151
|
Dambacher J, Beigel F, Zitzmann K, Heeg MHJ, Göke B, Diepolder HM, Auernhammer CJ, Brand S. The role of interleukin-22 in hepatitis C virus infection. Cytokine 2008; 41:209-16. [PMID: 18191408 DOI: 10.1016/j.cyto.2007.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/01/2007] [Accepted: 11/17/2007] [Indexed: 12/25/2022]
Abstract
In this study, we analyzed if IL-22 displays, similar to other IL-10 like cytokines such as IL-28A, antiviral properties in hepatic cells. Using RT-PCR and immunoblotting, we demonstrated that hepatic cell lines and primary hepatocytes express the functional IL-22 receptor complex consisting of IL-22R1 and IL-10R2. Hepatic IL-22 mRNA expression as measured by quantitative PCR was up-regulated in autoimmune and viral hepatitis compared to cholestatic liver diseases, while IL-22 serum levels did not differ significantly between patients with viral hepatitis and normal controls. IL-22 did not significantly change the expression levels of IFN-alpha/-beta and of the antiviral proteins MxA and 2',5'-OAS. Consequently, it had in comparison to IFN-alpha no relevant antiviral activity in in vitro models of HCV replication and infection. Taken together, hepatic IL-22 expression is up-regulated in viral hepatitis but IL-22 does not directly regulate antiviral proteins and has, in contrast to IFN-alpha, no effect on HCV replication.
Collapse
Affiliation(s)
- Julia Dambacher
- Department of Medicine II, University-Hospital Munich-Grosshadern, University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J Hepatol 2008; 48:192-9. [PMID: 18096266 DOI: 10.1016/j.jhep.2007.09.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Hepatitis C virus (HCV) infected patients with high serum levels of bile acids (BAs) usually fail to respond to antiviral therapy. Besides, BAs are essential factors for replication of the porcine enteric calicivirus by inhibiting interferon signaling. The role of BAs on HCV RNA replication was thus assessed. METHODS BAs and other compounds were tested using an HCV-replication model containing a luciferase reporter gene. RESULTS BAs, especially chenodeoxycholate and deoxycholate, up-regulated genotype 1 HCV RNA replication by more than tenfold. Only free but not conjugated BAs were active, suggesting that their effect was mediated by a nuclear receptor. Only farnesoid X receptor (FXR) ligands stimulated HCV replication while FXR silencing and FXR antagonism by guggulsterone blocked the up-regulation induced by BAs. Furthermore, guggulsterone alone inhibited basal level of HCV replication by tenfold. Modulation of HCV replication by FXR ligands occurred in the same proportion in presence or absence of type I interferon, suggesting a mechanism of action independent of this control of viral replication. However, BAs or guggulsterone did not affect replication of genotype 2a-JFH1. CONCLUSIONS Exposure to routinely measured concentrations of BAs increases HCV replication by a novel mechanism involving activation of the nuclear receptor FXR.
Collapse
|
153
|
Franco S, Clotet B, Martínez MA. A wide range of NS3/4A protease catalytic efficiencies in HCV-infected individuals. Virus Res 2008; 131:260-70. [DOI: 10.1016/j.virusres.2007.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/29/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
|
154
|
Discovery and characterization of substituted diphenyl heterocyclic compounds as potent and selective inhibitors of hepatitis C virus replication. Antimicrob Agents Chemother 2008; 52:1419-29. [PMID: 18227176 DOI: 10.1128/aac.00525-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel small-molecule inhibitor, referred to here as R706, was discovered in a high-throughput screen of chemical libraries against Huh-7-derived replicon cells carrying autonomously replicating subgenomic RNA of hepatitis C virus (HCV). R706 was highly potent in blocking HCV RNA replication as measured by real-time reverse transcription-PCR and Western blotting of R706-treated replicon cells. Structure-activity iterations of the R706 series yielded a lead compound, R803, that was more potent and highly specific for HCV replication, with no significant inhibitory activity against a panel of HCV-related positive-stranded RNA viruses. Furthermore, HCV genotype 1 replicons displayed markedly higher sensitivity to R803 treatment than a genotype 2a-derived replicon. In addition, R803 was tested by a panel of biochemical and cell-based assays for on-target and off-target activities, and the data suggested that the compound had a therapeutic window close to 100-fold, while its exact mechanism of action remained elusive. We found that R803 was more effective than alpha interferon (IFN-alpha) at blocking HCV RNA replication in the replicon model. In combination studies, R803 showed a weak synergistic effect with IFN-alpha/ribavirin but only additive effects with a protease inhibitor and an allosteric inhibitor of RNA-dependent RNA polymerase (20). We conclude that R803 and related heterocyclic compounds constitute a new class of HCV-specific inhibitors that could potentially be developed as a treatment for HCV infection.
Collapse
|
155
|
Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, Harris HJ, Schwarz A, Desombere I, Roels GL, Balfe P, McKeating JA. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 2008; 47:17-24. [PMID: 17941058 DOI: 10.1002/hep.21959] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection of Huh-7.5 hepatoma cells results in focal areas of infection where transmission is potentiated by cell-cell contact. To define route(s) of transmission, HCV was allowed to infect hepatoma cells in the presence or absence of antibodies that neutralize cell-free virus infectivity. Neutralizing antibodies (nAbs) reduced cell-free virus infectivity by >95% and had minimal effect(s) on the frequency of infected cells in the culture. To assess whether cell-cell transfer of viral infectivity occurs, HCV-infected cells were cocultured with fluorescently labeled naïve cells in the presence or absence of nAbs. Enumeration by flow cytometry demonstrated cell-cell transfer of infectivity in the presence or absence of nAbs and immunoglobulins from HCV(+) patients. The host cell molecule CD81 and the tight junction protein Claudin 1 (CLDN1) are critical factors defining HCV entry. Soluble CD81 and anti-CD81 abrogated cell-free infection of Huh-7.5 and partially inhibited cell-cell transfer of infection. CD81-negative HepG2 hepatoma cells were resistant to cell-free virus infection but became infected after coculturing with JFH-infected cells in the presence of nAb, confirming that CD81-independent routes of cell-cell transmission exist. Further experiments with 293T and 293T-CLDN1 targets suggested that cell-cell transmission is dependent on CLDN1 expression. CONCLUSION These data suggest that HCV can transmit in vitro by at least two routes, cell-free virus infection and direct transfer between cells, with the latter offering a novel route for evading nAbs.
Collapse
Affiliation(s)
- Jennifer M Timpe
- Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:23-61. [PMID: 18039107 DOI: 10.1146/annurev.pathol.1.110304.100230] [Citation(s) in RCA: 594] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the many viruses that are known to infect the human liver, hepatitis B virus (HBV) and hepatitis C virus (HCV) are unique because of their prodigious capacity to cause persistent infection, cirrhosis, and liver cancer. HBV and HCV are noncytopathic viruses and, thus, immunologically mediated events play an important role in the pathogenesis and outcome of these infections. The adaptive immune response mediates virtually all of the liver disease associated with viral hepatitis. However, it is becoming increasingly clear that antigen-nonspecific inflammatory cells exacerbate cytotoxic T lymphocyte (CTL)-induced immunopathology and that platelets enhance the accumulation of CTLs in the liver. Chronic hepatitis is characterized by an inefficient T cell response unable to completely clear HBV or HCV from the liver, which consequently sustains continuous cycles of low-level cell destruction. Over long periods of time, recurrent immune-mediated liver damage contributes to the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Luca G Guidotti
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
157
|
Sobesky R, Feray C, Rimlinger F, Derian N, Dos Santos A, Roque-Afonso AM, Samuel D, Bréchot C, Thiers V. Distinct hepatitis C virus core and F protein quasispecies in tumoral and nontumoral hepatocytes isolated via microdissection. Hepatology 2007; 46:1704-12. [PMID: 17935229 DOI: 10.1002/hep.21898] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) genetic variability may be involved in liver carcinogenesis. We investigated HCV core and corresponding putative F protein genetic variability in hepatocellular carcinoma (HCC) and cirrhotic nodules. Hepatocyte clusters from 7 patients with HCC and HCV1b-related cirrhosis were isolated via microdissection of HCC tissues and 2 nontumoral cirrhotic nodules. The HCV core complementary DNA was cloned and sequenced from each liver compartment and from the serum of 2 patients. Nucleotide diversity and synonymous and nonsynonymous substitutions were analyzed within and between compartments via phylogenetic analysis and Mantel's test. Liver HCV RNA accumulation was lower in HCC. Increased quasispecies diversity and complexity was observed with HCC in 6 of 7 patients. Mantel's test demonstrated marked compartmentalization of quasispecies between HCC and cirrhotic nodules in all 7 patients and also between the 2 nontumoral nodules in 5 of them. Synonymous-nonsynonymous substitution analysis indicated low selection against tumoral core quasispecies in all patients and a more selective pressure against F protein quasispecies in all compartments. In the 2 subjects analyzed, HCC and nontumoral hepatocyte quasispecies were only minor or undetected in serum. CONCLUSION In tumoral hepatocytes, low-replicating hepatitis C quasispecies are compartmentalized and more diversified and are subjected to low selective pressure. Our study supports the importance of core genetic variability in hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Rodolphe Sobesky
- Institut National de la Santé et de la Recherche Médicale (INSERM), U785, Villejuif, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
NS3 Peptide, a novel potent hepatitis C virus NS3 helicase inhibitor: its mechanism of action and antiviral activity in the replicon system. Antimicrob Agents Chemother 2007; 52:393-401. [PMID: 18039921 DOI: 10.1128/aac.00961-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) chronic infections represent one of the major and still unresolved health problems because of low efficiency and high cost of current therapy. Therefore, our studies centered on a viral protein, the NS3 helicase, whose activity is indispensable for replication of the viral RNA, and on its peptide inhibitor that corresponds to a highly conserved arginine-rich sequence of domain 2 of the helicase. The NS3 peptide (p14) was expressed in bacteria. Its 50% inhibitory activity in a fluorometric helicase assay corresponded to 725 nM, while the ATPase activity of NS3 was not affected. Nuclear magnetic resonance (NMR) studies of peptide-protein interactions using the relaxation filtering technique revealed that p14 binds directly to the full-length helicase and its separately expressed domain 1 but not to domain 2. Changes in the NMR chemical shift of backbone amide nuclei ((1)H and (15)N) of domain 1 or p14, measured during complex formation, were used to identify the principal amino acids of both domain 1 and the peptide engaged in their interaction. In the proposed interplay model, p14 contacts the clefts between domains 1 and 2, as well as between domains 1 and 3, preventing substrate binding. This interaction is strongly supported by cross-linking experiments, as well as by kinetic studies performed using a fluorometric assay. The antiviral activity of p14 was tested in a subgenomic HCV replicon assay that showed that the peptide at micromolar concentrations can reduce HCV RNA replication.
