151
|
Zheng R, Xiang X, Shi Y, Qiu A, Luo X, Xie J, Russell R, Zhang D. Chronic jet lag alters gut microbiome and mycobiome and promotes the progression of MAFLD in HFHFD-fed mice. Front Microbiol 2023; 14:1295869. [PMID: 38130943 PMCID: PMC10733492 DOI: 10.3389/fmicb.2023.1295869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. Circadian disruptors, such as chronic jet lag (CJ), may be new risk factors for MAFLD development. However, the roles of CJ on MAFLD are insufficiently understood, with mechanisms remaining elusive. Studies suggest a link between gut microbiome dysbiosis and MAFLD, but most of the studies are mainly focused on gut bacteria, ignoring other components of gut microbes, such as gut fungi (mycobiome), and few studies have addressed the rhythm of the gut fungi. This study explored the effects of CJ on MAFLD and its related microbiotic and mycobiotic mechanisms in mice fed a high fat and high fructose diet (HFHFD). Forty-eight C57BL6J male mice were divided into four groups: mice on a normal diet exposed to a normal circadian cycle (ND-NC), mice on a normal diet subjected to CJ (ND-CJ), mice on a HFHFD exposed to a normal circadian cycle (HFHFD-NC), and mice on a HFHFD subjected to CJ (HFHFD-CJ). After 16 weeks, the composition and rhythm of microbiota and mycobiome in colon contents were compared among groups. The results showed that CJ exacerbated hepatic steatohepatitis in the HFHFD-fed mice. Compared with HFHFD-NC mice, HFHFD-CJ mice had increases in Aspergillus, Blumeria and lower abundances of Akkermansia, Lactococcus, Prevotella, Clostridium, Bifidobacterium, Wickerhamomyces, and Saccharomycopsis genera. The fungi-bacterial interaction network became more complex after HFHFD and/or CJ interventions. The study revealed that CJ altered the composition and structure of the gut bacteria and fungi, disrupted the rhythmic oscillation of the gut microbiota and mycobiome, affected interactions among the gut microbiome, and promoted the progression of MAFLD in HFHFD mice.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anqi Qiu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Luo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyan Xie
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
152
|
Miura K, Morishige JI, Abe J, Xu P, Shi Y, Jing Z, Nagata N, Miyazaki R, Sakane N, Mieda M, Ono M, Maida Y, Fujiwara T, Fujiwara H, Ando H. Imeglimin profoundly affects the circadian clock in mouse embryonic fibroblasts. J Pharmacol Sci 2023; 153:215-220. [PMID: 37973219 DOI: 10.1016/j.jphs.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Imeglimin is a novel antidiabetic drug structurally related to metformin. Metformin has been shown to modulate the circadian clock in rat fibroblasts. Accordingly, in the present study, we aimed to determine whether imeglimin can impact the circadian oscillator in mouse embryonic fibroblasts (MEFs). METHODS MEFs carrying a Bmal1-Emerald luciferase (Bmal1-ELuc) reporter were exposed to imeglimin (0.1 or 1 mM), metformin (0.1 or 1 mM), a nicotinamide phosphoribosyltransferase inhibitor FK866, and/or vehicle. Subsequently, Bmal1-ELuc expression and clock gene mRNA expression levels were measured at 10-min intervals for 55 h and 4-h intervals for 32 h, respectively. RESULTS Imeglimin significantly prolonged the period (from 26.3 to 30.0 h at 0.1 mM) and dose-dependently increased the amplitude (9.6-fold at 1 mM) of the Bmal1-ELuc expression rhythm; however, metformin exhibited minimal effects on these parameters. Moreover, imeglimin notably impacted the rhythmic mRNA expression of clock genes (Bmal1, Per1, and Cry1). The concurrent addition of FK866 partly inhibited the effects of imeglimin on both Bmal1-ELuc expression and clock gene mRNA expression. CONCLUSION Collectively, these results reveal that imeglimin profoundly affects the circadian clock in MEFs. Further studies are needed to evaluate whether imeglimin treatment could exert similar effects in vivo.
Collapse
Affiliation(s)
- Kotomi Miura
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jotaro Abe
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Pingping Xu
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yifan Shi
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryo Miyazaki
- Faculty of Human Sciences, Shimane University, Matsue, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiko Maida
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoko Fujiwara
- Department of Human Life Environments, Kyoto Notre Dame University, Kyoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
153
|
Burclaff J. Transcriptional regulation of metabolism in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2023; 325:G501-G507. [PMID: 37786942 PMCID: PMC10894668 DOI: 10.1152/ajpgi.00147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Epithelial metabolism in the intestine is increasingly known to be important for stem cell maintenance and activity while also affecting weight gain and diseases. This review compiles studies from recent years which describe major transcription factors controlling metabolic activity across the intestinal epithelium as well as transcriptional and epigenetic networks controlling the factors themselves. Recent studies show that transcriptional regulators serve as the link between signals from the microbiota and diet and epithelial metabolism. Studies have advanced this paradigm to identify druggable targets to block weight gain or disease progression in mice. As such, there is great potential that a better understanding of these regulatory networks will improve our knowledge of intestinal physiology and promote discoveries to benefit human health.
Collapse
Affiliation(s)
- Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States
| |
Collapse
|
154
|
Furlan A, Petrus P. Brain-body communication in metabolic control. Trends Endocrinol Metab 2023; 34:813-822. [PMID: 37716877 DOI: 10.1016/j.tem.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
A thorough understanding of the mechanisms controlling energy homeostasis is needed to prevent and treat metabolic morbidities. While the contribution of organs such as the liver, muscle, adipose tissue, and pancreas to the regulation of energy has received wide attention, less is known about the interplay with the nervous system. Here, we highlight the role of the nervous systems in regulating metabolism beyond the classic hypothalamic endocrine signaling models and discuss the contribution of circadian rhythms, higher brain regions, and sociodemographic variables in the energy equation. We infer that interdisciplinary approaches are key to conceptually advancing the current research frontier and devising innovative therapies to prevent and treat metabolic disease.
Collapse
Affiliation(s)
- Alessandro Furlan
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden.
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden.
| |
Collapse
|
155
|
Chi S, Zhang T, Pan Y, Niu S, Zhao L, Gu Z, Liu Q, Jin A, Wang W, Tan S. Time-restricted feeding alleviates metabolic implications of circadian disruption by regulating gut hormone release and brown fat activation. Food Funct 2023; 14:10443-10458. [PMID: 37916301 DOI: 10.1039/d3fo02063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Individuals with rotating and night shift work are highly susceptible to developing metabolic disorders such as obesity and diabetes. This is primarily attributed to disruptions in the circadian rhythms caused by activities and irregular eating habits. Time-restricted feeding (tRF) limits the daily eating schedules and has been demonstrated to markedly improve several metabolic disorders. Although an intricate relationship exists between tRF and circadian rhythms, the underlying specific mechanism remains elusive. We used a sleep disruption device for activity interference and established a model of circadian rhythm disorder in mice with different genetic backgrounds. We found that circadian rhythm disruption led to abnormal hormone secretion in the gut and elevated insulin resistance. tRF improved metabolic abnormalities caused by circadian rhythm disruption, primarily by restoring the gut hormone secretion rhythm and activating brown fat thermogenesis. The crucial function of brown fat in tRF was confirmed using a mouse model with brown fat removal. We demonstrated that chenodeoxycholic acid (CDCA) effectively improved circadian rhythm disruption-induced metabolic disorders by restoring brown fat activation. Our findings demonstrate the potential benefits of CDCA in reversing metabolic disadvantages associated with irregular circadian rhythms.
Collapse
Affiliation(s)
- Sensen Chi
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Taoyuan Zhang
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Yu Pan
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Aishun Jin
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Wang Wang
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
| | - Shuai Tan
- Department of Immunology, School of Basic Medicine Sciences, Chongqing Medical University, Chongqing 400010, China.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
156
|
Alvarez-García L, Sánchez-García FJ, Vázquez-Pichardo M, Moreno-Altamirano MM. Chikungunya Virus, Metabolism, and Circadian Rhythmicity Interplay in Phagocytic Cells. Metabolites 2023; 13:1143. [PMID: 37999239 PMCID: PMC10672914 DOI: 10.3390/metabo13111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to humans by mosquitoes of the genus Aedes, causing the chikungunya fever disease, associated with inflammation and severe articular incapacitating pain. There has been a worldwide reemergence of chikungunya and the number of cases increased to 271,006 in 2022 in the Americas alone. The replication of CHIKV takes place in several cell types, including phagocytic cells. Monocytes and macrophages are susceptible to infection by CHIKV; at the same time, they provide protection as components of the innate immune system. However, in host-pathogen interactions, CHIKV might have the ability to alter the function of immune cells, partly by rewiring the tricarboxylic acid cycle. Some viral evasion mechanisms depend on the metabolic reprogramming of immune cells, and the cell metabolism is intertwined with circadian rhythmicity; thus, a circadian immunovirometabolism axis may influence viral pathogenicity. Therefore, analyzing the interplay between viral infection, circadian rhythmicity, and cellular metabolic reprogramming in human macrophages could shed some light on the new field of immunovirometabolism and eventually contribute to the development of novel drugs and therapeutic approaches based on circadian rhythmicity and metabolic reprogramming.
