151
|
Nygren MK, Døsen-Dahl G, Stubberud H, Wälchli S, Munthe E, Rian E. beta-catenin is involved in N-cadherin-dependent adhesion, but not in canonical Wnt signaling in E2A-PBX1-positive B acute lymphoblastic leukemia cells. Exp Hematol 2008; 37:225-33. [PMID: 19101069 DOI: 10.1016/j.exphem.2008.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/29/2008] [Accepted: 10/13/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The t(1;19)(q23;13) translocation, resulting in the production of the E2A-PBX1 chimeric protein, is a common nonrandom translocation in pediatric B-lineage acute lymphoblastic leukemia (B-ALL). The E2A-PBX1 chimeric protein activates expression of several genes, including Wnt16. In the present study, we explored the role of Wnt16 and beta-catenin in t(1;19) B-ALL cells. MATERIALS AND METHODS Canonical Wnt signaling was measured by TOPflash activity. Localization of beta-catenin in the cell membrane and its involvement in leukemia-stroma interaction were studied by confocal microscopy. Adhesion to N-cadherin was analyzed by adding (3)H-thymidin-labeled cells to N-cadherin-coated wells. RESULTS In contrast to previous reports, we detected no effects on cell viability or proliferation upon modulation of the Wnt16 levels. Moreover, despite high levels of Wnt16 and beta-catenin, the cells had very low levels of canonical Wnt signaling. Instead, beta-catenin was located in the cell membrane along with N-cadherin. E2A-PBX1-positive leukemia cells adhered strongly to bone marrow stroma cells, and we showed that adherence junctions stained strongly for both proteins. Moreover, knockdown of beta-catenin reduced the adhesion of E2A-PBX1-positive leukemia cells to N-cadherin, suggesting that beta-catenin and N-cadherin play a central role in homotypic cell-to-cell adhesion and in leukemia-stroma adhesion. Interestingly, knockdown of Wnt16 by small interfering RNA reduced the level of N-cadherin. CONCLUSION Wnt16 does not activate canonical Wnt signaling in E2A-PBX1-positive cells. Instead, beta-catenin is involved in N-cadherin-dependent adherence junctions, suggesting for the first time that leukemia-stroma interactions may be mediated via an N-cadherin-dependent mechanism.
Collapse
Affiliation(s)
- Marit Kveine Nygren
- Department of Immunology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
152
|
RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood 2008; 113:883-6. [PMID: 19036704 DOI: 10.1182/blood-2008-04-153742] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 8;21 translocation, which involves the gene encoding the RUNX family DNA-binding transcription factor AML1 (RUNX1) on chromosome 21 and the ETO (MTG8) gene on chromosome 8, generates AML1-ETO fusion proteins. Previous analyses have demonstrated that full-length AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. More recently, we have identified an alternatively spliced form of AML1-ETO, AML1-ETO9a, from t(8;21) acute myeloid leukemia (AML) patient samples. AML1-ETO9a lacks the C-terminal NHR3 and NHR4 domains of AML1-ETO and is highly leukemogenic in the mouse model. Here, we report that the AML1 DNA-binding domain and the ETO NHR2-dimerization domain, but not the ETO NHR1 domain, are critical for the induction of AML by AML1-ETO9a. A region between NHR1 and NHR2 affects latency of leukemogenesis. These results provide valuable insight into further analysis of the molecular mechanism of t(8;21) in leukemogenesis.
Collapse
|
153
|
Robertson AJ, Coluccio A, Knowlton P, Dickey-Sims C, Coffman JA. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos. PLoS One 2008; 3:e3770. [PMID: 19020668 PMCID: PMC2582955 DOI: 10.1371/journal.pone.0003770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 11/01/2008] [Indexed: 11/25/2022] Open
Abstract
Background The Runt homology domain (Runx) defines a metazoan family of sequence-specific transcriptional regulatory proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during embryogenesis for cell survival and differentiation. Methodology/Principal Findings Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU) incorporation and direct cell counts. Reverse transcription coupled polymerase chain reaction (RT-PCR) studies show that the cell proliferation deficit is presaged by a deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP) indicates that Runx target sites within 5′ sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late blastula stage. Furthermore, experiments using a green fluorescent protein (GFP) reporter transgene show that the blastula-stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol. 288: 545–558, 2005) is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK)-3. Conclusions/Significance These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback circuit that controls cell proliferation during development.
Collapse
Affiliation(s)
- Anthony J. Robertson
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Alison Coluccio
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Peter Knowlton
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Carrie Dickey-Sims
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - James A. Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
- * E-mail:
| |
Collapse
|
154
|
Minke KS, Staib P, Puetter A, Gehrke I, Gandhirajan RK, Schlösser A, Schmitt EK, Hallek M, Kreuzer KA. Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur J Haematol 2008; 82:165-75. [PMID: 19067737 DOI: 10.1111/j.1600-0609.2008.01188.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a significant proportion of acute myeloid leukemia (AML) cases the canonical WNT pathway is upregulated and targeting the WNT/LEF1 signaling cascade in AML may be a promising approach to develop new treatments for this entity. Recently two compounds (CGP049090 and PFK115-584) have been identified, which specifically inhibit complexation of beta-catenin (CTNNB1) and lymphoid enhancer-binding factor 1 (LEF1) leading to transcriptional inactivation of LEF1 in colon carcinoma cell lines. To evaluate the effect of WNT inhibition utilizing theses compounds with regard to their effectivity in AML we treated the AML cell lines Kasumi-1 and HL-60, primary AML blasts and healthy peripheral blood mononuclear cells (PBMCs) with varying concentrations of both substances. Treatment with both compounds for 24 h resulted in a significant killing of AML cell lines and primary AML blasts with 50% effective concentration doses (EC(50)) within the submicromolar range. PBMCs were not significantly affected as indicated by EC(50)-values 100-fold higher than for AML cells. Cell kill was mediated by apoptosis as indicated by induction of caspases 3 and 7 and cleavage of poly(ADP-ribose) polymerase (PARP) upon treatment. Furthermore, we could show that both compounds substantially decrease expression of CTNNB1/LEF1 target genes c-myc, cyclin D1 and survivin, proofing the specificity of the substances. This was shown in both, AML cell lines and most of the tested primary samples. Our data demonstrate that targeting this pathway seems to be an innovative approach in the treatment of AML.
Collapse
|
155
|
Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14:238-49. [PMID: 18772113 DOI: 10.1016/j.ccr.2008.08.003] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/16/2008] [Accepted: 08/08/2008] [Indexed: 12/25/2022]
Abstract
Resistance of Bcr-Abl-positive leukemic stem cells (LSCs) to imatinib treatment in patients with chronic myeloid leukemia (CML) can cause relapse of disease and might be the origin for emerging drug-resistant clones. In this study, we identified Smo as a drug target in Bcr-Abl-positive LSCs. We show that Hedgehog signaling is activated in LSCs through upregulation of Smo. While Smo(-/-) does not impact long-term reconstitution of regular hematopoiesis, the development of retransplantable Bcr-Abl-positive leukemias was abolished in the absence of Smo expression. Pharmacological Smo inhibition reduced LSCs in vivo and enhanced time to relapse after end of treatment. Our results indicate that Smo inhibition might be an effective treatment strategy to reduce the LSC pool in CML.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Cell Proliferation
- Drug Therapy, Combination
- Fetal Stem Cells/cytology
- Fetal Stem Cells/metabolism
- Fetal Stem Cells/transplantation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression/drug effects
- Hedgehog Proteins/physiology
- Hematopoiesis/drug effects
- Hematopoiesis/physiology
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Patched Receptors
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Smoothened Receptor
- Survival Analysis
- Veratrum Alkaloids/pharmacology
- Veratrum Alkaloids/therapeutic use
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Christine Dierks
- Department of Hematology/Oncology, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.
