151
|
Silva AM, Whitmore M, Xu Z, Jiang Z, Li X, Williams BRG. Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. J Biol Chem 2004; 279:37670-6. [PMID: 15229216 DOI: 10.1074/jbc.m406554200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) has been invoked in different signaling pathways. In cells pre-exposed to the PKR inhibitor 2-aminopurine or in PKR-null cells, the activation of p38 mitogen-activated protein kinase (MAPK) following dsRNA stimulation is attenuated. We found that the p38 MAPK activator MKK6, but not its close relatives MKK3 or MKK4, exhibited an increased affinity for PKR following the exposure of cells to poly(rI:rC), a dsRNA analog. In vitro kinase assays revealed that MKK6 was efficiently phosphorylated by PKR, and this could be inhibited by 2-aminopurine. Expression of kinase-inactive PKR (K296R) in cells inhibited the poly(IC)-induced phosphorylation of MKK3/6 detected by phosphospecific antiserum but did not affect the poly(IC)-induced gel migration retardation of MKK3. This suggests that poly(IC)-mediated in vivo activation of MKK6, but not MKK3, is through PKR. Consistent with this observation, PKR was capable of activating MKK6 as assessed in a coupled kinase assay containing the components of the p38 MAPK pathway. Our results indicate that the interaction of MKK6 and PKR provides a mechanism for regulating p38 MAPK activation in response to dsRNA stimulation.
Collapse
Affiliation(s)
- Aristóbolo M Silva
- Departments of Cancer Biology and Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
152
|
Richtsteiger R, Henke-Gendo C, Schmidtke M, Harste G, Heim A. Quantitative multiplex real-time PCR for the sensitive detection of interferon beta gene induction and viral suppression of interferon beta expression. Cytokine 2004; 24:190-200. [PMID: 14596815 DOI: 10.1016/j.cyto.2003.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interferon-beta (IFN-beta) protein and activity can be detected by enzyme immunoassays and biological assays. However, precise quantification of low IFN-beta mRNA concentrations, which is advantageous for investigating IFN-beta gene expression in small tissue samples or during the early stage of a virus infection, remains a challenge. Therefore, we established a quantitative real-time PCR (qPCR) for IFN-beta and the housekeeping gene porphobilinogen deanimase (PBGD) in separated assays as well as in a multiplex procedure. Sensitivity for both the templates was less than 20 copies with an intra- and interassay variability of less than 5%. IFN-beta qPCR was utilized to optimize IFN-beta induction with dsRNA polyinosic-polycytidylic acid (poly I:C), delivered by a liposomal transfection agent for reproducible but low, non-cell-toxic IFN-beta concentrations. For studying coxsackievirus B3 (CVB3) interference with IFN-beta expression, CVB3 infected fibroblasts were induced with poly I:C. A significant reduction of IFN-beta mRNA but not PBGD mRNA was demonstrated 5 h after CVB3 infection, indicating a specific inhibition of IFN-beta expression by CVB3 on the mRNA level, in addition to previously reported effects on the translation/post-translation level. In conclusion, sensitive IFN-beta/PBGD multiplex qPCR proved to be a useful tool to study viral interaction with IFN-beta expression.
Collapse
|
153
|
Gil J, García MA, Gomez-Puertas P, Guerra S, Rullas J, Nakano H, Alcamí J, Esteban M. TRAF family proteins link PKR with NF-kappa B activation. Mol Cell Biol 2004; 24:4502-12. [PMID: 15121867 PMCID: PMC400457 DOI: 10.1128/mcb.24.10.4502-4512.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 10/16/2003] [Accepted: 02/20/2004] [Indexed: 12/31/2022] Open
Abstract
The double-stranded RNA (dsRNA)-dependent protein kinase PKR activates NF-kappa B via the I kappa B kinase (IKK) complex, but little is known about additional molecules that may be involved in this pathway. Analysis of the PKR sequence enabled us to identify two putative TRAF-interacting motifs. The viability of such an interaction was further suggested by computer modeling. Here, we present evidence of the colocalization and physical interaction between PKR and TRAF family proteins in vivo, as shown by immunoprecipitation and confocal microscopy experiments. This interaction is induced upon PKR dimerization. Most importantly, we show that the binding between PKR and TRAFs is functionally relevant, as observed by the absence of NF-kappa B activity upon PKR expression in cells genetically deficient in TRAF2 and TRAF5 or after expression of TRAF dominant negative molecules. On the basis of sequence information and mutational and computer docking analyses, we favored a TRAF-PKR interaction model in which the C-terminal domain of TRAF binds to a predicted TRAF interaction motif present in the PKR kinase domain. Altogether, our data suggest that TRAF family proteins are key components located downstream of PKR that have an important role in mediating activation of NF-kappa B by the dsRNA-dependent protein kinase.
