151
|
Chung MK, Rappaport SM, Wheelock CE, Nguyen VK, van der Meer TP, Miller GW, Vermeulen R, Patel CJ. Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:85001. [PMID: 34435882 PMCID: PMC8388254 DOI: 10.1289/ehp8327] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/28/2021] [Accepted: 07/13/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome-the totality of the biologically active exposures relevant to disease development-through coupling biochemical receptor-binding assays with affinity purification-mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conventional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen M. Rappaport
- Program in Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas P. van der Meer
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Roel Vermeulen
- Utrecht University & Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
152
|
Shen H, Zhang Y, Schramm KW. Analytical aspects of meet-in-metabolite analysis for molecular pathway reconstitution from exposure to adverse outcome. Mol Aspects Med 2021; 87:101006. [PMID: 34304900 DOI: 10.1016/j.mam.2021.101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022]
Abstract
To explore the etiology of diseases is one of the major goals in epidemiological study. Meet-in-metabolite analysis reconstitutes biomonitoring-based adverse outcome (AO) pathways from environmental exposure to a disease, in which the chemical exposome-related metabolism responses are transmitted to incur the AO-related metabolism phenotypes. However, the ongoing data-dependent acquisition of non-targeted biomonitoring by high-resolution mass spectrometry (HRMS) is biased against the low abundance molecules, which forms the major of molecular internal exposome, i.e., the totality of trace levels of environmental pollutants and/or their metabolites in human samples. The recent development of data-independent acquisition protocols for HRMS screening has opened new opportunities to enhance unbiased measurement of the extremely low abundance molecules, which can encompass a wide range of analytes and has been applied in metabolomics, DNA, and protein adductomics. In addition, computational MS for small molecules is urgently required for the top-down exposome databases. Although a holistic analysis of the exposome and endogenous metabolites is plausible, multiple and flexible strategies, instead of "putting one thing above all" are proposed.
Collapse
Affiliation(s)
- Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, PR China.
| | - Yike Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, PR China
| | - Karl-Werner Schramm
- Helmholtz Zentrum München, Molecular EXposomics, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
153
|
Ghazizadeh H, Kathryn Bohn M, Yaghooti-Khorasani M, Kamel Khodabandeh A, Zare-Feyzabadi R, Timar A, Mohammadi-Bajgiran M, Oladi MR, Rohban M, Esmaily H, Ferns GA, Adeli K, Ghayour-Mobarhan M. Age- and sex-specific reference intervals for superoxide dismutase enzyme and several minerals in a healthy adult cohort. J Clin Lab Anal 2021; 35:e23897. [PMID: 34273186 PMCID: PMC8418512 DOI: 10.1002/jcla.23897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The aim of this study was to establish RIs for clinically important markers including superoxide dismutase (SOD), serum copper, zinc, calcium, magnesium, and phosphate in a cohort of healthy Iranian adults. Materials A subsample from MASHAD cohort study was used to assess serum SOD, copper, zinc, calcium, magnesium and phosphate. Serum SOD was measured according to its inhibitory potential of pyrogallol oxidation. Micro‐ and macro‐minerals were measured using flame atomic absorption spectrometry and a BT3000 autoanalyzer, respectively. Sex‐ and age‐specific RIs were then calculated based on CLSI Ep28‐A3 guidelines. Results Reference value distributions for studied parameters did not demonstrate any age‐specific differences that were statistically significant. In addition, sex partitioning was not required for all parameters, apart from serum magnesium, which showed a wider range in females (0.81–1.26 mg/dl) compared with males (0.82–1.23 mg/dl). Conclusion The RIs established in this study can be expected to improve mineral assessment and clinical decision‐making in the Iranian adult population.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mary Kathryn Bohn
- CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Atieh Kamel Khodabandeh
- Social Determinants of Health Research Center, Mashhad University of Medical sciences, Mashhad, Iran
| | - Reza Zare-Feyzabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Timar
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mohammadi-Bajgiran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Oladi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Rohban
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Khosrow Adeli
- CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
154
|
Ortega-Loubon C, Martínez-Paz P, García-Morán E, Tamayo-Velasco Á, López-Hernández FJ, Jorge-Monjas P, Tamayo E. Genetic Susceptibility to Acute Kidney Injury. J Clin Med 2021; 10:jcm10143039. [PMID: 34300206 PMCID: PMC8307812 DOI: 10.3390/jcm10143039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a widely held concern related to a substantial burden of morbidity, mortality and expenditure in the healthcare system. AKI is not a simple illness but a complex conglomeration of syndromes that often occurs as part of other syndromes in its wide clinical spectrum of the disease. Genetic factors have been suggested as potentially responsible for its susceptibility and severity. As there is no current cure nor an effective treatment other than generally accepted supportive measures and renal replacement therapy, updated knowledge of the genetic implications may serve as a strategic tactic to counteract its dire consequences. Further understanding of the genetics that predispose AKI may shed light on novel approaches for the prevention and treatment of this condition. This review attempts to address the role of key genes in the appearance and development of AKI, providing not only a comprehensive update of the intertwined process involved but also identifying specific markers that could serve as precise targets for further AKI therapies.
Collapse
Affiliation(s)
- Christian Ortega-Loubon
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiovascular Surgery, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Pedro Martínez-Paz
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Emilio García-Morán
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiology, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Hematology and Hemotherapy, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. López-Hernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Institute of Biomedical Research of Salamnca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Departmental Building Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Pablo Jorge-Monjas
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Eduardo Tamayo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
| |
Collapse
|
155
|
Stingone JA, Triantafillou S, Larsen A, Kitt JP, Shaw GM, Marsillach J. Interdisciplinary data science to advance environmental health research and improve birth outcomes. ENVIRONMENTAL RESEARCH 2021; 197:111019. [PMID: 33737076 PMCID: PMC8187296 DOI: 10.1016/j.envres.2021.111019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Rates of preterm birth and low birthweight continue to rise in the United States and pose a significant public health problem. Although a variety of environmental exposures are known to contribute to these and other adverse birth outcomes, there has been a limited success in developing policies to prevent these outcomes. A better characterization of the complexities between multiple exposures and their biological responses can provide the evidence needed to inform public health policy and strengthen preventative population-level interventions. In order to achieve this, we encourage the establishment of an interdisciplinary data science framework that integrates epidemiology, toxicology and bioinformatics with biomarker-based research to better define how population-level exposures contribute to these adverse birth outcomes. The proposed interdisciplinary research framework would 1) facilitate data-driven analyses using existing data from health registries and environmental monitoring programs; 2) develop novel algorithms with the ability to predict which exposures are driving, in this case, adverse birth outcomes in the context of simultaneous exposures; and 3) refine biomarker-based research, ultimately leading to new policies and interventions to reduce the incidence of adverse birth outcomes.
Collapse
Affiliation(s)
- Jeanette A Stingone
- Department of Epidemiology, Columbia University's Mailman School of Public Health, 722 West 168th St, Room 1608, New York, NY, 10032, USA.
| | - Sofia Triantafillou
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Larsen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jay P Kitt
- Departments of Chemistry and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Judit Marsillach
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
156
|
Zhang H, Shen L, Fang W, Zhang X, Zhong Y. Perfluorooctanoic acid-induced immunotoxicity via NF-kappa B pathway in zebrafish (Danio rerio) kidney. FISH & SHELLFISH IMMUNOLOGY 2021; 113:9-19. [PMID: 33727078 DOI: 10.1016/j.fsi.2021.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial production due to its stable chemical structure and hydrophobic and oleophobic characteristics. PFOA has been frequently detected in environmental media and organisms, leading to increased health risks. There is a lack of information about the immunotoxicity of aquatic organisms induced by PFOA, and the molecular mechanisms remain unclear. In this study, LC-MS analysis proved that PFOA can accumulate in the kidney of zebrafish. In the 0.05 mg/L PFOA treatment group, the accumulation of PFOA in the kidney after 21 days of exposure significantly increased by 79.89%, compared to 14 days of exposure. And a hydropic endoplasmic reticulum, swelling of mitochondria and vacuolization were observed in kidney immune cells of zebrafish. The Toll-like receptor 2 (TLR2)/myeloid differentiation factor 88 (myd88)/NF-κB (P65) pathway was activated when PFOA exerted its effects, which led to regulation of antibody expression; RT-PCR results showed that the mRNA expression level of interleukin-4 (IL-4) decreased in a dose-dependent manner, decreasing to 29.6% of the control level in the 1 mg/L PFOA group after 21 d of exposure. According to triangle plot analysis, immunoglobulin exhibited a notable stress response to PFOA at an early phase; a high concentration of PFOA may disrupt the immune system of zebrafish. Third-order polynomial fitting analysis showed that the high-mRNA-expression regions of IL-4 and antibodies were partially consistent. The results indicated that PFOA could affect antibodies by increasing the concentrations of proinflammatory cytokines. Changes in antibody levels further influenced the expression of other cytokines, which eventually caused disorders in the zebrafish immune system. This study expands the understanding of PFOA-induced immunosuppression and suggests that toxicity mechanisms should be considered for further health risk assessment of emerging pollutants.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wendi Fang
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
157
|
Viet SM, Falman JC, Merrill LS, Faustman EM, Savitz DA, Mervish N, Barr DB, Peterson LA, Wright R, Balshaw D, O'Brien B. Human Health Exposure Analysis Resource (HHEAR): A model for incorporating the exposome into health studies. Int J Hyg Environ Health 2021; 235:113768. [PMID: 34034040 PMCID: PMC8205973 DOI: 10.1016/j.ijheh.2021.113768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Characterizing the complexity of environmental exposures in relation to human health is critical to advancing our understanding of health and disease throughout the life span. Extant cohort studies open the door for such investigations more rapidly and inexpensively than launching new cohort studies and the Human Health Exposure Analysis Resource (HHEAR) provides a resource for implementing life-stage exposure studies within existing study populations. Primary challenges to incorporation of environmental exposure assessment in health studies include: (1) lack of widespread knowledge of biospecimen and environmental sampling and storage requirements for environmental exposure assessment among investigators; (2) lack of availability of and access to laboratories capable of analyzing multiple environmental exposures throughout the life-course; and (3) studies lacking sufficient power to assess associations across life-stages. HHEAR includes a consortium of researchers with expertise in laboratory analyses, statistics and logistics to overcome these limitations and enable inclusion of exposomics in human health studies. OBJECTIVE This manuscript describes the structure and strengths of implementing the harmonized HHEAR resource model, and our approaches to addressing challenges. We describe how HHEAR incorporates analyses of biospecimens and environmental samples and human health studies across the life span - serving as a model for incorporating environmental exposures into national and international research. We also present program successes to date. DISCUSSION HHEAR provides a full-service laboratory and data analysis exposure assessment resource, linking scientific, life span, and toxicological consultation with both laboratory and data analysis expertise. HHEAR services are provided without cost but require NIH, NCI, NHLBI, or ECHO funding of the original cohort; internal HHEAR scientific review and approval of a brief application; and adherence to data sharing and publication policies. We describe the benefits of HHEAR's structure, collaborative framework and coordination across project investigators, analytical laboratories, biostatisticians and bioinformatics specialists; quality assurance/quality control (QA/QC) including integrated sample management; and tools that have been developed to support the research (exposure information pages, ontology, new analytical methods, common QA/QC approach across laboratories, etc.). This foundation supports HHEAR's inclusion of new laboratory and statistical analysis methods and studies that are enhanced by including targeted analysis of specific exposures and untargeted analysis of chemicals associated with phenotypic endpoints in biological and environmental samples. CONCLUSION HHEAR is an interdisciplinary team of toxicologists, epidemiologists, laboratory scientists, and data scientists across multiple institutions to address broad and complex questions that benefit from integrated laboratory and data analyses. HHEAR's processes, features, and tools include all life stages and analysis of biospecimens and environmental samples. They are available to the wider scientific community to augment studies by adding state of the art environmental analyses to be linked to human health outcomes.