Collapse
|
157
|
Tickenbrock L, Hehn S, Sargin B, Evers G, Ng PR, Choudhary C, Berdel WE, Müller-Tidow C, Serve H. Activation of Wnt signaling in cKit-ITD mediated transformation and imatinib sensitivity in acute myeloid leukemia. Int J Hematol 2008; 88:174-180. [PMID: 18668305 DOI: 10.1007/s12185-008-0141-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/19/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
The Wnt-signaling pathway plays a critical role in directing cell fate during embryogenesis and also in the pathogenesis of cancer. In leukemia, it is well described that activating internal tandem duplications (ITD) mutations in receptor tyrosine kinases like cKit or Flt3 confer to the pathogenesis of cancer. Here, we analyzed whether Wnt-signaling plays a role in cKit-ITD mediated transformation. Stably transfected 32D cells with cKit-ITD cells had higher beta-Catenin protein levels compared to the cKit-WT. Analysis of beta-Catenin mRNA and protein levels revealed that beta-Catenin was regulated at post-transcriptional level in cKit-ITD as well as Flt3-ITD compared to the wildtype. Signaling analyses revealed higher-phosphorylation of GSK3beta by oncogenic cKit-ITD. Moreover, activation of Wnt signaling was confirmed by constitutive activation of c-myc luciferase by cKit-ITD cells. Importantly, using dominant negative TCF4, we show that activation of Wnt signaling plays an important role in cKit mediated transformation of myeloid cells. Application of specific receptor tyrosine kinase inhibitors for Flt3 or cKit result in a decrease of beta-Catenin that underwent with a decrease of GSK3beta phosphorylation, suggesting an indirect mechanism of beta-Catenin regulation by oncogenic receptor tyrosine kinases in both ITD mutations. Our study shows the importance of activation of Wnt signaling in leukemia and suggests as attractive target for future therapeutical approaches.
Collapse
Affiliation(s)
- Lara Tickenbrock
- Department of Medicine, Hematology and Oncology, University of Münster, Division of Hematology/Oncology, Domagkstr. 3, 48149, Münster, Germany.
| | - Sina Hehn
- Medizinische Klinik II, Klinikum der Johann-Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Bülent Sargin
- Department of Medicine, Hematology and Oncology, University of Münster, Division of Hematology/Oncology, Domagkstr. 3, 48149, Münster, Germany
| | - Georg Evers
- Department of Medicine, Hematology and Oncology, University of Münster, Division of Hematology/Oncology, Domagkstr. 3, 48149, Münster, Germany
| | - Pavankumar Reddy Ng
- Medizinische Klinik II, Klinikum der Johann-Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - Chunaram Choudhary
- Department of Medicine, Hematology and Oncology, University of Münster, Division of Hematology/Oncology, Domagkstr. 3, 48149, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine, Hematology and Oncology, University of Münster, Division of Hematology/Oncology, Domagkstr. 3, 48149, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology and Oncology, University of Münster, Division of Hematology/Oncology, Domagkstr. 3, 48149, Münster, Germany
| | - Hubert Serve
- Medizinische Klinik II, Klinikum der Johann-Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
158
|
Lübbert M, Müller-Tidow C, Hofmann WK, Koeffler HP. Advances in the treatment of acute myeloid leukemia: From chromosomal aberrations to biologically targeted therapy. J Cell Biochem 2008; 104:2059-70. [DOI: 10.1002/jcb.21770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
159
|
Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG, Osieka R, Galm O. Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. Br J Haematol 2008; 142:745-53. [PMID: 18537968 DOI: 10.1111/j.1365-2141.2008.07242.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Wnt signalling pathway has a key function in stem cell maintenance and differentiation of haematopoietic progenitors. Secreted Frizzled-related protein genes (SFRPs), functioning as Wnt signalling antagonists, have been found to be downregulated by promoter hypermethylation in many tumours. To analyse epigenetic dysregulation of SFRPs in acute myeloid leukaemia (AML), we examined the promoter methylation status of SFRP1, -2, -4 and -5 in AML cell lines by methylation-specific polymerase chain reaction (MSP). Aberrant CpG island methylation was found for all four SFRP genes. By real-time reverse transcription-PCR, corresponding transcriptional silencing for SFRP1 and -2 was demonstrated and treatment of cell lines with 5-aza-2'-deoxycytidine resulted in re-expression. The methylation status of the SFRP genes was analysed in 100 specimens obtained from AML patients at diagnosis. The frequencies of aberrant methylation among the patient samples were 29% for SFRP1, 19% for SFRP2, 0% for SFRP4 and 9% for SFRP5. For SFRP2, a correlation between promoter hypermethylation and transcriptional downregulation was found in primary AML samples. Among AML cases with a favourable karyotype, hypermethylation of SFRP genes was restricted to patients with core binding factor (CBF) leukaemia, and aberrant methylation of the SFRP2 promoter was an adverse risk factor for survival in CBF leukaemia.
Collapse
Affiliation(s)
- E Jost
- Medizinische Klinik IV, Universitaetsklinikum Aachen, RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Acehan D, Petzold C, Gumper I, Sabatini DD, Müller EJ, Cowin P, Stokes DL. Plakoglobin is required for effective intermediate filament anchorage to desmosomes. J Invest Dermatol 2008; 128:2665-2675. [PMID: 18496566 DOI: 10.1038/jid.2008.141] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, beta-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength.
Collapse
Affiliation(s)
- Devrim Acehan
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Christopher Petzold
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Iwona Gumper
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA; Department Dermatology, New York University School of Medicine, New York, New York, USA
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, New York, USA; New York Structural Biology Center, New York, New York, USA.
| |
Collapse
|
161
|
Dolniak B, Katsoulidis E, Carayol N, Altman JK, Redig AJ, Tallman MS, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Platanias LC. Regulation of arsenic trioxide-induced cellular responses by Mnk1 and Mnk2. J Biol Chem 2008; 283:12034-42. [PMID: 18299328 DOI: 10.1074/jbc.m708816200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of malignant cells in vitro and in vivo, but the precise mechanisms by which it mediates such effects are not well defined. We provide evidence that As(2)O(3) induces phosphorylation/activation of the MAPK signal-integrating kinases (Mnks) 1 and 2 in leukemia cell lines. Such activation is defective in cells with targeted disruption of the p38alpha MAPK gene, indicating that it requires upstream engagement of the p38 MAPK pathway. Studies using Mnk1(-/-) or Mnk2(-/-), or double Mnk1(-/-)Mnk2(-/-) knock-out cells, establish that activation of Mnk1 and Mnk2 by arsenic trioxide regulates downstream phosphorylation of the eukaryotic initiation factor 4E at Ser-209. Importantly, arsenic-induced apoptosis is enhanced in cells with targeted disruption of the Mnk1 and/or Mnk2 genes, suggesting that these kinases are activated in a negative-feedback regulatory manner, to control generation of arsenic trioxide responses. Consistent with this, pharmacological inhibition of Mnk activity enhances the suppressive effects of arsenic trioxide on primary leukemic progenitors from patients with acute leukemias. Taken together, these findings indicate an important role for Mnk kinases, acting as negative regulators for signals that control generation of arsenic trioxide-dependent apoptosis and antileukemic responses.
