151
|
Yu M, Liu Z, Liu Y, Zhou X, Sun F, Liu Y, Li L, Hua S, Zhao Y, Gao H, Zhu Z, Na M, Zhang Q, Yang R, Zhang J, Yao Y, Chen X. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J 2019; 286:1136-1153. [PMID: 30548198 DOI: 10.1111/febs.14724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase PTP1B, which is encoded by PTPN1, is a ubiquitously expressed nonreceptor protein tyrosine phosphatase. PTP1B has long been known to negatively regulate insulin and leptin receptor signalling. Recently, it was reported to be aberrantly expressed in cancer cells and to function as an important oncogene. In this study, we found that PTP1B protein levels are dramatically increased in breast cancer (BC) tissues and that PTP1B promotes the proliferation, and suppresses the apoptosis, of both HER2-positive and triple-negative BC cell lines. Bioinformatics analysis identified that the miRNA, miR-193a-3p, might potentially target PTP1B. We demonstrate that miR-193a-3p regulates PTP1B in BC cells and that it regulates the proliferation and apoptosis of BC cells by targeting PTP1B, both in vitro and in vivo. In conclusion, this study confirms that PTP1B acts as an oncogene in BC and demonstrates that miR-193a-3p can serve as a tumour suppressor gene in BC by targeting PTP1B.
Collapse
Affiliation(s)
- Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Zhijian Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Xinyan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Liuyi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Shiyu Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Yi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Haidong Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Zhouting Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Muhan Na
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Rong Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Jiangsu, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| |
Collapse
|
152
|
Jäger M, Hubert A, Gogiraju R, Bochenek ML, Münzel T, Schäfer K. Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence. Antioxid Redox Signal 2019; 30:927-944. [PMID: 29390191 DOI: 10.1089/ars.2017.7169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. RESULTS Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl3) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ERT2-Cre × PTP1Bfl/fl; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFβ) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated β-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. INNOVATION Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition may promote endothelial senescence. CONCLUSION Absence of PTP1B in endothelial cells impairs re-endothelialization, and the failure to induce smooth muscle cell quiescence or to protect from circulating growth factors may result in neointimal hyperplasia.
Collapse
Affiliation(s)
- Marianne Jäger
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany
| | - Astrid Hubert
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Rajinikanth Gogiraju
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Magdalena L Bochenek
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany.,3 Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany
| | - Katrin Schäfer
- 1 Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,2 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Berlin, Germany
| |
Collapse
|
153
|
Fernandes C, Carraro ML, Ribeiro J, Araújo J, Tiritan ME, Pinto MMM. Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies. Molecules 2019; 24:E791. [PMID: 30813236 PMCID: PMC6412826 DOI: 10.3390/molecules24040791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Maria Letícia Carraro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana Araújo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Cooperativa de Ensino Superior, Politécnico e Universitário (CESPU), Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| |
Collapse
|
154
|
Computational study of new 1,2,3-triazole derivative of lithocholic acid: Structural aspects, non-linear optical properties and molecular docking studies as potential PTP 1B enzyme inhibitor. Comput Biol Chem 2019; 78:144-152. [DOI: 10.1016/j.compbiolchem.2018.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/09/2018] [Accepted: 11/18/2018] [Indexed: 01/14/2023]
|
155
|
Abstract
More than any other organ, the heart is particularly sensitive to gene expression deregulation, often leading in the long run to impaired contractile performances and excessive fibrosis deposition progressing to heart failure. Recent investigations provide evidences that the protein phosphatases (PPs), as their counterpart protein kinases, are important regulators of cardiac physiology and development. Two main groups, the protein serine/threonine phosphatases and the protein tyrosine phosphatases (PTPs), constitute the PPs family. Here, we provide an overview of the role of PTP subfamily in the development of the heart and in cardiac pathophysiology. Based on recent in silico studies, we highlight the importance of PTPs as therapeutic targets for the development of new drugs to restore PTPs signaling in the early and late events of heart failure.
Collapse
Affiliation(s)
- Fallou Wade
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Karim Belhaj
- College of Medicine and Health Sciences, Al-Faisal University, Riyadh, 11211, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Biology Department, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
156
|
Cohen-Sharir Y, Kuperman Y, Apelblat D, den Hertog J, Spiegel I, Knobler H, Elson A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo. FASEB J 2019; 33:5101-5111. [PMID: 30615487 DOI: 10.1096/fj.201800860rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding how body weight is regulated at the molecular level is essential for treating obesity. We show that female mice genetically lacking protein tyrosine phosphatase (PTP) receptor type α (PTPRA) exhibit reduced weight and adiposity and increased energy expenditure, and are more resistant to diet-induced obesity than matched wild-type control mice. These mice also exhibit reduced levels of circulating leptin and are leptin hypersensitive, suggesting that PTPRA inhibits leptin signaling in the hypothalamus. Male and female PTPRA-deficient mice fed a high-fat diet were leaner and displayed increased metabolic rates and lower circulating leptin levels, indicating that the effects of loss of PTPRA persist in the obese state. Molecularly, PTPRA down-regulates leptin receptor signaling by dephosphorylating the receptor-associated kinase JAK2, with which the phosphatase associates constitutively. In contrast to the closely related tyrosine phosphatase ε, leptin induces only weak phosphorylation of PTPRA at its C-terminal regulatory site Y789, and this does not affect the activity of PTPRA toward JAK2. PTPRA is therefore an inhibitor of hypothalamic leptin signaling in vivo and may prevent premature activation of leptin signaling, as well as return signaling to baseline after exposure to leptin.-Cohen-Sharir, Y., Kuperman, Y., Apelblat, D., den Hertog, J., Spiegel, I., Knobler, H., Elson, A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo.