Collapse
Affiliation(s)
| | - Jill C Falman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Nancy Mervish
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana B Barr
- Emory University, Rollins School of Public Health, Department of Environmental Health, Atlanta, GA, USA
| | - Lisa A Peterson
- University of Minnesota, Division of Environmental Health Sciences and Masonic Cancer Center, Minnesota, MN, USA
| | - Robert Wright
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Balshaw
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | | |
Collapse
|
158
|
Ghazizadeh H, Bohn MK, Yaghooti-Khorasani M, Ghaffarian-Zirak R, Valizadeh M, Saberi-Karimian M, Safarian H, Kamel-Khodabandeh A, Zare-Feyzabadi R, Timar A, Mohammadi-Bajgiran M, Oladi MR, Gachpazan M, Rohban M, Esmaily H, Ferns GA, Adeli K, Ghayour-Mobarhan M. Age and sex-specific reference intervals for prooxidant-antioxidant balance, anti-heat-shock protein 27 (anti-hsp27), and routine laboratory tests in the middle-aged adult population. Biotechnol Appl Biochem 2021; 69:1300-1310. [PMID: 34028875 DOI: 10.1002/bab.2203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/12/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We aimed to define specific reference intervals (RIs) for 11 biomarkers including inflammatory and oxidative stress biomarkers, liver, and renal function tests in a healthy Iranian adult population for the first time. METHODS CLSI Ep28-A3 guidelines were then used to calculate accurate age- and sex- as well as body mass index (BMI)-specific RIs. RESULTS RIs for studied biomarkers showed no significant age and sex-specific differences, except for uric acid, which had higher concentrations in men when compared to women. Additionally, after partitioning the participants based on the BMI with a cutoff point of 25 kg/m2 , only the levels of hs-CRP were positively associated with higher BMI (RI for BMI>25: 0.51-7.85 mg/L and for BMI<25: 0.40-4.46 mg/L). RI for PAB and anti-hsp-27 were reported 4.69-155.36 HK and 0.01-0.70 OD in men and women aged 35-65 years old. CONCLUSION Partitioning by sex and BMI was only required for uric acid and hs-CRP, respectively, while other biomarkers required no partitioning. These results can be expected to valuably contribute to improve laboratory test result interpretation in adults for improved monitoring of various diseases in the Iranian population.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mary Kathryn Bohn
- CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Mohsen Valizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamideh Safarian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Kamel-Khodabandeh
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Zare-Feyzabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Timar
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Reza Oladi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Gachpazan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Rohban
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| | - Khosrow Adeli
- CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
159
|
Karthikeyan BS, Ravichandran J, Aparna SR, Samal A. ExHuMId: A curated resource and analysis of Exposome of Human Milk across India. CHEMOSPHERE 2021; 271:129583. [PMID: 33460906 DOI: 10.1016/j.chemosphere.2021.129583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Human milk is a vital source of nourishment for infants. However, numerous environmental contaminants also find their way into human milk, making up the major part of a newborn's external exposome. While there are chemical regulations in India and scientific literature on environmental contaminants is available, the systematic compilation, monitoring, and risk management of human milk contaminants are inadequate. We have harnessed the potential of this large body of literature to develop the Exposome of Human Milk across India (ExHuMId) version 1.0 containing detailed information on 101 environmental contaminants detected in human milk samples across 13 Indian states, compiled from 36 research articles. ExHuMId also compiles the detected concentrations of the contaminants, structural and physicochemical properties, and factors associated with the donor of the sample. We also present findings from a three-pronged analysis of ExHuMId and two other resources on human milk contaminants, with a focus on the Indian scenario. Through a comparative analysis with global chemical regulations and guidelines, we identify human milk contaminants of high concern, such as potential carcinogens, endocrine disruptors and neurotoxins. We then study the physicochemical properties of the contaminants to gain insights on their propensity to transfer into human milk. Lastly, we employ a systems biology approach to shed light on potential effects of human milk contaminants on maternal and infant health, by identifying contaminant-gene interactions associated with lactation, cytokine signalling and production, and protein-mediated transport. ExHuMId 1.0 is accessible online at: https://cb.imsc.res.in/exhumid/.
Collapse
Affiliation(s)
| | - Janani Ravichandran
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| | - S R Aparna
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
160
|
Graves DF, Morse GS, Kerr K, Carpenter DO. A Pilot Study to Examine Psychological and Neuropsychological Outcomes and a Novel Detoxification Program for Gulf War Illness. Mil Med 2021; 186:205-213. [PMID: 33499551 DOI: 10.1093/milmed/usaa486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/21/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Exposures to environmental toxins have been associated with severe health problems for approximately one-quarter of the nearly 700,000 U.S. soldiers who served in the Gulf War between the years 1990 and 1991. Gulf War illness still affects about 30% of Gulf War veterans (GWV), causing reduced psychological wellness and neuropsychological function. METHOD AND MATERIALS This pilot study used a randomized wait-list control design to explore the feasibility and efficacy of a novel detoxification method for GWV exposed to toxicants such as pesticides, nerve gases, and pyridostigmine bromide. Our study included 32 GWV (67% male), with a mean age of 51 (range: 43-70, SD = 6.97), who participated in a 4- to 5-week treatment that was hypothesized to reduce the reported psychological and neuropsychological symptoms. Psychological measures used included tests given for the evaluation of neurocognitive function, including motor function for a dominant hand with the grooved pegboard test; verbal and visual immediate and delayed memory with the Wechsler Memory Scale III abbreviated subtests; executive function domains of attention, speed, and mental flexibility with trail making test parts A and B and Stroop color and word test. Psychological status was measured using the nine subscales of the Symptom Checklist-90-Revised. RESULTS Primary outcomes included between-group differences in self-reported psychological measures and a neuropsychological battery at 7-day and 3-month assessments. Baseline comparison revealed improvements in 16 of 19 psychological and neuropsychological measures at 7-day assessment and that 13 remained stable at 3-month assessment. CONCLUSIONS We conclude that the detoxification procedure provided improvement in psychological and cognitive function for GWV and that future study is warranted.
Collapse
Affiliation(s)
- Donald F Graves
- Psychology Department, Russell Sage College, Troy, NY 12181, USA
| | - Gayle S Morse
- Psychology Department, Russell Sage College, Troy, NY 12181, USA.,Institute for Health & the Environment, University at Albany, Albany, NY 12144, USA
| | - Kathleen Kerr
- Department of Family & Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - David O Carpenter
- Department of Environmental Health Sciences, University at Albany, Albany, NY 12144, USA.,Institute for Health & the Environment, University at Albany, Albany, NY 12144, USA
| |
Collapse
|
161
|
Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119080] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
162
|
von Stackelberg K, Williams PR. Evolving Science and Practice of Risk Assessment. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:571-583. [PMID: 33295028 PMCID: PMC8257268 DOI: 10.1111/risa.13647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Managing public health risks from environmental contaminants has historically relied on a risk assessment process defined by the regulatory context in which these risks are assessed. Risk assessment guidance follows a straightforward, chemical-by-chemical approach to inform regulatory decisions around the question "what is the risk-based concentration protective of human and ecological health outcomes?" Here we briefly summarize regulatory risk assessment in the context of innovative risk assessment approaches based on an evolving understanding of the underlying scientific disciplines that support risk analysis more broadly. We discuss scientific versus regulatory tensions in the application of these approaches for future risk assessments, and challenges in translating our improved understanding of the underlying scientific complexity to the regulatory landscape to better inform decision making that extends beyond conventional regulatory mandates.