Collapse
Affiliation(s)
- Blazej Dolniak
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood 2008; 111:4338-47. [PMID: 18258796 DOI: 10.1182/blood-2007-07-103291] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deletions on chromosome 9q are seen in a subset of acute myeloid leukemia (AML) cases and are specifically associated with t(8;21) AML. We previously defined the commonly deleted region in del(9q) AML and characterized the genes in this interval. To determine the critical lost gene(s) that might cooperate with the AML1-ETO fusion gene produced by t(8;21), we developed a set of shRNAs directed against each gene in this region. Within this library, shRNAs to TLE1 and TLE4 were the only shRNAs capable of rescuing AML1-ETO expressing U937T-A/E cells from AML1-ETO-induced cell-cycle arrest and apoptosis. Knockdown of TLE1 or TLE4 levels increased the rate of cell division of the AML1-ETO-expressing Kasumi-1 cell line, whereas forced expression of either TLE1 or TLE4 caused apoptosis and cell death. Knockdown of Gro3, a TLE homolog in zebrafish, cooperated with AML1-ETO to cause an accumulation of noncirculating hematopoietic blast cells. Our data are consistent with a model in which haploinsufficiency of these TLEs overcomes the negative survival and antiproliferative effects of AML1-ETO on myeloid progenitors, allowing preleukemic stem cells to expand into AML. This study is the first to implicate the TLEs as potential tumor suppressor genes in myeloid leukemia.
Collapse
|
163
|
Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, Kuttler F, Malanchi I, Birchmeier W, Leutz A, Huelsken J, Held W. Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood 2008; 111:142-9. [PMID: 17906078 DOI: 10.1182/blood-2007-07-102558] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The canonical Wnt signaling pathway plays key roles in stem-cell maintenance, progenitor cell expansion, and lineage decisions. Transcriptional responses induced by Wnt depend on the association of either β-catenin or γ-catenin with lymphoid enhancer factor/T cell factor transcription factors. Here we show that hematopoiesis, including thymopoiesis, is normal in the combined absence of β- and γ-catenin. Double-deficient hematopoietic stem cells maintain long-term repopulation capacity and multilineage differentiation potential. Unexpectedly, 2 independent ex vivo reporter gene assays show that Wnt signal transmission is maintained in double-deficient hematopoietic stem cells, thymocytes, or peripheral T cells. In contrast, Wnt signaling is strongly reduced in thymocytes lacking TCF-1 or in nonhematopoietic cells devoid of β-catenin. These data provide the first evidence that hematopoietic cells can transduce canonical Wnt signals in the combined absence of β- and γ-catenin.
Collapse
Affiliation(s)
- Grégoire Jeannet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
|
165
|
Huang MJ, Cheng YC, Liu CR, Lin S, Liu HE. A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol 2007; 34:1480-9. [PMID: 17046567 DOI: 10.1016/j.exphem.2006.06.019] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 06/08/2006] [Accepted: 06/29/2006] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The protooncogene c-Myc plays an important role in the control of cell proliferation, apoptosis, and differentiation, and its aberrant expression is frequently seen in multiple human cancers, including acute myeloid leukemia (AML). As c-Myc heterodimerizes with Max to transactivate downstream target genes in leukemogenesis. Inhibition of the c-Myc/Max heterodimerization by the recently identified small-molecule compound, 10058-F4, might be a novel antileukemic strategy. MATERIALS AND METHODS HL-60, U937, and NB4 cells and primary AML cells were used to examine the effects of 10058-F4 on apoptosis and myeloid differentiation. RESULTS We showed that 10058-F4 arrested AML cells at G0/G1 phase, downregulated c-Myc expression and upregulated CDK inhibitors, p21 and p27. Meanwhile, 10058-F4 induced apoptosis through activation of mitochondrial pathway shown by downregulation of Bcl-2, upregulation of Bax, release of cytoplasmic cytochrome C, and cleavage of caspase 3, 7, and 9. Furthermore, 10058-F4 also induced myeloid differentiation, possibly through activation of multiple transcription factors. Similarly, 10058-F4-induced apoptosis and differentiation could also be observed in primary AML cells. CONCLUSION Our study has shown that inhibition of c-Myc/Max dimerization with small-molecule inhibitors affects multiple cellular activities in AML cells and represents a potential antileukemic approach.
Collapse
Affiliation(s)
- Ming-Jer Huang
- Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
166
|
Prowald A, Cronauer MV, von Klot C, Eilers T, Rinnab L, Herrmann T, Spindler KD, Montenarh M, Jonas U, Burchardt M. Modulation of beta-catenin-mediated TCF-signalling in prostate cancer cell lines by wild-type and mutant p53. Prostate 2007; 67:1751-60. [PMID: 17929268 DOI: 10.1002/pros.20660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Deregulation of the canonical Wnt/beta-catenin-pathway is known to play an important role in the progression of various tumour cell types including prostate cancer (PCa). Recently, the tumour-suppressor p53 was shown to down-regulate beta-catenin-signalling in colon cancer. As p53 is frequently mutated in late stage PCa we investigated the effect of wild-type p53 (p53wt) as well as p53-mutants on beta-catenin-signalling in PCa-cell lines. METHODS The effects of p53wt and p53-mutants on Wnt/beta-catenin-signalling were studied using reporter gene assays. Expression of beta-catenin levels was monitored by Western blotting. RESULTS Overexpression of p53wt as well as p53(249Ser) (a structural mutant) and p53(273His) (a DNA-contact-mutant) almost completely inhibited beta-catenin-mediated transcriptional activity of the T-cell factor (TCF) whereas p53(175His), a structural mutant, and a p53-mutant with a C-terminal deletion in the tetramerization domain (Deltap53) were unable to do so. Co-transfection experiments with p53wt and a dominant negative p53-mutant reversed the down-regulation of TCF-signalling, while Deltap53 was unable to interfere with p53wt-function. Down-regulation of TCF-signalling by p53wt and p53(273His) was accompanied by a reduction in beta-catenin protein level. CONCLUSIONS p53wt, p53(273His)- and p53(249Ser)-mutants are able to down-regulate beta-catenin-signalling in PCa-cells probably via degradation of beta-catenin. The degradation of beta-catenin in PCa by p53 is not linked to transcriptional activity of p53. So far the mechanism how p53 interferes with beta-catenin-signalling is unknown. For the first time we provide experimental evidence that the C-terminus of p53 plays an important role in the down-regulation of beta-catenin-mediated TCF-signalling in PCa-cell lines possibly via p53 transrepressional function.