Collapse
Affiliation(s)
- Linamary Alvarez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - Mauricio Vázquez-Pichardo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
- Laboratorio de Arbovirus, Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Col. Lomas de Plateros, Mexico City 01480, Mexico
| | - M. Maximina Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| |
Collapse
|
157
|
Duan J, Ngo MN, Karri SS, Tsoi LC, Gudjonsson JE, Shahbaba B, Lowengrub J, Andersen B. tauFisher accurately predicts circadian time from a single sample of bulk and single-cell transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535473. [PMID: 37066246 PMCID: PMC10104027 DOI: 10.1101/2023.04.04.535473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tau-Fisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's out-standing performance in both bulk and single-cell transcriptomic data collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNA-seq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNA-seq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.
Collapse
|
158
|
Isherwood CM, Robertson MD, Skene DJ, Johnston JD. Daily rhythms of diabetogenic factors in men: role of type 2 diabetes and body weight. Endocr Connect 2023; 12:e230064. [PMID: 37855336 PMCID: PMC10620456 DOI: 10.1530/ec-23-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Obesity is a major cause of type 2 diabetes. Transition from obesity to type 2 diabetes manifests in the dysregulation of hormones controlling glucose homeostasis and inflammation. As metabolism is a dynamic process that changes across 24 h, we assessed diurnal rhythmicity in a panel of 10 diabetes-related hormones. Plasma hormones were analysed every 2 h over 24 h in a controlled laboratory study with hourly isocaloric drinks during wake. To separate effects of body mass from type 2 diabetes, we recruited three groups of middle-aged men: an overweight (OW) group with type 2 diabetes and two control groups (lean and OW). Average daily concentrations of glucose, triacylglycerol and all the hormones except visfatin were significantly higher in the OW group compared to the lean group (P < 0.001). In type 2 diabetes, glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide and glucagon-like peptide-1 increased further (P < 0.05), whereas triacylglycerol, ghrelin and plasminogen activator inhibitor-1 concentrations were significantly lower compared to the OW group (P < 0.001). Insulin, C-peptide, glucose-dependent insulinotropic peptide and leptin exhibited significant diurnal rhythms in all study groups (P < 0.05). Other hormones were only rhythmic in 1 or 2 groups. In every group, hormones associated with glucose regulation (insulin, C-peptide, glucose-dependent insulinotropic peptide, ghrelin and plasminogen activator inhibitor-1), triacylglycerol and glucose peaked in the afternoon, whereas glucagon and hormones associated with appetite and inflammation peaked at night. Thus being OW with or without type 2 diabetes significantly affected hormone concentrations but did not affect the timing of the hormonal rhythms.
Collapse
Affiliation(s)
- Cheryl M Isherwood
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - M Denise Robertson
- Section of Metabolic Medicine, Food and Macronutrients, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Debra J Skene
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan D Johnston
- Section of Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
159
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
160
|
Murta L, Seixas D, Harada L, Damiano RF, Zanetti M. Intermittent Fasting as a Potential Therapeutic Instrument for Major Depression Disorder: A Systematic Review of Clinical and Preclinical Studies. Int J Mol Sci 2023; 24:15551. [PMID: 37958535 PMCID: PMC10647529 DOI: 10.3390/ijms242115551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Recent studies have reported positive effects of Intermittent Fasting (IF) on metabolic parameters, cognition, and mood. However, regarding depressive symptoms, the effect of IF is not clear. The purpose of this review was to assess the available evidence on IF interventions for depression in both clinical and preclinical studies. Of the 23 included studies, 15 were performed on humans and 8 on animal models. The studies on rodents suggested that IF acts as a circadian regulator, improving neurotransmitter availability and increasing the levels of neurotrophic factors in the brain. However, the investigations on humans mainly evaluated healthy volunteers and showed a great heterogeneity regarding both the IF regimen studied and the observed effects on mood. Most available clinical trials have specific limitations, such as small sample sizes and uncontrolled designs. A comprehensive systematic review was conducted on five databases, PubMed, Cochrane, the Central Register of Controlled Trials, Web of Science databases, BVS and Scopus, identifying 23 relevant studies up to 6 October 2022. IF has potentially relevant physiological effects for the treatment of mood disorders, but better designed studies and controlled evaluations are needed to evaluate its efficiency in the treatment of major depression.
Collapse
Affiliation(s)
- Laís Murta
- Hospital Sírio-Libanês, Sao Paulo 01308-050, Brazil; (L.H.); (M.Z.)
| | - Daniela Seixas
- Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 01246-903, Brazil; (D.S.); (R.F.D.)
| | - Luana Harada
- Hospital Sírio-Libanês, Sao Paulo 01308-050, Brazil; (L.H.); (M.Z.)
| | - Rodolfo Furlan Damiano
- Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 01246-903, Brazil; (D.S.); (R.F.D.)
| | - Marcus Zanetti
- Hospital Sírio-Libanês, Sao Paulo 01308-050, Brazil; (L.H.); (M.Z.)
| |
Collapse
|
161
|
Iwashita M, Tran A, Garcia M, Cashon J, Burbano D, Salgado V, Hasegawa M, Balmilero-Unciano R, Politan K, Wong M, Lee RWY, Yoshizawa M. Metabolic shift toward ketosis in asocial cavefish increases social-like affinity. BMC Biol 2023; 21:219. [PMID: 37840141 PMCID: PMC10577988 DOI: 10.1186/s12915-023-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Social affinity and collective behavior are nearly ubiquitous in the animal kingdom, but many lineages feature evolutionarily asocial species. These solitary species may have evolved to conserve energy in food-sparse environments. However, the mechanism by which metabolic shifts regulate social affinity is not well investigated. RESULTS In this study, we used the Mexican tetra (Astyanax mexicanus), which features riverine sighted surface (surface fish) and cave-dwelling populations (cavefish), to address the impact of metabolic shifts on asociality and other cave-associated behaviors in cavefish, including repetitive turning, sleeplessness, swimming longer distances, and enhanced foraging behavior. After 1 month of ketosis-inducing ketogenic diet feeding, asocial cavefish exhibited significantly higher social affinity, whereas social affinity regressed in cavefish fed the standard diet. The ketogenic diet also reduced repetitive turning and swimming in cavefish. No major behavioral shifts were found regarding sleeplessness and foraging behavior, suggesting that other evolved behaviors are not largely regulated by ketosis. We further examined the effects of the ketogenic diet via supplementation with exogenous ketone bodies, revealing that ketone bodies are pivotal molecules positively associated with social affinity. CONCLUSIONS Our study indicated that fish that evolved to be asocial remain capable of exhibiting social affinity under ketosis, possibly linking the seasonal food availability and sociality.