Collapse
Affiliation(s)
- Yael Cohen-Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Apelblat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeroen den Hertog
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands.,Institute Biology Leiden, Leiden, The Netherlands; and
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Knobler
- Diabetes, Endocrinology and Metabolic Institute, Kaplan Medical Center, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
157
|
Yang SJ, Paudel P, Shrestha S, Seong SH, Jung HA, Choi JS. In vitro protein tyrosine phosphatase 1B inhibition and antioxidant property of different onion peel cultivars: A comparative study. Food Sci Nutr 2019; 7:205-215. [PMID: 30680174 PMCID: PMC6341175 DOI: 10.1002/fsn3.863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was a comparative investigation of water and 70% ethanol extracts derived from yellow and red onion (Allium cepa L.) peels against diabetes and diabetic complications. The total phenolic contents (TPCs) and total flavonoid contents (TFCs) of each cultivar, measured to assess phytochemical characteristics, showed a direct correlation with the in vitro antioxidant effects. Among the two captives, the yellow onion peel extract showed higher antioxidant activity than red one. However, all extracts exhibited significant protein tyrosine phosphatase 1B (PTP1B) inhibitory activity (IC50; 0.30-0.86 μg/ml), showing water extracts more potent (IC50; approximately 0.3 μg/mL), than the 70% ethanol extracts (IC50; approximately 0.8 μg/ml). Similarly, in insulin-resistant HepG2 cells, all extracts enhanced the glucose uptake and reduced the expression of PTP1B in a concentration-dependent manner, water extract displaying better activity. Our results overall suggest that in vitro antioxidant and antidiabetic potentials vary among red and yellow cultivars and extracting solvents, which could therefore be a promising strategy to prevent diabetes and associated complications.
Collapse
Affiliation(s)
- Su Jin Yang
- Department of Food and Life SciencePukyong National UniversityBusanKorea
| | - Pradeep Paudel
- Department of Food and Life SciencePukyong National UniversityBusanKorea
| | - Srijan Shrestha
- Department of Food and Life SciencePukyong National UniversityBusanKorea
| | - Su Hui Seong
- Department of Food and Life SciencePukyong National UniversityBusanKorea
| | - Hyun Ah Jung
- Department of Food Science and Human NutritionChonbuk National UniversityJeonjuKorea
| | - Jae Sue Choi
- Department of Food and Life SciencePukyong National UniversityBusanKorea
| |
Collapse
|
158
|
Balland E, Chen W, Dodd GT, Conductier G, Coppari R, Tiganis T, Cowley MA. Leptin Signaling in the Arcuate Nucleus Reduces Insulin’s Capacity to Suppress Hepatic Glucose Production in Obese Mice. Cell Rep 2019; 26:346-355.e3. [DOI: 10.1016/j.celrep.2018.12.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
|
159
|
Balland E, Chen W, Tiganis T, Cowley MA. Persistent Leptin Signaling in the Arcuate Nucleus Impairs Hypothalamic Insulin Signaling and Glucose Homeostasis in Obese Mice. Neuroendocrinology 2019; 109:374-390. [PMID: 30995667 DOI: 10.1159/000500201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is associated with reduced physiological responses to leptin and insulin, leading to the concept of obesity-associated hormonal resistance. OBJECTIVES Here, we demonstrate that contrary to expectations, leptin signaling not only remains functional but also is constantly activated in the arcuate nucleus of the hypothalamus (ARH) neurons of obese mice. This state of persistent response to endogenous leptin underpins the lack of response to exogenous leptin. METHODS AND RESULTS The study of combined leptin and insulin signaling demonstrates that there is a common pool of ARH neurons responding to both hormones. More importantly, we show that the constant activation of leptin receptor neurons in the ARH prevents insulin signaling in these neurons, leading to impaired glucose tolerance. Accordingly, antagonising leptin signaling in diet-induced obese (DIO) mice restores insulin signaling in the ARH and improves glucose homeostasis. Direct inhibition of PTP1B in the CNS restores arcuate insulin signaling similarly to leptin inhibition; this effect is likely to be mediated by AgRP neurons since PTP1B deletion specifically in AgRP neurons restores glucose and insulin tolerance in DIO mice. CONCLUSIONS Finally, our results suggest that the constant activation of arcuate leptin signaling in DIO mice increases PTP1B expression, which exerts an inhibitory effect on insulin signaling leading to impaired glucose homeostasis.
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,
| | - Weiyi Chen
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology , Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
160
|
Ezzat SM, Bishbishy MHE, Habtemariam S, Salehi B, Sharifi-Rad M, Martins N, Sharifi-Rad J. Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors. Molecules 2018; 23:E3334. [PMID: 30558294 PMCID: PMC6321226 DOI: 10.3390/molecules23123334] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease with high morbimortality rates. DM has two types: type 1, which is often associated with a total destruction of pancreatic beta cells, and non-insulin-dependent or type 2 diabetes mellitus (T2DM), more closely associated with obesity and old age. The main causes of T2DM are insulin resistance and/or inadequate insulin secretion. Protein-tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling pathways and plays an important role in T2DM, as its overexpression may induce insulin resistance. Thus, since PTP1B may be a therapeutic target for both T2DM and obesity, the search for novel and promising natural inhibitors has gained much attention. Hence, several marine organisms, including macro and microalgae, sponges, marine invertebrates, sea urchins, seaweeds, soft corals, lichens, and sea grasses, have been recently evaluated as potential drug sources. This review provides an overview of the role of PTP1B in T2DM insulin signaling and treatment, and highlights the recent findings of several compounds and extracts derived from marine organisms and their relevance as upcoming PTP1B inhibitors. In this systematic literature review, more than 60 marine-derived metabolites exhibiting PTP1B inhibitory activity are listed. Their chemical classes, structural features, relative PTP1B inhibitory potency (assessed by IC50 values), and structure⁻activity relationships (SARs) that could be drawn from the available data are discussed. The upcoming challenge in the field of marine research-metabolomics-is also addressed.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Cairo 12566, Egypt.
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Cairo 12566, Egypt.
| | - Solomon Habtemariam
- Herbal Analysis Services UK & Pharmacognosy Research Laboratories, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Bahare Salehi
- Student Research Committee, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Natália Martins
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
161
|
An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorg Med Chem Lett 2018; 28:3712-3720. [DOI: 10.1016/j.bmcl.2018.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
|
162
|
Lu X, Wu L, Liu X, Wang S, Zhang C. BH3 mimetics derived from Bim-BH3 domain core region show PTP1B inhibitory activity. Bioorg Med Chem Lett 2018; 29:244-247. [PMID: 30501963 DOI: 10.1016/j.bmcl.2018.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/04/2023]
Abstract
A series of our previously described BH3 peptide mimetics derived from Bim-BH3 domain core region were found to exhibit weak to potent PTP1B binding affinity and inhibitory activities via target-based drug screening. Among these compounds, a 12-aa Bim-BH3 core sequence peptide conjugated to palmitic acid (SM-6) displayed good PTP1B binding affinity (KD = 8.38 nmol/L), inhibitory activity (IC50 = 1.20 μmol/L) and selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). Furthermore, SM-6 promoted HepG2 cell glucose uptake and inhibited the expression of PTP1B, indicating that SM-6 could improve the insulin resistance effect in the insulin-resistant HepG2 cell model. These results may indicate a new direction for the application of BH3 peptide mimetics and promising PTP1B peptide inhibitors could be designed and developed based on SM-6.