Collapse
Affiliation(s)
- Katherine von Stackelberg
- NEK Associates LTD, Allston, MA, 02134, USA
- Harvard Center for Risk Analysis, 401 Park Drive, Boston, MA, 02215, USA
| | | |
Collapse
|
163
|
Shoeb M, Meier HCS, Antonini JM. Telomeres in toxicology: Occupational health. Pharmacol Ther 2021; 220:107742. [PMID: 33176178 PMCID: PMC7969441 DOI: 10.1016/j.pharmthera.2020.107742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The ends of chromosomes shorten at each round of cell division, and this process is thought to be affected by occupational exposures. Occupational hazards may alter telomere length homeostasis resulting in DNA damage, chromosome aberration, mutations, epigenetic alterations and inflammation. Therefore, for the protection of genetic material, nature has provided a unique nucleoprotein structure known as a telomere. Telomeres provide protection by averting an inappropriate activation of the DNA damage response (DDR) at chromosomal ends and preventing recognition of single and double strand DNA (ssDNA and dsDNA) breaks or chromosomal end-to-end fusion. Telomeres and their interacting six shelterin complex proteins in coordination act as inhibitors of DNA damage machinery by blocking DDR activation at chromosomes, thereby preventing the occurrence of genome instability, perturbed cell cycle, cellular senescence and apoptosis. However, inappropriate DNA repair may result in the inadequate distribution of genetic material during cell division, resulting in the eventual development of tumorigenesis and other pathologies. This article reviews the current literature on the association of changes in telomere length and its interacting proteins with different occupational exposures and the potential application of telomere length or changes in the regulatory proteins as potential biomarkers for exposure and health response, including recent findings and future perspectives.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States of America.
| | - Helen C S Meier
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, United States of America
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| |
Collapse
|
164
|
Wu J, Lin D, Jiu L, Liu Q, Gu Z, Luo J, Zhao Y. Exploring epigenetic biomarkers of universal specificities and commonalities among pan-cancer cohorts in The Cancer Genome Atlas. Epigenomics 2021; 13:599-612. [PMID: 33787302 DOI: 10.2217/epi-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the mechanism of cancer by employing a comprehensive analysis of DNA methylation patterns and variations among pan-cancer cohorts. Materials & methods: This research focused on the discovery of universally specific or common biomarkers by mathematical statistics and machine learning methods in The Cancer Genome Atlas. Results: We found 138 differently methylated CpGs (DMCs) with a common methylation trend and eight common differently methylated regions in different cancer cohorts. Additionally, we found 99 DMCs to distinguish 32 different cancer cohorts in random forest analysis because of the specificity mechanism, but each DMC still had high instability. Conclusion: Our results could facilitate the development of biomarkers that are universally specific and common features across pan-cancer cohorts.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Deng Lin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Liandi Jiu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenglong Gu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China.,Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
165
|
Guimarães RM, Muzi CD, Meira KC, Dos Santos RD, Saraiva MM, Rohlfs DB. Occupational exposure to carcinogens in Brazil: An approach. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 76:414-423. [PMID: 33750273 DOI: 10.1080/19338244.2021.1900044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
This study aims to estimate the prevalence of the primary occupational exposures, considered risk factors for Cancer in Brazil. We elaborated two exposure scenarios considering the agents' classification and the intensity of exposure, stratified by Brazilian regions and sex. Two pairs of specialists performed the classification of economic activities and occupations due to exposure. There was an excellent overall agreement (94%) and acceptable overall reliability (kappa 0.92, 95% CI 0.89-0.95). There is a notable difference (595%) in occupational exposure between the north (with a higher concentration of rural areas and extractivism) and southeast (with a higher level of industrial activities). There is a difference in prevalence from 833% for solvents to 1170% for inorganic dust between the two scenarios. There is a heterogeneity of exposures according to location, sex, circumstance, and sensitiveness of classification.
Collapse
Affiliation(s)
| | - Camila Drumond Muzi
- Brazilian National Institute of Cancer, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | - Magda Machado Saraiva
- Environmental and Occupational Health Department, Ministry of Health, Brasilia, Brazil
| | - Daniela Buosi Rohlfs
- Environmental and Occupational Health Department, Ministry of Health, Brasilia, Brazil
| |
Collapse
|
166
|
Liu H, Cui H, Huang Y, Gao S, Tao S, Hu J, Wan Y. Xenobiotics Targeting Cardiolipin Metabolism to Promote Thrombosis in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3855-3866. [PMID: 33629855 DOI: 10.1021/acs.est.0c08068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to environmental pollutants is an important factor contributing to the development and severity of thrombosis. However, the important physiological molecules in the thrombotic processes affected by environmental exposures remain unknown. In this study, we show that exposure to environmental chemicals disrupts the equilibrium of cardiolipins (CLs), and directing CL synthesis promotes thrombosis. Using an untargeted metabolomics approach, approximately 3030 molecules were detected in zebrafish embryos exposed to 11 environmental chemicals and automatically clustered into a network. Interconnectivity among CLs and linoleates or isoxanthopterin was discovered through the highly consistent variations in the coregulated metabolites in the network. The chemical exposure resulted in significant upregulation of CLs through influencing the enzymatic activities of phospholipase A2, cardiolipin synthase, and lysocardiolipin acyltransferase. Consequently, metabolic disorders of CLs affected the levels of anticardiolipin antibodies, disrupted the homeostasis between platelet thromboxane A2 and endothelial prostacyclin, and promoted thrombotic events including heart ischemia and tachycardia. Our study thus reveals the common molecular mechanisms underlying the CL-induced thrombosis targeted by environmental exposures.
Collapse
Affiliation(s)
- Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
167
|
Singh N, Singh S. Interstitial Lung Diseases and Air Pollution: Narrative Review of Literature. Pulm Ther 2021; 7:89-100. [PMID: 33689161 PMCID: PMC7943709 DOI: 10.1007/s41030-021-00148-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Air pollution has been associated with respiratory diseases such as chronic obstructive pulmonary disease (COPD) and lung malignancies. The aim of this narrative review is to analyze the current data on the possible association between air pollution and interstitial lung disease (ILD). There are multiple studies showing the association of ILD with air pollution but the mechanism remains unclear. Although some of the environmental factors have been associated with idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), and pneumoconiosis, data about other ILDs are scarce and not well known. Air pollution as an etiology for ILD may act in multiple ways, leading to disease pathogenesis or exacerbation of underlying ILD. Clinical implications of this association are manifold; limiting the exposure to poor-quality air could possibly reduce the fall in lung functions and the risk of acute exacerbations of the underlying ILD. Air pollution is a major problem worldwide. Pollutants are vented out in the ambient air by sources like vehicular fume exhaust, factory pollution, combustion by burning of biomass fuels, and indoor pollution. The probable constituents responsible for respiratory diseases are particulate matter 2.5 and 10, nitrogen dioxide (NO2), and ozone present in polluted air. The role of these pollutants in pathogenesis of interstitial lung disease (ILD) is complex. The probable pathways include: oxidative stress, inflammation, and telomere shortening. ILD is a heterogeneous group of diseases, and the effect of pollution on various types is also varied. Air pollution has been associated with poor lung function and exacerbations in idiopathic pulmonary fibrosis (IPF), increased prevalence of hypersensitivity pneumonitis (HP), and presence of pulmonary fibrosis in healthy adults and children. The incidence rate of IPF has also been associated with pollutant levels such as NO2. Thus, patients with ILD should be cautious during bad-quality air days and they are advised to avoid outdoor activities and use facemasks during this period.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Respiratory Medicine, Asthma Bhawan, Jaipur, India
| | - Sheetu Singh
- Department of Chest and Tuberculosis, Institute of Respiratory Disease, SMS Medical College, Jaipur, India.
| |
Collapse
|
168
|
Prada D, Belsky D, Baccarelli A. Is your environment making you older? Molecular biomarkers and new approaches to investigate the influences of environmental chemicals through aging. LA MEDICINA DEL LAVORO 2021; 112:8-14. [PMID: 33635291 PMCID: PMC8023055 DOI: 10.23749/mdl.v112i1.10826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Aging is characterized by a gradual and progressive decline in system integrity that occurs with advancing chronological age. Although it is a physiological process, aging is associated with a myriad of age-related diseases (ARDs), including frailty, sarcopenia, chronic obstructive pulmonary disease, cardiovascular disease, cancer, and neurodegenerative diseases. While not exclusively ARDs, many of these diseases lead to death, a lesser quality of life, and increased healthcare costs for individuals and systems. ARDs share several underlying molecular mechanisms, such as cellular damage, inflammation, DNA methylation changes, stem cells exhaustion, and DNA mutations, which have been outlined as hallmarks of aging. Evidence suggests that environmental exposures, including but not limited to metals, air pollution, endocrine-disrupting chemicals, and noise, may accelerate biological aging. Over the past few years, aging research has identified new molecular biomarkers of the aging process. When applied to investigate environmental influences, these biomarkers can help identify individuals who are particularly susceptible to the influences of environmental exposures on aging processes and therefore guide in implementing possible preventive measures.
Collapse
Affiliation(s)
- Diddier Prada
- Mailman School of Public Health, Columbia University, USA; Instituto Nacional de Cancerología, Mexico.
| | - Daniel Belsky
- Columbia University Mailman School of Public Health .
| | | |
Collapse
|
169
|
Huhn S, Escher BI, Krauss M, Scholz S, Hackermüller J, Altenburger R. Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:17. [PMID: 33614387 PMCID: PMC7877320 DOI: 10.1186/s12302-020-00444-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Environmental factors contribute to the risk for adverse health outcomes against a background of genetic predisposition. Among these factors, chemical exposures may substantially contribute to disease risk and adverse outcomes. In fact, epidemiological cohort studies have established associations between exposure against individual chemicals and adverse health effects. Yet, in daily life individuals are exposed to complex mixtures in varying compositions. To capture the totality of environmental exposures the concept of the exposome has been developed. Here, we undertake an overview of major exposome projects, which pioneered the field of exposomics and explored the links between chemical exposure and health outcomes using cohort studies. We seek to reflect their achievements with regard to (i) capturing a comprehensive picture of the environmental chemical exposome, (ii) aggregating internal exposures using chemical and bioanalytical means of detection, and (iii) identifying associations that provide novel options for risk assessment and intervention. Various complementary approaches can be distinguished in addressing relevant exposure routes and it emerges that individual exposure histories may not easily be grouped. The number of chemicals for which human exposure can be detected is substantial and highlights the reality of mixture exposures. Yet, to a large extent it depends on targeted chemical analysis with the specific challenges to capture all relevant exposure routes and assess the chemical concentrations occurring in humans. The currently used approaches imply prior knowledge or hypotheses about relevant exposures. Typically, the number of chemicals considered in exposome projects is counted in dozens-in contrast to the several thousands of chemicals for which occurrence have been reported in human serum and urine. Furthermore, health outcomes are often still compared to single chemicals only. Moreover, explicit consideration of mixture effects and the interrelations between different outcomes to support causal relationships and identify risk drivers in complex mixtures remain underdeveloped and call for specifically designed exposome-cohort studies.