Collapse
Affiliation(s)
- Motoko Iwashita
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Amity Tran
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Marianne Garcia
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Jia Cashon
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Devanne Burbano
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Vanessa Salgado
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Malia Hasegawa
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | | | - Kaylah Politan
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Miki Wong
- Nā Pu'uwai Native Hawaiian Healthcare System, Kaunakakai, HI, 96748, USA
- Nutrition Services Department, Shriners Hospitals for Children, Honolulu, HI, 96826, USA
| | - Ryan W Y Lee
- Medical Staff Department, Shriners Hospitals for Children, Honolulu, HI, 96826, USA
| | - Masato Yoshizawa
- School of Life Sciences, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
162
|
Sun W, Ren J, Jia Z, Liang P, Li S, Song M, Cao Y, Chen H, Luo Q, Yang L, Wang J, Wang C, Wang L. Untargeted Metabolomics Reveals Alterations of Rhythmic Pulmonary Metabolism in IPF. Metabolites 2023; 13:1069. [PMID: 37887394 PMCID: PMC10608701 DOI: 10.3390/metabo13101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive condition characterized by the impairment of alveolar epithelial cells. Despite continued research efforts, the effective therapeutic medication is still absent due to an incomplete understanding of the underlying etiology. It has been shown that rhythmic alterations are of significant importance in the pathophysiology of IPF. However, a comprehensive understanding of how metabolite level changes with circadian rhythms in individuals with IPF is lacking. Here, we constructed an extensive metabolite database by utilizing an unbiased reference system culturing with 13C or 15N labeled nutrients. Using LC-MS analysis via ESI and APCI ion sources, 1300 potential water-soluble metabolites were characterized and applied to evaluate the metabolic changes with rhythm in the lung from both wild-type mice and mice with IPF. The metabolites, such as glycerophospholipids and amino acids, in WT mice exhibited notable rhythmic oscillations. The concentrations of phospholipids reached the highest during the fast state, while those of amino acids reached their peak during fed state. Similar diurnal variations in the metabolite rhythm of amino acids and phospholipids were also observed in IPF mice. Although the rhythmic oscillation of metabolites in the urea cycle remained unchanged, there was a significant up-regulation in their levels in the lungs of IPF mice. 15N-ammonia in vivo isotope tracing further showed an increase in urea cycle activity in the lungs of mice with IPF, which may compensate for the reduced efficiency of the hepatic urea cycle. In sum, our metabolomics database and method provide evidence of the periodic changes in lung metabolites, thereby offering valuable insights to advance our understanding of metabolic reprogramming in the context of IPF.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Care, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Jiuqiang Ren
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Zixian Jia
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Puyang Liang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengxi Li
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Meiyue Song
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
| | - Yinghao Cao
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Haoran Chen
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
| | - Lifeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chen Wang
- Department of Respiratory and Critical Care, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| |
Collapse
|
163
|
Mühlematter C, Nielsen DS, Castro-Mejía JL, Brown SA, Rasch B, Wright KP, Walser JC, Schoch SF, Kurth S. Not simply a matter of parents-Infants' sleep-wake patterns are associated with their regularity of eating. PLoS One 2023; 18:e0291441. [PMID: 37796923 PMCID: PMC10553286 DOI: 10.1371/journal.pone.0291441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
In adults there are indications that regular eating patterns are related to better sleep quality. During early development, sleep and eating habits experience major maturational transitions. Further, the bacterial landscape of the gut microbiota undergoes a rapid increase in complexity. Yet little is known about the association between sleep, eating patterns and the gut microbiota. We first hypothesized that higher eating regularity is associated with more mature sleep patterns, and second, that this association is mediated by the maturational status of the gut microbiota. To test this hypothesis, we performed a longitudinal study in 162 infants to assess actigraphy, diaries of sleep and eating times, and stool microbiota composition at ages 3, 6 and 12 months. To comprehensively capture infants' habitual sleep-wake patterns, 5 sleep composites that characterize infants' sleep habits across multiple days in their home environment were computed. To assess timing of eating habits, we developed an Eating Regularity Index (ERI). Gut microbial composition was assessed by 16S rRNA gene amplicon sequencing, and its maturation was assessed based on alpha diversity, bacterial maturation index, and enterotype. First, our results demonstrate that increased eating regularity (higher ERI) in infants is associated with less time spent awake during the night (sleep fragmentation) and more regular sleep patterns. Second, the associations of ERI with sleep evolve with age. Third, the link between infant sleep and ERI remains significant when controlling for parents' subjectively rated importance of structuring their infant's eating and sleeping times. Finally, the gut microbial maturational markers did not account for the link between infant's sleep patterns and ERI. Thus, infants who eat more regularly have more mature sleep patterns, which is independent of the maturational status of their gut microbiota. Interventions targeting infant eating rhythm thus constitute a simple, ready-to-use anchor to improve sleep quality.
Collapse
Affiliation(s)
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Josue L. Castro-Mejía
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | | | - Sarah F. Schoch
- Donders Institute for Brain, Radboud University Medical Center, Nijmegen, Netherlands
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
164
|
Erickson ML, North R, Counts J, Wang W, Porter Starr KN, Wideman L, Pieper C, Dunn J, Kraus WE. Nightshift imposes irregular lifestyle behaviors in police academy trainees. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad038. [PMID: 38020732 PMCID: PMC10630191 DOI: 10.1093/sleepadvances/zpad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Indexed: 12/01/2023]
Abstract
Study Objective Shiftwork increases risk for numerous chronic diseases, which is hypothesized to be linked to disruption of circadian timing of lifestyle behaviors. However, empirical data on timing of lifestyle behaviors in real-world shift workers are lacking. To address this, we characterized the regularity of timing of lifestyle behaviors in shift-working police trainees. Methods Using a two-group observational study design (N = 18), we compared lifestyle behavior timing during 6 weeks of in-class training during dayshift, followed by 6 weeks of field-based training during either dayshift or nightshift. Lifestyle behavior timing, including sleep-wake patterns, physical activity, and meals, was captured using wearable activity trackers and mobile devices. The regularity of lifestyle behavior timing was quantified as an index score, which reflects day-to-day stability on a 24-hour time scale: Sleep Regularity Index, Physical Activity Regularity Index, and Mealtime Regularity Index. Logistic regression was applied to these indices to develop a composite score, termed the Behavior Regularity Index (BRI). Results Transitioning from dayshift to nightshift significantly worsened the BRI, relative to maintaining a dayshift schedule. Specifically, nightshift led to more irregular sleep-wake timing and meal timing; physical activity timing was not impacted. In contrast, maintaining a dayshift schedule did not impact regularity indices. Conclusions Nightshift imposed irregular timing of lifestyle behaviors, which is consistent with the hypothesis that circadian disruption contributes to chronic disease risk in shift workers. How to mitigate the negative impact of shiftwork on human health as mediated by irregular timing of sleep-wake patterns and meals deserves exploration.
Collapse
Affiliation(s)
| | - Rebecca North
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| | - Julie Counts
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Will Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kathryn N Porter Starr
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
- Geriatric Research, Education, Clinical Center, Durham VA Health Care System, Durham, NC, USA
| | - Laurie Wideman
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Carl Pieper
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - William E Kraus
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| |
Collapse
|
165
|
Minciuna I, Gallage S, Heikenwalder M, Zelber-Sagi S, Dufour JF. Intermittent fasting-the future treatment in NASH patients? Hepatology 2023; 78:1290-1305. [PMID: 37057877 DOI: 10.1097/hep.0000000000000330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
NASH is one of the leading causes of chronic liver disease with the potential of evolving towards end-stage liver disease and HCC, even in the absence of cirrhosis. Apart from becoming an increasingly prevalent indication for liver transplantation in cirrhotic and HCC patients, its burden on the healthcare system is also exerted by the increased number of noncirrhotic NASH patients. Intermittent fasting has recently gained more interest in the scientific community as a possible treatment approach for different components of metabolic syndrome. Basic science and clinical studies have shown that apart from inducing body weight loss, improving cardiometabolic parameters, namely blood pressure, cholesterol, and triglyceride levels; insulin and glucose metabolism; intermittent fasting can reduce inflammatory markers, endoplasmic reticulum stress, oxidative stress, autophagy, and endothelial dysfunction, as well as modulate gut microbiota. This review aims to further explore the main NASH pathogenetic metabolic drivers on which intermittent fasting can act upon and improve the prognosis of the disease, and summarize the current clinical evidence.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology Octavian Fodor, Cluj-Napoca, Romania
- University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
| | - Mathias Heikenwalder
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
166
|
Amatobi KM, Ozbek-Unal AG, Schäbler S, Deppisch P, Helfrich-Förster C, Mueller MJ, Wegener C, Fekete A. The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition. J Lipid Res 2023; 64:100417. [PMID: 37481037 PMCID: PMC10550813 DOI: 10.1016/j.jlr.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.
Collapse
Affiliation(s)
- Kelechi M Amatobi
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany; Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Stefan Schäbler
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Peter Deppisch
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin J Mueller
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Würzburg Insect Research (WIR), Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Agnes Fekete
- Biocenter, Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
167
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
168
|
Kim HS, Lee H, Provido SMP, Chung GH, Hong S, Yu SH, Lee JE, Lee CB. Association between Sleep Duration and Metabolic Disorders among Filipino Immigrant Women: The Filipino Women's Diet and Health Study (FiLWHEL). J Obes Metab Syndr 2023; 32:224-235. [PMID: 37718118 PMCID: PMC10583772 DOI: 10.7570/jomes22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/06/2022] [Accepted: 07/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Sleep plays a complex role in metabolic regulation, and the underlying linkage has not been clearly defined. We investigated the association between sleep duration and metabolic disorders in Filipino immigrants in Korea. Methods We analyzed 410 participants from the 2014 to 2016 baseline population of the Filipino Women's Diet and Health Study. Usual sleep duration was self-reported, and anthropometric parameters were measured directly. Blood glucose, lipid, and insulin levels were examined from fasting serum samples. We used general linear models to acquire least squares (LS) means and logistic regression models to calculate odds ratios to test the cross-sectional association between sleep duration and metabolic markers with 95% confidence intervals (CIs). Results We found a statistically significant linear association between increased sleep duration and elevated triglycerides, total cholesterol, and low-density lipoprotein cholesterol (LDL-C). LS means (95% CI) of <5, 5-6, 7-8, and >8 hours of sleep were 81.74 (71.43 to 93.54), 85.15 (76.65 to 94.59), 86.33 (77.84 to 95.75), and 105.22 (88.07 to 125.71), respectively, for triglycerides (P trend=0.049) and 174.52 (165.02 to 184.57), 180.50 (172.79 to 188.55), 182.51 (174.83 to 190.53), and 190.16 (176.61 to 204.74), respectively, for total cholesterol (P trend= 0.042). For LDL-C, the LS means (95% CI) were 97.34 (88.80 to 106.71), 100.69 (93.73 to 108.18), 104.47 (97.35 to 112.10), and 109.43 (96.94 to 123.54), respectively (P trend=0.047). Statistical significance persisted after additional adjustment for body mass index. The association with triglycerides was limited to current alcohol drinkers (P interaction=0.048). Conclusion Longer sleep duration was associated with increased triglyceride, total cholesterol, and LDL-C levels. The association with triglycerides was more pronounced among moderate alcohol drinkers.