Collapse
Affiliation(s)
- Alexandra Prowald
- Klinik und Poliklinik für Urologie und Kinderurologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12:528-41. [PMID: 18068630 PMCID: PMC2262869 DOI: 10.1016/j.ccr.2007.11.003] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 06/15/2007] [Accepted: 11/02/2007] [Indexed: 12/16/2022]
Abstract
A key characteristic of stem cells and cancer cells is their ability to self-renew. To test if Wnt signaling can regulate the self-renewal of both stem cells and cancer cells in the hematopoietic system, we developed mice that lack beta-catenin in their hematopoietic cells. Here we show that beta-catenin-deficient mice can form HSCs, but that these cells are deficient in long-term growth and maintenance. Moreover, beta-catenin deletion causes a profound reduction in the ability of mice to develop BCR-ABL-induced chronic myelogenous leukemia (CML), while allowing progression of acute lymphocytic leukemia (ALL). These studies demonstrate that Wnt signaling is required for the self-renewal of normal and neoplastic stem cells in the hematopoietic system.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jordan Blum
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alan Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hyog Young Kwon
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Seung Hye Jung
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - J. Michael Cook
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anand Lagoo
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tannishtha Reya
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- *Correspondence:
| |
Collapse
|
168
|
Myeloid translocation gene family members associate with T-cell factors (TCFs) and influence TCF-dependent transcription. Mol Cell Biol 2007; 28:977-87. [PMID: 18039847 DOI: 10.1128/mcb.01242-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling is mediated by a molecular "switch" that regulates the transcriptional properties of the T-cell factor (TCF) family of DNA-binding proteins. Members of the myeloid translocation gene (MTG) family of transcriptional corepressors are frequently disrupted by chromosomal translocations in acute myeloid leukemia, whereas MTG16 may be inactivated in up to 40% of breast cancer and MTG8 is a candidate cancer gene in colorectal carcinoma. Genetic studies imply that this corepressor family may function in stem cells. Given that mice lacking Myeloid Translocation Gene Related-1 (Mtgr1) fail to maintain the secretory lineage in the small intestine, we surveyed transcription factors that might recruit Mtgr1 in intestinal stem cells or progenitor cells and found that MTG family members associate specifically with TCF4. Coexpression of beta-catenin disrupted the association between these corepressors and TCF4. Furthermore, when expressed in Xenopus embryos, MTG family members inhibited axis formation and impaired the ability of beta-catenin and XLef-1 to induce axis duplication, indicating that MTG family members act downstream of beta-catenin. Moreover, we found that c-Myc, a transcriptional target of the Wnt pathway, was overexpressed in the small intestines of mice lacking Mtgr1, thus linking inactivation of Mtgr1 to the activation of a potent oncogene.
Collapse
|
169
|
Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 2007; 111:2887-95. [PMID: 18024792 DOI: 10.1182/blood-2007-03-079921] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The translocation t(15;17) generates the chimeric PML-RARalpha transcription factor that is the initiating event of acute promyelocytic leukemia. A global view of PML-RARalpha transcriptional functions was obtained by genome-wide binding and chromatin modification analyses combined with genome-wide expression data. Chromatin immunoprecipitation (ChIP)-chip experiments identified 372 direct genomic PML-RARalpha targets. A subset of these was confirmed in primary acute promyelocytic leukemia. Direct PML-RARalpha targets include regulators of global transcriptional programs as well as critical regulatory genes for basic cellular functions such as cell-cycle control and apoptosis. PML-RARalpha binding universally led to HDAC1 recruitment, loss of histone H3 acetylation, increased tri-methylation of histone H3 lysine 9, and unexpectedly increased trimethylation of histone H3 lysine 4. The binding of PML-RARalpha to target promoters and the resulting histone modifications resulted in mRNA repression of functionally relevant genes. Taken together, our results reveal that the transcription factor PML-RARalpha regulates key cancer-related genes and pathways by inducing a repressed chromatin formation on its direct genomic target genes.
Collapse
|
170
|
Yi F, Merrill BJ. Stem cells and TCF proteins: a role for beta-catenin--independent functions. ACTA ACUST UNITED AC 2007; 3:39-48. [PMID: 17873380 DOI: 10.1007/s12015-007-0003-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/18/2022]
Abstract
The Wnt signal transduction pathway has been shown to stimulate stem cell self renewal and has been shown to cause cancer in humans. One interesting aspect of Wnt signaling is that it utilizes downstream DNA-binding transcription factors, called Tcf proteins, which can activate transcription of target genes in the presence of a Wnt signal and repress the expression of target genes in the absence of a Wnt signal. Since Tcf proteins are present in Wnt-stimulated and unstimulated stem cells, understanding how Tcf proteins regulate target gene expression in each state offers the potential to understand how stem cells regulate their self-renewal, differentiation, and proliferation. In this article, we will review recent work elucidating the roles Tcf-protein interactions in the context of stem cells and cancer.
Collapse
Affiliation(s)
- Fei Yi
- Molecular Biology Research Building, Department of Biochemistry and Molecular Genetics, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | |
Collapse
|
171
|
Agrawal S, Koschmieder S, Bäumer N, Reddy NGP, Berdel WE, Müller-Tidow C, Serve H. Pim2 complements Flt3 wild-type receptor in hematopoietic progenitor cell transformation. Leukemia 2007; 22:78-86. [DOI: 10.1038/sj.leu.2404988] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
172
|
Tonks A, Pearn L, Musson M, Gilkes A, Mills KI, Burnett AK, Darley RL. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007; 21:2495-505. [PMID: 17898786 DOI: 10.1038/sj.leu.2404961] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The t(8;21)(q22;q22) occurs frequently in acute myelogenous leukaemia and gives rise to the transcription factor fusion protein, RUNX1-RUNX1T1 (also known as AML1-ETO). To identify the genes dysregulated by the aberrant transcriptional activity of RUNX1-RUNX1T1, we used microarrays to determine the effect of this mutation on gene expression in human progenitor cells and during subsequent development. Gene signatures of these developmental subsets were very dissimilar indicating that effects of RUNX1-RUNX1T1 are highly context dependent. We focused on gene changes associated with the granulocytic lineage and identified a clinically relevant subset of these by comparison with 235 leukaemia patient transcriptional signatures. We confirmed the overexpression of a number of significant genes (Sox4, IL-17BR, CD200 and gamma-catenin). Further, we show that overexpression of CD200 and gamma-catenin is also associated with the inv(16) abnormality which like RUNX1-RUNX1T1 disrupts core binding factor activity. We investigated the functional significance of CD200 and gamma-catenin overexpression in normal human progenitor cells. The effect of IL17 on growth was also assessed. Individually, none of these changes were sufficient to recapitulate the effects of RUNX1-RUNX1T1 on normal development. These data provide the most comprehensive and pertinent assessment of the effect of RUNX1-RUNX1T1 on gene expression and demonstrate the highly context-dependent effects of this fusion gene.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Cell Line, Tumor/metabolism
- Cell Lineage
- Cells, Cultured/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Core Binding Factor Alpha 2 Subunit/physiology
- Desmoplakins/genetics
- Desmoplakins/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/genetics
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- High Mobility Group Proteins/biosynthesis
- High Mobility Group Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RUNX1 Translocation Partner 1 Protein
- Receptors, Interleukin-17/biosynthesis
- Receptors, Interleukin-17/genetics
- Recombinant Fusion Proteins/physiology
- SOXC Transcription Factors
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transcription, Genetic/genetics
- Translocation, Genetic
- gamma Catenin/genetics
- gamma Catenin/physiology
Collapse
Affiliation(s)
- A Tonks
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | |
Collapse
|
173
|
Elagib KE, Goldfarb AN. Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifaceted manipulation of marrow maturation. Cancer Lett 2007; 251:179-86. [PMID: 17125917 PMCID: PMC1931834 DOI: 10.1016/j.canlet.2006.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 09/06/2006] [Accepted: 10/17/2006] [Indexed: 11/22/2022]
Abstract
The leukemic fusion protein AML1-ETO occurs frequently in human acute myeloid leukemia (AML) and has received much attention over the past decade. An initial model for its pathogenetic effects emphasized the conversion of a hematopoietic transcriptional activator, RUNX1 (or AML1), into a leukemogenic repressor which blocked myeloid differentiation at the level of target gene regulation. This view has been absorbed into a larger picture of AML1-ETO pathogenesis, encompassing dysregulation of hematopoietic stem cell homeostasis at several mechanistic levels. Recent reports have highlighted a multifaceted capacity of AML1-ETO directly to inhibit key hematopoietic transcription factors that function as tumor suppressors at several nodal points during hematopoietic differentiation. A new model is presented in which AML1-ETO coordinates expansion of the stem cell compartment with diminished lineage commitment and with genome instability.