Collapse
Affiliation(s)
- Jesús Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
Prostaglandins are lipid mediators, generated by cyclooxygenase (COX), that have been shown to participate in the regulation of virus replication and the modulation of inflammatory responses following infection. A number of studies support a role for PGE2 in the modulation of virus replication and virulence in a cell type and virus selective manner. Virus infection also stimulates the expression of a number of proinflammatory gene products, including COX-2, inducible nitric oxide synthase (iNOS) as well as proinflammatory cytokines. This review will focus on the mechanisms by which proinflammatory prostaglandin production regulates virus replication and virulence. In addition, the signaling pathways that are activated during a virus infection, and that regulate proinflammatory gene expression in macrophages will be reviewed. Specific attention will be placed on the ability of virus infection to activate multiple signaling cascades (such as PKR, MAPK, iPLA2, NF-kappaB) and how these pathways are integrated in the regulation of individual target gene expression.
Collapse
Affiliation(s)
- Sarah A Steer
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | |
Collapse
|
155
|
Scheuner D, Gromeier M, Davies MV, Dorner AJ, Song B, Patel RV, Wimmer EJ, McLendon RE, Kaufman RJ. The double-stranded RNA-activated protein kinase mediates viral-induced encephalitis. Virology 2004; 317:263-74. [PMID: 14698665 DOI: 10.1016/j.virol.2003.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The double-stranded (ds) RNA-activated protein kinase (PKR) plays an important role in control of viral infections and cell growth. We have studied the role of PKR in viral infection in mice that are defective in the PKR signaling pathway. Transgenic mice were derived that constitutively express a trans-dominant-negative kinase-defective mutant PKR under control of the beta-actin promoter. The trans-dominant-negative PKR mutant expressing transgenic mice do not have a detectable phenotype, similar to observations with PKR knock-out mice. The requirement for PKR in viral pathogenesis was studied by intracerebral infection of mice with a mouse-adapted poliovirus. Histopathological analysis revealed diffuse encephalomyelitis with severe inflammatory lesions throughout the central nervous system (CNS) in infected wild-type mice. In contrast, histopathological evaluation of virus-injected trans-dominant-negative PKR transgenic mice as well as PKR knock-out mice yielded no signs of tissue damage associated with inflammatory host responses. However, the virus did replicate in both models of PKR-deficient mice at a level equal to that observed in wild-type infected mice. Although the results indicate a clear difference in susceptibility to poliovirus-induced encephalitis, this difference manifests clinically as a slight delay in fatal neuropathy in trans-dominant-negative PKR transgenic and PKR knock-out animals. Our observations support the finding that viral-induced PKR activation may play a significant role in pathogenesis by mediating the host response to viral CNS infection. They support PKR to be an effective target to control tissue damage due to deleterious host responses to viral infection.
Collapse
Affiliation(s)
- Donalyn Scheuner
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Donzé O, Deng J, Curran J, Sladek R, Picard D, Sonenberg N. The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J 2004; 23:564-71. [PMID: 14749731 PMCID: PMC1271809 DOI: 10.1038/sj.emboj.7600078] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 12/16/2003] [Indexed: 02/08/2023] Open
Abstract
Cell death and survival play a key role in the immune system as well as during development. The control mechanisms that balance cell survival against cell death are not well understood. Here we report a novel strategy used by a single protein to regulate chronologically cell survival and death. The interferon-induced protein kinase PKR acts as a molecular clock by using catalysis-dependent and -independent activities to temporally induce cell survival prior to cell death. We show that the proapoptotic protein PKR surprisingly activates a survival pathway, which is mediated by NF-kappaB to delay apoptosis. Cell death is then induced by PKR through the phosphorylation of eIF-2alpha. This unique temporal control might serve as a paradigm for other kinases whose catalytic activity is not required for all of their functions.
Collapse
Affiliation(s)
- Olivier Donzé
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève, Switzerland.