Collapse
|
159
|
Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J Virol 2007; 82:1073-83. [PMID: 18032500 DOI: 10.1128/jvi.00328-07] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The NS5A protein of hepatitis C virus (HCV) plays an important but undefined role in viral RNA replication. NS5A has been proposed to be a three-domain protein, and the crystal structure of the well-conserved amino-terminal domain I has been determined. The remaining two domains of NS5A, designated domains II and III, and their corresponding interdomain regions are poorly understood. We have conducted a detailed mutagenesis analysis of NS5A domains II and III using the genotype 1b HCV replicon system. The majority of the mutants containing 15 small (8- to 15-amino-acid) deletions analyzed were capable of efficient RNA replication. Only five deletion mutations yielded lethal phenotypes, and these were colinear, spanning a 56-amino-acid region within domain II. This region was further analyzed by combining triple and single alanine scanning mutagenesis to identify individual residues required for RNA replication. Based upon this analysis, 23 amino acids were identified that were found to be essential. In addition, two residues were identified that yielded a small colony phenotype while possessing only a moderate defect in RNA replication. These results indicate that the entire domain III region and large portions of domain II of the NS5A protein are not required for the function of NS5A in HCV RNA replication.
Collapse
|
160
|
Abstract
Major advances in the understanding of the molecular biology of hepatitis C virus (HCV) have been made recently. While the chimpanzee is the only established animal model of HCV infection, several in vivo and in vitro models have been established that allow us to study various aspects of the viral life cycle. In particular, the replicon system and the production of recombinant infectious virions revolutionized the investigation of HCV-RNA replication and rendered all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In the following we will review the different in vivo and in vitro models of HCV infection.
Collapse
Affiliation(s)
- V Brass
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
161
|
Suzuki T, Ishii K, Aizaki H, Wakita T. Hepatitis C viral life cycle. Adv Drug Deliv Rev 2007; 59:1200-12. [PMID: 17825945 DOI: 10.1016/j.addr.2007.04.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. Molecular studies of the virus became possible with the successful cloning of its genome in 1989. Although much work remains to be done regarding early and late stages of the HCV life cycle, significant progress has been made with respect to the molecular biology of HCV, especially the viral protein processing and the genome replication. This review summarizes our current understanding of genomic organization of HCV, features of the viral protein characteristics, and the viral life cycle.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
162
|
Ikeda M, Kato N. Modulation of host metabolism as a target of new antivirals. Adv Drug Deliv Rev 2007; 59:1277-89. [PMID: 17897752 PMCID: PMC7103349 DOI: 10.1016/j.addr.2007.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 02/06/2023]
Abstract
The therapy for chronic hepatitis C (CH-C) started with interferon (IFN) monotherapy in the early 1990s and this therapy was considered effective in about 10% of cases. The present standard therapy of pegylated IFN with ribavirin achieves a sustained virologic response in about 50% of patients. However, about half of the CH-C patients are still at risk of fatal liver cirrhosis and hepatocellular carcinoma. The other significant event in hepatitis C virus (HCV) research has been the development of a cell culture system. The subgenomic replicon system enables robust HCV RNA replication in hepatoma cells. And recently, the complete life cycle of HCV has been achieved using a genotype 2a strain, JFH1. These hallmarks have provided much information about the mechanisms of HCV replication, including information on the host molecules required for the replication. Anti-HCV reagents targeting HCV proteins have been developed, and some of them are now in clinical trials. However, the RNA-dependent RNA polymerase frequently causes mutations in the HCV genome, which lead to the emergence of drug-resistant HCV mutants. Some of the cellular proteins essential for HCV RNA replication have already been discovered using the HCV cell culture system. These host molecules are also candidate targets for antivirals. Here, we describe the recent progress regarding the anti-HCV reagents targeting host metabolism.
Collapse
Affiliation(s)
- Masanori Ikeda
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan.
| | | |
Collapse
|
163
|
Wakita T. HCV research and anti-HCV drug discovery: toward the next generation. Adv Drug Deliv Rev 2007; 59:1196-9. [PMID: 17905463 DOI: 10.1016/j.addr.2007.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) causes persistent infection and induces chronic hepatitis, liver cirrhosis and finally hepatocellular carcinoma. Current therapies for HCV infection have not been satisfactory, and more effective anti-viral treatments are needed. In this regard, detailed analysis of HCV has been hampered by a lack of appropriate viral culture systems and small animal models of infection. However, rapid progress in HCV research has recently been achieved, such as a subgenomic replicon system, a viral culture system using JFH-1 clone and the Alb-uPA/SCID mouse transplanted with human liver cells. Such progress will propel HCV research and anti-HCV drug discovery toward the next generation.
Collapse
Affiliation(s)
- Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| |
Collapse
|
164
|
Saito S, Heller T, Yoneda M, Takahashi H, Nakajima A, Liang JT. Lifestyle-related diseases of the digestive system: a new in vitro model of hepatitis C virion production: application of basic research on hepatitis C virus to clinical medicine. J Pharmacol Sci 2007; 105:138-44. [PMID: 17928740 DOI: 10.1254/jphs.fm0070040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The hepatitis C virus (HCV) is an enveloped virus with a single positive-strand RNA genome of about 9.6 kb. It is a major cause of liver disease worldwide. Clear understanding of the viral life cycle has been hampered by the lack of a robust cell culture system. While the development of the HCV replicon system was a major breakthrough, infectious virions could not be produced with the replicon system. Recently, several groups have reported producing HCV virions using in vitro systems. One of these is a replicon system, but with the special genotype 2a strain JFH-1. Another is a DNA transfection system, with the construct containing the cDNA of the known infectious HCV genotype 1b flanked by two ribozymes. The development of these models further extends the repertoire of tools available for the study of HCV biology, and in particular, they may help to elucidate the molecular details of hepatitis C viral assembly and release. This review discusses the progression of experimental strategies related to HCV and how these strategies may be applied to clinical medicine.
Collapse
Affiliation(s)
- Satoru Saito
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
165
|
De Mitri MS, Cassini R, Bagaglio S, Morsica G, Andreone P, Marino N, Bernardi M. Evolution of hepatitis C virus non-structural 5A gene in the progression of liver disease to hepatocellular carcinoma. Liver Int 2007; 27:1126-1133. [PMID: 17845542 DOI: 10.1111/j.1478-3231.2007.01537.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The interaction between the hepatitis C virus (HCV) non-structural 5A (NS5A) protein of HCV and the protein kinase R (PKR), which is an effector of the cellular antiviral response and has been defined as a tumour suppressor, may affect the control of protein synthesis and cell growth. AIM We investigated the genetic evolution of the NS5A region in the NS5A PKR-binding domain (NS5A-PKRbd) of patients with HCV 1b-related cirrhosis who subsequently developed or not hepatocellular carcinoma (HCC). PATIENTS AND METHODS The quasispecies composition of NS5A-PKRbd was inferred by sequencing an average of 15 clones per sample in specimens obtained from 26 patients with cirrhosis who developed or not HCC during a follow-up of 5 years. RESULTS At baseline, 13/17 patients with final HCC and six out of nine patients with cirrhosis who subsequently did not develop HCC harboured a wild-type (wt) strain master sequence. Over time, the prevalence of wt strain was higher in patients who developed HCC with respect to those who maintained the cirrhosis status (15/17 vs 4/9, respectively; P=0.0166). CONCLUSION The maintenance of or evolution to the wt strain of the NS5A domain in cirrhotic patients with final HCC highlights the central role of NS5A protein in the viral life cycle and in the progression of liver disease.