Collapse
Affiliation(s)
- Kamaleldin E Elagib
- Department of Pathology, University of Virginia School of Medicine, P.O. Box 800904, Charlottesville, VA 22908, USA
| | | |
Collapse
|
174
|
Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21:1638-47. [PMID: 17554387 DOI: 10.1038/sj.leu.2404732] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling plays an important role in stem cell self-renewal and proliferation. Aberrant activation of Wnt signaling and its downstream targets are intimately linked with several types of cancer with colon cancer being the best-studied example. However, recent results also suggest an important role of Wnt signaling in normal as well as leukemic hematopoietic stem cells. Aberrant activation of Wnt signaling and downstream effectors has been demonstrated in acute myeloid leukemia. Here, mutant receptor tyrosine kinases, such as Flt3 and chimeric transcription factors such as promyelocytic leukemia-retinoic acid receptor-alpha and acute myeloid leukemia1-ETO, induce downstream Wnt signaling events. These findings suggest that the Wnt signaling pathway is an important target in several leukemogenic pathways and may provide a novel opportunity for targeting leukemic stem cells.
Collapse
Affiliation(s)
- J-H Mikesch
- Department of Medicine, Hematology and Oncology, University of Muenster, Münster, Germany
| | | | | | | | | |
Collapse
|
175
|
Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S, Xu Y, Tsutusmi-Ishii Y, Miyake K, Miyake N, Kondo S, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M. Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 2007; 14:1443-56. [PMID: 17464329 DOI: 10.1038/sj.cdd.4402139] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chimeric fusion protein AML1-ETO, created by the t(8;21) translocation, recruits histone deacetylase (HDAC) to AML1-dependent promoters, resulting in transcriptional repression of the target genes. We analyzed the transcriptional changes in t(8;21) Kasumi-1 AML cells in response to the HDAC inhibitors, depsipeptide (FK228) and suberoylanilide hydroxamic acid (SAHA), which induced marked growth inhibition and apoptosis. Using cDNA array, annexin A1 (ANXA1) was identified as one of the FK228-induced genes. Induction of ANXA1 mRNA was associated with histone acetylation in ANXA1 promoter and reversal of the HDAC-dependent suppression of C/EBPalpha by AML1-ETO with direct recruitment of C/EBPalpha to ANXA1 promoter. This led to increase in the N-terminal cleaved isoform of ANXA1 protein and accumulation of ANXA1 on cell membrane. Neutralization with anti-ANXA1 antibody or gene silencing with ANXA1 siRNA inhibited FK228-induced apoptosis, suggesting that the upregulation of endogenous ANXA1 promotes cell death. FK228-induced ANXA1 expression was associated with massive increase in cell attachment and engulfment of Kasumi-1 cells by human THP-1-derived macrophages, which was completely abrogated with ANXA1 knockdown via siRNA transfection or ANXA1 neutralization. These findings identify a novel mechanism of action of HDAC inhibitors, which induce the expression and externalization of ANXA1 in leukemic cells, which in turn mediates the phagocytic clearance of apoptotic cells by macrophages.
Collapse
MESH Headings
- Acetylation
- Annexin A1/biosynthesis
- Annexin A1/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA, Complementary/genetics
- Depsipeptides/pharmacology
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macrophages/physiology
- Oncogene Proteins, Fusion/metabolism
- Phagocytosis/drug effects
- RUNX1 Translocation Partner 1 Protein
- Up-Regulation/drug effects
- Vorinostat
Collapse
Affiliation(s)
- Y Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Kolly C, Zakher A, Strauss C, Suter MM, Müller EJ. Keratinocyte transcriptional regulation of the human c-Myc promoter occurs via a novel Lef/Tcf binding element distinct from neoplastic cells. FEBS Lett 2007; 581:1969-76. [PMID: 17466981 DOI: 10.1016/j.febslet.2007.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/07/2007] [Accepted: 04/10/2007] [Indexed: 11/24/2022]
Abstract
The proto-oncogene c-Myc is involved in early neoplastic transformations. Two consensus Lef/Tcf binding elements (TBE) were found to be prerequisite for transcriptional transactivation by the armadillo proteins beta-catenin and plakoglobin (PG) together with Tcf4 in human neoplastic cells. In epidermal keratinocytes, c-Myc was reported to be repressed by Lef-1 and PG. Using reporter gene assays, here we demonstrate that deletion of the two consensus TBE fails to abrogate transcriptional regulation by Lef-1/PG in wildtype and beta-catenin-/- keratinocytes, while it reduces transcription in pre-neoplastic PG-/- keratinocytes. We identified a TBE sequence variant downstream of the major transcriptional initiation site that binds Lef-1 in vitro and in vivo, and its mutation compromised transcriptional regulation by Lef-1/PG. Collectively, this study demonstrates that the two consensus TBE's reported in neoplastic cells are dispensable for c-Myc regulation in normal keratinocytes, which instead use a novel TBE sequence variant. This unprecedented finding may have important implications for armadillo target genes involved in carcinogenesis.