| | | | | | | | | | | |
Collapse
|
157
|
N/A, 成 军, 刘 妍, 洪 源, 王 建, 党 晓, 张 树. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:149-151. [DOI: 10.11569/wcjd.v12.i1.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
158
|
Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003; 23:5651-63. [PMID: 12897138 PMCID: PMC166326 DOI: 10.1128/mcb.23.16.5651-5663.2003] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) serves to coordinate the transcription of genes in response to diverse environmental stresses. In this report we show that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2) is fundamental to the process by which many stress signals activate NF-kappaB. Phosphorylation of this translation factor is carried out by a family of protein kinases that each respond to distinct stress conditions. During impaired protein folding and assembly in the endoplasmic reticulum (ER), phosphorylation of eIF2alpha by PEK (Perk or EIF2AK3) is essential for induction of NF-kappaB transcriptional activity. The mechanism by which NF-kappaB is activated during ER stress entails the release, but not the degradation, of the inhibitory protein IkappaB. During amino acid deprivation, phosphorylation of eIF2alpha by GCN2 (EIF2AK4) signals the activation of NF-kappaB. Furthermore, inhibition of general translation or transcription by cycloheximide and actinomycin D, respectively, elicits the eIF2alpha phosphorylation required for induction of NF-kappaB. Together, these studies suggest that eIF2alpha kinases monitor and are activated by a range of stress conditions that affect transcription and protein synthesis and assembly, and the resulting eIFalpha phosphorylation is central to activation of the NF-kappaB. The absence of NF-kappaB-mediated transcription and its antiapoptotic function provides an explanation for why eIF2alpha kinase deficiency in diseases such as Wolcott-Rallison syndrome leads to cellular apoptosis and disease.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Parker LM, Fierro-Monti I, Reichman TW, Gunnery S, Mathews MB. Double-stranded RNA-binding proteins and the control of protein synthesis and cell growth. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:485-97. [PMID: 12762051 DOI: 10.1101/sqb.2001.66.485] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L M Parker
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, New Jersey 07103-2714, USA
| | | | | | | | | |
Collapse
|
160
|
Dorin D, Bonnet MC, Bannwarth S, Gatignol A, Meurs EF, Vaquero C. The TAR RNA-binding protein, TRBP, stimulates the expression of TAR-containing RNAs in vitro and in vivo independently of its ability to inhibit the dsRNA-dependent kinase PKR. J Biol Chem 2003; 278:4440-8. [PMID: 12475984 DOI: 10.1074/jbc.m208954200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP (HIV-1 transactivating response (TAR) RNA-binding protein) and PKR, the interferon-induced dsRNA-regulated protein kinase, contain two dsRNA binding domains. They both bind to HIV-1 TAR RNAs through different sites. Binding to dsRNA activates PKR that phosphorylates the eukaryotic initiation factor eIF-2alpha leading to protein synthesis inhibition. TRBP and PKR can heterodimerize, which inhibits the kinase function of PKR and has a positive effect on HIV-1 expression. In this study, an in vitro reticulocyte assay revealed the poor expression of TAR containing CAT RNAs compared with CAT RNAs. Addition of TRBP restored translation efficiency of TAR-CAT RNA and decreased the phosphorylation status of eIF-2alpha, confirming its role as a PKR inhibitor. Unexpectedly, eIF-2alpha was phosphorylated in the presence of TAR-CAT as well as CAT RNA devoid of the TAR structure. TRBP inhibited eIF-2alpha phosphorylation in both cases, suggesting that it restores the translation of TAR-CAT RNA independently and in addition to its ability to inhibit PKR. TRBP activity on gene expression was then analyzed in a PKR-free environment using PKR-deficient murine embryo fibroblasts. In a transient reporter gene assay, TRBP stimulated the expression of a TAR-containing luciferase 3.8-fold whereas the reporter gene with mutated TAR structures or devoid of TAR was stimulated 1.5- to 2.4-fold. Overall, the activity of TRBP2 was higher when the 5'-end of the mRNA was structured and was mediated independently by each dsRBD in TRBP. Increasing concentrations of TRBP showed no significant modification of the luciferase RNA levels, suggesting that TRBP stimulates translation of TAR-containing RNAs. Therefore, TRBP is an important cellular factor for efficient translation of dsRNA containing transcripts, both by inhibiting PKR and in a PKR-independent pathway.
Collapse
Affiliation(s)
- Dominique Dorin
- INSERM U511, Hôpital La Pitié-Salpêtrière, 75643 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
161
|
Steer SA, Moran JM, Maggi LB, Buller RML, Perlman H, Corbett JA. Regulation of cyclooxygenase-2 expression by macrophages in response to double-stranded RNA and viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1070-6. [PMID: 12517975 DOI: 10.4049/jimmunol.170.2.1070] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study the regulation of macrophage expression of cyclooxygenase-2 (COX-2) in response to dsRNA and virus infection was examined. Treatment of RAW 264.7 macrophages with dsRNA results in COX-2 mRNA accumulation and protein expression and the production of PGE(2). Similar to dsRNA, encephalomyocarditis virus (EMCV) infection of RAW 264.7 cells stimulates COX-2 expression and PGE(2) accumulation. The dsRNA-dependent protein kinase (PKR), which has been shown to participate in the regulation of gene expression in response to dsRNA and virus infection, does not appear to participate in the regulation of COX-2 expression by macrophages. Expression of dominant negative mutants of PKR in RAW 264.7 cells fails to attenuate dsRNA- and EMCV-induced COX-2 expression or PGE(2) production. Furthermore, dsRNA and EMCV stimulate COX-2 expression and PGE(2) accumulation to similar levels in macrophages isolated from wild-type and PKR-deficient mice. Recently, a novel PKR-independent role for the calcium-independent phospholipase A(2) (iPLA(2)) in the regulation of inducible NO synthase expression by macrophages in response to virus infection has been identified. The selective iPLA(2) suicide substrate inhibitor bromoenol lactone prevents dsRNA- and EMCV-stimulated inducible NO synthase expression; however, bromoenol lactone does not attenuate dsRNA- or EMCV-induced COX-2 expression by macrophages. In contrast, inhibition of NF-kappaB activation prevents dsRNA-stimulated COX-2 expression and PGE(2) accumulation by macrophages. These findings indicate that virus infection and treatment with dsRNA stimulate COX-2 expression by a mechanism that requires the activation of NF-kappaB and that is independent of PKR or iPLA(2) activation.