Collapse
Affiliation(s)
- Xiao Lu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lijuan Wu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute, Qingdao 266071, China
| | - Xiaochun Liu
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Shulin Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute, Qingdao 266071, China.
| | - Chuanliang Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute, Qingdao 266071, China.
| |
Collapse
|
163
|
Kim DC, Minh Ha T, Sohn JH, Yim JH, Oh H. Protein tyrosine phosphatase 1B inhibitors from a marine-derived fungal strain aspergillus sp. SF-5929. Nat Prod Res 2018; 34:675-682. [DOI: 10.1080/14786419.2018.1499629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dong-Cheol Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Tran Minh Ha
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, Incheon, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
164
|
Chen X, Gan Q, Feng C, Liu X, Zhang Q. Investigation of selective binding of inhibitors to PTP1B and TCPTP by accelerated molecular dynamics simulations. J Biomol Struct Dyn 2018; 37:3697-3706. [DOI: 10.1080/07391102.2018.1526117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Qiang Gan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Changgen Feng
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xia Liu
- College of Science, China Agricultural University, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
165
|
Xu SH, Xu W, Wang L, Hu YK, Liu JP, Zhao Y, Li MJ, Li F, Huang SX, Zhao Y. New phloroglucinol derivatives with protein tyrosine phosphatase 1B (PTP1B) inhibitory activities from Syzygium austroyunnanense. Fitoterapia 2018; 131:141-145. [DOI: 10.1016/j.fitote.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
166
|
Yagi M, Nakatsuji Y, Maeda A, Ota H, Kamikubo R, Miyoshi N, Nakamura Y, Akagawa M. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS One 2018; 13:e0206748. [PMID: 30383868 PMCID: PMC6211728 DOI: 10.1371/journal.pone.0206748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity, a principal risk factor for the development of diabetes mellitus, heart disease, and hypertension, is a growing and serious health problem all over the world. Leptin is a weight-reducing hormone produced by adipose tissue, which decreases food intake via hypothalamic leptin receptors (Ob-Rb) and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates leptin signaling by dephosphorylating JAK2, and the increased activity of PTP1B is implicated in the pathogenesis of obesity. Hence, inhibition of PTP1B may help prevent and reduce obesity. In this study, we revealed that phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate in certain cruciferous vegetables, potently inhibits recombinant PTP1B by binding to the reactive cysteinyl thiol. Moreover, we found that PEITC causes the ligand-independent phosphorylation of Ob-Rb, JAK2, and STAT3 by inhibiting cellular PTP1B in differentiated human SH-SY5Y neuronal cells. PEITC treatment also induced nuclear accumulation of phosphorylated STAT3, resulting in enhanced anorexigenic POMC expression and suppressed orexigenic NPY/AGRP expression. We demonstrated that oral administration of PEITC to mice significantly reduces food intake, and stimulates hypothalamic leptin signaling. Our results suggest that PEITC might help prevent and improve obesity.
Collapse
Affiliation(s)
- Miho Yagi
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yukiko Nakatsuji
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ayumi Maeda
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hiroki Ota
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ryosuke Kamikubo
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- * E-mail:
| |
Collapse
|
167
|
Ha MT, Park DH, Shrestha S, Kim M, Kim JA, Woo MH, Choi JS, Min BS. PTP1B inhibitory activity and molecular docking analysis of stilbene derivatives from the rhizomes of Rheum undulatum L. Fitoterapia 2018; 131:119-126. [PMID: 30352293 DOI: 10.1016/j.fitote.2018.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
|
168
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
169
|
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2018; 234:8152-8161. [PMID: 30317615 DOI: 10.1002/jcp.27603] [Citation(s) in RCA: 543] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Most human cells utilize glucose as the primary substrate, cellular uptake requiring insulin. Insulin signaling is therefore critical for these tissues. However, decrease in insulin sensitivity due to the disruption of various molecular pathways causes insulin resistance (IR). IR underpins many metabolic disorders such as type 2 diabetes and metabolic syndrome, impairments in insulin signaling disrupting entry of glucose into the adipocytes, and skeletal muscle cells. Although the exact underlying cause of IR has not been fully elucidated, a number of major mechanisms, including oxidative stress, inflammation, insulin receptor mutations, endoplasmic reticulum stress, and mitochondrial dysfunction have been suggested. In this review, we consider the role these cellular mechanisms play in the development of IR.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid Farrokhi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
170
|
Leptin Signaling in the Control of Metabolism and Appetite: Lessons from Animal Models. J Mol Neurosci 2018; 66:390-402. [PMID: 30284225 DOI: 10.1007/s12031-018-1185-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
|
171
|
Synthesis and biological evaluation of some N-(3-(1H-tetrazol-5-yl) phenyl)acetamide derivatives as novel non-carboxylic PTP1B inhibitors designed through bioisosteric modulation. Bioorg Chem 2018; 80:145-150. [DOI: 10.1016/j.bioorg.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
|
172
|
Berends LM, Dearden L, Tung YCL, Voshol P, Fernandez-Twinn DS, Ozanne SE. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018; 61:2225-2234. [PMID: 30043179 PMCID: PMC6133152 DOI: 10.1007/s00125-018-4694-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS Intra-uterine growth restriction (IUGR) followed by accelerated postnatal growth is associated with an increased risk of obesity and type 2 diabetes. We aimed to determine central and peripheral insulin sensitivity in mice that underwent IUGR followed by postnatal catch-up growth and investigate potential molecular mechanisms underpinning their physiology. METHODS We used a C57BL/6J mouse model of maternal diet-induced IUGR (maternal diet, 8% protein) followed by cross-fostering to a normal nutrition dam (maternal diet, 20% protein) and litter size manipulation to cause accelerated postnatal catch-up growth. We performed intracerebroventricular insulin injection and hyperinsulinaemic-euglycaemic clamp studies to examine the effect of this early nutritional manipulation on central and peripheral insulin resistance. Furthermore, we performed quantitative real-time PCR and western blotting to examine the expression of key insulin-signalling components in discrete regions of the hypothalamus. RESULTS IUGR followed by accelerated postnatal growth caused impaired glucose tolerance and peripheral insulin resistance. In addition, these 'recuperated' animals were resistant to the anorectic effects of central insulin administration. This central insulin resistance was associated with reduced protein levels of the p110β subunit of phosphoinositide 3-kinase (PI3K) and increased serine phosphorylation of IRS-1 in the arcuate nucleus (ARC) of the hypothalamus. Expression of the gene encoding protein tyrosine phosphatase 1B (PTP1B; Ptpn1) was also increased specifically in this region of the hypothalamus. CONCLUSIONS/INTERPRETATION Mice that undergo IUGR followed by catch-up growth display peripheral and central insulin resistance in adulthood. Recuperated offspring show changes in expression/phosphorylation of components of the insulin signalling pathway in the ARC. These defects may contribute to the resistance to the anorectic effects of central insulin, as well as the impaired glucose homeostasis seen in these animals.