Collapse
Affiliation(s)
- Maria Stella De Mitri
- Department of Internal Medicine, Cardioangiology, Hepatology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
166
|
Régeard M, Lepère C, Trotard M, Gripon P, Le Seyec J. Recent contributions of in vitro models to our understanding of hepatitis C virus life cycle. FEBS J 2007; 274:4705-18. [PMID: 17824957 DOI: 10.1111/j.1742-4658.2007.06017.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus is a human pathogen responsible for liver diseases including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Its high prevalence, the absence of a prophylactic vaccine and the poor efficiency of current therapies are huge medical problems. Since the discovery of the hepatitis C virus, our knowledge of its biology has been largely punctuated by the development of original models of research. At the end of the 1980s, the chimpanzee model led to cloning of the viral genome and the definition of infectious molecular clones. In 1999, a breakthrough was achieved with the development of a robust in vitro replication model named 'replicon'. This system allowed intensive research into replication mechanisms and drug discovery. Later, in 2003, pseudotyped retroviruses harbouring surface proteins of hepatitis C virus were produced to specifically investigate the viral entry process. It was only in 2005 that infectious viruses were produced in vitro, enabling intensive investigations into the entire life cycle of the hepatitis C virus. This review describes the different in vitro models developed to study hepatitis C virus, their contribution to current knowledge of the virus biology and their future research applications.
Collapse
Affiliation(s)
- Morgane Régeard
- INSERM, U522, IFR 140, Hôpital de Pontchaillou, Rennes, France
| | | | | | | | | |
Collapse
|
167
|
Watashi K, Shimotohno K. Chemical genetics approach to hepatitis C virus replication: cyclophilin as a target for anti-hepatitis C virus strategy. Rev Med Virol 2007; 17:245-52. [PMID: 17299803 DOI: 10.1002/rmv.534] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hepatitis C virus (HCV) is a major causative agent of liver diseases such as chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Because the current standard therapy, interferon (IFN) or pegylated-IFN alone or in combination with ribavirin, is ineffective on approximately half of the HCV-infected patients, alternative therapeutics are greatly needed. The chemical genetics method is a useful strategy to elucidate molecular mechanisms of the viral life cycle and screen for anti-viral agents. This review focuses on the use of chemical genetics approach to virology, which could be called 'chemical virology', and introduces an example of such analysis. From a cell culture-based screening, an immunosuppressant cyclosporin A (CsA) was identified as an anti-HCV compound. Analysis using CsA as a bioprobe showed that cyclophilin (CyP) B, a cellular target of CsA, regulates the function of HCV RNA polymerase NS5B, which is essential for efficient viral genome replication. By targeting CyP, HCV genome replication was drastically suppressed. Thus, chemical genetics analysis identified CyPB as a cellular cofactor of HCV genome replication and a target for novel anti-HCV agents.
Collapse
Affiliation(s)
- Koichi Watashi
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
168
|
Jia Y, Wei L, Jiang D, Wang J, Cong X, Fei R. Antiviral action of interferon-alpha against hepatitis C virus replicon and its modulation by interferon-gamma and interleukin-8. J Gastroenterol Hepatol 2007; 22:1278-85. [PMID: 17565587 DOI: 10.1111/j.1440-1746.2007.04957.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Interferon-alpha (IFN-alpha) based therapy is the main treatment used to control hepatitis C virus (HCV) infection. The aim of this study was to understand the mechanisms of IFN-alpha inhibition of HCV replication and the resistance of HCV to IFN-alpha therapy, and improve the efficiency of HCV treatment. METHODS The inhibitory effects of IFN-alpha on a HCV replicon system were examined and the potential regulatory effects of interferon-gamma (IFN-gamma) and interleukin-8 (IL-8) on the antiviral actions of IFN-alpha were also investigated in this report. RESULTS The results showed that IFN-alpha can effectively inhibit the replication of HCV replicon. Pretreatment of HCV replicon cells with IFN-gamma could significantly potentiate the inhibitory effects of IFN-alpha on the HCV replicon. Direct addition of IL-8 to the culture medium of HCV replicon cells could partially rescue the HCV replicon from the inhibition of IFN-alpha, which may be the result of IL-8 down-regulation of interferon-stimulated genes. CONCLUSION Our study demonstrated that IFN-gamma has synergistic antiviral effects with IFN-alpha; whereas IL-8 can attenuate the anti-HCV actions of IFN-alpha and is associated with HCV resistance to interferon-alpha therapy.
Collapse
Affiliation(s)
- Yintang Jia
- Hepatology Institute, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
169
|
Suzuki T, Aizaki H, Murakami K, Shoji I, Wakita T. Molecular biology of hepatitis C virus. J Gastroenterol 2007; 42:411-23. [PMID: 17671755 DOI: 10.1007/s00535-007-2030-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/10/2007] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV), which is distributed worldwide, often becomes persistent, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. For many years, the characterization of the HCV genome and its products has been done by heterologous expression systems because of the lack of a productive cell culture system. The development of the HCV replicon system is a highlight of HCV research and has allowed examination of the viral RNA replication in cell culture. Recently, a robust system for production of recombinant infectious HCV has been established, and classical virological techniques are now able to be applied to HCV. This development of reverse genetics-based experimental tools in HCV research can bring a greater understanding of the viral life cycle and pathogenesis of HCV-induced diseases. This review summarizes the current knowledge of cell culture systems for HCV research and recent advances in the investigation of the molecular virology of HCV.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Tokyo, Japan
| | | | | | | | | |
Collapse
|
170
|
Date T, Miyamoto M, Kato T, Morikawa K, Murayama A, Akazawa D, Tanabe J, Sone S, Mizokami M, Wakita T. An infectious and selectable full-length replicon system with hepatitis C virus JFH-1 strain. Hepatol Res 2007; 37:433-43. [PMID: 17437527 DOI: 10.1111/j.1872-034x.2007.00056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The hepatitis C virus (HCV) strain JFH-1 was cloned from a patient with fulminant hepatitis. A JFH-1 subgenomic replicon and full-length JFH-1 RNA efficiently replicate in cultured cells. In this study, an infectious, selectable HCV replicon containing full-length JFH-1 cDNA was constructed. METHODS The full-genome replicon was constructed using the neomycin-resistant gene, EMCV IRES and wild-type JFH-1 cDNA. Huh7 cells were transfected with RNA synthesized in vitro, and then cultured with G418. Independent colonies were cloned to establish cell lines that replicate the full-length HCV replicon. RESULTS HCV RNA replication was detected in each isolated cell line. HCV proteins and HCV RNA were secreted into culture medium, and exhibited identical density profiles. Interestingly, culture supernatants of the replicon cells were infectious for naïve Huh7 cells. Long-term culture did not affect replication of replicon RNA in the replicon cells, but it reduced core protein secretion and infectivity of culture supernatant. Culture supernatant obtained after serial passage of replicon virus was infectious for Huh7 cells. CONCLUSIONS Selectable infection was established using HCV replicon containing full-length genotype 2a JFH-1 cDNA. This system might be useful for HCV research.