Collapse
Affiliation(s)
- Carine Kolly
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
177
|
Scholl C, Bansal D, Döhner K, Eiwen K, Huntly BJ, Lee BH, Rücker FG, Schlenk RF, Bullinger L, Döhner H, Gilliland DG, Fröhling S. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 2007; 117:1037-48. [PMID: 17347684 PMCID: PMC1810574 DOI: 10.1172/jci30182] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 01/12/2007] [Indexed: 12/21/2022] Open
Abstract
The homeobox transcription factor CDX2 plays an important role in embryonic development and regulates the proliferation and differentiation of intestinal epithelial cells in the adult. We have found that CDX2 is expressed in leukemic cells of 90% of patients with acute myeloid leukemia (AML) but not in hematopoietic stem and progenitor cells derived from normal individuals. Stable knockdown of CDX2 expression by RNA interference inhibited the proliferation of various human AML cell lines and strongly reduced their clonogenic potential in vitro. Primary murine hematopoietic progenitor cells transduced with Cdx2 acquired serial replating activity, were able to be continuously propagated in liquid culture, generated fully penetrant and transplantable AML in BM transplant recipients, and displayed dysregulated expression of Hox family members in vitro and in vivo. These results demonstrate that aberrant expression of the developmental regulatory gene CDX2 in the adult hematopoietic compartment is a frequent event in the pathogenesis of AML; suggest a role for CDX2 as part of a common effector pathway that promotes the proliferative capacity and self-renewal potential of myeloid progenitor cells; and support the hypothesis that CDX2 is responsible, in part, for the altered HOX gene expression that is observed in most cases of AML.
Collapse
Affiliation(s)
- Claudia Scholl
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Dimple Bansal
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Karina Eiwen
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Brian J.P. Huntly
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Benjamin H. Lee
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Frank G. Rücker
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Richard F. Schlenk
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - D. Gary Gilliland
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Stefan Fröhling
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
178
|
Wichmann C, Chen L, Heinrich M, Baus D, Pfitzner E, Zörnig M, Ottmann OG, Grez M. Targeting the Oligomerization Domain of ETO Interferes with RUNX1/ETO Oncogenic Activity in t(8;21)-Positive Leukemic Cells. Cancer Res 2007; 67:2280-9. [PMID: 17332359 DOI: 10.1158/0008-5472.can-06-3360] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
About 12% of all de novo acute myeloid leukemias are characterized by the translocation t(8;21), which generates the oncogenic fusion protein RUNX1/ETO. RUNX1/ETO has a modular structure and contains several docking sites for heterologous proteins, including transcriptional co-repressors like N-CoR, SMART, and mSIN3A. RUNX1/ETO is found in high molecular weight complexes, which are crucial for the block in myeloid differentiation observed in RUNX1/ETO-transformed cells. Essential for high molecular weight complex formation is the nervy homology region 2 (NHR2) within ETO, which serves as interacting surface for oligomerization as well as association with members of the ETO protein family. Here, we show that the expression of a fusion peptide consisting of 128 amino acids (NC128), including the entire NHR2 domain of ETO, disrupts the stability of the RUNX1/ETO high molecular weight complexes, restores transcription of RUNX1/ETO target genes, and reverts the differentiation block induced by RUNX1/ETO in myeloid cells. In the presence of NC128, RUNX1/ETO-transformed cells lose their progenitor cell characteristics, are arrested in cell cycle progression, and undergo cell death. Our results indicate that selective interference with the oligomerization domain of ETO could provide a promising strategy to inhibit the oncogenic properties of the leukemia-associated fusion protein RUNX1/ETO.
Collapse
Affiliation(s)
- Christian Wichmann
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt/M, Germany
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Peterson LF, Yan M, Zhang DE. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 2007; 109:4392-8. [PMID: 17284535 PMCID: PMC1885483 DOI: 10.1182/blood-2006-03-012575] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21(WAF1) gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21(WAF1)-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21(WAF1). Thus, loss of p21(WAF1) facilitates AML1-ETO-induced leukemogenesis, suggesting that mutagenic events in the p21(WAF1) pathway to bypass the growth inhibitory effect from AML1-ETO-induced p21(WAF1) expression can be a significant factor in AML1-ETO-associated acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/physiology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/physiology
- Gene Expression Regulation, Leukemic
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia/genetics
- Leukemia/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/physiology
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein
- Signal Transduction/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Luke F Peterson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
180
|
Abstract
Desmosomes are cell adhesion structures (junctions) that are particularly abundant in cells derived from the ectodermal lineages. These junctions are required to maintain the integrity of organs subjected to mechanical stress, in particular the skin and the heart. This conclusion is partially based on tissue fragility phenotypes observed in mice with null mutations in certain desmosomal genes. Furthermore, patients have been identified that develop severe skin disorders, and even fatal heart diseases, due to impaired desmosome function. Nevertheless, desmosomes are more than cellular glue. New evidence suggests that these junctions can transmit signals from the extracellular environment to the nucleus, for example by controling the cytoplasmic pool of transcriptional co-factors that belong to the armadillo family of desmosomal proteins (i.e. plakoglobin, plakophilins). Understanding the signaling properties of desmosomes will provide new insights into developmental processes such as skin and skin appendage development. Furthermore, there is evidence to suggest that abnormal signaling through these junctions contributes to the symptoms of certain skin and heart diseases.
Collapse
Affiliation(s)
- Ansgar Schmidt
- Institute of Pathology, Philipps University of Marburg School of Medicine, Marburg, Germany
| | | |
Collapse
|
181
|
Agrawal S, Hofmann WK, Tidow N, Ehrich M, van den Boom D, Koschmieder S, Berdel WE, Serve H, Müller-Tidow C. The C/EBPdelta tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood 2007; 109:3895-905. [PMID: 17234736 DOI: 10.1182/blood-2006-08-040147] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant DNA methylation is the most frequent molecular alteration in acute myeloid leukemia (AML). To identify methylation-silenced genes in AML, we performed microarray analyses in U937 cells exposed to the demethylating agent 5-aza-deoxy-cytidine. Overall, 274 transcripts were significantly induced. Interestingly, C/EBPdelta expression was significantly induced (more than 10-fold) by demethylation whereas expression of all other C/EBP family members remained unchanged. The C/EBPdelta promoter was strongly methylated in different leukemic cell lines and showed signs of a repressed chromatin state. Analyses of the promoter regions of the entire C/EBP family (alpha, beta, gamma, delta, epsilon, zeta) in bone marrow samples from AML patients (n = 80) and controls (n = 15) by mass spectrometry revealed that C/EBPdelta is the most commonly hypermethylated C/EBP gene in AML. Hypermethylation occurred in more than 35% of AML patients at primary diagnosis. A significant correlation (P = .016) was observed between hypermethylation of the C/EBPdelta promoter and low expression of C/EBPdelta in AML patients. C/EBPdelta promoter activity was strongly repressed by methylation in vitro, and transcriptional repression partially depended on MeCP2 activity. C/EBPdelta exhibited growth-inhibitory properties in primary progenitor cells as well as in Flt3-ITD-transformed cells. Taken together, C/EBPdelta is a novel tumor suppressor gene in AML that is silenced by promoter methylation.