Collapse
Affiliation(s)
- Lindsey M Berends
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yi Chun L Tung
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Peter Voshol
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
173
|
Qin N, Sasaki T, Li W, Wang J, Zhang X, Li D, Li Z, Cheng M, Hua H, Koike K. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. J Enzyme Inhib Med Chem 2018; 33:1283-1291. [PMID: 30160205 PMCID: PMC6127842 DOI: 10.1080/14756366.2018.1497020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an attractive molecular target for anti-diabetes, anti-obesity, and anti-cancer drug development. From the seeds of Silybum marianum, nine flavonolignans, namely, silybins A, B (1, 2), isosilybins A, B (3, 4), silychristins A, B (5, 6), isosilychristin A (7), dehydrosilychristin A (8), and silydianin (11) were identified as a novel class of natural PTP1B inhibitors (IC50 1.3 7-23.87 µM). Analysis of structure-activity relationship suggested that the absolute configurations at C-7" and C-8" greatly affected the PTP1B inhibitory activity. Compounds 1-5 were demonstrated to be non-competitive inhibitors of PTP1B based on kinetic analyses. Molecular docking simulations resulted that 1-5 docked into the allosteric site, including α3, α6, and α7 helix of PTP1B. At a concentration inhibiting PTP1B completely, compounds 1-5 moderately inhibited VHR and SHP-2, and weakly inhibited TCPTP and SHP-1. These results suggested the potentiality of these PTP1B inhibitors as lead compounds for further drug developments.
Collapse
Affiliation(s)
- Ningbo Qin
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Tatsunori Sasaki
- c Faculty of Pharmaceutical Sciences , Toho University , Funabashi , Japan
| | - Wei Li
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,c Faculty of Pharmaceutical Sciences , Toho University , Funabashi , Japan
| | - Jian Wang
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,d School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China
| | - Xiangyu Zhang
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,d School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China
| | - Dahong Li
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Zhanlin Li
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Maosheng Cheng
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,d School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China
| | - Huiming Hua
- a Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , Liaoning , PR China.,b School of Traditional Chinese Materia Medica , Shenyang Pharmaceutical University , Shenyang , Liaoning PR China
| | - Kazuo Koike
- c Faculty of Pharmaceutical Sciences , Toho University , Funabashi , Japan
| |
Collapse
|
174
|
Hjortness MK, Riccardi L, Hongdusit A, Ruppe A, Zhao M, Kim EY, Zwart PH, Sankaran B, Arthanari H, Sousa MC, De Vivo M, Fox JM. Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Biochemistry 2018; 57:5886-5896. [PMID: 30169954 DOI: 10.1021/acs.biochem.8b00655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatases (PTPs) contribute to a striking variety of human diseases, yet they remain vexingly difficult to inhibit with uncharged, cell-permeable molecules; no inhibitors of PTPs have been approved for clinical use. This study uses a broad set of biophysical analyses to evaluate the use of abietane-type diterpenoids, a biologically active class of phytometabolites with largely nonpolar structures, for the development of pharmaceutically relevant PTP inhibitors. Results of nuclear magnetic resonance analyses, mutational studies, and molecular dynamics simulations indicate that abietic acid can inhibit protein tyrosine phosphatase 1B, a negative regulator of insulin signaling and an elusive drug target, by binding to its active site in a non-substrate-like manner that stabilizes the catalytically essential WPD loop in an inactive conformation; detailed kinetic studies, in turn, show that minor changes in the structures of abietane-type diterpenoids (e.g., the addition of hydrogens) can improve potency (i.e., lower IC50) by 7-fold. These findings elucidate a previously uncharacterized mechanism of diterpenoid-mediated inhibition and suggest, more broadly, that abietane-type diterpenoids are a promising source of structurally diverse-and, intriguingly, microbially synthesizable-molecules on which to base the design of new PTP-inhibiting therapeutics.
Collapse
Affiliation(s)
- Michael K Hjortness
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Akarawin Hongdusit
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Alex Ruppe
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Edward Y Kim
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Peter H Zwart
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Marcelo C Sousa
- Department of Biochemistry , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Jerome M Fox
- Department of Chemical and Biological Engineering , University of Colorado , 3415 Colorado Avenue , Boulder , Colorado 80303 , United States
| |
Collapse
|
175
|
Yang R, Wang L, Xie J, Li X, Liu S, Qiu S, Hu Y, Shen X. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. Int J Mol Med 2018; 42:2329-2342. [PMID: 30226559 PMCID: PMC6192715 DOI: 10.3892/ijmm.2018.3836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
The present study investigated the effects of cajanonic acid A (CAA), extracted from the leaves of Cajanus cajan (L.) Millsp with a purity of 98.22%, on the regulatory mechanisms of glucose and lipid metabolism. HepG2 cells transfected with a protein-tyrosine phosphatase 1B (PTP1B) overexpression plasmid were established. The cells, induced with insulin resistance by dexamethasone (Dex) treatment, together with type 2 diabetes mellitus (T2DM) model rats and ob/ob mice, were used in the present study. The effects of CAA treatment on the differentiation of 3T3-L1 adipocytes were determined using Oil Red O. The expression levels of insulin signaling factors were detected via reverse transcription-quantitative polymerase chain reaction and western blot analyses. The results revealed that the overexpression of PTP1B contributed to insulin resistance, which was reversed by CAA treatment via inhibiting the activity of PTP1B and by regulating the expression of associated insulin signaling factors. The treatment of cell lines with Dex led to increased expression of PTP1B but decreased glucose consumption, and decreased tyrosine phosphorylation of insulin receptor, insulin receptor substrate 1, and phosphoinositide 3-kinase. Treatment with CAA not only reduced the fasting blood glucose levels and protected organs from damage, but also reduced the serum fasting levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the T2DM rats. CAA treatment also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes. Furthermore, CAA treatment restored the transduction of insulin signaling by regulating the expression of PTP1B and associated insulin signaling factors. Treatment with CAA also reduced the problems associated with hyperglycemia and hyperlipidemia. In conclusion, CAA may be used to cure T2DM via restoring insulin resistance and preventing obesity.