Collapse
Affiliation(s)
- Sarah A Steer
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
162
|
Kim SH, Gunnery S, Choe JK, Mathews MB. Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. Oncogene 2002; 21:8741-8. [PMID: 12483527 DOI: 10.1038/sj.onc.1205987] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
The interferon-inducible, double-stranded RNA (dsRNA)-activated protein kinase, PKR, plays key roles in regulation of cell growth and differentiation, and has been postulated as a tumor suppressor. Downstream effectors of PKR include the translation initiation factor, eIF2alpha, and the transcription factor, NF-kappaB. We found elevated levels of PKR protein, dsRNA-dependent PKR autophosphorylation activity, and phosphorylated eIF2alpha in melanoma cells compared to nontransformed melanocytes in culture. Treatment with interferon-alpha2b further induced PKR expression and activity. Immunohistochemical analysis of primary melanomas demonstrated minimal PKR immunoreactivity, but melanoma lymph node metastases expressed a high level of PKR protein. Furthermore, analysis of colon cancer specimens revealed that transformation from normal mucosa to adenomas and carcinomas was coincident with an increase in PKR expression. These data do not support the concept of PKR as a classic tumor suppressor but instead suggest that PKR upregulation occurs at defined steps in cancer progression, probably as a cellular response to neoplasia.
Collapse
Affiliation(s)
- Steve H Kim
- Department of Surgery, New Jersey Medical School/University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, New Jersey, NJ 07103, USA.
| | | | | | | |
Collapse
|
163
|
Takizawa T, Tatematsu C, Nakanishi Y. Double-stranded RNA-activated protein kinase interacts with apoptosis signal-regulating kinase 1. Implications for apoptosis signaling pathways. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6126-32. [PMID: 12473108 DOI: 10.1046/j.1432-1033.2002.03325.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-stranded RNA-activated protein kinase (PKR), a serine/threonine kinase, is activated in virus-infected cells and acts as an antiviral machinery of type I interferons. PKR controls several stress response pathways induced by double-stranded RNA, tumor necrosis factor-alpha or lipopolysaccharide, which result in the activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 of the mitogen-activated protein kinase family. Here we showed a novel interaction between PKR and apoptosis signal-regulating kinase 1 (ASK1), one of the members of the mitogen-activated protein kinase kinase kinase family, which is activated in response to a variety of apoptosis-inducing stimuli. PKR and ASK1 showed predominant cytoplasmic localization in COS-1 cells transfected with both cDNAs, and coimmunoprecipitated from the cell extracts. A dominant negative mutant of PKR (PKR-KR) inhibited both the apoptosis and p38 activation induced by ASK1 in vivo. Consistently, PKR-KR inhibited the autophosphorylation of ASK1 in vitro, and exposure to poly(I)-poly(C) increased the phosphorylation of ASK1 in vivo. These results indicate the existence of a link between PKR and ASK1, which modifies downstream MAPK.
Collapse
Affiliation(s)
- Takenori Takizawa
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan.
| | | | | |
Collapse
|
164
|
Baltzis D, Li S, Koromilas AE. Functional characterization of pkr gene products expressed in cells from mice with a targeted deletion of the N terminus or C terminus domain of PKR. J Biol Chem 2002; 277:38364-72. [PMID: 12161430 DOI: 10.1074/jbc.m203564200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible double-stranded RNA (dsRNA)-activated protein kinase, PKR, plays an important role in messenger (m) RNA translation by phosphorylating the alpha subunit of eukaryotic initiation factor 2. Through this capacity PKR is thought to be a mediator of the antiviral and antiproliferative actions of interferon. In addition to translational function, PKR has been implicated in many signaling pathways to gene transcription by modulating the activities of a number of transcription factors, including NF-kappa B and STATs. However, experiments with two different PKR knockout (PKR(-/-)) mouse models have failed to verify many of the biological functions attributed to PKR. In addition, results with cells from the two PKR(-/-) mice have been contradictory and confusing. Here, we show that the first PKR(-/-) mouse with deletion of exons 2 and 3, corresponding to the N terminus domain of PKR (N-PKR(-/-)), expresses a truncated protein, resulting from the translation of the exon-skipped mouse PKR (ES-mPKR) mRNA. The ES-mPKR protein is defective in dsRNA binding but remains catalytically active both in vitro and in vivo. Furthermore, we show that the second PKR(-/-) mouse with a targeted deletion of exon 12, which corresponds to the C terminus of the molecule (C-PKR(-/-)), expresses a truncated mPKR produced by alternative splicing of exon 12. Although the spliced form of mPKR (SF-mPKR) is catalytically inactive, it retains the dsRNA-binding properties of the wild type mPKR. Reverse transcription-PCRs demonstrate that SF-mPKR mRNA is expressed in several normal mouse tissues, and appears to be under developmental control during embryogenesis. Our data demonstrate that both PKR(-/-) models are incomplete knockouts, and expression of the PKR variants may account, at least in part, for the significant signaling differences between cells from the two PKR(-/-) mice.