Collapse
Affiliation(s)
- Hee Sun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Heejin Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | | | - Grace H. Chung
- Research Institute of Human Ecology, Seoul National University, Seoul, Korea
- Department of Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sangmo Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Chang Beom Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| |
Collapse
|
169
|
Mulcahy MC, El Habbal N, Snyder D, Redd JR, Sun H, Gregg BE, Bridges D. Gestational Early-Time Restricted Feeding Results in Sex-Specific Glucose Intolerance in Adult Male Mice. J Obes 2023; 2023:6666613. [PMID: 37808966 PMCID: PMC10558268 DOI: 10.1155/2023/6666613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The timing of food intake is a novel dietary component that impacts health. Time-restricted feeding (TRF), a form of intermittent fasting, manipulates food timing. The timing of eating may be an important factor to consider during critical periods, such as pregnancy. Nutrition during pregnancy, too, can have a lasting impact on offspring health. The timing of food intake has not been thoroughly investigated in models of pregnancy, despite evidence that interest in the practice exists. Therefore, using a mouse model, we tested body composition and glycemic health of gestational early TRF (eTRF) in male and female offspring from weaning to adulthood on a chow diet and after a high-fat, high-sucrose (HFHS) diet challenge. Body composition was similar between groups in both sexes from weaning to adulthood, with minor increases in food intake in eTRF females and slightly improved glucose tolerance in males while on a chow diet. However, after 10 weeks of HFHS, male eTRF offspring developed glucose intolerance. Further studies should assess the susceptibility of males, and apparent resilience of females, to gestational eTRF and assess mechanisms underlying these changes in adult males.
Collapse
Affiliation(s)
- Molly C. Mulcahy
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI, USA
| | - Noura El Habbal
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI, USA
| | - Detrick Snyder
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI, USA
| | - JeAnna R. Redd
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI, USA
| | - Haijing Sun
- Michigan Medicine, Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, Ann Arbor, MI, USA
| | - Brigid E. Gregg
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI, USA
- Michigan Medicine, Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, Ann Arbor, MI, USA
| | - Dave Bridges
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI, USA
| |
Collapse
|
170
|
Huang R, Chen J, Zhou M, Xin H, Lam SM, Jiang X, Li J, Deng F, Shui G, Zhang Z, Li MD. Multi-omics profiling reveals rhythmic liver function shaped by meal timing. Nat Commun 2023; 14:6086. [PMID: 37773240 PMCID: PMC10541894 DOI: 10.1038/s41467-023-41759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023] Open
Abstract
Post-translational modifications (PTMs) couple feed-fast cycles to diurnal rhythms. However, it remains largely uncharacterized whether and how meal timing organizes diurnal rhythms beyond the transcriptome. Here, we systematically profile the daily rhythms of the proteome, four PTMs (phosphorylation, ubiquitylation, succinylation and N-glycosylation) and the lipidome in the liver from young female mice subjected to either day/sleep time-restricted feeding (DRF) or night/wake time-restricted feeding (NRF). We detect robust daily rhythms among different layers of omics with phosphorylation the most nutrient-responsive and succinylation the least. Integrative analyses reveal that clock regulation of fatty acid metabolism represents a key diurnal feature that is reset by meal timing, as indicated by the rhythmic phosphorylation of the circadian repressor PERIOD2 at Ser971 (PER2-pSer971). We confirm that PER2-pSer971 is activated by nutrient availability in vivo. Together, this dataset represents a comprehensive resource detailing the proteomic and lipidomic responses by the liver to alterations in meal timing.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China
| | - Xiaoqing Jiang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
171
|
Reja A, Pal S, Mahato K, Saha B, Delle Piane M, Pavan GM, Das D. Emergence of Photomodulated Protometabolism by Short Peptide-Based Assemblies. J Am Chem Soc 2023; 145:21114-21121. [PMID: 37708200 DOI: 10.1021/jacs.3c08158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In the early Earth, rudimentary enzymes must have utilized the available light energy source to modulate protometabolic processes. Herein, we report the light-responsive C-C bond manipulation via short peptide-based assemblies bound to the photosensitive molecular cofactor (azo-based photoswitch) where the energy of the light source regulated the binding sites which subsequently modulated the retro-aldolase activity. In the presence of a continual source of high-energy photons, temporal realization of a catalytically more proficient state could be achieved under nonequilibrium conditions. Further, the hydrophobic surface of peptide assemblies facilitated the binding of an orthogonal molecular catalyst that showed augmented activity (promiscuous hydrolytic activity) upon binding. This latent activity was utilized for the in situ generation of light-sensitive cofactor that subsequently modulated the retro-aldolase activity, thus creating a reaction network.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sumit Pal
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Kishalay Mahato
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Baishakhi Saha
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Massimo Delle Piane
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Dibyendu Das
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
172
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Stoltzfus AT, Michel SLJ, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Kent JR, Madariaga MLL, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Vander Heiden MG. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. Cell Chem Biol 2023; 30:1156-1168.e7. [PMID: 37689063 PMCID: PMC10581593 DOI: 10.1016/j.chembiol.2023.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Johnathan R Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | | | - Iva Monique T Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Douglas S Auld
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
173
|
Hesketh SJ, Sexton CL, Wolff CA, Viggars MR, Esser KA. Early morning run-training results in enhanced endurance performance adaptations in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557933. [PMID: 37781623 PMCID: PMC10541096 DOI: 10.1101/2023.09.18.557933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Time-of-day differences in acute exercise performance in mice are well established with late active phase (afternoon) runners exhibiting significantly greater endurance performance compared to early active phase (morning) runners. In this study, we asked if performance adaptations would be different when training for 6 weeks at two different times of day, and if this corresponds to steady state changes in the phase of peripheral tissue clocks. To address these questions, we endurance trained female PER2::Luciferase mice, at the same relative workload, either in the morning, at ZT13, or in the afternoon, at ZT22. Then, after training, we recorded luminescence from tissues of PER2::Luciferase mice to report timing of tissue clocks in several peripheral tissues. After 6 weeks, we found that both groups exhibited significant improvements in maximal endurance capacity (total treadmill work)(p < 0.0001), but the morning runners exhibited an enhanced rate of adaptation as there was no detectable difference in maximal endurance capacity (p = 0.2182) between the morning and afternoon runners. In addition, morning and afternoon runners exhibited divergent clock phase shifts with a significant 5-hour phase advance in the EDL (p < 0.0001) and soleus (p < 0.0001) of morning runners, but a phase delay in the EDL (p < 0.0001) and Soleus (p < 0.0001) of afternoon runners. Therefore, our data demonstrate that morning training enhances endurance adaptations compared to afternoon training in mice, and we suggest this is due to phase advancement of muscle clocks to better align metabolism with exercise performance.
Collapse
Affiliation(s)
- Stuart J Hesketh
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
- School of Medicine,University of Central Lancashire, 11 Victoria St, Preston PR1 7QS, United Kingdom
| | - Casey L Sexton
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| | - Christopher A Wolff
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
- Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL 3260, USA
| |
Collapse
|
174
|
Chen Y, Li J, Li S, Cheng Y, Fu X, Li J, Zhu L. Uncovering the Novel Role of NR1D1 in Regulating BNIP3-Mediated Mitophagy in Ulcerative Colitis. Int J Mol Sci 2023; 24:14222. [PMID: 37762536 PMCID: PMC10531686 DOI: 10.3390/ijms241814222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, incurable condition characterized by mucosal inflammation and intestinal epithelial cell (IEC) damage. The circadian clock gene NR1D1, implicated in UC and the critical mitophagy process for epithelial repair, needs further exploration regarding its role in mitophagy regulation in UC. METHODS We created a jet lag mouse model and induced colitis with dextran sulfate sodium (DSS), investigating NR1D1's role. Intestinal-specific Nr1d1 knockout mice were also generated. RNA sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays helped ascertain NR1D1's regulatory effect on BNIP3 expression. The mitochondrial state in IECs was assessed through transmission electron microscopy, while confocal microscopy evaluated mitophagy-associated protein expression in colon tissue and CCD841 cells. Cell apoptosis and reactive oxygen species (ROS) were measured via flow cytometry. RESULTS We observed reduced NR1D1 expression in the IECs of UC patients, accentuated under jet lag and DSS exposure in mice. NR1D1 ablation led to disrupted immune homeostasis and declined mitophagy in IECs. NR1D1, usually a transcriptional repressor, was a positive regulator of BNIP3 expression, leading to impaired mitophagy, cellular inflammation, and apoptosis. Administering the NR1D1 agonist SR9009 ameliorated colitis symptoms, primarily by rectifying defective mitophagy. CONCLUSIONS Our results suggest that NR1D1 bridges the circadian clock and UC, controlling BNIP3-mediated mitophagy and representing a potential therapeutic target. Its agonist, SR9009, shows promise in UC symptom alleviation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
175
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
176
|
Azuma K, Kawashima M, Nojiri T, Hamada K, Ayaki M, Tsubota K. Breakfast Skipping is associated with More Deleterious Lifestyle Behaviors among Japanese Men: The TRF-Japan Study Using the Original "Taberhythm" Smartphone Application. Curr Dev Nutr 2023; 7:101977. [PMID: 37635711 PMCID: PMC10448026 DOI: 10.1016/j.cdnut.2023.101977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Background Time-restricted eating has been increasingly recognized as a promising option to reduce food intake and combat obesity. Especially in Asian countries such as Japan, because of the wide variety of food choices available, a dietary approach that emphasizes meal timing can be more practical and easier to implement and adhere to, compared with approaches that focus on specific dietary content, such as low-fat or low-carbohydrate diets. Objectives We aimed to identify eating patterns among Japanese men and women using a smartphone application (app) called "Taberhythm." In addition, we sought to evaluate the relationship of breakfast eating habits with lifestyle behaviors and body mass index, and determine whether sex differences were present. Methods A total of 3369 smartphone users were eligible to participate in this observational study. Users recorded 1 mo of lifestyle logs using the app; 254 participants (178 women, 38 ± 12 y old, body mass index 23.3 ± 4.9 kg/m2) had sufficient records to calculate daily fasting duration and sleep duration, and were eligible for the analyses. Results Fasting duration was ∼12.6 h and was longer in women than men, among participants who never skipped breakfast. Breakfast skipping was associated with longer screen time, and more frequent snacking, only in men. Men with irregular breakfast eating patterns had a longer duration of fasting after awakening that was associated with obesity. Conclusions We investigated eating patterns among Japanese people using a smartphone app and revealed that skipping breakfast was more deleterious in men than in women.