Collapse
Affiliation(s)
- Ruiyi Yang
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lu Wang
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jie Xie
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiang Li
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shan Liu
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, P.R. China
| | - Yingjie Hu
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoling Shen
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
176
|
Bruckner S, Weise M, Schobert R. Synthesis of the Entomopathogenic Fungus Metabolites Militarinone C and Fumosorinone A. J Org Chem 2018; 83:10805-10812. [DOI: 10.1021/acs.joc.8b01530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sebastian Bruckner
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Marie Weise
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
177
|
Shalev M, Elson A. The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:114-123. [PMID: 30026076 DOI: 10.1016/j.bbamcr.2018.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Maintaining the proper balance between osteoblast-mediated production of bone and its degradation by osteoclasts is essential for health. Osteoclasts are giant phagocytic cells that are formed by fusion of monocyte-macrophage precursor cells; mature osteoclasts adhere to bone tightly and secrete protons and proteases that degrade its matrix. Phosphorylation of tyrosine residues in proteins, which is regulated by the biochemically-antagonistic activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is central in regulating the production of osteoclasts and their bone-resorbing activity. Here we review the roles of individual PTPs of the classical and dual-specificity sub-families that are known to support these processes (SHP2, cyt-PTPe, PTPRO, PTP-PEST, CD45) or to inhibit them (SHP1, PTEN, MKP1). Characterizing the functions of PTPs in osteoclasts is essential for complete molecular level understanding of bone resorption and for designing novel therapeutic approaches for treating bone disease.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
178
|
Mojena M, Pimentel-Santillana M, Povo-Retana A, Fernández-García V, González-Ramos S, Rada P, Tejedor A, Rico D, Martín-Sanz P, Valverde AM, Boscá L. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B. Redox Biol 2018; 17:213-223. [PMID: 29705509 PMCID: PMC6006913 DOI: 10.1016/j.redox.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant.
Collapse
Affiliation(s)
- Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Alberto Tejedor
- Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, United Kingdom
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| |
Collapse
|
179
|
Vauzour D, Corsini S, Müller M, Spencer JP. Inhibition of PP2A by hesperetin may contribute to Akt and ERK1/2 activation status in cortical neurons. Arch Biochem Biophys 2018; 650:14-21. [DOI: 10.1016/j.abb.2018.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 01/09/2023]
|
180
|
Shinde RN, Kumar GS, Eqbal S, Sobhia ME. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches. PLoS One 2018; 13:e0199020. [PMID: 29912965 PMCID: PMC6005499 DOI: 10.1371/journal.pone.0199020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/12/2018] [Indexed: 12/25/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.
Collapse
Affiliation(s)
- Ranajit Nivrutti Shinde
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - G. Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shahbaz Eqbal
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M. Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
181
|
Carmichael JC, Yokota H, Craven RC, Schmitt A, Wills JW. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B. PLoS Pathog 2018; 14:e1007054. [PMID: 29742155 PMCID: PMC5962101 DOI: 10.1371/journal.ppat.1007054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease. It is estimated that 67% of the global population is infected with herpes simplex virus type 1 (HSV-1). This virus resides in sensory neurons in a quiescent state but periodically reactivates, producing virus particles that travel down the axon to infect epithelial cells of the skin, where it can be transmitted to additional people. To avoid neutralizing antibodies, herpesviruses have evolved mechanisms for moving directly from one cell to another through their sites of intimate contact; however, the mechanism of cell-to-cell spread is poorly understood. Studies of HSV-1 mutants have implicated numerous viral proteins, but the necessary cellular factors are unknown except for the one that the virus uses to enter cells. Our experiments have identified a cellular enzyme (PTP1B, a tyrosine phosphatase) that is dispensable for the production of infectious virions but is critically important for the cell-to-cell spreading mechanism. Promising drugs targeting PTP1B have already been tested in early clinical trials for possible treatment of obesity and type-2 diabetes, and thus, our study may have immediate utility for attenuating HSV-1 reactivation disease in immunocompromised patients.
Collapse
Affiliation(s)
- Jillian C. Carmichael
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Rebecca C. Craven
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anthony Schmitt
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John W. Wills
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
182
|
Target identification reveals protein arginine methyltransferase 1 is a potential target of phenyl vinyl sulfone and its derivatives. Biosci Rep 2018. [PMID: 29540535 PMCID: PMC5968187 DOI: 10.1042/bsr20171717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phenyl vinyl sulfone (PVS) and phenyl vinyl sulfonate (PVSN) inactivate protein tyrosine phosphatases (PTPs) by mimicking the phosphotyrosine structure and providing a Michael addition acceptor for the active-site cysteine residue of PTPs, thus forming covalent adducts between PVS (or PVSN) and PTPs. We developed a specific antiserum against PVS. This antiserum can be used in general antibody-based assays such as immunoblotting, immunofluorescence staining, and immunoprecipitation. Target identification through immunoprecipitation and mass spectrometry analysis reveals potential targets of PVS, mostly proteins with reactive cysteine residues or low-pKa cysteine residues that are prone to reversible redox modifications. Target identification of PVSN has been conducted because the anti-PVS antiserum can also recognize PVSN. Among the targets, protein arginine methyltransferase 1 (PRMT1), inosine-5'-monophosphate dehydrogenase 1, vimentin, and glutathione reductase (GR) were further confirmed by immunoprecipitation followed by immunoblotting. In addition, PVSN and Bay11-7082 inhibited GR activity, and PVS, PVSN, and Bay 11-7082 inhibited PRMT1 activity in in vitro assays. In addition, treatment of PVSN, Bay11-7082, or Bay 11-7085 in cultured HeLa cells can cause the quick decline in the levels of protein asymmetric dimethylarginine. These results indicate that the similar moiety among PVS, PVSN, Bay 11-7082, and Bay 11-7085 can be the key structure of lead compounds of PRMT1. Therefore, we expect to use this approach in the identification of potential targets of other covalent drugs.