Collapse
Affiliation(s)
- Dionissios Baltzis
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Côte-Ste-Catherine Street, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
165
|
Tamada Y, Nakao K, Nagayama Y, Nakata K, Ichikawa T, Kawamata Y, Ishikawa H, Hamasaki K, Eguchi K, Ishii N. p48 Overexpression enhances interferon-mediated expression and activity of double-stranded RNA-dependent protein kinase in human hepatoma cells. J Hepatol 2002; 37:493-9. [PMID: 12217603 DOI: 10.1016/s0168-8278(02)00232-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Double-stranded RNA-dependent protein kinase (PKR) is a key factor involved in interferon (IFN)-induced antiviral actions. Since p48, together with signal transducers and activators of transcription 1 and 2 (STAT1 and STAT2), is an indispensable mediator in IFN-alpha signaling pathways, we investigated the effect of p48 gene transduction on PKR expression and its activity in HuH-7 human hepatoma cells. METHODS HuH-7 cells were infected or transfected with p48 gene expression adenoviral vector or plasmid vector, respectively, and incubated with or without IFN-alpha, then PKR expression and phosphorylation of alpha-subunit of eukaryotic protein synthesis initiation factor-2 (eIF2alpha) in the cells were examined. In addition, PKR activity inhibiting protein translation was determined by the decrease of chloramphenicol acetyltransferase (CAT) gene translation or alpha-fetoprotein secretion. RESULTS p48 overexpression itself could not stimulate PKR expression. However, p48 overexpression in combination with interferon-alpha treatment caused a marked increase in PKR expression and augmented the phosphorylation of eIF2alpha, by which the transfected CAT gene translation, as well as the endogenous alpha-fetoprotein synthesis, was blocked without affecting their mRNA levels. CONCLUSIONS These results suggest that p48 gene transduction may provide a strategy to enhance the IFN-mediated PKR expression and its activity in hepatocytes.
Collapse
Affiliation(s)
- Yoko Tamada
- Department of Clinical Pharmacology, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Servant MJ, Grandvaux N, Hiscott J. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 2002; 64:985-92. [PMID: 12213596 DOI: 10.1016/s0006-2952(02)01165-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Virus infection of susceptible cells activates multiple signaling pathways that orchestrate the activation of genes, such as cytokines, involved in the antiviral and innate immune response. Among the kinases induced are the mitogen-activated protein (MAP) kinases, Jun-amino terminal kinases (JNK) and p38, the IkappaB kinase (IKK) and DNA-PK. In addition, virus infection also activates an uncharacterized VAK responsible for the C-terminal phosphorylation and subsequent activation of interferon regulatory factor 3 (IRF-3). Virus-mediated activation of IRF-3 through VAK is dependent on viral entry and transcription, since replication deficient virus failed to induce IRF-3 activity. The pathways leading to VAK activation are not well characterized, but IRF-3 appears to represent a novel cellular detection pathway that recognizes viral nucleocapsid (N) structure. Recently, the range of inducers responsible for IRF-3 activation has increased. In addition to virus infection, recognition of bacterial infection mediated through lipopolysaccharide by Toll-like receptor 4 has also been reported. Furthermore, MAP kinase kinase kinase (MAP KKK)-related pathways and DNA-PK induce N-terminal phosphorylation of IRF-3. This review summarizes recent observations in the identification of novel signaling pathways leading to IRF-3 activation.
Collapse
Affiliation(s)
- Marc J Servant
- Terry Fox Molecular Oncology Group, Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Cote Ste., Catherine Montreal, Que., Canada
| | | | | |
Collapse
|
167
|
Huang X, Hutchins B, Patel RC. The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J 2002; 366:175-86. [PMID: 11985496 PMCID: PMC1222748 DOI: 10.1042/bj20020204] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 04/16/2002] [Accepted: 05/02/2002] [Indexed: 11/17/2022]
Abstract
One of the key mediators of the antiviral and antiproliferative actions of interferon is double-stranded-RNA-dependent protein kinase (PKR). PKR activity is also involved in the regulation of cell proliferation, apoptosis and signal transduction. We have recently identified PACT, a novel protein activator of PKR, as an important modulator of PKR activity in cells in the absence of viral infection. PACT heterodimerizes with PKR and activates it by direct protein-protein interactions. Endogenous PACT acts as an activator of PKR in response to diverse stress signals, such as serum starvation and peroxide or arsenite treatment, and is therefore a novel, stress-modulated physiological activator of PKR. In this study, we have characterized the functional domains of PACT that are required for PKR activation. Our results have shown that, unlike the N-terminal conserved domains 1 and 2, the third conserved domain of PACT is dispensable for its binding of double-stranded RNA and inter action with PKR. However, a deletion of domain 3 results in a loss of PKR activation ability, in spite of a normal interaction with PKR, thereby indicating that domain 3 plays an essential role in PKR activation. Purified recombinant domain 3 could also activate PKR efficiently in vitro. Our results indicate that, although dispensable for PACT's high-affinity interaction with PKR, the third motif is essential for PKR activation. In addition, domain 3 and eukaryotic initiation factor 2alpha both interact with PKR through the same region within PKR, which we have mapped to lie between amino acid residues 318 and 551.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, U.S.A
| | | | | |
Collapse
|
168
|
Abstract
The regulation of the transcription factor NF-kappaB activity occurs at several levels including controlled cytoplasmic-nuclear shuttling and modulation of its transcriptional activity. A critical component in NF-kappaB regulation is the IkappaB kinase (IKK) complex. This review is focused on recent progress as well as unanswered questions regarding the regulation and function of NF-kappaB and IKK.