Collapse
Affiliation(s)
- Tomoko Date
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Exciting progress has recently been made in understanding the replication of hepatitis C virus, a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. The development of complete cell-culture systems should now enable the systematic dissection of the entire viral lifecycle, providing insights into the hitherto difficult-to-study early and late steps. These efforts have already translated into the identification of novel antiviral targets and the development of new therapeutic strategies, some of which are currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
172
|
Welker MW, Hofmann WP, Welsch C, von Wagner M, Herrmann E, Lengauer T, Zeuzem S, Sarrazin C. Correlation of amino acid variations within nonstructural 4B protein with initial viral kinetics during interferon-alpha-based therapy in HCV-1b-infected patients. J Viral Hepat 2007; 14:338-49. [PMID: 17439523 DOI: 10.1111/j.1365-2893.2006.00798.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic hepatitis C is a major cause of liver cirrhosis leading to chronic liver failure and hepatocellular carcinoma. Different hepatitis C virus (HCV) proteins have been associated with resistance to interferon-alpha-based therapy. However, the exact mechanisms of virus-mediated interferon resistance are not completely understood. The importance of amino acid (aa) variations within the HCV nonstructural (NS)4B protein for replication efficiency and viral decline during the therapy is unknown. We investigated pretreatment sera from 42 patients with known outcome to interferon-based therapy. The complete NS4B gene was amplified and sequenced. Mutational analyses of predicted conformational, functional, structural and phylogenetic properties of the deduced aa sequences were performed. The complete NS4B protein was highly conserved with a median frequency of 0.015 +/- 0.009 aa exchanges (median +/- SD, 4.00 +/- 2.31). Especially within the predicted transmembranous domains of the NS4B protein, the mean number of aa variations was low (median frequency, 0.013 +/- 0.013). Neither the number of aa variations nor specific aa exchanges were correlated with HCV RNA serum concentration at baseline. A rapid initial HCV RNA decline of >/=1.5 log(10) IU/mL at week 2 of interferon-based therapy was associated with a higher frequency of nonconservative aa exchanges within the complete NS4B protein in comparison with patients with a nonrapid HCV RNA decline (median frequency, 0.011 +/- 0.005 vs 0.004 +/- 0.003, P = 0.006). Overall, the aa sequence of the NS4B protein was highly conserved, indicating an important role for replication in vivo. Amino acid variations with relevant changes of physicochemical properties may influence replication efficiency, associated with a rapid early virological response.
Collapse
Affiliation(s)
- M-W Welker
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Puig-Basagoiti F, Tilgner M, Bennett CJ, Zhou Y, Muñoz-Jordán JL, García-Sastre A, Bernard KA, Shi PY. A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology 2007; 361:229-41. [PMID: 17178141 PMCID: PMC1952232 DOI: 10.1016/j.virol.2006.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/04/2006] [Accepted: 11/09/2006] [Indexed: 01/09/2023]
Abstract
An adaptive mutation (E249G) within West Nile virus (WNV) NS4B gene was consistently recovered from replicon RNAs in C3H/He mouse cells. The E249G is located at the C-terminal tail of NS4B predicted to be on the cytoplasmic side of the endoplasmic reticulum membrane. The E249G substitution reduced replicon RNA synthesis. Compared with the wild-type NS4B, the E249G mutant protein exhibited a similar efficiency in evasion of interferon-beta response. Recombinant E249G virus exhibited smaller plaques, slower growth kinetics, and lower RNA synthesis than the wild-type virus in a host-dependent manner, with the greatest difference in rodent cells (C3H/He and BHK-21) and the least difference in mosquito cells (C3/36). Selection of revertants of E249G virus identified a second site mutation at residue 246, which could compensate for the low replication phenotype in cell culture. These results demonstrate that distinct residues within the C-terminal tail of flavivirus NS4B are critical for viral replication.
Collapse
Affiliation(s)
| | - Mark Tilgner
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Corey J. Bennett
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Yangsheng Zhou
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Jorge L. Muñoz-Jordán
- Centers for Disease Control and Prevention, Division of Vector-Borne Infectious Diseases, Dengue Branch, San Juan, Puerto Rico 00920-3860
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029
| | - Kristen A. Bernard
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| |
Collapse
|
174
|
Bartenschlager R, Sparacio S. Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture. Virus Res 2007; 127:195-207. [PMID: 17428568 DOI: 10.1016/j.virusres.2007.02.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/10/2007] [Accepted: 02/22/2007] [Indexed: 01/27/2023]
Abstract
The hepatitis C virus (HCV) is a positive-strand RNA virus that belongs to the genus Hepacivirus of the family Flaviviridae. The development of a system to propagate this human pathogen in cell culture took more than a decade since the first molecular cloning of the HCV genome. It was a stepwise achievement that began with the construction of the first functional HCV genome with proven in vivo infectivity. It was then followed by the establishment of subgenomic replicons that self-amplify in cultured human hepatoma cells, and culminated in the generation of infectious HCV upon transfection of these cells with a particular molecular HCV clone designated JFH-1. In this review, we will summarize the development and current state of molecular HCV clones and discuss the prospects and implications of the most recent achievements.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | | |
Collapse
|
175
|
Abe KI, Ikeda M, Dansako H, Naka K, Kato N. Cell culture-adaptive NS3 mutations required for the robust replication of genome-length hepatitis C virus RNA. Virus Res 2007; 125:88-97. [PMID: 17239465 DOI: 10.1016/j.virusres.2006.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
We recently established a genome-length HCV RNA-replicating cell line (O strain of genotype 1b; here called O cells) using cured cells derived from sO cells, in which HCV subgenomic replicon RNA with an adaptive NS5A mutation (S2200R) is replicated. Characterization of the O cells revealed a second adaptive NS3 mutation (K1609E) required for genome-length HCV RNA replication. To clarify the role of adaptive mutation in genome-length HCV RNA replication, we newly established one and three kinds of genome-length HCV RNA-replicating cell lines possessing the cell background of sO and O cells, respectively, and found additional adaptive NS3 mutations (Q1112R, P1115L, and E1202G) required for the robust replication of genome-length HCV RNA. We further found that specific combinations of adaptive NS3 mutations drastically enhanced HCV RNA replication, regardless of the cell lines examined. These findings suggest that specific viral factors may affect the replication level of genome-length HCV RNA.
Collapse
Affiliation(s)
- Ken-ichi Abe
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | |
Collapse
|
176
|
Franco S, Parera M, Aparicio E, Clotet B, Martinez MA. Genetic and catalytic efficiency structure of an HCV protease quasispecies. Hepatology 2007; 45:899-910. [PMID: 17393500 DOI: 10.1002/hep.21623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED The HCV nonstructural protein (NS)3/4A serine protease is not only involved in viral polyprotein processing but also efficiently blocks the retinoic-acid-inducible gen I and Toll-like receptor 3 signaling pathways and contributes to virus persistence by enabling HCV to escape the interferon antiviral response. Therefore, the NS3/4A protease has emerged as an ideal target for the control of the disease and the development of new anti-HCV agents. Here, we analyzed, at a high resolution (approximately 100 individual clones), the HCV NS3 protease gene quasispecies from three infected individuals. Nucleotide heterogeneity of 49%, 84%, and 91% were identified, respectively, which created a dense net that linked different parts of the viral population. Minority variants having mutations involved in the acquisition of resistance to current NS3/4A protease inhibitors (PIs) were also found. A vast diversity of different catalytic efficiencies could be distinguished. Importantly, 67% of the analyzed enzymes displayed a detectable protease activity. Moreover, 35% of the minority individual variants showed similar or better catalytic efficiency than the master (most abundant) enzyme. Nevertheless, and in contrast to minority variants, master enzymes always displayed a high catalytic efficiency when different viral polyprotein cleavage sites were tested. Finally, genetic and catalytic efficiency differences were observed when the 3 quasispecies were compared, suggesting that different selective forces were acting in different infected individuals. CONCLUSION The rugged HCV protease quasispecies landscape should be able to react to environmental changes that may threaten its survival.
Collapse
Affiliation(s)
- Sandra Franco
- Fundacio irsiCaixa, Universitat Autònoma de Barcelona (UAB), Spain
| | | | | | | | | |
Collapse
|
177
|
Lázaro CA, Chang M, Tang W, Campbell J, Sullivan DG, Gretch DR, Corey L, Coombs RW, Fausto N. Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:478-89. [PMID: 17255316 PMCID: PMC1851861 DOI: 10.2353/ajpath.2007.060789] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the pathogenesis of hepatitis C requires the availability of tissue culture models that sustain viral replication and produce infectious particles. We report on the establishment of a culture system of nontransformed human fetal hepatocytes that supports hepatitis C virus (HCV) replication after transfection with full-length in vitro-transcribed genotype 1a HCV RNA without adaptive mutations and infection with patient sera of diverse HCV genotypes. Transfected and infected hepatocytes expressed HCV core protein and HCV negative-strand RNA. For at least 2 months, transfected or infected cultures released HCV into the medium at high levels and usually with a cyclical pattern. Viral replication had some cytotoxic effects on the cells, which produced interferon (IFN)-beta as a component of the antiviral response. Medium from transfected cells was able to infect naïve cultures in a Transwell system, and the infection was blocked by IFN-alpha and IFN-lambda. Viral particles analyzed by sucrose density centrifugation had a density of 1.17 g/ml. Immunogold labeling with antibody against HCV envelope protein E2 decorated the surface of the viral particles, as visualized by electron microscopy. This culture system may be used to study the responses of nontransformed human hepatocytes to HCV infection, to analyze serum infectivity, and to clone novel HCVs from infected patients.