Collapse
Affiliation(s)
- Sebastian Huhn
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Pediatric Epidemiology, Department of Pediatrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department of Bioanalytical Ecotoxicology, RWTH-Aachen University, Aachen, Germany
| |
Collapse
|
170
|
Use of Exposomic Methods Incorporating Sensors in Environmental Epidemiology. Curr Environ Health Rep 2021; 8:34-41. [PMID: 33569731 DOI: 10.1007/s40572-021-00306-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW The exposome is a recently coined concept that comprises the totality of nongenetic factors that affect human health. It is recognized as a major conceptual advancement in environmental epidemiology, and there is increased demand for technologies that capture the spatial, temporal, and chemical variability of exposures across individuals (i.e., "exposomic sensors"). We review a selection of these tools, highlighting their strengths and limitations with regard to epidemiological research. RECENT FINDINGS Wearable passive samplers are emerging as promising exposomic sensors for individuals. In conjunction with targeted and untargeted assays, these sensors enable the measurement of complex multipollutant mixtures, which can include both known and previously unknown environmental contaminants. Because of their minimally burdensome and noninvasive nature, they are deployable among sensitive populations, such as seniors, pregnant women, and children. The integration of exposomic data captured by these sensors with other omic data (e.g., transcriptomic and metabolomic) presents exciting opportunities for investigating disease risk factors. For example, the linkage of exposomic sensor data with other omic data may indicate perturbation by multipollutant mixtures at multiple physiological levels, which would strengthen evidence of their effects and potentially indicate targets for interventions. However, there remain considerable theoretical and methodological challenges that must be overcome to realize the potential promise of omic integration. Through continued investment and improvement in exposomic sensor technologies, it may be possible to refine their application and reduce their outstanding limitations to advance the fields of exposure science and epidemiology.
Collapse
|
171
|
Lucock M. Vitamin-related phenotypic adaptation to exposomal factors: The folate-vitamin D-exposome triad. Mol Aspects Med 2021; 87:100944. [PMID: 33551238 DOI: 10.1016/j.mam.2021.100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The biological role of two key vitamins, folic acid and vitamin D is so fundamental to life processes, it follows that their UV sensitivity, dietary abundance (both key exposomal factors) and variability in dependent genes will modify their functional efficacy, particularly in the context of maintaining the integrity and function of genome and epigenome. This article therefore examines folate and vitamin D-related phenotypic adaptation to environmental factors which vary across the human life cycle as well as over an evolutionary time-scale. Molecular mechanisms, key nutrigenomic factors, phenotypic maladaptation and evolutionary models are discussed.
Collapse
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, PO Box 127, Brush Rd, Ourimbah, NSW, 2258, Australia.
| |
Collapse
|
172
|
Prasse C. Reactivity-directed analysis - a novel approach for the identification of toxic organic electrophiles in drinking water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:48-65. [PMID: 33432313 DOI: 10.1039/d0em00471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drinking water consumption results in exposure to complex mixtures of organic chemicals, including natural and anthropogenic chemicals and compounds formed during drinking water treatment such as disinfection by-products. The complexity of drinking water contaminant mixtures has hindered efforts to assess associated health impacts. Existing approaches focus primarily on individual chemicals and/or the evaluation of mixtures, without providing information about the chemicals causing the toxic effect. Thus, there is a need for the development of novel strategies to evaluate chemical mixtures and provide insights into the species responsible for the observed toxic effects. This critical review introduces the application of a novel approach called Reactivity-Directed Analysis (RDA) to assess and identify organic electrophiles, the largest group of known environmental toxicants. In contrast to existing in vivo and in vitro approaches, RDA utilizes in chemico methodologies that investigate the reaction of organic electrophiles with nucleophilic biomolecules, including proteins and DNA. This review summarizes the existing knowledge about the presence of electrophiles in drinking water, with a particular focus on their formation in oxidative treatment systems with ozone, advanced oxidation processes, and UV light, as well as disinfectants such as chlorine, chloramines and chlorine dioxide. This summary is followed by an overview of existing RDA approaches and their application for the assessment of aqueous environmental matrices, with an emphasis on drinking water. RDA can be applied beyond drinking water, however, to evaluate source waters and wastewater for human and environmental health risks. Finally, future research demands for the detection and identification of electrophiles in drinking water via RDA are outlined.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Whiting School of Engineering and Bloomberg School of Public Health, Johns Hopkins University, 3400 N Charles St, Baltimore, MD-21318, USA.
| |
Collapse
|
173
|
Wheeler DC, Rustom S, Carli M, Whitehead TP, Ward MH, Metayer C. Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E504. [PMID: 33435473 PMCID: PMC7827322 DOI: 10.3390/ijerph18020504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Individuals are exposed to a large number of diverse environmental chemicals simultaneously and the evaluation of multiple chemical exposures is important for identifying cancer risk factors. The measurement of a large number of chemicals (the exposome) in epidemiologic studies is allowing for a more comprehensive assessment of cancer risk factors than was done in earlier studies that focused on only a few chemicals. Empirical evidence from epidemiologic studies shows that chemicals from different chemical classes have different magnitudes and directions of association with cancers. Given increasing data availability, there is a need for the development and assessment of statistical methods to model environmental cancer risk that considers a large number of diverse chemicals with different effects for different chemical classes. The method of grouped weighted quantile sum (GWQS) regression allows for multiple groups of chemicals to be considered in the model such that different magnitudes and directions of associations are possible for each group of chemicals. In this paper, we assessed the ability of GWQS regression to estimate exposure effects for multiple chemical groups and correctly identify important chemicals in each group using a simulation study. We compared the performance of GWQS regression with WQS regression, the least absolute shrinkage and selection operator (lasso), and the group lasso in estimating exposure effects and identifying important chemicals. The simulation study results demonstrate that GWQS is an effective method for modeling exposure to multiple groups of chemicals and compares favorably with other methods used in mixture analysis. As an application, we used GWQS regression in the California Childhood Leukemia Study (CCLS), a population-based case-control study of childhood leukemia in California to estimate exposure effects for many chemical classes while also adjusting for demographic factors. The CCLS analysis found evidence of a positive association between exposure to the herbicide dacthal and an increased risk of childhood leukemia.
Collapse
Affiliation(s)
- David C. Wheeler
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; (S.R.); (M.C.)
| | - Salem Rustom
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; (S.R.); (M.C.)
| | - Matthew Carli
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0032, USA; (S.R.); (M.C.)
| | - Todd P. Whitehead
- Division of Epidemiology/Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA 94704-7394, USA; (T.P.W.); (C.M.)
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA;
| | - Catherine Metayer
- Division of Epidemiology/Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA 94704-7394, USA; (T.P.W.); (C.M.)
| |
Collapse
|
174
|
Hansima MACK, Makehelwala M, Jinadasa KBSN, Wei Y, Nanayakkara KGN, Herath AC, Weerasooriya R. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review. CHEMOSPHERE 2021; 263:127951. [PMID: 33297020 DOI: 10.1016/j.chemosphere.2020.127951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Electrodialysis self-reversal (EDR) technology has attracted in the treatment of water for domestic and industrial uses. The self-reversal consists of a frequent reversal of the direction of current between the EDR-cell electrodes to combat fouling of ion exchange membranes (IEMs). Irrespective of the EDR self-cleaning processes, the role of natural organic matter and their complexing ability with metal ions on IEMs fouling is partially understood. The objective of this review is to identify the research gaps present in the elucidation of IEM fouling routes. The common IEMs' foulants are identified, and several fouling mechanisms are briefly discussed. The effectiveness of self-cleaning mechanisms to reduce IEMs fouling is also be discussed. Dissolved organic carbon (DOC) possesses high chelation which forms metal complexes with di and trivalent cations found in water. The role of ternary complexes, e.g. M2+/3+-DOC and membrane surface, on membrane fouling via surface bridging, are also addressed. Finally, mitigation methods of IEMs membrane fouling are also discussed.