Collapse
Affiliation(s)
- Sankar Ghosh
- Section of Immunobiology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
169
|
Daher A, Longuet M, Dorin D, Bois F, Segeral E, Bannwarth S, Battisti PL, Purcell DF, Benarous R, Vaquero C, Meurs EF, Gatignol A. Two dimerization domains in the trans-activation response RNA-binding protein (TRBP) individually reverse the protein kinase R inhibition of HIV-1 long terminal repeat expression. J Biol Chem 2001; 276:33899-905. [PMID: 11438532 DOI: 10.1074/jbc.m103584200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) is a cellular protein that binds to the human immunodeficiency virus-1 (HIV-1) TAR element RNA. It has two double-stranded RNA binding domains (dsRBDs), but only one is functional for TAR binding. TRBP interacts with the interferon-induced protein kinase R (PKR) and inhibits its activity. We used the yeast two-hybrid assay to map the interaction sites between the two proteins. We show that TRBP and PKR-N (178 first amino acids of PKR) interact with PKR wild type and inhibit the PKR-induced yeast growth defect in this assay. We characterized two independent PKR-binding sites in TRBP. These sites are located in each dsRBD in TRBP, indicating that PKR-TRBP interaction does not require the RNA binding activity present only in dsRBD2. TRBP and its fragments that interact with PKR reverse the PKR-induced suppression of HIV-1 long terminal repeat expression. In addition, TRBP activates the HIV-1 long terminal repeat expression to a larger extent than the addition of each domain. These data suggest that TRBP activates gene expression in PKR-dependent and PKR-independent manners.
Collapse
Affiliation(s)
- A Daher
- Molecular Oncology Group/McGill AIDS Centre, Lady Davis Institute for Medical Research, 3755 Côte Ste Catherine, Montréal H3T 1E2, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Deb A, Zamanian-Daryoush M, Xu Z, Kadereit S, Williams BR. Protein kinase PKR is required for platelet-derived growth factor signaling of c-fos gene expression via Erks and Stat3. EMBO J 2001; 20:2487-96. [PMID: 11350938 PMCID: PMC125453 DOI: 10.1093/emboj/20.10.2487] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase PKR is an interferon (IFN)-induced enzyme that controls protein synthesis through phosphorylation of eukaryotic initiation factor 2alpha (eIF-2alpha). PKR also regulates signals initiated by diverse stimuli, including dsRNA, IFN-gamma, tumor necrosis factor-alpha, interleukin-1 and lipopolysaccharide, to different transcription factors, resulting in pro-inflammatory gene expression. Stat3 plays an essential role in promoting cell survival and proliferation by different growth factors, including platelet-derived growth factor (PDGF). Here we show that PKR physically interacts with Stat3 and is required for PDGF-induced phosphorylation of Stat3 at Tyr705 and Ser727, resulting in DNA binding and transcriptional activation. PKR-mediated phosphorylation of Stat3 on Ser727 is indirect and channeled through ERKS: Although PKR is pre-associated with the PDGF beta-receptor, treatment with PDGF only modestly activates PKR. However, the induction of c-fos by PDGF is defective in PKR-null cells. Taken together, these results establish PKR as an upstream regulator of activation of Stat3 and as a common mediator of both growth-promoting and growth-inhibitory signals.
Collapse
Affiliation(s)
| | | | | | | | - Bryan R.G. Williams
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
Corresponding author e-mail:
| |
Collapse
|
171
|
Williams BR. Signal integration via PKR. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re2. [PMID: 11752661 DOI: 10.1126/stke.2001.89.re2] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The vital role of interferons (IFNs) as mediators of innate immunity is well established. It has recently become apparent that one of the pivotal proteins in mediating the antiviral activity of IFNs, the double-stranded RNA (dsRNA)-activated protein kinase (PKR), also functions as a signal transducer in the proinflammatory response to different agents. PKR is a member of a small family of kinases that are activated by extracellular stresses and that phosphorylate the alpha subunit of protein synthesis initiation factor eIF-2, thereby inhibiting protein synthesis. The activation of PKR during infection by viral dsRNA intermediates results in the inhibition of viral replication. PKR also mediates the activation of signal transduction pathways by proinflammatory stimuli, including bacterial lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), and interleukin 1 (IL-1). PKR is a component of the inhibitor of kappaB (IkappaB) kinase complex and plays either a catalytic or structural role in the activation of IkappaB kinase, depending on the stimulus. The activities of the stress-activated protein kinases p38 and c-Jun NH(2)-terminal kinase (JNK) are also regulated by PKR in a pathway that leads to the production of proinflammatory cytokines. This review will focus on the role of PKR in nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK) pathways, because these have been the subjects of a series of publications over the past year that have reported conflicting findings. Although the conflicts may not be resolved in this review, suggestions are made for experiments that could lead to a clearer understanding of the mechanisms involved.