Collapse
Affiliation(s)
- Koichiro Azuma
- Department of Medicine, Nerima General Hospital and Institute of Healthcare Quality Improvement, Public Interest Incorporated Foundation Tokyo Healthcare Foundation, Tokyo, Japan
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Motoko Kawashima
- Kawashima Ophthalmology Clinic, Saitama, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Masahiko Ayaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory Incorporated, Tokyo, Japan
| |
Collapse
|
177
|
Shafaati M, Sadeghniiat K, Priyanka, Najafia A, Zandi M, Akbarpour S, Choudhary OP. The relevance of the circadian timing system role in patients with HIV/AIDS: a quick glance. Int J Surg 2023; 109:2831-2834. [PMID: 36928027 PMCID: PMC10498842 DOI: 10.1097/js9.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 03/18/2023]
Affiliation(s)
- Maryam Shafaati
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Khosro Sadeghniiat
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Arezu Najafia
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Akbarpour
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Sleep Breathing Disorders Research Center (SBDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| |
Collapse
|
178
|
Van Gilst D, Puchkina AV, Roelants JA, Kervezee L, Dudink J, Reiss IKM, Van Der Horst GTJ, Vermeulen MJ, Chaves I. Effects of the neonatal intensive care environment on circadian health and development of preterm infants. Front Physiol 2023; 14:1243162. [PMID: 37719464 PMCID: PMC10500197 DOI: 10.3389/fphys.2023.1243162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The circadian system in mammals ensures adaptation to the light-dark cycle on Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral processes. The central circadian pacemaker is located in the brain and is entrained by environmental signals called Zeitgebers. From here, neural, humoral and systemic signals drive rhythms in peripheral clocks in nearly every mammalian tissue. During pregnancy, disruption of the complex interplay between the mother's rhythmic signals and the fetal developing circadian system can lead to long-term health consequences in the offspring. When an infant is born very preterm, it loses the temporal signals received from the mother prematurely and becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit (NICU), where day/night rhythmicity is usually blurred. In this literature review, we provide an overview of the fetal and neonatal development of the circadian system, and short-term consequences of disruption of this process as occurs in the NICU environment. Moreover, we provide a theoretical and molecular framework of how this disruption could lead to later-life disease. Finally, we discuss studies that aim to improve health outcomes after preterm birth by studying the effects of enhancing rhythmicity in light and noise exposure.
Collapse
Affiliation(s)
- D. Van Gilst
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - A. V. Puchkina
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J. A. Roelants
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - L. Kervezee
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - J. Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. K. M. Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - G. T. J. Van Der Horst
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M. J. Vermeulen
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - I. Chaves
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
179
|
Aguglia A, Natale A, Conio B, De Michiel CF, Lechiara A, Pastorino F, Fusar-Poli L, Costanza A, Amerio A, Amore M, Serafini G. Chronotype and Cardiometabolic Parameters in Patients with Bipolar Disorder: Preliminary Findings. J Clin Med 2023; 12:5621. [PMID: 37685688 PMCID: PMC10488628 DOI: 10.3390/jcm12175621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiometabolic alterations are very common in bipolar disorder (BD). The aim of this study was to investigate the relationship between chronotype and cardiometabolic parameters in patients with a primary diagnosis of BD. This study is an observational clinical investigation including 170 subjects consecutively admitted to the Psychiatric Inpatient Unit of the IRCCS Ospedale Policlinico San Martino (Genoa, Italy), recruited over a period of 48 months. A psychometric tool assessing chronotype was administered and blood tests were performed. Furthermore, the atherogenic coefficient ((total cholesterol-HDL cholesterol)/HDL cholesterol), and Castelli risk index-I (total cholesterol/HDL cholesterol) and -II (LDL cholesterol/HDL cholesterol) were calculated. Patients with BD and an eveningness chronotype showed a higher body mass index, total and low-density lipotrotein cholesterol compared to patients with BD and an intermediate or morning chronotype. Furthermore, the Atherogenic Coefficient and Castelli Risk-Index I-II were found to be higher in bipolar patients with an evening chronotype. The role of chronotype in the development of obesity and cardiovascular risk is, therefore, a relationship worth being investigated, especially in the context of BD, to ameliorate the clinical and therapeutic approach, aiming at increasing the quality of life and reducing the mortality.
Collapse
Affiliation(s)
- Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Antimo Natale
- Department of Psychiatry, Faculty of Medicine, Geneva University (UNIGE), 1211 Geneva, Switzerland; (A.N.); (A.C.)
| | | | - Clio Franziska De Michiel
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
| | - Alessio Lechiara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
| | - Fabrizio Pastorino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, Geneva University (UNIGE), 1211 Geneva, Switzerland; (A.N.); (A.C.)
- Department of Psychiatry, Adult Psychiatry Service (SPA), University Hospitals of Geneva (HUG), 1211 Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6900 Lugano, Switzerland
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy; (C.F.D.M.); (A.L.); (F.P.); (A.A.); (M.A.); (G.S.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
180
|
Larsen M, He F, Kawasawa YI, Berg A, Vgontzas AN, Liao D, Bixler EO, Fernandez-Mendoza J. Objective and subjective measures of sleep initiation are differentially associated with DNA methylation in adolescents. Clin Epigenetics 2023; 15:136. [PMID: 37634000 PMCID: PMC10464279 DOI: 10.1186/s13148-023-01553-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION The onset of puberty is associated with a shift in the circadian timing of sleep, leading to delayed sleep initiation [i.e., later sleep onset time (SOT)] due to later bedtimes and/or longer sleep onset latency (SOL). Several genome-wide association studies (GWAS) have identified genes that may be involved in the etiology of sleep phenotypes. However, circadian rhythms are also epigenetically regulated; therefore, epigenetic biomarkers may provide insight into the physiology of the pubertal sleep onset shift and the pathophysiology of prolonged or delayed sleep initiation. RESULTS The gene-wide analysis indicated differential methylation within or around 1818 unique genes across the sleep initiation measurements using self-report, actigraphy (ACT), and polysomnography (PSG), while GWAS-informed analysis yielded 67 genes. Gene hits were identified for bedtime (PSG), SOL (subjective, ACT and PSG) and SOT (subjective and PSG). DNA methylation within 12 genes was associated with both subjective and PSG-measured SOL, 31 with both ACT- and PSG-measured SOL, 19 with both subjective and ACT-measured SOL, and one gene (SMG1P2) had methylation sites associated with subjective, ACT- and PSG-measured SOL. CONCLUSIONS Objective and subjective sleep initiation in adolescents is associated with altered DNA methylation in genes previously identified in adult GWAS of sleep and circadian phenotypes. Additionally, our data provide evidence for a potential epigenetic link between habitual (subjective and ACT) SOL and in-lab SOT and DNA methylation in and around genes involved in circadian regulation (i.e., RASD1, RAI1), cardiometabolic disorders (i.e., FADS1, WNK1, SLC5A6), and neuropsychiatric disorders (i.e., PRR7, SDK1, FAM172A). If validated, these sites may provide valuable targets for early detection and prevention of disorders involving prolonged or delayed SOT, such as insomnia, delayed sleep phase, and their comorbidity.