Collapse
Affiliation(s)
- Shuchi Agrawal
- Department of Medicine, Hematology and Oncology, University of Münster, Domagkstrasse 3, 48129 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Nygren MK, Døsen G, Hystad ME, Stubberud H, Funderud S, Rian E. Wnt3A activates canonical Wnt signalling in acute lymphoblastic leukaemia (ALL) cells and inhibits the proliferation of B-ALL cell lines. Br J Haematol 2006; 136:400-13. [PMID: 17156404 DOI: 10.1111/j.1365-2141.2006.06442.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Recently, there has been a growing interest in Wnt signalling in several aspects of cellular development, including cancer formation. Little is known about Wnt signalling in B-ALL. We investigated whether activation of canonical Wnt signalling could occur in B-ALL cells and thereby play a potential role in cellular growth and/or survival. This study found that Wnt3A induced beta-catenin accumulation in both primary B-ALL cells and B-ALL leukaemia cell lines. Further, Wnt3A was shown to induce nuclear translocation of beta-catenin and TCF/Lef-1 dependent transcriptions in the B-ALL cell line Nalm-6. Examination of the mRNA expression pattern of WNT ligands, FZD receptors and WNT antagonists in Nalm-6 cells identified a set of ligands and receptors available for signalling, as well as antagonists potentially available for modulating the response. Functional analyses showed that Wnt3A inhibited the proliferation of several, but not all, B-ALL cell lines studied. Finally, microarray analysis was used to identify several Wnt3A target genes involved in a diverse range of cellular activities, which are potential mediators of the Wnt3A-restrained proliferation.
Collapse
Affiliation(s)
- Marit Kveine Nygren
- Department of Immunology, Institute for Cancer Research, The University Clinic Rikshospitalet-Radiumhospitalet HF, Montebello, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
183
|
Román-Gómez J, Cordeu L, Agirre X, Jiménez-Velasco A, San José-Eneriz E, Garate L, Calasanz MJ, Heiniger A, Torres A, Prosper F. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2006; 109:3462-9. [PMID: 17148581 DOI: 10.1182/blood-2006-09-047043] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Activation of the Wnt/β-catenin signaling pathway is a hallmark of a number of solid tumors. We analyzed the regulation of the Wnt/β-catenin pathway in acute lymphoblastic leukemia (ALL) and its role in the pathogenesis of the disease. We found that expression of the Wnt inhibitors sFRP1, sFRP2, sFRP4, sFRP5, WIF1, Dkk3, and Hdpr1 was down-regulated due to abnormal promoter methylation in ALL cell lines and samples from patients with ALL. Methylation of Wnt inhibitors was associated with activation of the Wnt-signaling pathway as demonstrated by the up-regulation of the Wnt target genes WNT16, FZ3, TCF1, LEF1, and cyclin D1 in cell lines and samples and the nuclear localization of β-catenin in cell lines. Treatment of ALL cells with the Wnt inhibitor quercetin or with the demethylating agent 5-aza-2′-deoxycytidine induced an inactivation of the Wnt pathway and induced apoptosis of ALL cells. Finally, in a group of 261 patients with newly diagnosed ALL, abnormal methylation of Wnt inhibitors was associated with decreased 10-year disease-free survival (25% versus 66% respectively, P < .001) and overall survival (28% versus 61% respectively, P = .001). Our results indicate a role of abnormal Wnt signaling in ALL and establish a group of patients with a significantly worse prognosis (methylated group).
Collapse
|
184
|
Dusek RL, Godsel LM, Chen F, Strohecker AM, Getsios S, Harmon R, Müller EJ, Caldelari R, Cryns VL, Green KJ. Plakoglobin deficiency protects keratinocytes from apoptosis. J Invest Dermatol 2006; 127:792-801. [PMID: 17110936 DOI: 10.1038/sj.jid.5700615] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.
Collapse
Affiliation(s)
- Rachel L Dusek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Tickenbrock L, Müller-Tidow C, Berdel WE, Serve H. Emerging Flt3 kinase inhibitors in the treatment of leukaemia. Expert Opin Emerg Drugs 2006; 11:153-65. [PMID: 16503833 DOI: 10.1517/14728214.11.1.153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute myeloid leukaemia (AML) is characterised by the infiltration of the bone marrow with highly proliferative leukaemic cells that stop to differentiate at different stages of myeloid development and carry survival advantages. Conventionally, AML is treated with aggressive cytotoxic therapy, in eligible patients followed by allogeneic bone marrow transplantation. However, despite this aggressive treatment, many patients relapse and eventually die from the disease. Activating mutations in the coding sequence of the receptor tyrosine kinase Flt3 are found in leukaemic blasts from approximately 30% of AML patients. The mutations have been described to severely alter the signalling properties of this receptor and to have transforming activity in cell-line models and in primary mouse bone marrow. The prognosis of patients harbouring the most common Flt3 mutations tends to be worse than that of comparable patients without the mutations. Thus, Flt3 seems a promising target for therapeutic intervention. Several small molecules that inhibit Flt3 kinase activity are being evaluated for the treatment of AML in clinical trials. This review article discusses the signal transduction and biological function of Flt3 and its mutations in normal and malignant haematopoiesis and recent progress in drug development aiming at the inhibition of Flt3 kinases.