Collapse
|
183
|
Ruddraraju KV, Zhang ZY. Covalent inhibition of protein tyrosine phosphatases. MOLECULAR BIOSYSTEMS 2018; 13:1257-1279. [PMID: 28534914 DOI: 10.1039/c7mb00151g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of 107 signaling enzymes that catalyze the hydrolytic removal of phosphate groups from tyrosine residues in a target protein. The phosphorylation status of tyrosine residues on proteins serve as a ubiquitous mechanism for cellular signal transduction. Aberrant function of PTPs can lead to many human diseases, such as diabetes, obesity, cancer, and autoimmune diseases. As the number of disease relevant PTPs increases, there is urgency in developing highly potent inhibitors that are selective towards specific PTPs. Most current efforts have been devoted to the development of active site-directed and reversible inhibitors for PTPs. This review summarizes recent progress made in the field of covalent inhibitors to target PTPs. Here, we discuss the in vivo and in vitro inactivation of various PTPs by small molecule-containing electrophiles, such as Michael acceptors, α-halo ketones, epoxides, and isothiocyanates, etc. as well as oxidizing agents. We also suggest potential strategies to transform these electrophiles into isozyme selective covalent PTP inhibitors.
Collapse
Affiliation(s)
- Kasi Viswanatharaju Ruddraraju
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
184
|
Chen X, Gan Q, Feng C, Liu X, Zhang Q. Virtual Screening of Novel and Selective Inhibitors of Protein Tyrosine Phosphatase 1B over T-Cell Protein Tyrosine Phosphatase Using a Bidentate Inhibition Strategy. J Chem Inf Model 2018; 58:837-847. [DOI: 10.1021/acs.jcim.8b00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Qiang Gan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Changgen Feng
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xia Liu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
185
|
Liu J, Chen Y, Li JY, Luo C, Li J, Chen KX, Li XW, Guo YW. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity. Mar Drugs 2018; 16:md16030097. [PMID: 29558377 PMCID: PMC5867641 DOI: 10.3390/md16030097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023] Open
Abstract
Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure–activity relationship (SAR) and molecular docking analyses are also described.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, China.
| | - Yu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Jing-Ya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.
| |
Collapse
|
186
|
Cruz MM, Lopes AB, Crisma AR, de Sá RCC, Kuwabara WMT, Curi R, de Andrade PBM, Alonso-Vale MIC. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids Health Dis 2018; 17:55. [PMID: 29554895 PMCID: PMC5859716 DOI: 10.1186/s12944-018-0710-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. METHODS For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. RESULTS Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. CONCLUSIONS Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.
Collapse
Affiliation(s)
- Maysa M Cruz
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, 210, Sao Nicolau St, Diadema, 09913-030, Brazil
| | - Andressa B Lopes
- Department of Nursing , Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Amanda R Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta C C de Sá
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, 210, Sao Nicolau St, Diadema, 09913-030, Brazil
| | - Wilson M T Kuwabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Paula B M de Andrade
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Maria I C Alonso-Vale
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo, 210, Sao Nicolau St, Diadema, 09913-030, Brazil.
| |
Collapse
|
187
|
Zhang J, Sasaki T, Li W, Nagata K, Higai K, Feng F, Wang J, Cheng M, Koike K. Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps. Bioorg Med Chem Lett 2018. [PMID: 29525218 DOI: 10.1016/j.bmcl.2018.02.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (1-10) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC50 11.1 μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Tatsunori Sasaki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kazuya Nagata
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Koji Higai
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
188
|
Dezfuli G, Gillis RA, Tatge JE, Duncan KR, Dretchen KL, Jackson PG, Verbalis JG, Sahibzada N. Subdiaphragmatic Vagotomy With Pyloroplasty Ameliorates the Obesity Caused by Genetic Deletion of the Melanocortin 4 Receptor in the Mouse. Front Neurosci 2018; 12:104. [PMID: 29545738 PMCID: PMC5838008 DOI: 10.3389/fnins.2018.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Background/Objectives: We tested the hypothesis that abolishing vagal nerve activity will reverse the obesity phenotype of melanocortin 4 receptor knockout mice (Mc4r−/−). Subjects/Methods: In two separate studies, we examined the efficacy of bilateral subdiaphragmatic vagotomy (SDV) with pyloroplasty in the prevention and treatment of obesity in Mc4r−/− mice. Results: In the first study, SDV prevented >20% increase in body weight (BW) associated with this genotype. This was correlated with a transient reduction in overall food intake (FI) in the preventative arm of the study. Initially, SDV mice had reduced weekly FI; however, FI normalized to that of controls and baseline FI within the 8-week study period. In the second study, the severe obesity that is characteristic of the adult Mc4r−/− genotype was significantly improved by SDV with a magnitude of 30% loss in excess BW over a 4-week period. Consistent with the first preventative study, within the treatment arm, SDV mice also demonstrated a transient reduction in FI relative to control and baseline levels that normalized over subsequent weeks. In addition to the accompanying loss in weight, mice subjected to SDV showed a decrease in respiratory exchange ratio (RER), and an increase in locomotor activity (LA). Analysis of the white fat-pad deposits of these mice showed that they were significantly less than the control groups. Conclusions: Altogether, our data demonstrates that SDV both prevents gain in BW and causes weight loss in severely obese Mc4r−/− mice. Moreover, it suggests that an important aspect of weight reduction for this type of monogenic obesity involves loss of signaling in vagal motor neurons.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Jaclyn E Tatge
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Kimbell R Duncan
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Kenneth L Dretchen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Patrick G Jackson
- Department of Surgery, Georgetown University Medical Center, Washington, DC, United States
| | - Joseph G Verbalis
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
189
|
Hu N, Ren J, Zhang Y. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α. Oncotarget 2018; 7:76398-76414. [PMID: 27634872 PMCID: PMC5363518 DOI: 10.18632/oncotarget.11977] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was designed to evaluate the impact of ALDH2 overexpression on insulin resistance-induced myocardial damage and mechanisms involved with a focus on autophagy. Wild-type (WT) and transgenic mice overexpressing ALDH2 were fed sucrose or starch diet for 8 weeks and cardiac function and intracellular Ca2+ handling were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate Akt, heme oxygenase-1 (HO-1), PGC-1α and Sirt-3. Our data revealed that sucrose intake provoked insulin resistance and compromised fractional shortening, cardiomyocyte function and intracellular Ca2+ handling (p < 0.05) along with unaltered cardiomyocyte size (p > 0.05), mitochondrial injury (elevated ROS generation, suppressed NAD+ and aconitase activity, p < 0.05 for all), the effect of which was ablated by ALDH2. In vitro incubation of the ALDH2 activator Alda-1, the Sirt3 activator oroxylin A and the histone acetyltransferase inhibitor CPTH2 rescued insulin resistance-induced changes in aconitase activity and cardiomyocyte function (p < 0.05). Inhibiting Sirt3 deacetylase using 5-amino-2-(4-aminophenyl) benzoxazole negated Alda-1-induced cardioprotective effects. Taken together, our data suggest that ALDH2 serves as an indispensable cardioprotective factor against insulin resistance-induced cardiomyopathy with a mechanism possibly associated with facilitation of the Sirt3-dependent PGC-1α deacetylation.
