (NO) as a function of NO payload, the validity of such work is often questionable due to the manner in which NO is measured and/or the solution composition in which NO is quantified. To highlight the importance of measurement technique for a given sample type, NO produced from a small-molecule NO donor (N-diazeniumdiolated l-proline, PROLI/NO) and a NO-releasing xerogel film were quantified in a number of physiological buffers and fluids, cell culture media, and bacterial broth by the Griess assay, a chemiluminescence analyzer, and an amperometric NO sensor. Despite widespread use, the Griess assay proved to be inaccurate for measuring NO in many of the media tested. In contrast, the chemiluminescence analyzer provided superb kinetic information in most buffers but was impractical for NO analysis in proteinaceous media. The electrochemical NO sensor enabled greater flexibility across the various media with potential for spatial resolution, albeit at lower than expected NO totals versus either the Griess assay or chemiluminescence. The results of this study highlight the importance of measurement strategy for accurate NO analysis and reporting NO-based biological activity.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
197
|
A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Appl Biochem Biotechnol 2013; 169:1927-39. [DOI: 10.1007/s12010-013-0099-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/10/2013] [Indexed: 11/27/2022]
|
198
|
Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J Neurosci 2013; 32:14804-8. [PMID: 23077064 DOI: 10.1523/jneurosci.3087-12.2012] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mesolimbic dopamine system is believed to be a pathway that processes rewarding information. While previous studies have also implicated a general role for dopamine in punishment and its avoidance, the precise nature of subsecond dopamine release during these phenomena remains unknown. Here, we used fast-scan cyclic voltammetry to investigate whether subsecond dopamine release events in the nucleus accumbens encode cues predicting the avoidance of punishment during behavior maintained in a signaled footshock avoidance procedure. In this task, rats could initiate an avoidance response by pressing a lever within a warning period, preventing footshock. Alternatively, once footshocks commenced, animals could initiate an escape response by pressing the lever, terminating footshock. This design allowed us to assess subsecond dopamine release events during the presentation of a warning signal, safety periods, and two distinct behavioral responses. We found that release consistently increased upon presentation of the warning signal in a manner that reliably predicted successful punishment avoidance. We also observed subsecond dopamine release during the safety period, as occurs following the receipt of reward. Conversely, we observed a decrease in release at the warning signal during escape responses. Because of this finding, we next assessed dopamine release in a conditioned fear model. As seen during escape responses, we observed a time-locked decrease in dopamine release upon presentation of a cue conditioned to inescapable footshock. Together, these data show that subsecond fluctuations in mesolimbic dopamine release predict when rats will successfully avoid punishment and differentially encode cues related to aversive outcomes.
Collapse
|
199
|
Chen R, Li Y, Huo K, Chu PK. Microelectrode arrays based on carbon nanomaterials: emerging electrochemical sensors for biological and environmental applications. RSC Adv 2013. [DOI: 10.1039/c3ra43033b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
200
|
Patel JC, Rice ME. Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale. ACS Chem Neurosci 2012; 3:991-1001. [PMID: 23259034 DOI: 10.1021/cn300130b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 01/18/2023] Open
Abstract
Here we review evidence that the reactive oxygen species, hydrogen peroxide (H(2)O(2)), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H(2)O(2) generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H(2)O(2) suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H(2)O(2) levels; (2) H(2)O(2) is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H(2)O(2) is activity dependent; (4) H(2)O(2) generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K(+) (K(ATP)) channels on DA axons; and (5) the amplitude of H(2)O(2)-dependent inhibition of DA release is attenuated by enzymatic degradation of H(2)O(2), but the subsecond time course is determined by H(2)O(2) diffusion rate and/or K(ATP)-channel kinetics. In the dorsal striatum, neuromodulatory H(2)O(2) is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H(2)O(2) occur in other regions and cell types, as well, consistent with the widespread expression of K(ATP) and other H(2)O(2)-sensitive channels throughout the CNS.
Collapse
Affiliation(s)
- Jyoti C. Patel
- Department
of Neurosurgery, ‡Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue,
New York, New York 10016, United States
| | - Margaret E. Rice
- Department
of Neurosurgery, ‡Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue,
New York, New York 10016, United States
| |
Collapse
|