Collapse
Affiliation(s)
- B R Williams
- The author is in the Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
172
|
D'Acquisto F, Ghosh S. PACT and PKR: turning on NF-kappa B in the absence of virus. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752660 DOI: 10.1126/stke.2001.89.re1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) has been generally thought to be solely regulated by dsRNA, an intermediate in the replication of many viruses. However, the notion that PKR acts solely as a sensor for viral infection has been challenged by recent findings that alteration of PKR activity has effects on cellular growth and by the discovery of a virus-independent activator of PKR, a cellular protein called PACT (PKR-activating protein). The activation of the transcription factor nuclear factor kappa B (NF-kappaB) by PKR has been shown to account for the host antiviral response. We summarize the most recent findings on the molecular mechanisms leading to the activation of NF-kappaB by PKR and discuss three major unanswered questions. First, is PACT an alternative to dsRNA as a direct activator of the PKR-NF-kappaB pathway? Second, how is PACT itself activated and targeted to PKR? And third, what are the biological functions of PKR in the absence of viral infection?
Collapse
Affiliation(s)
- F D'Acquisto
- Section of Immunobiology, Department of Molecular Biophysics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
173
|
de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BRG. Functional classification of interferon‐stimulated genes identified using microarrays. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.912] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Michelle Holko
- Department of Cancer Biology, Lerner Research Institute, and Ohio
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio; and
| | - Mathias Frevel
- Department of Cancer Biology, Lerner Research Institute, and Ohio
| | - Eldon Walker
- Computer Core, Cleveland Clinic Foundation, Ohio
| | - Sandy Der
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
174
|
Ishii T, Kwon H, Hiscott J, Mosialos G, Koromilas AE. Activation of the I kappa B alpha kinase (IKK) complex by double-stranded RNA-binding defective and catalytic inactive mutants of the interferon-inducible protein kinase PKR. Oncogene 2001; 20:1900-12. [PMID: 11313938 DOI: 10.1038/sj.onc.1204267] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 01/10/2001] [Accepted: 01/15/2001] [Indexed: 11/08/2022]
Abstract
The interferon (IFN)-inducible double stranded (ds) RNA-activated protein kinase PKR plays an important role in protein synthesis by modulating the phosphorylation of the alpha-subunit of eukaryotic initiation fact 2 (eIF-2 alpha). In addition to translational control, PKR has been implicated in several signaling pathways leading to gene transcription. For example, PKR induces I kappa B alpha kinase (IKK) activity and I kappa B alpha phosphorylation leading to the induction of NF-kappa B-mediated gene transcription. Recent findings suggested that NF-kappa B activation by PKR does not require the catalytic activity of the kinase. Here, we provide novel evidence that induction of IKK and NF-kappa B activities proceeds independently of the dsRNA-binding properties of PKR and also verify the kinase-free role of PKR in this process. We also show that the effects of PKR mutants on IKK and NF-kappa B activation are independent of cell transformation but are dependent on the amount of the mutant PKR proteins expressed in cells. These data strongly support an indirect role of PKR in I kappa B alpha phosphorylation by modulating IKK activity through pathways that do not utilize the enzymatic and dsRNA-binding properties of PKR.
Collapse
Affiliation(s)
- T Ishii
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
175
|
Iwamura T, Yoneyama M, Yamaguchi K, Suhara W, Mori W, Shiota K, Okabe Y, Namiki H, Fujita T. Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 2001; 6:375-88. [PMID: 11318879 DOI: 10.1046/j.1365-2443.2001.00426.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Infection by virus or treatment with double-stranded RNA (dsRNA) results in the activation of transcription factors including IRF-3, IRF-7 and a pleiotropic regulator NF-kappaB by specific phosphorylation. These factors are important in triggering a cascade of antiviral responses. A protein kinase that is yet to be identified is responsible for the activation of these factors and plays a key role in the responses. RESULTS The signal cascade was analysed using sensitive assays for the activation of IRF-3 and NF-kappaB, and various inhibitors. We found that the activation of IRF-3 and NF-kappaB by dsRNA or virus involves a process that is sensitive to Geldanamycin. Although the induction of NF-kappaB by dsRNA/virus and TNF-alpha involves common downstream pathways including IKK activation, the upstream, Geldanamycin-sensitive process was unique to the dsRNA/virus-induced signal. By an in vitro assay using cell extract, we found an inducible protein kinase activity with physiological specificity of IRF-3 phosphorylation. Furthermore, the same extract specifically phosphorylated IRF-7 in a similar manner. CONCLUSIONS Double-stranded RNA or virus triggers a specific signal cascade that results in the activation of the IRF-3/-7 kinase we detected, which corresponds to the long-sought signalling machinery that is responsible for triggering the early phase of innate response. The signal branches to a common NF-kappaB activation cascade, thus resulting in the activation of a set of critical transcription factors for the response.