Collapse
Affiliation(s)
- Michael Larsen
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Fan He
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yuka Imamura Kawasawa
- Departments of Biochemistry and Molecular Biology and Pharmacology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arthur Berg
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Duanping Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry & Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
181
|
Herz D, Haupt S, Zimmer RT, Wachsmuth NB, Schierbauer J, Zimmermann P, Voit T, Thurm U, Khoramipour K, Rilstone S, Moser O. Efficacy of Fasting in Type 1 and Type 2 Diabetes Mellitus: A Narrative Review. Nutrients 2023; 15:3525. [PMID: 37630716 PMCID: PMC10459496 DOI: 10.3390/nu15163525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Over the last decade, studies suggested that dietary behavior modification, including fasting, can improve metabolic and cardiovascular markers as well as body composition. Given the increasing prevalence of people with type 1 (T1DM) and type 2 diabetes mellitus (T2DM) and the increasing obesity (also in combination with diabetes), nutritional therapies are gaining importance, besides pharmaceutical interventions. Fasting has demonstrated beneficial effects for both healthy individuals and those with metabolic diseases, leading to increased research interest in its impact on glycemia and associated short- and long-term complications. Therefore, this review aimed to investigate whether fasting can be used safely and effectively in addition to medications to support the therapy in T1DM and T2DM. A literature search on fasting and its interaction with diabetes was conducted via PubMed in September 2022. Fasting has the potential to minimize the risk of hypoglycemia in T1DM, lower glycaemic variability, and improve fat metabolism in T1DM and T2DM. It also increases insulin sensitivity, reduces endogenous glucose production in diabetes, lowers body weight, and improves body composition. To conclude, fasting is efficient for therapy management for both people with T1DM and T2DM and can be safely performed, when necessary, with the support of health care professionals.
Collapse
Affiliation(s)
- Daniel Herz
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Sandra Haupt
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Rebecca Tanja Zimmer
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Nadine Bianca Wachsmuth
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Janis Schierbauer
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Paul Zimmermann
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
- Department of Cardiology, Klinikum Bamberg, 96049 Bamberg, Germany
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany
| | - Thomas Voit
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Ulrike Thurm
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Blvd. 22 Bahman, Kerman 7616914115, Iran;
| | - Sian Rilstone
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany; (D.H.); (S.H.); (R.T.Z.); (N.B.W.); (J.S.); (P.Z.); (T.V.); (U.T.); (S.R.)
- Interdisciplinary Metabolic Medicine Trials Unit, Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
182
|
Mengi Çelik Ö, Köksal E, Aktürk M. Time-restricted eating (16/8) and energy-restricted diet: effects on diet quality, body composition and biochemical parameters in healthy overweight females. BMC Nutr 2023; 9:97. [PMID: 37559145 PMCID: PMC10410965 DOI: 10.1186/s40795-023-00753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Time-restricted eating (TRE) is a current popular dietary strategy for noncommunicable diseases. However, studies demonstrated contradictory results for it and in all dietary strategies, diet quality is an the important part of the well-being. Our study aimed to investigate the effect of TRE and energy-restricted diet (ERD) on the nutritional status and diet quality of individuals. METHODS This pilot study was completed 23 healthy overweight female. Anthropometric and body composition measurements of individuals were taken. The energy expenditure was measured using indirect calorimetry. Blood pressure and heart rate measurements were made. Biochemical parameters were evaluated and food consumption were taken. The quality of dietary intake was assessed using the Healthy Eating Index (HEI) -2015. The physical activity levels of the individuals were estimated using the physical activity record. The Statistical Package for the Social Sciences (version 22.0) software was used for all analyses. A p-value of less than 0.05 was considered to be statistically significant. RESULTS After 8 weeks of intervention, while no change was observed in the diet quality of the individuals in the TRE group (p > 0.05), a significant increase was found in the diet quality score of the individuals in the ERD group (p < 0.05). There was a 3.2% and 5.5% decrease in body weight of individuals in the TRE and ERD groups, respectively (p < 0.05). While no significant change was observed in the body fat percentage of individuals in the TRE group (p > 0.05), a 7.1% decrease was observed in the ERD group (p < 0.05). A statistically significant decrease was found in the total cholesterol (3.7%) in the ERD group, and in the total cholesterol (6.7%) and low density lipoprotein cholesterol (LDL-C) (6.5%) in the TRE group. In addition, a statistically significant increase was found in adiponectin (77.3%) and total antioxidant status (TAS) (13.2%) in the ERD group. CONCLUSION Energy-restricted diet yielded better results in weight loss and improvement of body composition and diet quality compared to TRE. Also, a decrease in total cholesterol level was found in the ERD group. However, more studies should be done with longer follow-ups and high sample sizes are very important in terms of creating public health-based recommendations.
Collapse
Affiliation(s)
- Özge Mengi Çelik
- Faculty of Health Sciences, Department of Nutrition and Dietetics, University of Health Sciences, Ankara, Turkey.
| | - Eda Köksal
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Müjde Aktürk
- Faculty of Medicine, Department of Endocrinology, Gazi University, Ankara, Turkey
| |
Collapse
|
183
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
184
|
Blanton C, Ghimire B, Khajeh Pour S, Aghazadeh-Habashi A. Circadian Modulation of the Antioxidant Effect of Grape Consumption: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6502. [PMID: 37569042 PMCID: PMC10419126 DOI: 10.3390/ijerph20156502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Grape consumption acts on the immune system to produce antioxidant and anti-inflammatory effects. Since immune activity demonstrates circadian rhythmicity, with peak activity occurring during waking hours, the timing of grape intake may influence the magnitude of its antioxidant effect. This study followed a 2 × 2 factorial randomized, controlled design wherein healthy men and women (n = 32) consumed either a grape or placebo drink with a high-fat meal in the morning or evening. Urine was collected for measurements of biomarkers of oxidative stress and grape metabolites at baseline and post-meal at hour 1 and hours 1-6. F-2 isoprostane levels showed main effects of time period (baseline < hour 1 < hours 1-6, p < 0.0001), time (a.m. > p.m., p = 0.008) and treatment (placebo > grape, p = 0.05). Total F2-isoprostane excretion expressed as % baseline was higher in the a.m. vs. p.m. (p = 0.004) and in the a.m. placebo vs. all other groups (p < 0.05). Tartaric acid and resveratrol excretion levels were higher in the grape vs. placebo group (p < 0.05) but were not correlated with F-2 isoprostane levels. The findings support a protective effect of grape consumption against morning sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Cynthia Blanton
- Department of Nutrition and Dietetics, Idaho State University, Pocatello, ID 83209, USA
| | - Biwash Ghimire
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (B.G.); (S.K.P.)
| |
Collapse
|
185
|
Consens FB. Circadian Rhythm Sleep-Wake Disorders. Continuum (Minneap Minn) 2023; 29:1149-1166. [PMID: 37590827 DOI: 10.1212/con.0000000000001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE This article provides an overview of advances in the understanding of circadian rhythms and the health implications of circadian disruption. LATEST DEVELOPMENTS Circadian medicine is a relatively new concept, with widespread overlap with many other areas of medicine. Circadian clocks rely on feedback loops that control the expression of many genes. Functional circadian oscillators exist at multiple physiologic levels and facilitate a multimodal clock mechanism. The suprachiasmatic nucleus is the central circadian pacemaker. Peripheral tissues can be entrained by other stimuli (such as food intake) and can uncouple from the suprachiasmatic nucleus pacemaker; this discovery may provide new therapeutic options for circadian rhythm disorders. Numerous modern developments have altered our circadian clocks and these changes are associated with poor health outcomes. ESSENTIAL POINTS Circadian clocks are ubiquitous throughout our body and regulate multiple body functions. Several studies have highlighted that circadian disruption can result in significant negative mental and physical health consequences. A deeper understanding of the effects of misalignment between our circadian clocks and the external environment may ultimately have therapeutic implications for our health.
Collapse
|
186
|
Goda T, Umezaki Y, Hamada FN. Molecular and Neural Mechanisms of Temperature Preference Rhythm in Drosophila melanogaster. J Biol Rhythms 2023; 38:326-340. [PMID: 37222551 PMCID: PMC10330063 DOI: 10.1177/07487304231171624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temperature influences animal physiology and behavior. Animals must set an appropriate body temperature to maintain homeostasis and maximize survival. Mammals set their body temperatures using metabolic and behavioral strategies. The daily fluctuation in body temperature is called the body temperature rhythm (BTR). For example, human body temperature increases during wakefulness and decreases during sleep. BTR is controlled by the circadian clock, is closely linked with metabolism and sleep, and entrains peripheral clocks located in the liver and lungs. However, the underlying mechanisms of BTR are largely unclear. In contrast to mammals, small ectotherms, such as Drosophila, control their body temperatures by choosing appropriate environmental temperatures. The preferred temperature of Drosophila increases during the day and decreases at night; this pattern is referred to as the temperature preference rhythm (TPR). As flies are small ectotherms, their body temperature is close to that of the surrounding environment. Thus, Drosophila TPR produces BTR, which exhibits a pattern similar to that of human BTR. In this review, we summarize the regulatory mechanisms of TPR, including recent studies that describe neuronal circuits relaying ambient temperature information to dorsal neurons (DNs). The neuropeptide diuretic hormone 31 (DH31) and its receptor (DH31R) regulate TPR, and a mammalian homolog of DH31R, the calcitonin receptor (CALCR), also plays an important role in mouse BTR regulation. In addition, both fly TPR and mammalian BTR are separately regulated from another clock output, locomotor activity rhythms. These findings suggest that the fundamental mechanisms of BTR regulation may be conserved between mammals and flies. Furthermore, we discuss the relationships between TPR and other physiological functions, such as sleep. The dissection of the regulatory mechanisms of Drosophila TPR could facilitate an understanding of mammalian BTR and the interaction between BTR and sleep regulation.