Collapse
Affiliation(s)
- M A C K Hansima
- Post Graduate Institute of Science (PGIS), University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Madhubhashini Makehelwala
- NSF Project, Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Yuansong Wei
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ajith C Herath
- Department of Chemical Sciences, Rajarata University of Sri Lanka, Mihinthale, 50300, Sri Lanka
| | - Rohan Weerasooriya
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| |
Collapse
|
175
|
Ghazizadeh H, Yaghooti-Khorasani M, Khodabandeh AK, Hasanzadeh E, Sahranavard T, Banihashem-Rad SH, Zare-Feyzabadi R, Ekhteraee-Toosi MS, Akbarpour E, Timar A, Mohammadi-Bajgiran M, Assaran-Darban R, Farkhany EM, Oladi MR, Ferns GA, Esmaily H, Ghayour-Mobarhan M. Reference intervals for routine biochemical markers and body mass index: A study based on healthcare center database in northeastern Iran. IUBMB Life 2020; 73:390-397. [PMID: 33382533 DOI: 10.1002/iub.2437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Age- and sex-specific reference intervals (RIs) for some biochemical tests may be useful for their interpretation, due to the variations in lifestyle and genetic, or ethnic factors. The aim of this study was to obtain RIs for some routine biochemical markers including a serum lipid profile, fasting blood glucose (FBG), aspartate and alanine aminotransferase (AST and ALT), uric acid, and body mass index (BMI) in subjects who attended primary healthcare centers. The large database of primary healthcare centers uses RIs to report results for children, adolescents, and young and old adults. RIs were obtained by using the indirect method, recommended by the CLSI Ep28-A3 guidelines. RIs for FBG, BMI, and serum lipid profile, including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in people aged 18 to 120 years, were obtained without age/sex segmentation. RIs for serum AST, ALT, and uric acid were obtained without age segmentation, though these RIs were higher in males than females. The RIs for AST, ALT, and uric acid were higher in men, while the RIs for the other variables were similar in both sexes. This is the first study reporting the use of indirect RIs for BMI.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atieh Kamel Khodabandeh
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Hasanzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Sahranavard
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Reza Zare-Feyzabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Ameneh Timar
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mohammadi-Bajgiran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran-Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Mosa Farkhany
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Oladi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Habibollah Esmaily
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
176
|
Lucock MD. A Brief Introduction to the Exposome and Human Health. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-6. [DOI: 10.14218/erhm.2020.00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
177
|
Liu M, Jia S, Dong T, Zhao F, Xu T, Yang Q, Gong J, Fang M. Metabolomic and Transcriptomic Analysis of MCF-7 Cells Exposed to 23 Chemicals at Human-Relevant Levels: Estimation of Individual Chemical Contribution to Effects. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127008. [PMID: 33325755 PMCID: PMC7741182 DOI: 10.1289/ehp6641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Humans are constantly being exposed to various xenobiotics at relatively low concentrations. To date, limited evidence is available to ascertain whether a complex xenobiotic mixture at human-relevant levels causes any health effect. Moreover, there is no effective method to pinpoint the contribution of each chemical toward such an effect. OBJECTIVES This study aims to understand the responses of cells to a mixture containing 23 xenobiotics at human-relevant levels and develop a feasible method to decipher the chemical(s) that contribute significantly to the observed effect. METHODS We characterized the metabolome and transcriptome of breast cancer cells (MCF-7) before and after exposure to the mixture at human-relevant levels; preexposure levels were derived from existing large-scale biomonitoring data. A high-throughput metabolomics-based "leave-one-out" method was proposed to understand the relative contribution of each component by comparing the metabolome with and without the particular chemical in the mixture. RESULTS The metabolomic analysis suggested that the mixture altered metabolites associated with cell proliferation and oxidative stress. For the transcriptomes, gene ontology terms and pathways including "cell cycle," "cell proliferation," and "cell division" were significantly altered after mixture exposure. The mixture altered genes associated with pathways such as "genotoxicity" and "nuclear factor erythroid 2-related factor 2 (Nrf2)." Through joint pathways analysis, metabolites and genes were observed to be well-aligned in pyrimidine and purine metabolisms. The leave-one-out results showed that many chemicals made their contributions to specific metabolic pathways. The overall metabolome pattern of the absence of 2,4-dihyroxybenzophenone (DHB) or bisphenol A (BPA) showed great resemblance to controls, suggesting their higher relative contribution to the observed effect. DISCUSSION The omics results showed that exposure to the mixture at human-relevant levels can induce significant in vitro cellular changes. Also, the leave one out method offers an effective approach for deconvoluting the effects of the mixture. https://doi.org/10.1289/EHP6641.
Collapse
Affiliation(s)
- Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Ting Dong
- School of Environment, Jinan University, Guangdong, Guangzhou, P.R. China
| | - Fanrong Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Qin Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Jicheng Gong
- College of Environmental Sciences and Engineering, Peking University, Beijing, P.R. China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
178
|
Milanlouei S, Menichetti G, Li Y, Loscalzo J, Willett WC, Barabási AL. A systematic comprehensive longitudinal evaluation of dietary factors associated with acute myocardial infarction and fatal coronary heart disease. Nat Commun 2020; 11:6074. [PMID: 33247093 PMCID: PMC7699643 DOI: 10.1038/s41467-020-19888-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Environmental factors, and in particular diet, are known to play a key role in the development of Coronary Heart Disease. Many of these factors were unveiled by detailed nutritional epidemiology studies, focusing on the role of a single nutrient or food at a time. Here, we apply an Environment-Wide Association Study approach to Nurses' Health Study data to explore comprehensively and agnostically the association of 257 nutrients and 117 foods with coronary heart disease risk (acute myocardial infarction and fatal coronary heart disease). After accounting for multiple testing, we identify 16 food items and 37 nutrients that show statistically significant association - while adjusting for potential confounding and control variables such as physical activity, smoking, calorie intake, and medication use - among which 38 associations were validated in Nurses' Health Study II. Our implementation of Environment-Wide Association Study successfully reproduces prior knowledge of diet-coronary heart disease associations in the epidemiological literature, and helps us detect new associations that were only marginally studied, opening potential avenues for further extensive experimental validation. We also show that Environment-Wide Association Study allows us to identify a bipartite food-nutrient network, highlighting which foods drive the associations of specific nutrients with coronary heart disease risk.
Collapse
Affiliation(s)
- Soodabeh Milanlouei
- Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Giulia Menichetti
- Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Albert-László Barabási
- Center for Complex Network Research, Northeastern University, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Center for Network Science, Central European University, Budapest, Hungary.
| |
Collapse
|
179
|
Lakerveld J, Wagtendonk A, Vaartjes I, Karssenberg D. Deep phenotyping meets big data: the Geoscience and hEalth Cohort COnsortium (GECCO) data to enable exposome studies in The Netherlands. Int J Health Geogr 2020; 19:49. [PMID: 33187515 PMCID: PMC7662022 DOI: 10.1186/s12942-020-00235-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 01/24/2023] Open
Abstract
Environmental exposures are increasingly investigated as possible drivers of health behaviours and disease outcomes. So-called exposome studies that aim to identify and better understand the effects of exposures on behaviours and disease risk across the life course require high-quality environmental exposure data. The Netherlands has a great variety of environmental data available, including high spatial and often temporal resolution information on urban infrastructure, physico-chemical exposures, presence and availability of community services, and others. Until recently, these environmental data were scattered and measured at varying spatial scales, impeding linkage to individual-level (cohort) data as they were not operationalised as personal exposures, that is, the exposure to a certain environmental characteristic specific for a person. Within the Geoscience and hEalth Cohort COnsortium (GECCO) and with support of the Global Geo Health Data Center (GGHDC), a platform has been set up in The Netherlands where environmental variables are centralised, operationalised as personal exposures, and used to enrich 23 cohort studies and provided to researchers upon request. We here present and detail a series of personal exposure data sets that are available within GECCO to date, covering personal exposures of all residents of The Netherlands (currently about 17 M) over the full land surface of the country, and discuss challenges and opportunities for its use now and in the near future.
Collapse
Affiliation(s)
- Jeroen Lakerveld
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, VU University Amsterdam, De Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands. .,Global Geo Health Data Center, Utrecht University, Utrecht, The Netherlands. .,Upstream Team, www.upstreamteam.nl, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Alfred Wagtendonk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, VU University Amsterdam, De Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands.,Upstream Team, www.upstreamteam.nl, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ilonca Vaartjes
- Global Geo Health Data Center, Utrecht University, Utrecht, The Netherlands.,Department of Epidemiology, UMC Utrecht, Div. Julius Centrum, Huispoststraat 6.131, 3508 GA, Utrecht, The Netherlands
| | - Derek Karssenberg
- Global Geo Health Data Center, Utrecht University, Utrecht, The Netherlands.,Department of Physical Geography, Faculty of Geoscience, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | | |
Collapse
|
180
|
Rappaport SM. Response to "the role of the exposome in promoting resilience or susceptibility after SARS-CoV-2 infection". JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:905. [PMID: 32999425 PMCID: PMC7526706 DOI: 10.1038/s41370-020-00274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Stephen M Rappaport
- Professor Emeritus of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
181
|
Belloni M, Laurent O, Guihenneuc C, Ancelet S. Bayesian Profile Regression to Deal With Multiple Highly Correlated Exposures and a Censored Survival Outcome. First Application in Ionizing Radiation Epidemiology. Front Public Health 2020; 8:557006. [PMID: 33194957 PMCID: PMC7652768 DOI: 10.3389/fpubh.2020.557006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
As multifactorial and chronic diseases, cancers are among these pathologies for which the exposome concept is essential to gain more insight into the associated etiology and, ultimately, lead to better primary prevention strategies for public health. Indeed, cancers result from the combined influence of many genetic, environmental and behavioral stressors that may occur simultaneously and interact. It is thus important to properly account for multifactorial exposure patterns when estimating specific cancer risks at individual or population level. Nevertheless, the risk factors, especially environmental, are still too often considered in isolation in epidemiological studies. Moreover, major statistical difficulties occur when exposures to several factors are highly correlated due, for instance, to common sources shared by several pollutants. Suitable statistical methods must then be used to deal with these multicollinearity issues. In this work, we focused on the specific problem of estimating a disease risk from highly correlated environmental exposure covariates and a censored survival outcome. We extended Bayesian profile regression mixture (PRM) models to this context by assuming an instantaneous excess hazard ratio disease sub-model. The proposed hierarchical model incorporates an underlying truncated Dirichlet process mixture as an attribution sub-model. A specific adaptive Metropolis-Within-Gibbs algorithm-including label switching moves-was implemented to infer the model. This allows simultaneously clustering individuals with similar risks and similar exposure characteristics and estimating the associated risk for each group. Our Bayesian PRM model was applied to the estimation of the risk of death by lung cancer in a cohort of French uranium miners who were chronically and occupationally exposed to multiple and correlated sources of ionizing radiation. Several groups of uranium miners with high risk and low risk of death by lung cancer were identified and characterized by specific exposure profiles. Interestingly, our case study illustrates a limit of MCMC algorithms to fit full Bayesian PRM models even if the updating schemes for the cluster labels incorporate label-switching moves. Then, although this paper shows that Bayesian PRM models are promising tools for exposome research, it also opens new avenues for methodological research in this class of probabilistic models.