Collapse
Affiliation(s)
- Catherine A Lázaro
- Department of Pathology, University of Washington School of Medicine, K078 Health Sciences Building, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Binder M, Quinkert D, Bochkarova O, Klein R, Kezmic N, Bartenschlager R, Lohmann V. Identification of determinants involved in initiation of hepatitis C virus RNA synthesis by using intergenotypic replicase chimeras. J Virol 2007; 81:5270-83. [PMID: 17344294 PMCID: PMC1900214 DOI: 10.1128/jvi.00032-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 5' nontranslated region (NTR) and the X tail in the 3' NTR are the least variable parts of the hepatitis C virus (HCV) genome and play an important role in the initiation of RNA synthesis. By using subgenomic replicons of the HCV isolates Con1 (genotype 1) and JFH1 (genotype 2), we characterized the genotype specificities of the replication signals contained in the NTRs. The replacement of the JFH1 5' NTR and X tail with the corresponding Con1 sequence resulted in a significant decrease in replication efficiency. Exchange of the X tail specifically reduced negative-strand synthesis, whereas substitution of the 5' NTR impaired the generation of progeny positive strands. In search for the proteins involved in the recognition of genotype-specific initiation signals, we analyzed recombinant nonstructural protein 5B (NS5B) RNA polymerases of both isolates and found some genotype-specific template preference for the 3' end of positive-strand RNA in vitro. To further address genotype specificity, we constructed a series of intergenotypic replicon chimeras. When combining NS3 to NS5A of Con1 with NS5B of JFH1, we observed more-efficient replication with the genotype 2a X tail, indicating that NS5B recognizes genotype-specific signals in this region. In contrast, a combination of the NS3 helicase with NS5A and NS5B was required to confer genotype specificity to the 5' NTR. These results present the first genetic evidence for an interaction between helicase, NS5A, and NS5B required for the initiation of RNA synthesis and provide a system for the specific analysis of HCV positive- and negative-strand syntheses.
Collapse
Affiliation(s)
- Marco Binder
- University of Heidelberg, Department of Molecular Virology, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
179
|
Hofmann WP, Polta A, Herrmann E, Mihm U, Kronenberger B, Sonntag T, Lohmann V, Schönberger B, Zeuzem S, Sarrazin C. Mutagenic effect of ribavirin on hepatitis C nonstructural 5B quasispecies in vitro and during antiviral therapy. Gastroenterology 2007; 132:921-30. [PMID: 17383421 DOI: 10.1053/j.gastro.2006.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 11/16/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Addition of ribavirin to interferon alfa treatment has substantially increased sustained virologic response rates in patients with chronic hepatitis C (CHC). Ribavirin acts as an RNA virus mutagen in vitro, thereby leading to error catastrophe. However, data in CHC are controversial. METHODS The nonstructural (NS) 5B quasi-species heterogeneity was analyzed in Huh7 cells harboring a subgenomic hepatitis C virus (HCV) replicon system treated with ribavirin or levovirin. Accordingly, NS5B quasi-species were studied in 14 patients with CHC who received ribavirin alone or combined with pegylated interferon alfa both at baseline and during the first weeks of therapy. Analysis of NS3 quasi-species served as control. RESULTS Cultivation of HCV replicon cells with ribavirin led to higher NS5B mutational frequencies compared with levovirin-treated or untreated cells (P < .05). Patients receiving ribavirin monotherapy showed higher overall mutational frequencies within NS3 and NS5B during therapy as compared with baseline (P < .01). Proportions of ribavirin-specific G-to-A and C-to-T transitions increased (P < .01). Paired analysis confirmed significant mean increases of mutational frequencies of approximately 5%. Ribavirin serum concentrations were positively correlated with mutational frequency changes (P < .05). In patients receiving combination therapy, a decrease of NS5B mutational frequencies ( approximately 10%) and lower proportions of G-to-A and T-to-C mutations (P < .01) were detectable. CONCLUSIONS Ribavirin, but not its L-enantiomer levovirin, is a mutagen in HCV replicon cells. In patients with CHC, ribavirin monotherapy exhibits a moderate mutagenic effect early during therapy that is not detectable in combination with pegylated interferon alfa.
Collapse
Affiliation(s)
- Wolf Peter Hofmann
- Department of Internal Medicine II, Saarland University Hospital, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Dumas E, Masante C, Astier-Gin T, Lapaillerie D, Ventura M. The hepatitis C virus minigenome: a new cellular model for studying viral replication. J Virol Methods 2007; 142:59-66. [PMID: 17320981 DOI: 10.1016/j.jviromet.2007.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 12/14/2006] [Accepted: 01/11/2007] [Indexed: 11/28/2022]
Abstract
The cellular models used usually to study hepatitis C virus replication involve coupling between translation and replication. Because this linkage makes detailed analyses difficult a new cellular model was developed where replication is rendered independent of translation. The RNA replication was studied using RNA minigenomes where the reporter gene was flanked by the two untranslated regions of HCV. It was shown that these RNA minigenomes could be stably replicated into Huh7 cells expressing the HCV replication complex. This was obtained either by constitutively expressing the non-structural proteins into Huh7 hepatoma cells or by using Huh7 cells harboring replicons.
Collapse
Affiliation(s)
- E Dumas
- CNRS UMR 5097, Université Victor Segalen Bordeaux 2, Institut Fédératif de Recherches 66 Pathologies Infectieuses et Cancer, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
181
|
Jones DM, Gretton SN, McLauchlan J, Targett-Adams P. Mobility analysis of an NS5A-GFP fusion protein in cells actively replicating hepatitis C virus subgenomic RNA. J Gen Virol 2007; 88:470-475. [PMID: 17251564 DOI: 10.1099/vir.0.82363-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have introduced GFP and photoactivatable GFP into the NS5A coding region of a hepatitis C virus (HCV) subgenomic replicon that gives efficient transient replication. NS5A-GFP, expressed by the replicon, could be detected in cytoplasmic fluorescent foci as early as 4 h after RNA was introduced into cells. The fluorescent foci are likely to be sites where RNA synthesis could occur, although their production was not dependent on prior replication. Photobleaching studies demonstrated that the fluorescent proteins were relatively immobile upon expression from replicon RNAs. By contrast, an NS5A-GFP chimera produced in the absence of other viral proteins was mobile. Hence, interactions in cells expressing HCV replication proteins limit NS5A mobility, and transfer of viral proteins between foci is either slow or does not occur. Thus, the sites of HCV RNA replication possibly have a fixed complement of proteins that may act as discrete factories for producing viral RNA.
Collapse
Affiliation(s)
- Daniel M Jones
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Sarah N Gretton
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - John McLauchlan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
182
|
Sheehy P, Mullan B, Moreau I, Kenny-Walsh E, Shanahan F, Scallan M, Fanning LJ. In vitro replication models for the hepatitis C virus. J Viral Hepat 2007; 14:2-10. [PMID: 17212638 DOI: 10.1111/j.1365-2893.2006.00807.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of the hepatitis C virus (HCV), attention turned to the development of models whereby replication of the virus could be investigated. Among the HCV replication models developed, the HCV RNA replicon model and the newly discovered infectious cell culture systems have had an immediate impact on the study of HCV replication, and will continue to lead to important advances in our understanding of HCV replication. The aim of this study is to deal with developments in HCV replication models in a chronological order from the early 1990s to the recent infectious HCV cell culture systems.
Collapse
Affiliation(s)
- P Sheehy
- Department of Medicine, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
183
|
Zhu Q, Oei Y, Mendel DB, Garrett EN, Patawaran MB, Hollenbach PW, Aukerman SL, Weiner AJ. Novel robust hepatitis C virus mouse efficacy model. Antimicrob Agents Chemother 2006; 50:3260-8. [PMID: 17005803 PMCID: PMC1610068 DOI: 10.1128/aac.00413-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lack of a robust small-animal model for hepatitis C virus (HCV) has hindered the discovery and development of novel drug treatments for HCV infections. We developed a reproducible and easily accessible xenograft mouse efficacy model in which HCV RNA replication is accurately monitored in vivo by real-time, noninvasive whole-body imaging of gamma-irradiated SCID mice implanted with a mouse-adapted luciferase replicon-containing Huh-7 cell line (T7-11). The model was validated by demonstrating that both a small-molecule NS3/4A protease inhibitor (BILN 2061) and human alpha interferon (IFN-alpha) decreased HCV RNA replication and that treatment withdrawal resulted in a rebound in replication, which paralleled clinical outcomes in humans. We further showed that protease inhibitor and IFN-alpha combination therapy was more effective in reducing HCV RNA replication than treatment with each compound alone and supports testing in humans. This robust mouse efficacy model provides a powerful tool for rapid evaluation of potential anti-HCV compounds in vivo as part of aggressive drug discovery efforts.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology, Novartis Vaccines and Diagnostics, Chiron Corportion, Emeryville, CA 94608.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Lundin M, Lindström H, Grönwall C, Persson MAA. Dual topology of the processed hepatitis C virus protein NS4B is influenced by the NS5A protein. J Gen Virol 2006; 87:3263-3272. [PMID: 17030859 DOI: 10.1099/vir.0.82211-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Among the least-known hepatitis C virus proteins is the non-structural protein 4B (NS4B). It localizes to the endoplasmic reticulum (ER) membrane and induces membrane changes, resulting in a membranous web that is reported to be the locale for virus replication. A model was presented previously for the topology of recombinant HCV NS4B of the 1a genotype based on in vitro data. In this model, the N-terminal tail of a considerable fraction of the NS4B molecules was translocated into the ER lumen via a post-translational process, giving the protein a dual transmembrane topology. It is now reported that translocation of the N terminus also occurs for processed NS4B expressed in cells in the context of the polyprotein. In the presence of NS5A, however, a lower degree of translocation was observed, which may indicate that NS5A influences the topology of NS4B. In vitro expression studies of NS4B from all major genotypes demonstrated that translocation of the N terminus to the ER lumen is conserved across genotypes. This clearly suggests an important function for this feature. Furthermore, when disrupting a previously reported amphipathic helix (AH) in the N terminus of NS4B, translocation was inhibited. As a disrupted AH also abolished the ability of NS4B to rearrange membranes, these data indicate for the first time an association between translocation of the N terminus and membrane rearrangement. Finally, the present experiments also confirm the predicted location of the first luminal loop to be around aa 112.