Collapse
Affiliation(s)
- Tadahiro Goda
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Yujiro Umezaki
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Fumika N. Hamada
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| |
Collapse
|
187
|
Kiperman T, Li W, Xiong X, Li H, Horne D, Ma K. Targeted screening and identification of chlorhexidine as a pro-myogenic circadian clock activator. Stem Cell Res Ther 2023; 14:190. [PMID: 37525228 PMCID: PMC10391781 DOI: 10.1186/s13287-023-03424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The circadian clock is an evolutionarily conserved mechanism that exerts pervasive temporal control in stem cell behavior. This time-keeping machinery is required for orchestrating myogenic progenitor properties in regenerative myogenesis that ameliorates muscular dystrophy. Here we report a screening platform to discover circadian clock modulators that promote myogenesis and identify chlorhexidine (CHX) as a clock-activating molecule with pro-myogenic activities. METHODS A high-throughput molecular docking pipeline was applied to identify compounds with a structural fit for a hydrophobic pocket within the key circadian transcription factor protein, Circadian Locomotor Output Cycles Kaput (CLOCK). These identified molecules were further screened for clock-modulatory activities and functional validations for pro-myogenic properties. RESULTS CHX was identified as a clock activator that promotes distinct aspects of myogenesis. CHX activated circadian clock that reduced cycling period length and augmented amplitude. This action was mediated by the targeted CLOCK structure via augmented interaction with heterodimer partner Bmal1, leading to enhanced CLOCK/Bmal1-controlled transcription with upregulation of core clock genes. Consistent with its clock-activating function, CHX displayed robust effects on stimulating myogenic differentiation in a clock-dependent manner. In addition, CHX augmented the proliferative and migratory activities of myoblasts. CONCLUSION Our findings demonstrate the feasibility of a screening platform to discover clock modulators with myogenic regulatory activities. Discovery of CHX as a pro-myogenic molecule could be applicable to promote regenerative capacities in ameliorating dystrophic or degenerative muscle diseases.
Collapse
Affiliation(s)
- Tali Kiperman
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Weini Li
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xuekai Xiong
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
188
|
Collery A, Browne JA, O'Brien C, Sheridan JT, Murphy BA. Optimised Stable Lighting Strengthens Circadian Clock Gene Rhythmicity in Equine Hair Follicles. Animals (Basel) 2023; 13:2335. [PMID: 37508112 PMCID: PMC10376498 DOI: 10.3390/ani13142335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Hair follicles (HF) represent a useful tissue for monitoring the circadian clock in mammals. Irregular light exposure causes circadian disruption and represents a welfare concern for stabled horses. We aimed to evaluate the impact of two stable lighting regimes on circadian clock gene rhythmicity in HF from racehorses. Two groups of five Thoroughbred racehorses in training at a commercial racehorse yard were exposed to standard incandescent light or a customized LED lighting system. The control group received light from incandescent bulbs used according to standard yard practice. The treatment group received timed, blue-enriched white LED light by day and dim red LED light at night. On weeks 0 and 20, mane hairs were collected at 4 h intervals for 24 h. Samples were stored in RNAlater at -20 °C. RNA was isolated and samples interrogated by quantitative PCR for the core clock genes: ARNTL, CRY1, PER1, PER2, NR1D2, and the clock-controlled gene DBP. Cosinor analyses revealed 24 h rhythmicity for NR1D2 and PER2 and approached significance for CRY1 (p = 0.013, p = 0.013, and p = 0.051, respectively) in week 20 in the treatment group only. No rhythmicity was detected in week 0 or in week 20 in the HF of control horses. Results suggest that lighting practices in racehorse stables may be improved to better stimulate optimum functioning of the circadian system.
Collapse
Affiliation(s)
- Aileen Collery
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | | | - John T Sheridan
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| |
Collapse
|
189
|
Putilov AA, Budkevich EV, Budkevich RO. A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue. Clocks Sleep 2023; 5:384-398. [PMID: 37489438 PMCID: PMC10366820 DOI: 10.3390/clockssleep5030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional-translational feedback loops of the circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORα, REV-ERBα, PERs, CRYs, and DECs). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma.
Collapse
Affiliation(s)
- Arcady A Putilov
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117865 Moscow, Russia
| | - Elena V Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| | - Roman O Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| |
Collapse
|
190
|
Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian Rhythms and Astrocytes: The Good, the Bad, and the Ugly. Annu Rev Neurosci 2023; 46:123-143. [PMID: 36854316 PMCID: PMC10381027 DOI: 10.1146/annurev-neuro-100322-112249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This review explores the interface between circadian timekeeping and the regulation of brain function by astrocytes. Although astrocytes regulate neuronal activity across many time domains, their cell-autonomous circadian clocks exert a particular role in controlling longer-term oscillations of brain function: the maintenance of sleep states and the circadian ordering of sleep and wakefulness. This is most evident in the central circadian pacemaker, the suprachiasmatic nucleus, where the molecular clock of astrocytes suffices to drive daily cycles of neuronal activity and behavior. In Alzheimer's disease, sleep impairments accompany cognitive decline. In mouse models of the disease, circadian disturbances accelerate astroglial activation and other brain pathologies, suggesting that daily functions in astrocytes protect neuronal homeostasis. In brain cancer, treatment in the morning has been associated with prolonged survival, and gliomas have daily rhythms in gene expression and drug sensitivity. Thus, circadian time is fast becoming critical to elucidating reciprocal astrocytic-neuronal interactions in health and disease.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Marco Brancaccio
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
191
|
Erickson ML, North R, Counts J, Wang W, Porter Starr KN, Wideman L, Pieper C, Dunn J, Kraus WE. Nightshift Imposes Irregular Lifestyle Behaviors in Police Academy Trainees. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.07.23292363. [PMID: 37461704 PMCID: PMC10350160 DOI: 10.1101/2023.07.07.23292363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Study Objective Shiftwork increases risk for numerous chronic diseases, which is hypothesized to be linked to disruption of circadian timing of lifestyle behaviors. However, empirical data on timing of lifestyle behaviors in real-world shift workers are lacking. To address this, we characterized the regularity of timing of lifestyle behaviors in shift-working police trainees. Methods Using a two-group observational study design (N=18), we compared lifestyle behavior timing during 6 weeks of in-class training during dayshift, followed by 6 weeks of field-based training during either dayshift or nightshift. Lifestyle behavior timing, including sleep/wake patterns, physical activity, and meals, was captured using wearable activity trackers and mobile devices. The regularity of lifestyle behavior timing was quantified as an index score, which reflects day-to-day stability on a 24h time scale: Sleep Regularity Index (SRI), Physical Activity Regularity Index (PARI) and Mealtime Regularity Index (MRI). Logistic regression was applied to these indices to develop a composite score, termed the Behavior Regularity Index (BRI). Results Transitioning from dayshift to nightshift significantly worsened the BRI, relative to maintaining a dayshift schedule. Specifically, nightshift led to more irregular sleep/wake timing and meal timing; physical activity timing was not impacted. In contrast, maintaining a dayshift schedule did not impact regularity indices. Conclusion Nightshift imposed irregular timing of lifestyle behaviors, which is consistent with the hypothesis that circadian disruption contributes to chronic disease risk in shift workers. How to mitigate the negative impact of shiftwork on human health as mediated by irregular timing of sleep/wake patterns and meals deserves exploration.
Collapse
|
192
|
Nuclear class 3 PI3K coactivates circadian clock. Nat Cell Biol 2023:10.1038/s41556-023-01186-w. [PMID: 37414851 DOI: 10.1038/s41556-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
|
193
|
Niu Y, Wang Y, Chen H, Liu X, Liu J. Overview of the Circadian Clock in the Hair Follicle Cycle. Biomolecules 2023; 13:1068. [PMID: 37509104 PMCID: PMC10377266 DOI: 10.3390/biom13071068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian clock adapts to the light-dark cycle and autonomously generates physiological and metabolic rhythmicity. Its activity depends on the central suprachiasmatic pacemaker. However, it also has an independent function in peripheral tissues such as the liver, adipose tissue, and skin, which integrate environmental signals and energy homeostasis. Hair follicles (HFs) maintain homeostasis through the HF cycle, which depends heavily on HF stem cell self-renewal and the related metabolic reprogramming. Studies have shown that circadian clock dysregulation in HFs perturbs cell cycle progression. Moreover, there is increasing evidence that the circadian clock exerts a significant influence on glucose metabolism, feeding/fasting, stem cell differentiation, and senescence. This suggests that circadian metabolic crosstalk plays an essential role in regulating HF regeneration. An improved understanding of the role of the circadian clock in HFs may facilitate the discovery of new drug targets for hair loss. Therefore, the present review provides a discussion of the relationship between the circadian clock and HF regeneration, mainly from the perspective of HF metabolism, and summarizes the current understanding of the mechanisms by which HFs function.