Collapse
Affiliation(s)
- Marion Belloni
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire, Paris, France
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire, Paris, France
| | - Chantal Guihenneuc
- Université de Paris, Unité de Recherche “Biostatistique, Traitement et Modélisation des données biologiques” BioSTM - UR 7537, Paris, France
| | - Sophie Ancelet
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire, Paris, France
| |
Collapse
|
182
|
Cadmium and Lead Exposure, Nephrotoxicity, and Mortality. TOXICS 2020; 8:toxics8040086. [PMID: 33066165 PMCID: PMC7711868 DOI: 10.3390/toxics8040086] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
The present review aims to provide an update on health risks associated with the low-to-moderate levels of environmental cadmium (Cd) and lead (Pb) to which most populations are exposed. Epidemiological studies examining the adverse effects of coexposure to Cd and Pb have shown that Pb may enhance the nephrotoxicity of Cd and vice versa. Herein, the existing tolerable intake levels of Cd and Pb are discussed together with the conventional urinary Cd threshold limit of 5.24 μg/g creatinine. Dietary sources of Cd and Pb and the intake levels reported for average consumers in the U.S., Spain, Korea, Germany and China are summarized. The utility of urine, whole blood, plasma/serum, and erythrocytes to quantify exposure levels of Cd and Pb are discussed. Epidemiological studies that linked one of these measurements to risks of chronic kidney disease (CKD) and mortality from common ailments are reviewed. A Cd intake level of 23.2 μg/day, which is less than half the safe intake stated by the guidelines, may increase the risk of CKD by 73%, and urinary Cd levels one-tenth of the threshold limit, defined by excessive ß2-microglobulin excretion, were associated with increased risk of CKD, mortality from heart disease, cancer of any site and Alzheimer's disease. These findings indicate that the current tolerable intake of Cd and the conventional urinary Cd threshold limit do not provide adequate health protection. Any excessive Cd excretion is probably indicative of tubular injury. In light of the evolving realization of the interaction between Cd and Pb, actions to minimize environmental exposure to these toxic metals are imperative.
Collapse
|
183
|
Vineis P, Robinson O, Chadeau-Hyam M, Dehghan A, Mudway I, Dagnino S. What is new in the exposome? ENVIRONMENT INTERNATIONAL 2020; 143:105887. [PMID: 32619912 DOI: 10.1016/j.envint.2020.105887] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 05/02/2023]
Abstract
The exposome concept refers to the totality of exposures from a variety of external and internal sources including chemical agents, biological agents, or radiation, from conception onward, over a complete lifetime. It encompasses also "psychosocial components" including the impact of social relations and socio-economic position on health. In this review we provide examples of recent contributions from exposome research, where we believe their application will be of the greatest value for moving forward. So far, environmental epidemiology has mainly focused on hard outcomes, such as mortality, disease exacerbation and hospitalizations. However, there are many subtle outcomes that can be related to environmental exposures, and investigations can be facilitated by an improved understanding of internal biomarkers of exposure and response, through the application of omic technologies. Second, though we have a wealth of studies on environmental pollutants, the assessment of causality is often difficult because of confounding, reverse causation and other uncertainties. Biomarkers and omic technologies may allow better causal attribution, for example using instrumental variables in triangulation, as we discuss here. Even more complex is the understanding of how social relationships (in particular socio-economic differences) influence health and imprint on the fundamental biology of the individual. The identification of molecular changes that are intermediate between social determinants and disease status is a way to fill the gap. Another field in which biomarkers and omics are relevant is the study of mixtures. Epidemiology often deals with complex mixtures (e.g. ambient air pollution, food, smoking) without fully disentangling the compositional complexity of the mixture, or with rudimentary approaches to reflect the overall effect of multiple exposures or components. From the point of view of disease mechanisms, most models hypothesize that several stages need to be transitioned through health to the induction of disease, but very little is known about the characteristics and temporal sequence of such stages. Exposome models reinforce the idea of a biography-to-biology transition, in that everyone's disease is the product of the individual history of exposures, superimposed on their underlying genetic susceptibilities. Finally, exposome research is facilitated by technological developments that complement traditional epidemiological study designs. We describe in depth one such new tools, adductomics. In general, the development of high-resolution and high-throughput technologies interrogating multiple -omics (such as epigenomics, transcriptomics, proteomics, adductomics and metabolomics) yields an unprecedented perspective into the impact of the environment in its widest sense on disease. The world of the exposome is rapidly evolving, though a huge gap still needs to be filled between the original expectations and the concrete achievements. Perhaps the most urgent need is for the establishment of a new generation of cohort studies with appropriately specified biosample collection, improved questionnaire data (including social variables), and the deployment of novel technologies that allow better characterization of individual environmental exposures, ranging from personal monitoring to satellite based observations.
Collapse
Affiliation(s)
- Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; Italian Institute of Technology, Genova, Italy.
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| | - Marc Chadeau-Hyam
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| | - Abbas Dehghan
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; UK Dementia Research Institute, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; MRC Centre for Environment and Health, King's College London, London, UK
| | - Sonia Dagnino
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| |
Collapse
|
184
|
Alamil H, Galanti L, Heutte N, Van Der Schueren M, Dagher Z, Lechevrel M. Genotoxicity of aldehyde mixtures: profile of exocyclic DNA-adducts as a biomarker of exposure to tobacco smoke. Toxicol Lett 2020; 331:57-64. [PMID: 32442718 DOI: 10.1016/j.toxlet.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023]
Abstract
Electrophilic compounds present in humans, originating from endogenous processes or pollutant exposures, pose a risk to health though their reaction with nucleophilic sites in protein and DNA. Among this chemical class, aldehydes are mainly present in indoor air and they can also be produced by endogenous lipid peroxidation arising from oxidative stress. Known to be very reactive, aldehydes have the ability to form exocyclic adducts to DNA that, for the most if not repaired correctly, are mutagenic and by consequence potential agents involved in carcinogenesis. The aim of this work was to establish profiles of exocyclic DNA adducts induced by aldehyde mixtures, which could ultimately be considered as a genotoxic marker of endogenous and environmental aldehyde exposure. Adducts were quantified by an accurate, sensitive and validated ultra high performance liquid chromatography-electrospray ionization analytical method coupled to mass spectrometry in the tandem mode (UHPLC-ESI-MS/MS). We simultaneously measured nine exocyclic DNA adducts generated during the exposure in vitro of calf thymus DNA to different concentrations of each aldehyde along, as well as, to an equimolar mixture of these aldehydes. This approach has enabled us to establish dose-response relationships that allowed displaying the specific reactivity of aldehydes towards corresponding adducts formation. Profiles of these adducts determined in DNA of current smokers and non-smokers blood samples supported these findings. These first results are encouraging to explore genotoxicity induced by aldehyde mixtures and can furthermore be used as future reference for adductomic approaches.
Collapse
Affiliation(s)
- Héléna Alamil
- Normandie University, UNICAEN, ABTE EA4651, Caen, France; CCC François Baclesse, UNICANCER, Caen, France; L2GE, Microbiology-Tox/Ecotox Team, Faculty of Sciences, Lebanese University, Fanar, Lebanon.
| | | | - Natacha Heutte
- CCC François Baclesse, UNICANCER, Caen, France; Normandie University, UNIROUEN, CETAPS EA3832, Mont Saint Aignan, Cedex, France
| | | | - Zeina Dagher
- L2GE, Microbiology-Tox/Ecotox Team, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Mathilde Lechevrel
- Normandie University, UNICAEN, ABTE EA4651, Caen, France; CCC François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
185
|
A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118378] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
186
|
Advances in Comprehensive Exposure Assessment: Opportunities for the US Military. J Occup Environ Med 2020; 61 Suppl 12:S5-S14. [PMID: 31800446 DOI: 10.1097/jom.0000000000001677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Review advances in exposure assessment offered by the exposome concept and new -omics and sensor technologies. METHODS Narrative review of advances, including current efforts and potential future applications by the US military. RESULTS Exposure assessment methods from both bottom-up and top-down exposomics approaches are advancing at a rapid pace, and the US military is engaged in developing both approaches. Top-down approaches employ various -omics technologies to identify biomarkers of internal exposure and biological effect. Bottom-up approaches use new sensor technology to better measure external dose. Key challenges of both approaches are largely centered around how to integrate, analyze, and interpret large datasets that are multidimensional and disparate. CONCLUSIONS Advances in -omics and sensor technologies may dramatically enhance exposure assessment and improve our ability to characterize health risks related to occupational and environmental exposures, including for the US military.
Collapse
|
187
|
Miran I, Scherer D, Ostyn P, Mazouni C, Drusch F, Bernard M, Louvet E, Adam J, Mathieu MC, Haffa M, Antignac JP, Le Bizec B, Vielh P, Dessen P, Perdry H, Delaloge S, Feunteun J. Adipose Tissue Properties in Tumor-Bearing Breasts. Front Oncol 2020; 10:1506. [PMID: 32974182 PMCID: PMC7472783 DOI: 10.3389/fonc.2020.01506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tissue stroma plays a major role in tumors' natural history. Most programs for tumor progression are not activated as cell-autonomous processes but under the conditions of cross-talks between tumor and stroma. Adipose tissue is a major component of breast stroma. This study compares adipose tissues in tumor-bearing breasts to those in tumor-free breasts with the intention of defining a signature that could translate into markers of cancer risk. In tumor-bearing breasts, we sampled adipose tissues adjacent to, or distant from the tumor. Parameters studied included: adipocytes size and density, immune cell infiltration, vascularization, secretome and gene expression. Adipose tissues from tumor-bearing breasts, whether adjacent to or distant from the tumor, do not differ from each other by any of these parameters. By contrast, adipose tissues from tumor-bearing breasts have the capacity to secrete twice as much interleukin 8 (IL-8) than those from tumor-free breasts and differentially express a set of 137 genes of which a significant fraction belongs to inflammation, integrin and wnt signaling pathways. These observations show that adipose tissues from tumor-bearing breasts have a distinct physiological status from those from tumor-free breasts. We propose that this constitutive status contributes as a non-cell autonomous process to determine permissiveness for tumor growth.