Collapse
Affiliation(s)
- Marika Lundin
- Karolinska Institutet, Department of Medicine at Center for Molecular Medicine (L8 : 01), Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| | - Hannah Lindström
- Karolinska Institutet, Department of Medicine at Center for Molecular Medicine (L8 : 01), Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| | - Caroline Grönwall
- The Royal Institute of Technology, Department of Biotechnology, Alba Nova University Centre, Stockholm, Sweden
| | - Mats A A Persson
- Karolinska Institutet, Department of Medicine at Center for Molecular Medicine (L8 : 01), Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden
| |
Collapse
|
185
|
Uprichard SL, Chung J, Chisari FV, Wakita T. Replication of a hepatitis C virus replicon clone in mouse cells. Virol J 2006; 3:89. [PMID: 17069661 PMCID: PMC1635043 DOI: 10.1186/1743-422x-3-89] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 10/28/2006] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatitis C Virus (HCV) is a significant public health burden and small animal models are needed to study the pathology and immunobiology of the virus. In effort to develop experimental HCV mouse models, we screened a panel of HCV replicons to identify clones capable of replicating in mouse hepatocytes. RESULTS We report the establishment of stable HCV replication in mouse hepatocyte and fibroblast cell lines using replicons derived from the JFH-1 genotype 2a consensus sequence. Viral RNA replication efficiency in mouse cells was comparable to that observed in human Huh-7 replicon cells, with negative-strand HCV RNA and the viral NS5A protein being readily detected by Northern and Western Blot analysis, respectively. Although HCV replication was established in the absence of adaptive mutations that might otherwise compromise the in vitro infectivity of the JFH-1 clone, no infectious virus was detected when the culture medium from full length HCV RNA replicating mouse cells was titrated on Huh-7 cells, suggesting that the mouse cells were unable to support production of infectious progeny viral particles. Consistent with an additional block in viral entry, infectious JFH-1 particles produced in Huh-7 cells were not able to establish detectable HCV RNA replication in naïve mouse cells. CONCLUSION Thus, this report expands the repertoire of HCV replication systems and possibly represents a step toward developing mouse models of HCV replication, but it also highlights that other species restrictions might continue to make the development of a purely murine HCV infectious model challenging.
Collapse
Affiliation(s)
- Susan L Uprichard
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA 92037 USA
- The University of Illinois at Chicago, Department of Medicine and Department of Microbiology and Immunology, Chicago, IL 60612, USA
| | - Josan Chung
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA 92037 USA
| | - Francis V Chisari
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA 92037 USA
| | - Takaji Wakita
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan
| |
Collapse
|
186
|
Nomura-Takigawa Y, Nagano-Fujii M, Deng L, Kitazawa S, Ishido S, Sada K, Hotta H. Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 2006; 87:1935-1945. [PMID: 16760395 DOI: 10.1099/vir.0.81701-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-structural protein 4A (NS4A) of Hepatitis C virus (HCV) functions as a cofactor for NS3 by forming a complex with it to augment its enzymic activities. NS4A also forms a complex with other HCV proteins, such as NS4B/NS5A, to facilitate the formation of the viral RNA replication complex on the endoplasmic reticulum (ER) membrane. In addition to its essential role in HCV replication, NS4A is thought to be involved in viral pathogenesis by affecting cellular functions. In this study, it was demonstrated that NS4A was localized not only on the ER, but also on mitochondria when expressed either alone or together with NS3 in the form of the NS3/4A polyprotein and in the context of HCV RNA replication in Huh7 cells harbouring an HCV RNA replicon. Moreover, NS4A expression altered the intracellular distribution of mitochondria significantly and caused mitochondrial damage, as evidenced by the collapsed mitochondrial transmembrane potential and release of cytochrome c into the cytoplasm, which led ultimately to induction of apoptosis through activation of caspase-3, but not caspase-8. Consistently, Huh7 cells expressing NS3/4A and those harbouring an HCV RNA replicon were shown to be more prone to undergoing actinomycin D-induced, mitochondria-mediated apoptosis, compared with the control Huh7 cells. Taken together, these results suggest the possibility that HCV exerts cytopathic effect (CPE) on the infected cells under certain conditions and that NS4A is responsible, at least in part, for the conditional CPE in HCV-infected cells.
Collapse
Affiliation(s)
- Yuki Nomura-Takigawa
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Sohei Kitazawa
- Division of Molecular Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Satoshi Ishido
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kiyonao Sada
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
187
|
Koo BCA, McPoland P, Wagoner JP, Kane OJ, Lohmann V, Polyak SJ. Relationships between hepatitis C virus replication and CXCL-8 production in vitro. J Virol 2006; 80:7885-93. [PMID: 16873245 PMCID: PMC1563830 DOI: 10.1128/jvi.00519-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/02/2006] [Indexed: 12/23/2022] Open
Abstract
The chemokine CXCL-8 (interleukin-8) is induced by many viruses, including hepatitis C virus (HCV). In the current study, we examined CXCL-8 levels in the context of acute and chronic HCV replication in vitro. Two different small interfering RNAs were used to silence CXCL-8 mRNA and protein expression in Huh7 and BB7 replicon cells. HCV RNA synthesis in BB7 cells was inhibited by CXCL-8 knockdown. Furthermore, antibody neutralization of endogenous CXCL-8 activity inhibited HCV replication, while addition of recombinant human CXCL-8 stimulated NS5A protein expression. Moreover, CXCL-8 protein levels correlated positively with HCV RNA levels in four independent subgenomic and genomic replicon lines (R = 0.41, P = 0.0013). However, CXCL-8 mRNA levels correlated inversely with CXCL-8 protein and HCV RNA levels in all replicon lines and in Huh7 cells. Transient replication assays with strongly permissive and weakly permissive Huh7 cells and three independent subgenomic replicons with various replicative capacities revealed that CXCL-8 protein levels were higher in weakly than in strongly permissive cells. The JFH-1 subgenomic replicon, which replicated to high levels in both strongly and weakly permissive Huh7 cells, induced CXCL-8 protein to high levels in both cell types. The data indicate that in the replicon system, CXCL-8 protein levels are positively associated with chronic HCV replication and that CXCL-8 removal inhibits HCV replication. During acute HCV replication, CXCL-8 production may be inhibitory to viruses with low replicative capacity. The data underscore the complex regulation of CXCL-8 mRNA and protein expression and further suggest that in addition to contributing to HCV pathology via proinflammatory actions, CXCL-8 may have opposing antiviral and proviral effects depending on the level of HCV replication, the cellular context, and whether the infection is acute or chronic.
Collapse
Affiliation(s)
- Bon Chang A Koo
- Virology Division, Department of Laboratory Medicine, 359690, 325 9th Avenue, Seattle, WA 98104-2499, USA
| | | | | | | | | | | |
Collapse
|
188
|
Paeshuyse J, Coelmont L, Vliegen I, Van hemel J, Vandenkerckhove J, Peys E, Sas B, De Clercq E, Neyts J. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem Biophys Res Commun 2006; 348:139-44. [PMID: 16875675 DOI: 10.1016/j.bbrc.2006.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022]
Abstract
We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC(50)) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78+/-21 microM. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 microM) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.