Collapse
Affiliation(s)
- Nan Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| |
Collapse
|
190
|
Yu ZH, Zhang ZY. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Chem Rev 2018; 118:1069-1091. [PMID: 28541680 PMCID: PMC5812791 DOI: 10.1021/acs.chemrev.7b00105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An appropriate level of protein phosphorylation on tyrosine is essential for cells to react to extracellular stimuli and maintain cellular homeostasis. Faulty operation of signal pathways mediated by protein tyrosine phosphorylation causes numerous human diseases, which presents enormous opportunities for therapeutic intervention. While the importance of protein tyrosine kinases in orchestrating the tyrosine phosphorylation networks and in target-based drug discovery has long been recognized, the significance of protein tyrosine phosphatases (PTPs) in cellular signaling and disease biology has historically been underappreciated, due to a large extent to an erroneous assumption that they are largely constitutive and housekeeping enzymes. Here, we provide a comprehensive examination of a number of regulatory mechanisms, including redox modulation, allosteric regulation, and protein oligomerization, that control PTP activity. These regulatory mechanisms are integral to the myriad PTP-mediated biochemical events and reinforce the concept that PTPs are indispensable and specific modulators of cellular signaling. We also discuss how disruption of these PTP regulatory mechanisms can cause human diseases and how these diverse regulatory mechanisms can be exploited for novel therapeutic development.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907
| |
Collapse
|
191
|
Hendriks W, Bourgonje A, Leenders W, Pulido R. Proteinaceous Regulators and Inhibitors of Protein Tyrosine Phosphatases. Molecules 2018; 23:molecules23020395. [PMID: 29439552 PMCID: PMC6016963 DOI: 10.3390/molecules23020395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Proper control of the phosphotyrosine content in signal transduction proteins is essential for normal cell behavior and is lost in many pathologies. Attempts to normalize aberrant tyrosine phosphorylation levels in disease states currently involve either the application of small compounds that inhibit tyrosine kinases (TKs) or the addition of growth factors or their mimetics to boost receptor-type TK activity. Therapies that target the TK enzymatic counterparts, the multi-enzyme family of protein tyrosine phosphatases (PTPs), are still lacking despite their undisputed involvement in human diseases. Efforts to pharmacologically modulate PTP activity have been frustrated by the conserved structure of the PTP catalytic core, providing a daunting problem with respect to target specificity. Over the years, however, many different protein interaction-based regulatory mechanisms that control PTP activity have been uncovered, providing alternative possibilities to control PTPs individually. Here, we review these regulatory principles, discuss existing biologics and proteinaceous compounds that affect PTP activity, and mention future opportunities to drug PTPs via these regulatory concepts.
Collapse
Affiliation(s)
- Wiljan Hendriks
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Annika Bourgonje
- Department of Cell Biology, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - William Leenders
- Department of Biochemistry, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
192
|
Norouzi S, Adulcikas J, Sohal SS, Myers S. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One 2018; 13:e0191727. [PMID: 29373583 PMCID: PMC5786307 DOI: 10.1371/journal.pone.0191727] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.
Collapse
Affiliation(s)
- Shaghayegh Norouzi
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
| | - John Adulcikas
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
| | - Sukhwinder Singh Sohal
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
- * E-mail:
| |
Collapse
|
193
|
Krishnan N, Bonham CA, Rus IA, Shrestha OK, Gauss CM, Haque A, Tocilj A, Joshua-Tor L, Tonks NK. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nat Commun 2018; 9:283. [PMID: 29348454 PMCID: PMC5773487 DOI: 10.1038/s41467-017-02252-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity. The activity of protein tyrosine phosphatase PTP1B, a major metabolic regulator, depends on its oxidation state. Here the authors identify and characterize a small molecule that targets the oxidized, inactive form of PTP1B, suggesting a new therapeutic approach to diabetes and obesity.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Christopher A Bonham
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Ioana A Rus
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Graduate Program in Genetics and Medical Scientist Training Program, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Om Kumar Shrestha
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Carla M Gauss
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Aftabul Haque
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Ante Tocilj
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
194
|
Luo J, Xu Q, Jiang B, Zhang R, Jia X, Li X, Wang L, Guo C, Wu N, Shi D. Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor. Br J Pharmacol 2018; 175:140-153. [PMID: 29059712 PMCID: PMC5740242 DOI: 10.1111/bph.14080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling by tyrosine dephosphorylation of the insulin receptor. It is a highly validated target for type 2 diabetes therapeutics. Here, the anti-diabetic effects of HPN were evaluated in the diabetic BKS db mice. EXPERIMENTAL APPROACH The mode of inhibition of PTP1B by HPN was determined according to the Lineweaver-Burk plot. A surface plasmon resonance assay and molecular docking were used to study the interaction between HPN and PTP1B. C2C12 skeletal muscle cells were used to investigate the cell permeability of HPN and the effect of HPN on insulin signalling pathways. Long-term effects of HPN on glycaemic control were investigated in diabetic BKS db mice. Glycogen contents in liver and muscle were determined. Furthermore, changes in the number of beta cells were evaluated by Gomori staining. KEY RESULTS HPN was identified as a specific PTP1B inhibitor. HPN directly interacted with PTP1B by binding to the catalytic domain through hydrogen bonds in a competitive mode. Approximately 56.98% of HPN entered into the cultured C2C12 myotubes. HPN ameliorated the impaired insulin signalling in palmitate-treated C2C12 myocytes. Notably, oral administration of HPN significantly protected mice from hyperglycaemia, dyslipidemia and hyperinsulinaemia. HPN also enhanced the storage of glycogen in liver and muscle. Moreover, HPN obviously improved the beta cell numbers of the pancreatic islets. CONCLUSION AND IMPLICATIONS Our results indicate that HPN is a specific PTP1B inhibitor, with anti-diabetic properties and good cell permeability and oral availability.