Collapse
Affiliation(s)
- Isabelle Miran
- Translational Research Lab, INSERM U981, Université Paris-Saclay, Villejuif, France
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Pauline Ostyn
- UMR 9019 Genome Integrity and Cancers, Université Paris-Saclay, Villejuif, France
| | - Chafika Mazouni
- Breast Cancer Group, Université Paris-Saclay, Villejuif, France
| | - Françoise Drusch
- Biology and Pathology Department, Université Paris-Saclay, Villejuif, France
| | - Marine Bernard
- Biology and Pathology Department, Université Paris-Saclay, Villejuif, France
| | - Emilie Louvet
- Biology and Pathology Department, Université Paris-Saclay, Villejuif, France
| | - Julien Adam
- Biology and Pathology Department, Université Paris-Saclay, Villejuif, France
| | - Marie-Christine Mathieu
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), UMR 1329 Oniris-INRA, Nantes, France
| | - Mariam Haffa
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean-Philippe Antignac
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), UMR 1329 Oniris-INRA, Nantes, France
| | - Bruno Le Bizec
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), UMR 1329 Oniris-INRA, Nantes, France
| | - Philippe Vielh
- Biology and Pathology Department, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Core Facility, Université Paris-Saclay, Villejuif, France
| | - Hervé Perdry
- INSERM U669 - Equipe GGS Génomique & Génétique Statistique, Villejuif, France
| | | | - Jean Feunteun
- UMR 9019 Genome Integrity and Cancers, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
188
|
Hulla J, Kilaru V, Doucette G, Balshaw D, Watkins T. Exposure Science in the 21st Century: Advancing the Science and Technology of Environmental Sensors through Cooperation and Collaboration across U.S. Federal Agencies. CHEMOSENSORS (BASEL, SWITZERLAND) 2020; 8:1-9. [PMID: 35711718 PMCID: PMC9199483 DOI: 10.3390/chemosensors8030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The convergence of technological innovations in areas such as microelectronics, fabrication, the Internet-of-things (IoT), and smartphones, along with their associated "apps", permeates many aspects of life. To that list we now can add environmental monitoring. Once the sole purview of governments and academics in research, this sector is currently experiencing a transformation that is democratizing monitoring with inexpensive, portable commodities available through online retailers. However, as with any emerging area, several challenges and infrastructural hurdles must be addressed before this technology can be fully adopted and its potential be realized. A unique aspect of environmental sensing that differentiates it from some other technology sectors is its strong intersection and overlap with governance, public policy, public health, and national security-all of which contain some element of inherent governmental function. This paper advocates for and addresses the role of sensors in exposure science and illustrates areas in which improved coordination and leveraging of investments by government have helped and would catalyze further development of this technology sector.
Collapse
Affiliation(s)
- Janis Hulla
- Sacramento District, United States Army Corps of Engineers, EDE, 1325 J Street, Sacramento, CA 95814, USA
| | - Vasu Kilaru
- Center for Environmental Measurement & Modeling, Office of Research and Development, United States Environmental Protection Agency, Mail Drop D343-02, 109 TW Alexander Drive, Durham, NC 27709, USA
| | - Gregory Doucette
- NOAA/National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC 29412, USA
| | - David Balshaw
- Exposure, Response, and Technology Branch, National Institute of Environmental Health Sciences, 530 Davis Dr. suite 3006, Morrisville, NC 27560, USA
| | - Tim Watkins
- Center for Environmental Measurement and Modeling, Office of Research and Development, United States Environmental Protection Agency, Mail Drop D305-01, 109 TW Alexander Drive, Durham, NC 27709, USA
| |
Collapse
|
189
|
Li ZM, Benker B, Bao Q, Henkelmann B, Corsten C, Michalke B, Pauluschke-Fröhlich J, Flisikowski K, Schramm KW, De Angelis M. Placental distribution of endogenous and exogenous substances: A pilot study utilizing cryo-sampled specimen off delivery room. Placenta 2020; 100:45-53. [PMID: 32828006 DOI: 10.1016/j.placenta.2020.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Reliability in the use of placentome (including placenta, umbilical cord, and cord blood) biomarkers requires an understanding of their distributions. Here we aim to develop a simple and proper placenta sampling scheme, and to evaluate the placental distributions of biomarkers. METHODS We developed a continuous cooling chain protocol off delivery room and cryo-subsampling method for placenta sampling. The levels of thyroid hormones (THs), elements, persistent organic pollutants (POPs), monoamines, and vitamin E were measured using UPLC-Q-TOF-MS, HPLC-ICP-MS, HPLC-EcD, and HRGC-HRMS, respectively. The distributions of biomarkers were assessed. RESULTS In human placentome, l-thyroxine (T4), Cd, Se, Zn, Cu, Fe, Ca, K, Mg, α-tocopherol, β-tocopherol, and β-tocotrienol levels were higher in placenta than in umbilical cord, while Pb and Mn were concentrated in human cord. In porcine placentome, T4, 3,3',5'-triiodo-l-thyronine (rT3), 3,3'-diiodo-l-thyronine, Cd, Pb, Zn, K, and Al levels were higher in the cord. The intraclass correlation coefficient (ICC) was <0.4 for 3,3',5-triiodo-l-thyronine, rT3, α-tocopherol, and 7 elements in human basal plate, indicating low reliability. rT3, Cd, Zn, Mn, and Cu were significantly concentrated in the central region in human placenta, while higher levels of As, Cd, Cr, and Al were found in the periphery region in porcine placenta. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) showed moderate reliability (ICC: 0.40-0.98) except PCB-81, -126, and BDE-208, while polychlorinated dibenzo-p-doixins/furans (PCDD/Fs) showed poor reliability (ICC: 0.07-0.31). DISCUSSION These results highlight the complexity of placenta sampling. This study provides a novel and simple sampling approach in investigating placental exposomics.
Collapse
Affiliation(s)
- Zhong-Min Li
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; School of Life Sciences Weihenstephan (Nutrition), Technische Universität München, 85354, Freising, Germany.
| | - Bärbel Benker
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Qibei Bao
- Ningbo College of Health Sciences, 315100, Ningbo, Zhejiang, China
| | - Bernhard Henkelmann
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Claudia Corsten
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Michalke
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jan Pauluschke-Fröhlich
- Department für Frauengesundheit Universitäts-Frauenklinik Tübingen, Calwerstr. 7, 70276, Tübingen, Germany
| | - Krzysztof Flisikowski
- Lehrstuhl für Biotechnologie der Nutztiere, Technische Universität München, Liesel-Beckmannstr. 1, 85354, Freising, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Department für Biowissenschaftliche Grundlagen, Technische Universität München, Weihenstephaner Steig 23, 85350, Freising, Germany
| | - Meri De Angelis
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
190
|
Yang X. Multitissue Multiomics Systems Biology to Dissect Complex Diseases. Trends Mol Med 2020; 26:718-728. [PMID: 32439301 PMCID: PMC7395877 DOI: 10.1016/j.molmed.2020.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022]
Abstract
Most complex diseases involve genetic and environmental risk factors, engage multiple cells and tissues, and follow a polygenic or omnigenic model depicting numerous genes contributing to pathophysiology. These multidimensional complexities pose challenges to traditional approaches that examine individual factors. In turn, multitissue multiomics systems biology has emerged to comprehensively elucidate within- and cross-tissue molecular networks underlying gene-by-environment interactions and contributing to complex diseases. The power of systems biology in retrieving novel insights and formulating new hypotheses has been well documented. However, the field faces various challenges that call for debate and action. In this opinion article, I discuss the concepts, benefits, current state, and challenges of the field and point to the next steps toward network-based systems medicine.
Collapse
Affiliation(s)
- Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
191
|
Tinkov OV, Grigorev VY, Razdolsky AN, Grigoryeva LD, Dearden JC. Effect of the structural factors of organic compounds on the acute toxicity toward Daphnia magna. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:615-641. [PMID: 32713201 DOI: 10.1080/1062936x.2020.1791250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The acute toxicity of organic compounds towards Daphina magna was subjected to QSAR analysis. The two-dimensional simplex representation of molecular structure (2D SiRMS) and the support vector machine (SVM), gradient boosting (GBM) methods were used to develop QSAR models. Adequate regression QSAR models were developed for incubation of 24 h. Their interpretation allowed us to quantitatively describe and rank the well-known toxicophores, to refine their molecular surroundings, and to distinguish the structural derivatives of the fragments that significantly contribute to the acute toxicity (LC50) of organic compounds towards D. magna. Based on the results of the interpretation of the regression models, a molecular design (modification) of highly toxic compounds was performed in order to reduce their hazard. In addition, acceptable classification QSAR models were developed to reliably predict the following mode of action (MOA): specific and non-specific toxicity of organic compounds towards D. magna. When interpreting these models, we were able to determine the structural fragments and the physicochemical characteristics of molecules that are responsible for the manifestation of one of the modes of action. The on-line version of the OCHEM expert system (https://ochem.eu), HYBOT descriptors, and the random forest and SVM methods were used for a comparative QSAR investigation.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Computer Science, Military Institute of the Ministry of Defense , Tiraspol, Moldova
| | - V Y Grigorev
- Department of Computer-aided Molecular Design, Institute of Physiologically Active Compounds of the Russian Academy of Science , Chernogolovka, Russia
| | - A N Razdolsky
- Department of Computer-aided Molecular Design, Institute of Physiologically Active Compounds of the Russian Academy of Science , Chernogolovka, Russia
| | - L D Grigoryeva
- Department of Fundamental Physicochemical Engineering, Moscow State University , Moscow, Russia
| | - J C Dearden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool, UK
| |
Collapse
|
192
|
Canali S. Making evidential claims in epidemiology: Three strategies for the study of the exposome. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 82:101248. [PMID: 32307253 DOI: 10.1016/j.shpsc.2019.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 06/11/2023]
Abstract
How is scientific data used to represent phenomena and as evidence for claims about phenomena? In this paper, I propose that a specific type of claims - evidential claims - is involved in data practices to define and restrict the representational and evidential content of a dataset. I present an account of data practices in the epidemiology of the exposome based on the notion of evidential claims, which helps unpack the approaches, assumptions and warrants that connect different stages of research. I identify three different strategies to generate different types of evidential claims in this case. The macro strategy, which individuates the dataset that serves as the initial evidential space for research. The micro strategy, which is used to generate evidential claims about the microscopic and individual component of target phenomena. The association strategy, that uses evidence from the other strategies to identify a dataset as representation of the different levels and relations of exposure and disease. Differentiating between these strategies sheds light on the multi-faceted landscape of biomedical research on environment and health; and the roles of data and evidence in the process of inquiry.