Collapse
Affiliation(s)
- Jan Paeshuyse
- Rega Institute for Medical Research, Minderbroedersstraat 10, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Deng L, Nagano-Fujii M, Tanaka M, Nomura-Takigawa Y, Ikeda M, Kato N, Sada K, Hotta H. NS3 protein of Hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol 2006; 87:1703-1713. [PMID: 16690937 DOI: 10.1099/vir.0.81735-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The N-terminal 198 residues of NS3 (NS3-N) of Hepatitis C virus (HCV) subtype 1b obtained from 29 patients, as well as full-length NS3 (NS3-Full), were analysed for their subcellular localization, interaction with the tumour suppressor p53 and serine protease activity in the presence and absence of the viral cofactor NS4A. Based on the subcellular-localization patterns in the absence of NS4A, NS3-N sequences were classified into three groups, with each group exhibiting either dot-like, diffuse or a mixed type of localization. Chimeric NS3-Full sequences, each consisting of an individual NS3-N and a shared C-terminal sequence, showed the same localization patterns as those of the respective NS3-N. Site-directed mutagenesis experiments revealed that a single or a few amino acid substitutions at a particular position(s) of NS3-N altered the localization pattern. Interestingly, NS3 of the dot-like type, either NS3-N or NS3-Full, interacted with p53 more strongly than that of the diffuse type, in both the presence and the absence of NS4A. Moreover, NS3-N of the dot-like type suppressed trans-activating activity of p53 more strongly than that of the diffuse type. Serine protease activity did not differ significantly between the two types of NS3. In HCV RNA replicon-harbouring cells, physical interaction between NS3 and p53 was observed consistently and p53-mediated transcriptional activation was suppressed significantly compared with HCV RNA-negative control cells. Our results collectively suggest the possibility that NS3 plays an important role in the hepatocarcinogenesis of HCV by interacting differentially with p53 in an NS3 sequence-dependent manner.
Collapse
Affiliation(s)
- Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoko Nagano-Fujii
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motofumi Tanaka
- Division of Gastroenterological Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yuki Nomura-Takigawa
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masanori Ikeda
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | - Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | - Kiyonao Sada
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
190
|
Abstract
Chronic infection with the hepatitis C virus (HCV) is a major risk factor for the development of hepatocellular carcinoma (HCC) worldwide. The pathogenesis of HCC in HCV infection has extensively been analysed. Hepatitis C virus-induced chronic inflammation and the effects of cytokines in the development of fibrosis and liver cell proliferation are considered as one of the major pathogenic mechanisms. Increasing experimental evidence suggests that HCV contributes to HCC by directly modulating pathways that promote the malignant transformation of hepatocytes. Hepatitis C virus is an RNA virus that does not integrate into the host genome but HCV proteins interact with many host-cell factors well beyond their roles in the viral life cycle and are involved in a wide range of activities, including cell signaling, transcription, cell proliferation, apoptosis, membrane rearrangements, vesicular trafficking and translational regulation. At least four of the HCV gene products, namely HCV core, NS3, NS4B and NS5A, have been shown to exhibit transformation potential in tissue culture and several potentially oncogenic pathways have been shown to be altered by the expression of HCV proteins. Both HCV core and NS5A induce the accumulation of wild-type beta-catenin and the Wnt-beta-catenin pathway emerges as a common target for HCV (and HBV) in human HCCs, also independently from axin/beta-catenin gene mutations. Induction of both endoplasmic reticulum stress and oxidative stress by HCV proteins might also contribute to HCV transformation. Most of the putative transforming functions of the HCV proteins have been defined in artificial cellular systems, which may not be applicable to HCV infection in vivo, and still need to be established in relevant infection and disease models.
Collapse
Affiliation(s)
- M Levrero
- Department of Internal Medicine, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
191
|
Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann E, Abid K, Negro F, Dreux M, Cosset FL, Bartenschlager R. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 2006; 103:7408-13. [PMID: 16651538 PMCID: PMC1455439 DOI: 10.1073/pnas.0504877103] [Citation(s) in RCA: 601] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Indexed: 02/06/2023] Open
Abstract
Chronic liver disease caused by infection with hepatitis C virus (HCV) is an important global health problem that currently affects 170 million people. A major impediment in HCV research and drug development has been the lack of culture systems supporting virus production. This obstacle was recently overcome by using JFH1-based full-length genomes that allow production of viruses infectious both in vitro and in vivo. Although this improvement was important, because of the restriction to the JFH1 isolate and a single chimera consisting of J6CF and JFH1-derived sequences, broadly based comparative studies between different HCV strains were not possible. Therefore, in this study we created a series of further chimeric genomes allowing production of infectious genotype (GT) 1a, 1b, 2a, and 3a particles. With the exception of the GT3a/JFH1 chimera, efficient virus production was obtained when the genome fragments were fused via a site located right after the first transmembrane domain of NS2. The most efficient construct is a GT2a/2a chimera consisting of J6CF- and JFH1-derived sequences connected via this junction. This hybrid, designated Jc1, yielded infectious titers 100- to 1,000-fold higher than the parental isolate and all other chimeras, suggesting that determinants within the structural proteins govern kinetic and efficiency of virus assembly and release. Finally, we describe an E1-specific antiserum capable of neutralizing infectivity of all HCV chimeras.
Collapse
Affiliation(s)
- Thomas Pietschmann
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Artur Kaul
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - George Koutsoudakis
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Anna Shavinskaya
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Stephanie Kallis
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Eike Steinmann
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Karim Abid
- Divisions of Gastroenterology and Hepatology and Clinical Pathology, University Hospital, 24 Rue Micheli-du-Crest, CH-1211 Geneva, Switzerland
| | - Francesco Negro
- Divisions of Gastroenterology and Hepatology and Clinical Pathology, University Hospital, 24 Rue Micheli-du-Crest, CH-1211 Geneva, Switzerland
| | - Marlene Dreux
- Department of Human Virology, L'Institut Fédératif de Recherche 128, Biosciences Lyon-Gerland, Institut National de la Santé et de la Recherche Médicale U758, 69364 Lyon Cedex 07, France; and
- Department of Human Virology, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Francois-Loic Cosset
- Department of Human Virology, L'Institut Fédératif de Recherche 128, Biosciences Lyon-Gerland, Institut National de la Santé et de la Recherche Médicale U758, 69364 Lyon Cedex 07, France; and
- Department of Human Virology, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Ralf Bartenschlager
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
192
|
Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 2006. [PMID: 16651538 DOI: 10.1073/pnas.0504877103.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic liver disease caused by infection with hepatitis C virus (HCV) is an important global health problem that currently affects 170 million people. A major impediment in HCV research and drug development has been the lack of culture systems supporting virus production. This obstacle was recently overcome by using JFH1-based full-length genomes that allow production of viruses infectious both in vitro and in vivo. Although this improvement was important, because of the restriction to the JFH1 isolate and a single chimera consisting of J6CF and JFH1-derived sequences, broadly based comparative studies between different HCV strains were not possible. Therefore, in this study we created a series of further chimeric genomes allowing production of infectious genotype (GT) 1a, 1b, 2a, and 3a particles. With the exception of the GT3a/JFH1 chimera, efficient virus production was obtained when the genome fragments were fused via a site located right after the first transmembrane domain of NS2. The most efficient construct is a GT2a/2a chimera consisting of J6CF- and JFH1-derived sequences connected via this junction. This hybrid, designated Jc1, yielded infectious titers 100- to 1,000-fold higher than the parental isolate and all other chimeras, suggesting that determinants within the structural proteins govern kinetic and efficiency of virus assembly and release. Finally, we describe an E1-specific antiserum capable of neutralizing infectivity of all HCV chimeras.
Collapse
|
193
|
Abstract
Hepatitis C virus (HCV) behaves as an evolving viral quasispecies in its continuously changing environment. The study of HCV quasispecies population dynamics in experimental models and infected patients can provide useful information on factors involved in the HCV life cycle and pathogenicity. HCV quasispecies variability also has therapeutic implications, as the continuous generation and selection of fitter or truly resistant variants can allow the virus to escape control by antiviral drugs.
Collapse
Affiliation(s)
- J M Pawlotsky
- Service de Virologie, Hôpital Henri Mondor, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France.
| |
Collapse
|
194
|
Paeshuyse J, Kaul A, De Clercq E, Rosenwirth B, Dumont JM, Scalfaro P, Bartenschlager R, Neyts J. The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology 2006; 43:761-70. [PMID: 16557546 DOI: 10.1002/hep.21102] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cyclosporin A (CsA) inhibits the in vitro replication of HCV subgenomic replicons. We here report on the potent anti-HCV activity of the non-immunosuppressive cyclosporin DEBIO-025. The 50% effective concentration for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by DEBIO-025 was 0.27 +/- 0.03 microg/mL and for CsA 2.8 +/- 0.4 microg/mL. The concentration that reduced the growth of exponentially proliferating Huh 5-2 cells by 50% was greater than 27 microg/mL for DEBIO-025 and 12 +/- 6 microg/mL for CsA, resulting in a selectivity index of approximately 900 for DEBIO-025 and 40 for CsA. The superior activity of DEBIO-025, as compared with CsA, was corroborated by monitoring HCV RNA levels in Huh 5-2, two other HCV subgenomic replicon-containing cell lines, and by monitoring the luciferase signal and viral antigen production in hepatoma cells that had been infected with an infectious full-length chimeric HCV construct. The combination of interferon alpha 2a with either CsA or DEBIO-025 resulted in an additive to slightly synergistic antiviral activity. DEBIO-025, at concentrations of 0.5 and 1 microg/mL, was able to clear cells from their HCV replicon within three to four passages, whereas treatment with CsA at the same concentrations for seven consecutive passages did not result in clearance of the HCV replicon. In conclusion, DEBIO-025, a compound that is also endowed with potent anti-HIV activity and is well tolerated in animals and humans, may form an attractive new option for the therapy of HCV infections, particularly in HCV/HIV co-infected patients.