Collapse
Affiliation(s)
- T Iwamura
- Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Taylor DR, Tian B, Romano PR, Hinnebusch AG, Lai MM, Mathews MB. Hepatitis C virus envelope protein E2 does not inhibit PKR by simple competition with autophosphorylation sites in the RNA-binding domain. J Virol 2001; 75:1265-73. [PMID: 11152499 PMCID: PMC114032 DOI: 10.1128/jvi.75.3.1265-1273.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double-stranded-RNA (dsRNA)-dependent protein kinase PKR is induced by interferon and activated upon autophosphorylation. We previously identified four autophosphorylated amino acids and elucidated their participation in PKR activation. Three of these sites are in the central region of the protein, and one is in the kinase domain. Here we describe the identification of four additional autophosphorylated amino acids in the spacer region that separates the two dsRNA-binding motifs in the RNA-binding domain. Eight amino acids, including these autophosphorylation sites, are duplicated in hepatitis C virus (HCV) envelope protein E2. This region of E2 is required for its inhibition of PKR although the mechanism of inhibition is not known. Replacement of all four of these residues in PKR with alanines did not dramatically affect kinase activity in vitro or in yeast Saccharomyces cerevisiae. However, when coupled with mutations of serine 242 and threonines 255 and 258 in the central region, these mutations increased PKR protein expression in mammalian cells, consistent with diminished kinase activity. A synthetic peptide corresponding to this region of PKR was phosphorylated in vitro by PKR, but phosphorylation was strongly inhibited after PKR was preincubated with HCV E2. Another synthetic peptide, corresponding to the central region of PKR and containing serine 242, was also phosphorylated by active PKR, but E2 did not inhibit this peptide as efficiently. Neither of the PKR peptides was able to disrupt the HCV E2-PKR interaction. Taken together, these results show that PKR is autophosphorylated on serine 83 and threonines 88, 89, and 90, that this autophosphorylation may enhance kinase activation, and that the inhibition of PKR by HCV E2 is not solely due to duplication of and competition with these autophosphorylation sites.
Collapse
Affiliation(s)
- D R Taylor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
177
|
Iordanov MS, Wong J, Bell JC, Magun BE. Activation of NF-kappaB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 2001; 21:61-72. [PMID: 11113181 PMCID: PMC88780 DOI: 10.1128/mcb.21.1.61-72.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double-stranded RNA (dsRNA) of viral origin triggers two programs of the innate immunity in virus-infected cells. One is intended to decrease the rate of host cell protein synthesis and thus to prevent viral replication. This program is mediated by protein kinase R (PKR) and by RNase L and contributes, eventually, to the self-elimination of the infected cell via apoptosis. The second program is responsible for the production of antiviral (type I) interferons and other alarmone cytokines and serves the purpose of preparing naive cells for the viral invasion. This second program requires the survival of the infected cell and depends on the expression of antiapoptotic genes through the activation of the NF-kappaB transcription factor. The second program therefore relies on ongoing transcription and translation. It has been proposed that PKR plays an essential role in the activation of NF-kappaB by dsRNA. Here we present evidence that the dsRNA-induced NF-kappaB activity and the expression of beta interferon and inflammatory cytokines do not require either PKR or RNase L. Our results indicate, therefore, that the two dsRNA-activated programs are separate and can function independently of each other.
Collapse
Affiliation(s)
- M S Iordanov
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
178
|
Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, García-Sastre A. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 2000; 74:11566-73. [PMID: 11090154 PMCID: PMC112437 DOI: 10.1128/jvi.74.24.11566-11573.2000] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta interferon (IFN-alpha/beta) system represents one of the first lines of defense against virus infections. As a result, most viruses encode IFN antagonistic factors which enhance viral replication in their hosts. We have previously shown that a recombinant influenza A virus lacking the NS1 gene (delNS1) only replicates efficiently in IFN-alpha/beta-deficient systems. Consistent with this observation, we found that infection of tissue culture cells with delNS1 virus, but not with wild-type influenza A virus, induced high levels of mRNA synthesis from IFN-alpha/beta genes, including IFN-beta. It is known that transactivation of the IFN-beta promoter depends on NF-kappaB and several other transcription factors. Interestingly, cells infected with delNS1 virus showed high levels of NF-kappaB activation compared with those infected with wild-type virus. Expression of dominant-negative inhibitors of the NF-kappaB pathway during delNS1 virus infection prevented the transactivation of the IFN-beta promoter, demonstrating a functional link between NF-kappaB activation and IFN-alpha/beta synthesis in delNS1 virus-infected cells. Moreover, expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-kappaB pathway and of IFN-beta synthesis. This inhibitory property of the NS1 protein of influenza A virus was dependent on its ability to bind dsRNA, supporting a model in which binding of NS1 to dsRNA generated during influenza virus infection prevents the activation of the IFN system. NS1-mediated inhibition of the NF-kappaB pathway may thus play a key role in the pathogenesis of influenza A virus.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|