Collapse
Affiliation(s)
- Stefano Canali
- Institute for Philosophy, Leibniz Universität Hannover, Lange Laube 32, 30159, Hannover, Germany.
| |
Collapse
|
193
|
Watanabe T, Sugiyama T, Takahashi H, Noguchi H, Tamiya N. Concordance of hypertension, diabetes and dyslipidaemia in married couples: cross-sectional study using nationwide survey data in Japan. BMJ Open 2020; 10:e036281. [PMID: 32723739 PMCID: PMC7389765 DOI: 10.1136/bmjopen-2019-036281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Because married couples have many environmental influences in common, spouses may develop similar diseases. This study aimed to determine the concordance of hypertension, diabetes and dyslipidaemia, which are major risk factors for cardiovascular disease, among married couples in Japan. RESEARCH DESIGN AND METHODS We conducted a cross-sectional study of married couples who were both aged ≥40 years using the 2016 Comprehensive Survey of Living Conditions, which is a Japanese national survey. We first determined the proportions of wives and husbands who were receiving therapy for each of the diseases of interest. We then conducted logistic regression analyses using the wives undergoing therapy for each disease as outcomes and the husbands undergoing therapy for the same disease as the principal exposure, adjusting for covariates. RESULTS The subjects of the analyses were 86 941 married couples. The wives of male patients were significantly more likely to be receiving therapy for the same disease. Logistic regression revealed that when husbands were undergoing therapy for these diseases their wives had ORs (95% CIs) of 1.79 (1.72-1.86) for hypertension, 1.45 (1.34-1.58) for diabetes, 2.58 (2.41-2.75) for dyslipidaemia and 1.87 (1.80-1.93) for any of these diseases. CONCLUSIONS If men have hypertension, diabetes or dyslipidaemia, their wives were also more susceptible to the same disease. Medical professionals and couples may need to recognise these results and consider couple-based interventions to help the prevention, early detection and treatment of these diseases.
Collapse
Affiliation(s)
- Taeko Watanabe
- Department of Health Services Research, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Health Services Research and Development Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takehiro Sugiyama
- Department of Health Services Research, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Health Services Research and Development Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideto Takahashi
- Health Services Research and Development Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- National Institute of Public Health, Wako, Saitama, Japan
| | - Haruko Noguchi
- Health Services Research and Development Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Political Science and Economics, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Nanako Tamiya
- Department of Health Services Research, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Health Services Research and Development Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
194
|
Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res 2020; 117:423-434. [PMID: 32666082 DOI: 10.1093/cvr/cvaa217] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
One in 10 persons in the world aged 40 years and older will develop the syndrome of HFpEF (heart failure with preserved ejection fraction), the most common form of chronic cardiovascular disease for which no effective therapies are currently available. Metabolic disturbance and inflammatory burden contribute importantly to HFpEF pathogenesis. The interplay within these two biological processes is complex; indeed, it is now becoming clear that the notion of metabolic inflammation-metainflammation-must be considered central to HFpEF pathophysiology. Inflammation and metabolism interact over the course of syndrome progression, and likely impact HFpEF treatment and prevention. Here, we discuss evidence in support of a causal, mechanistic role of metainflammation in shaping HFpEF, proposing a framework in which metabolic comorbidities profoundly impact cardiac metabolism and inflammatory pathways in the syndrome.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB11.208, Dallas, TX 75390-8573, USA.,Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB11.208, Dallas, TX 75390-8573, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
195
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
196
|
Kuriyama S, Metoki H, Kikuya M, Obara T, Ishikuro M, Yamanaka C, Nagai M, Matsubara H, Kobayashi T, Sugawara J, Tamiya G, Hozawa A, Nakaya N, Tsuchiya N, Nakamura T, Narita A, Kogure M, Hirata T, Tsuji I, Nagami F, Fuse N, Arai T, Kawaguchi Y, Higuchi S, Sakaida M, Suzuki Y, Osumi N, Nakayama K, Ito K, Egawa S, Chida K, Kodama E, Kiyomoto H, Ishii T, Tsuboi A, Tomita H, Taki Y, Kawame H, Suzuki K, Ishii N, Ogishima S, Mizuno S, Takai-Igarashi T, Minegishi N, Yasuda J, Igarashi K, Shimizu R, Nagasaki M, Tanabe O, Koshiba S, Hashizume H, Motohashi H, Tominaga T, Ito S, Tanno K, Sakata K, Shimizu A, Hitomi J, Sasaki M, Kinoshita K, Tanaka H, Kobayashi T, Kure S, Yaegashi N, Yamamoto M. Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study): rationale, progress and perspective. Int J Epidemiol 2020; 49:18-19m. [PMID: 31504573 PMCID: PMC7124511 DOI: 10.1093/ije/dyz169] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hirohito Metoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masahiro Kikuya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,School of Medicine, Teikyo University, Tokyo, Japan
| | - Taku Obara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Chizuru Yamanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masato Nagai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroko Matsubara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomoko Kobayashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Junichi Sugawara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,School of Health and Social Services, Saitama Prefectural University, Koshigaya, Japan
| | - Naho Tsuchiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takumi Hirata
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ichiro Tsuji
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Fuji Nagami
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Tomohiko Arai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshio Kawaguchi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shinichi Higuchi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masaki Sakaida
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoichi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Clinical Genetics, Ageo Central General Hospital, Ageo, Japan
| | - Noriko Osumi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kiyoshi Ito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shinichi Egawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Koichi Chida
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Eiichi Kodama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Hideyasu Kiyomoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tadashi Ishii
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Akito Tsuboi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan.,Graduate School of Dentistry, Tohou University, Sendai, Japan
| | - Hiroaki Tomita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroshi Kawame
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan.,School of Medicine, The Jikei University, Tokyo, Japan
| | - Kichiya Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Naoto Ishii
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Mizuno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takako Takai-Igarashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kazuhiko Igarashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Biosample Research Center, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroaki Hashizume
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Sadayoshi Ito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan.,School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kiyomi Sakata
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan.,School of Medicine, Iwate Medical University, Morioka, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Jiro Hitomi
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan.,School of Medicine, Iwate Medical University, Morioka, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan.,School of Medicine, Iwate Medical University, Morioka, Japan.,Institute for Biomedical Science, Iwate Medical University, Yahaba, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hiroshi Tanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Laboratory for Promotion of Medical Data Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadao Kobayashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | - Shigeo Kure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Nobuo Yaegashi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
197
|
Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg A, Rahmani R, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla SJ, Wollscheid B, Zucchini-Pascal N, Braeuning A, Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol 2020; 139:111283. [DOI: 10.1016/j.fct.2020.111283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
|
198
|
What Is New about the Exposome? Exploring Scientific Change in Contemporary Epidemiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082879. [PMID: 32331256 PMCID: PMC7215638 DOI: 10.3390/ijerph17082879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
In this commentary, I discuss the scientific changes brought by the exposome, asking what is new about this approach and line of research. I place the exposome in a historical perspective, by analyzing the conditions under which the exposome has been conceived, developed and established in the context of contemporary epidemiological research. I argue that the exposome has been developed by transferring approaches, methods and conceptualizations from other lines of research in the life and health sciences. I thus discuss the conceptual and methodological innovations of the exposome as a result of the merging and adaptation of these elements for new uses and purposes. On this basis, I argue that the novelty of the exposome should be seen in incremental rather than revolutionary terms and, in this sense, the exposome shares significant elements with other projects and repertoires in postgenomics. I conclude by discussing the consequences of this analysis for the potential limitations and future development of exposome research.
Collapse
|
199
|
Vermeulen R, Schymanski EL, Barabási AL, Miller GW. The exposome and health: Where chemistry meets biology. Science 2020; 367:392-396. [PMID: 31974245 DOI: 10.1126/science.aay3164] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive evidence showing that exposure to specific chemicals can lead to disease, current research approaches and regulatory policies fail to address the chemical complexity of our world. To safeguard current and future generations from the increasing number of chemicals polluting our environment, a systematic and agnostic approach is needed. The "exposome" concept strives to capture the diversity and range of exposures to synthetic chemicals, dietary constituents, psychosocial stressors, and physical factors, as well as their corresponding biological responses. Technological advances such as high-resolution mass spectrometry and network science have allowed us to take the first steps toward a comprehensive assessment of the exposome. Given the increased recognition of the dominant role that nongenetic factors play in disease, an effort to characterize the exposome at a scale comparable to that of the human genome is warranted.
Collapse
Affiliation(s)
- Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands. .,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
200
|
Flasch M, Bueschl C, Woelflingseder L, Schwartz-Zimmermann HE, Adam G, Schuhmacher R, Marko D, Warth B. Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chem Biol 2020; 15:970-981. [PMID: 32167285 PMCID: PMC7171601 DOI: 10.1021/acschembio.9b01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Xenobiotics are ubiquitous in the environment and modified
in the human body by phase I and II metabolism. Liquid chromatography
coupled to high resolution mass spectrometry is a powerful tool to
investigate these biotransformation products. We present a workflow
based on stable isotope-assisted metabolomics and the bioinformatics
tool MetExtract II for deciphering xenobiotic metabolites produced
by human cells. Its potential was demonstrated by the investigation
of the metabolism of deoxynivalenol (DON), an abundant food contaminant,
in a liver carcinoma cell line (HepG2) and a model for colon carcinoma
(HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate
2, and DON-10-glutathione as well as DON-cysteine. Conjugation with
amino acids and an antibiotic was confirmed for the first time. The
approach allows the untargeted elucidation of human xenobiotic products
in tissue culture. It may be applied to other fields of research including
drug metabolism, personalized medicine, exposome research, and systems
biology to better understand the relevance of in vitro experiments.
Collapse
Affiliation(s)
- Mira Flasch
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|