Collapse
Affiliation(s)
- Jan Paeshuyse
- Rega Institute for Medical Research, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
195
|
McCormick CJ, Brown D, Griffin S, Challinor L, Rowlands DJ, Harris M. A link between translation of the hepatitis C virus polyprotein and polymerase function; possible consequences for hyperphosphorylation of NS5A. J Gen Virol 2006; 87:93-102. [PMID: 16361421 DOI: 10.1099/vir.0.81180-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperphosphorylation of NS5A is thought to play a key role in controlling hepatitis C virus (HCV) RNA replication. Using a tetracycline-regulable baculovirus delivery system to introduce non-culture-adapted HCV replicons into HepG2 cells, we found that a point mutation in the active site of the viral polymerase, NS5B, led to an increase in NS5A hyperphosphorylation. Although replicon transcripts lacking elements downstream of NS5A also had altered NS5A hyperphosphorylation, this did not explain the changes resulting from polymerase inactivation. Instead, two additional findings may be related to the link between polymerase activity and NS5A hyperphosphorylation. Firstly, we found that disabling polymerase activity, either by targeted mutation of the polymerase active site or by use of a synthetic inhibitor, stimulated translation from the replicon transcript. Secondly, when the rate of translation of non-structural proteins from replicon transcripts was reduced by use of a defective encephalomyocarditis virus internal ribosome entry site, there was a substantial decrease in NS5A hyperphosphorylation, but this was not observed when non-structural protein expression was reduced by simply lowering replicon transcript levels using tetracycline. Therefore, one possibility is that the point mutation within the active site of NS5B causes an increase in NS5A hyperphosphorylation because of an increase in translation from each viral transcript. These findings represent the first demonstration that NS5A hyperphosphorylation can be modulated without use of kinase inhibitors or mutations within non-structural proteins and, as such, provide an insight into a possible means by which HCV replication is controlled during a natural infection.
Collapse
Affiliation(s)
- Christopher J McCormick
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David Brown
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lisa Challinor
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
196
|
Bukh J, Purcell RH. A milestone for hepatitis C virus research: a virus generated in cell culture is fully viable in vivo. Proc Natl Acad Sci U S A 2006; 103:3500-1. [PMID: 16505349 PMCID: PMC1533773 DOI: 10.1073/pnas.0600551103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jens Bukh
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
197
|
Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech 2006; 68:130-48. [PMID: 16276514 DOI: 10.1002/jemt.20227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present here a comprehensive review of the current literature plus our own findings about in vivo and in vitro analysis of hepatitis C virus (HCV) infection, viral pathogenesis, mechanisms of interferon action, interferon resistance, and development of new therapeutics. Chronic HCV infection is a major risk factor for the development of human hepatocellular carcinoma. Standard therapy for chronic HCV infection is the combination of interferon alpha and ribavirin. A significant number of chronic HCV patients who cannot get rid of the virus infection by interferon therapy experience long-term inflammation of the liver and scarring of liver tissue. Patients who develop cirrhosis usually have increased risk of developing liver cancer. The molecular details of why some patients do not respond to standard interferon therapy are not known. Availability of HCV cell culture model has increased our understanding on the antiviral action of interferon alpha and mechanisms of interferon resistance. Interferons alpha, beta, and gamma each inhibit replication of HCV, and the antiviral action of interferon is targeted to the highly conserved 5'UTR used by the virus to translate protein by internal ribosome entry site mechanism. Studies from different laboratories including ours suggest that HCV replication in selected clones of cells can escape interferon action. Both viral and host factors appear to be involved in the mechanisms of interferon resistance against HCV. Since interferon therapy is not effective in all chronic hepatitis C patients, alternative therapeutic strategies are needed to treat chronic hepatitis C patients not responding to interferon therapy. We also reviewed the recent development of new alternative therapeutic strategies for chronic hepatitis C, which may be available in clinical use within the next decade. There is hope that these new agents along with interferon will prevent the occurrence of hepatocellular carcinoma due to chronic persistent hepatitis C virus infection. This review is not inclusive of all important scientific publications due to space limitation.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
198
|
Söderholm J, Ahlén G, Kaul A, Frelin L, Alheim M, Barnfield C, Liljeström P, Weiland O, Milich DR, Bartenschlager R, Sällberg M. Relation between viral fitness and immune escape within the hepatitis C virus protease. Gut 2006; 55:266-74. [PMID: 16105887 PMCID: PMC1856491 DOI: 10.1136/gut.2005.072231] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The hepatitis C virus (HCV) mutates within human leucocyte antigen (HLA) class I restricted immunodominant epitopes of the non-structural (NS) 3/4A protease to escape cytotoxic T lymphocyte (CTL) recognition and promote viral persistence. However, variability is not unlimited, and sometimes almost absent, and factors that restrict viral variability have not been defined experimentally. AIMS We wished to explore whether the variability of the immunodominant CTL epitope at residues 1073-1081 of the NS3 protease was limited by viral fitness. PATIENTS Venous blood was obtained from six patients (four HLA-A2+) with chronic HCV infection and from one HLA-A2+ patient with acute HCV infection. METHODS NS3/4A genes were amplified from serum, cloned in a eukaryotic expression plasmid, sequenced, and expressed. CTL recognition of naturally occurring and artificially introduced escape mutations in HLA-A2-restricted NS3 epitopes were determined using CTLs from human blood and genetically immunised HLA-A2-transgenic mice. HCV replicons were used to test the effect of escape mutations on HCV protease activity and RNA replication. RESULTS Sequence analysis of NS3/4A confirmed low genetic variability. The major viral species had functional proteases with 1073-1081 epitopes that were generally recognised by cross reactive human and murine HLA-A2 restricted CTLs. Introduction of mutations at five positions of the 1073-1081 epitope prevented CTL recognition but three of these reduced protease activity and RNA replication. CONCLUSIONS Viral fitness can indeed limit the variability of HCV within immunological epitopes. This helps to explain why certain immunological escape variants never appear as a major viral species in infected humans.
Collapse
Affiliation(s)
- J Söderholm
- Division of Clinical Virology, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Dufner A, Pownall S, Mak TW. Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-kappaB activation. Proc Natl Acad Sci U S A 2006; 103:988-93. [PMID: 16418290 PMCID: PMC1327733 DOI: 10.1073/pnas.0510380103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteins containing a caspase recruitment domain (CARD) play pivotal roles in signal transduction leading to apoptosis and NF-kappaB activation and inflammation. Here we identify and characterize human and mouse CARD protein 6 (CARD6), CARD-containing proteins of unique structure. CARD6 associates with microtubules and interacts with receptor-interacting protein (RIP)-like interacting caspase-like apoptosis regulatory protein kinase (RICK), a CARD-containing member of the RIP family of protein kinases. These kinases are involved in multiple NF-kappaB signaling pathways important for innate and adaptive immune responses. Surprisingly, the CARDs of CARD6 and RICK were not required for their interaction; instead, mutational analysis revealed that the CARD of CARD6 negatively controls the association of these molecules. CARD6 also binds to RIP1, a RIP kinase homologue that lacks a CARD but contains a C-terminal death domain. Coexpression of RICK targets CARD6 to aggresomes via a mechanism that requires the CARD of RICK. Importantly, CARD6 expression has a synergistic effect on NF-kappaB activation induced by several independent signal transduction pathways. In summary, our results indicate that CARD6 is a regulator of NF-kappaB activation that modulates the functions of RIP kinase family members.
Collapse
Affiliation(s)
- Almut Dufner
- Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada M5G 2C1
| | | | | |
Collapse
|
200
|
Brass V, Moradpour D, Blum HE. Molecular virology of hepatitis C virus (HCV): 2006 update. Int J Med Sci 2006; 3:29-34. [PMID: 16614739 PMCID: PMC1415840 DOI: 10.7150/ijms.3.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/10/2006] [Indexed: 02/06/2023] Open
Abstract
Fascinating progress in the understanding of the molecular biology of hepatitis C virus (HCV) was achieved recently. The replicon system revolutionized the investigation of HCV RNA replication and facilitated drug discovery. Novel systems for functional analyses of the HCV glycoproteins allowed the validation of HCV receptor candidates and the investigation of cell entry mechanisms. Most recently, recombinant infectious HCV could be produced in cell culture, rendering all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In this review, we summarize recent advances and discuss future research directions.
Collapse
Affiliation(s)
- Volker Brass
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|