Collapse
Affiliation(s)
- Ye Niu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yujie Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Hao Chen
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
194
|
Anisimova MV, Gon Y, Kontsevaya GV, Romashchenko AV, Khotskin NV, Stanova AK, Gerlinskaya LA, Moshkin MP. Body composition as an indicator of metabolic changes in mice obtained by in vitro fertilization. Vavilovskii Zhurnal Genet Selektsii 2023; 27:357-365. [PMID: 37465196 PMCID: PMC10350860 DOI: 10.18699/vjgb-23-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
To identify body systems subject to epigenetic transformation during in vitro fertilization (IVF), comparative morphological and functional studies were performed on sexually mature offspring of outbred CD1 mice, specific-pathogen-free (SPF), obtained by IVF (experiment) and natural conception (control). The studies included assessment of age-related changes in body weight and composition, energy intake and expenditure, and glucose homeostasis. To level the effects caused by the different number of newborns in the control and in the experiment, the size of the fed litters was halved in the control females. Males obtained using the IVF procedure were superior in body weight compared to control males in all age groups. As was shown by analysis of variance with experiment/control factors, gender, age (7, 10 and 20 weeks), the IVF procedure had a statistically significant and unidirectional effect on body composition. At the same time, IVF offspring outperformed control individuals in relative fat content, but were behind in terms of lean mass. The effect of the interaction of factors was not statistically significant. IVF offspring of both sexes had higher fat to lean mass ratios (FLR). Since adipose tissue contributes significantly less to total energy intake compared to muscle, the main component of lean mass, it is not surprising that at the same level of IVF locomotor activity offspring consumed less food than controls. When converted to one gram of body weight, this difference reached 19 %. One of the consequences of reduced utilization of IVF energy substrates by offspring is a decrease in their tolerance to glucose loading. The integral criterion for the effectiveness of restoring the initial glucose level is the area under the curve (AUC), the value of which was 2.5 (males) and 3.2 (females) times higher in IVF offspring compared to the corresponding control. Thus, the totality of our original and literature data shows an increase in the risk of metabolic disorders in IVF offspring, which is confirmed by epidemiological studies of a relatively young cohort of people born using assisted reproductive technologies.
Collapse
Affiliation(s)
- M V Anisimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yanli Gon
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G V Kontsevaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Romashchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Khotskin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A K Stanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Tomsk State University, Department of Vertebrate Zoology and Ecology, Tomsk, Russia
| |
Collapse
|
195
|
Xin H, Huang R, Zhou M, Chen J, Zhang J, Zhou T, Ji S, Liu X, Tian H, Lam SM, Bao X, Li L, Tong S, Deng F, Shui G, Zhang Z, Wong CCL, Li MD. Daytime-restricted feeding enhances running endurance without prior exercise in mice. Nat Metab 2023; 5:1236-1251. [PMID: 37365376 DOI: 10.1038/s42255-023-00826-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Physical endurance and energy conservation are essential for survival in the wild. However, it remains unknown whether and how meal timing regulates physical endurance and muscle diurnal rhythms. Here, we show that day/sleep time-restricted feeding (DRF) enhances running endurance by 100% throughout the circadian cycle in both male and female mice, compared to either ad libitum feeding or night/wake time-restricted feeding. Ablation of the circadian clock in the whole body or the muscle abolished the exercise regulatory effect of DRF. Multi-omics analysis revealed that DRF robustly entrains diurnal rhythms of a mitochondrial oxidative metabolism-centric network, compared to night/wake time-restricted feeding. Remarkably, muscle-specific knockdown of the myocyte lipid droplet protein perilipin-5 completely mimics DRF in enhancing endurance, enhancing oxidative bioenergetics and outputting rhythmicity to circulating energy substrates, including acylcarnitine. Together, our work identifies a potent dietary regimen to enhance running endurance without prior exercise, as well as providing a multi-omics atlas of muscle circadian biology regulated by meal timing.
Collapse
Affiliation(s)
- Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rongfeng Huang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiyu Zhou
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianghui Chen
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianxin Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Tingting Zhou
- Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shushen Ji
- Department of Bioinformatics, GFK Biotech, Shanghai, China
| | - Xiao Liu
- Department of Bioinformatics, GFK Biotech, Shanghai, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies, Changzhou, China
| | - Xinyu Bao
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lihua Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shifei Tong
- Department of Cardiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Catherine C L Wong
- Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Min-Dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
196
|
Wang L, Liu Y, Gao H, Ge S, Yao X, Liu C, Tan X. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage. Molecules 2023; 28:5132. [PMID: 37446793 PMCID: PMC10343525 DOI: 10.3390/molecules28135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.
Collapse
Affiliation(s)
- Luanfeng Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Yanhong Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Huajing Gao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Shuqi Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xinru Yao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Chang Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| |
Collapse
|
197
|
Sato S, Hishida T, Kinouchi K, Hatanaka F, Li Y, Nguyen Q, Chen Y, Wang PH, Kessenbrock K, Li W, Izpisua Belmonte JC, Sassone-Corsi P. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep 2023; 42:112590. [PMID: 37261952 DOI: 10.1016/j.celrep.2023.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fumiaki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumay Chen
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
198
|
In Het Panhuis W, Schönke M, Modder M, Tom HE, Lalai RA, Pronk ACM, Streefland TCM, van Kerkhof LWM, Dollé MET, Depuydt MAC, Bot I, Vos WG, Bosmans LA, van Os BW, Lutgens E, Rensen PCN, Kooijman S. Time-restricted feeding attenuates hypercholesterolaemia and atherosclerosis development during circadian disturbance in APOE∗3-Leiden.CETP mice. EBioMedicine 2023; 93:104680. [PMID: 37356205 DOI: 10.1016/j.ebiom.2023.104680] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Circadian disturbance (CD) is the consequence of a mismatch between endogenous circadian rhythms, behaviour, and/or environmental cycles, and frequently occurs during shift work. Shift work has been associated with elevated risk for atherosclerotic cardiovascular disease (asCVD) in humans, but evidence for the effectiveness of prevention strategies is lacking. METHODS Here, we applied time-restricted feeding (TRF) as a strategy to counteract atherosclerosis development during CD in female APOE∗3-Leiden.CETP mice, a well-established model for humanized lipoprotein metabolism. Control groups were subjected to a fixed 12:12 h light-dark cycle, while CD groups were subjected to 6-h phase advancement every 3 days. Groups had either ad libitum (AL) access to food or were subjected to TRF with restricted food access to the dark phase. FINDINGS TRF did not prevent the increase in the relative abundance of circulating inflammatory monocytes and elevation of (postprandial) plasma triglycerides during CD. Nonetheless, TRF reduced atherosclerotic lesion size and prevented an elevation in macrophage content of atherosclerotic lesions during CD, while it increased the relative abundance of anti-inflammatory monocytes, prevented activation of T cells, and lowered plasma total cholesterol levels and markers of hepatic cholesterol synthesis. These effects were independent of total food intake. INTERPRETATION We propose that time restricted eating could be a promising strategy for the primary prevention of asCVD risk in shift workers, which warrants future study in humans. FUNDING This work was funded by the Novo Nordisk Foundation, the Netherlands Ministry of Social Affairs and Employment, Amsterdam Cardiovascular Sciences, and the Dutch Heart Foundation.
Collapse
Affiliation(s)
- Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Melanie Modder
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hannah E Tom
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Reshma A Lalai
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Winnie G Vos
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands
| | - Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Immunity and Infection, Amsterdam, the Netherlands; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
199
|
Panda S, Maier G, Villareal DT. Targeting Energy Intake and Circadian Biology to Engage Mechanisms of Aging in Older Adults With Obesity: Calorie Restriction and Time-Restricted Eating. J Gerontol A Biol Sci Med Sci 2023; 78:79-85. [PMID: 37325958 PMCID: PMC10272989 DOI: 10.1093/gerona/glad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/17/2023] Open
Abstract
With the rise in obesity across age groups, it has been a hindrance to engaging in physical activity and mobility in older adults. Daily calorie restriction (CR) up to 25% has been the cornerstone of obesity management even though the safety in older adults remains incompletely understood. Although some adults can follow CR with clinically significant weight loss and improved health metrics, CR faces 2 obstacles-many fail to adopt CR and even among those who can adopt it short term, long-term compliance can be difficult. Furthermore, there is a continuing debate about the net benefits of CR-induced weight loss in older adults because of the concern that CR may worsen sarcopenia, osteopenia, and frailty. The science of circadian rhythm and its plasticity toward the timing of nutrition offer promise to alleviate some challenges of CR. The new concept of Time-Restricted Feeding/Eating (TRF for animal studies and TRE for human studies) can be an actionable approach to sustaining the circadian regulation of physiology, metabolism, and behavior. TRE can often (not always) lead to CR. Hence, the combined effect of TRE through circadian optimization and CR can potentially reduce weight and improve cardiometabolic and functional health while lessening the detrimental effects of CR. However, the science and efficacy of TRE as a sustainable lifestyle in humans are in its infancy, whereas animal studies have offered many desirable outcomes and underlying mechanisms. In this article, we will discuss the scope and opportunities to combine CR, exercise, and TRE to improve functional capacity among older adults with obesity.
Collapse
Affiliation(s)
| | - Geraldine Maier
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dennis T Villareal
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
200
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|