Collapse
Affiliation(s)
- Jiao Luo
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoling Jia
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiangqian Li
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Chuanlong Guo
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
195
|
Le Sommer S, Morrice N, Pesaresi M, Thompson D, Vickers MA, Murray GI, Mody N, Neel BG, Bence KK, Wilson HM, Delibegović M. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia. Cancer Res 2018; 78:75-87. [PMID: 29122767 PMCID: PMC5756472 DOI: 10.1158/0008-5472.can-17-0946] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/29/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023]
Abstract
Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B-/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia.Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR.
Collapse
Affiliation(s)
| | - Nicola Morrice
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Martina Pesaresi
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Mark A Vickers
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Graeme I Murray
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York University, New York, New York
| | - Kendra K Bence
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, United Kingdom.
| | | |
Collapse
|
196
|
Zheng L, Zhang W, Li A, Liu Y, Yi B, Nakhoul F, Zhang H. PTPN2 Downregulation Is Associated with Albuminuria and Vitamin D Receptor Deficiency in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:3984797. [PMID: 30246029 PMCID: PMC6136551 DOI: 10.1155/2018/3984797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/06/2018] [Accepted: 07/29/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Inflammation plays a major role in albuminuria in type 2 diabetes mellitus (T2DM). Our previous studies have shown that the expression of vitamin D receptor (VDR) is downregulated in T2DM which is closely associated with the severity of albuminuria. In this study, we investigated the expression of anti-inflammatory cytokine protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in T2DM and explored its relationship to albuminuria and VDR. METHODS 101 T2DM patients were divided into three groups based on urinary albumin-to-creatinine ratio (uACR): normal albuminuria (uACR < 30 mg/g, n = 29), microalbuminuria (30 mg/g ≤ uACR < 300 mg/g, n = 34), and macroalbuminuria (uACR ≥ 300 mg/g, n = 38). Thirty healthy individuals were included as controls. Serum was analyzed for PTPN2 and IL-6 expression, and peripheral blood mononuclear cells (PBMCs) were analyzed for PTPN2 and VDR expression. THP-1 cells were incubated with high glucose and further treated with or without paricalcitol, a vitamin D analog. The levels of PTPN2, VDR, IL-6, TNFα, and MCP-1 were analyzed. In addition, anti-inflammatory activities of PTPN2 were further explored in THP-1 cells stimulated with high glucose after PTPN2 silencing or overexpression. RESULTS PTPN2 expression was downregulated in T2DM with the lowest level observed in macroalbuminuria patients. PTPN2 level positively correlated with VDR but negatively correlated with uACR and IL-6. When stimulated with high glucose, there was an increase in inflammatory factors and a decrease in PTPN2 expression. Treatment with paricalcitol reversed these effects. However, paricalcitol failed to exert anti-inflammatory effects in the setting of PTPN2 knockdown. Thus, low levels of PTPN2 aggravated glucose-stimulated inflammation, while high levels of PTPN2 reduced it. CONCLUSION PTPN2, an anti-inflammatory factor regulated by VDR, was reduced in T2DM CKD stages 1-2. Taken together, our results suggest that therapeutic strategies that enhance PTPN2 may be beneficial for controlling inflammation in T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Albuminuria/blood
- Albuminuria/diagnosis
- Albuminuria/etiology
- Albuminuria/urine
- Biomarkers/blood
- Biomarkers/urine
- Case-Control Studies
- Chemokine CCL2/metabolism
- Creatinine/urine
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/urine
- Down-Regulation
- Female
- Humans
- Inflammation/blood
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/urine
- Interleukin-6/blood
- Male
- Middle Aged
- Monocytes/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/blood
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Receptors, Calcitriol/blood
- Receptors, Calcitriol/deficiency
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/urine
- THP-1 Cells
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Li Zheng
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Farid Nakhoul
- Diabetic Nephropathy Lab, Baruch Padeh Poriya Medical Center Affiliated to the Faculty of Medicine in Galilee, 15208 Lower Galilee, Israel
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| |
Collapse
|
197
|
Du Y, Zhang Y, Ling H, Li Q, Shen J. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site. Eur J Med Chem 2018; 144:692-700. [DOI: 10.1016/j.ejmech.2017.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/05/2017] [Accepted: 12/17/2017] [Indexed: 12/12/2022]
|
198
|
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018; 19:31-44. [PMID: 28974775 PMCID: PMC5894887 DOI: 10.1038/nrm.2017.89] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Columbia University College of Physicians and Surgeons, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Timothy E McGraw
- Weill Cornell Medicine, Departments of Biochemistry and Cardiothoracic Surgery, New York, New York 10065, USA
| | - Domenico Accili
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, New York 10032, USA
| |
Collapse
|
199
|
Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 2018; 39:59-73. [PMID: 28770830 DOI: 10.1038/aps.2017.50] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation.
Collapse
|
200
|
Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Shilpa K, kumari PJ, Sarathkumar B, Thiyagarajan G, Lakshmi BS. Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity. Bioinformation 2017; 13:394-399. [PMID: 29379255 PMCID: PMC5767913 DOI: 10.6026/97320630013394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose transport in L6 myotubes through the involvement of GLUT4 via the PI3K-independent pathway. However, the activation of glucose storage was effective in the presence of 3β-taraxerol and aloe emodin though inhibition of GSK3β activity. Therefore, the mechanism of improvement of glucose and lipid metabolism exhibited by the small molecules isolated from our lab is discussed. However, Obesity is a major risk factor for type-2 diabetes leading to destruction of insulin receptors causing insulin resistance. Identification of compounds with dual activity (anti-diabetic and antiadipogenic activity) is of current interest. The protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of the insulin and leptin-signaling pathway is of significance in target definition and discovery.
Collapse
Affiliation(s)
| | - Sundaresan Sujatha
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | | | - Singaravel Anand
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Kusampudi Shilpa
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Posa Jyothi kumari
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Baskaran Sarathkumar
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Gopal Thiyagarajan
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| | - Baddireddi Subhadra Lakshmi
- Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai Tamilnadu, India - 600 025
| |
Collapse
|