Collapse
Affiliation(s)
- Lara Tickenbrock
- Department of Medicine, Hematology/Oncology, Interdisciplinary Centre of Clinical Research Münster (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | | | | | | |
Collapse
|
186
|
Martelli AM, Nyåkern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C, Cocco L. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20:911-28. [PMID: 16642045 DOI: 10.1038/sj.leu.2404245] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells. Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts in vitro. Thus, inhibitory molecules are currently being developed for clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular, for insulin signaling, so that its blockade in vivo might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- A M Martelli
- Cell Signalling Laboratory, Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
187
|
Casorelli I, Tenedini E, Tagliafico E, Blasi MF, Giuliani A, Crescenzi M, Pelosi E, Testa U, Peschle C, Mele L, Diverio D, Breccia M, Lo-Coco F, Ferrari S, Bignami M. Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: focus on DNA repair genes. Leukemia 2006; 20:1978-88. [PMID: 16990782 DOI: 10.1038/sj.leu.2404376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute promyelocytic leukemia (APL) is a clonal expansion of hematopoietic precursors blocked at the promyelocytic stage. Gene expression profiles of APL cells obtained from 16 patients were compared to eight samples of CD34+-derived normal promyelocytes. Malignant promyelocytes showed widespread changes in transcription in comparison to their normal counterpart and 1020 differentially expressed genes were identified. Discriminating genes include transcriptional regulators (FOS, JUN and HOX genes) and genes involved in cell cycle and DNA repair. The strong upregulation in APL of some transcripts (FLT3, CD33, CD44 and HGF) was also confirmed at protein level. Interestingly, a trend toward a transcriptional repression of genes involved in different DNA repair pathways was found in APL and confirmed by real-time polymerase chain reactor (PCR) in a new set of nine APLs. Our results suggest that both inefficient base excision repair and recombinational repair might play a role in APLs development. To investigate the expression pathways underlying the development of APL occurring as a second malignancy (sAPL), we included in our study eight cases of sAPL. Although both secondary and de novo APL were characterized by a strong homogeneity in expression profiling, we identified a small set of differentially expressed genes that discriminate sAPL from de novo cases.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cluster Analysis
- DNA Repair/genetics
- Female
- Flow Cytometry
- Gene Expression Regulation, Leukemic
- Granulocyte Precursor Cells/pathology
- Granulocyte Precursor Cells/physiology
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/metabolism
- Immunophenotyping
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Sialic Acid Binding Ig-like Lectin 3
- Transcription, Genetic
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- I Casorelli
- Section of Experimental Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Chim CS, Chan WWL, Pang A, Kwong YL. Preferential methylation of Wnt inhibitory factor-1 in acute promyelocytic leukemia: an independent poor prognostic factor. Leukemia 2006; 20:907-9. [PMID: 16525492 DOI: 10.1038/sj.leu.2404176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/physiopathology
- Methylation
- Multivariate Analysis
- Prognosis
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Recurrence
- Remission Induction
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Risk Factors
- Sensitivity and Specificity
- Survival Rate
- Tretinoin/therapeutic use
- Tumor Cells, Cultured
Collapse
|
189
|
Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H, Bolli R, Hunziker T, Suter MM, Müller EJ. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J 2006; 25:3298-309. [PMID: 16871158 PMCID: PMC1523185 DOI: 10.1038/sj.emboj.7601224] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/09/2006] [Indexed: 12/12/2022] Open
Abstract
The autoimmune disease pemphigus vulgaris (PV) manifests as loss of keratinocyte cohesion triggered by autoantibody binding to desmoglein (Dsg)3, an intercellular adhesion molecule of mucous membranes, epidermis, and epidermal stem cells. Here we describe a so far unknown signaling cascade activated by PV antibodies. It extends from a transient enhanced turn over of cell surface-exposed, nonkeratin-anchored Dsg3 and associated plakoglobin (PG), through to depletion of nuclear PG, and as one of the consequences, abrogation of PG-mediated c-Myc suppression. In PV patients (6/6), this results in pathogenic c-Myc overexpression in all targeted tissues, including the stem cell compartments. In summary, these results show that PV antibodies act via PG to abolish the c-Myc suppression required for both maintenance of epidermal stem cells in their niche and controlled differentiation along the epidermal lineage. Besides a completely novel insight into PV pathogenesis, these data identify PG as a potent modulator of epithelial homeostasis via its role as a key suppressor of c-Myc.
Collapse
Affiliation(s)
- Lina Williamson
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Natalia A Raess
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Caldelari
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anthony Zakher
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alain de Bruin
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Horst Posthaus
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Thomas Hunziker
- Department Dermatology, Medical Faculty, University of Bern, Bern, Switzerland
| | - Maja M Suter
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Postfach, Länggass-Str. 122, Bern 3001, Switzerland. Tel.: +41 31 631 24 03 or 631 23 98; Fax: +41 31 631 26 35; E-mail:
| |
Collapse
|
190
|
Kirstetter P, Anderson K, Porse BT, Jacobsen SEW, Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7:1048-56. [PMID: 16951689 DOI: 10.1038/ni1381] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 07/27/2006] [Indexed: 02/06/2023]
Abstract
Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression of a stable form of beta-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss of hematopoietic stem cell function was associated with decreased expression of Cdkn1a (encoding the cell cycle inhibitor p21(cdk)), Sfpi1, Hoxb4 and Bmi1 (encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin(-)Sca-1(+)c-Kit(+) cells, whereas PU.1 was upregulated in erythroid progenitors. Constitutive activation of canonical Wnt signaling therefore causes multilineage differentiation block and compromised hematopoietic stem cell maintenance.
Collapse
Affiliation(s)
- Peggy Kirstetter
- European Molecular Biology Laboratory Mouse Biology Unit, 00016 Monterotondo, Italy
| | | | | | | | | |
Collapse
|
191
|
Tonks A, Pearn L, Mills KI, Burnett AK, Darley RL. The sensitivity of human cells expressing RUNX1-RUNX1T1 to chemotherapeutic agents. Leukemia 2006; 20:1883-5. [PMID: 16932340 DOI: 10.1038/sj.leu.2404364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
192
|
Baba Y, Yokota T, Spits H, Garrett KP, Hayashi SI, Kincade PW. Constitutively Active β-Catenin Promotes Expansion of Multipotent Hematopoietic Progenitors in Culture. THE JOURNAL OF IMMUNOLOGY 2006; 177:2294-303. [PMID: 16887990 DOI: 10.4049/jimmunol.177.4.2294] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study was designed to investigate one component of the Wnt/beta-catenin signaling pathway that has been implicated in stem cell self-renewal. Retroviral-mediated introduction of stable beta-catenin to primitive murine bone marrow cells allowed the expansion of multipotential c-Kit(low)Sca-1(low/-)CD19(-) CD11b/Mac-1(-)Flk-2(-)CD43(+)AA4.1(+)NK1.1(-)CD3(-)CD11c(-)Gr-1(-)CD45R/B220(+) cells in the presence of stromal cells and cytokines. They generated myeloid, T, and B lineage lymphoid cells in culture, but had no T lymphopoietic potential when transplanted. Stem cell factor and IL-6 were found to be minimal requirements for long-term, stromal-free propagation, and a beta-catenin-transduced cell line was maintained for 5 mo with these defined conditions. Although multipotential and responsive to many normal stimuli in culture, it was unable to engraft several types of irradiated recipients. These findings support previous studies that have implicated the canonical Wnt pathway signaling in regulation of multipotent progenitors. In addition, we demonstrate how it may be experimentally manipulated to generate valuable cell lines.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
193
|
Martinez JA, Williams CS, Amann JM, Ellis TC, Moreno-Miralles I, Washington MK, Gregoli P, Hiebert SW. Deletion of Mtgr1 sensitizes the colonic epithelium to dextran sodium sulfate-induced colitis. Gastroenterology 2006; 131:579-88. [PMID: 16890610 DOI: 10.1053/j.gastro.2006.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 05/11/2006] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS The disruption of homeostasis between proliferation and apoptosis in the colonic epithelium contributes to the pathogenesis of human ulcerative colitis. Mice lacking the transcriptional corepressor myeloid translocation gene related-1 (Mtgr1) display impaired secretory cell lineage development in the small intestine and an increase in proliferation in the crypts of both the small and large intestines. Despite the increase in proliferating cells, the colons of Mtgr1-null mice have a normal cell lineage distribution and normal architecture. To uncover colonic phenotypes in Mtgr1(-/-) mice, we stressed the colonic epithelium with low-molecular-weight dextran sodium sulfate (DSS), which is a well-studied model of murine ulcerative colitis. METHODS Mtgr1-null mice were given 3% DSS in their drinking water for 4 days and the colons examined at various times thereafter for ulceration and for changes in proliferation and apoptosis. RESULTS Treatment with DSS resulted in severe colitis in Mtgr1(-/-) mice, at least partially due to increased epithelial apoptosis rates. Transplantation of wild-type and Mtgr1-null bone marrow into irradiated wild-type mice demonstrated that the severe DSS-induced ulceration seen in Mtgr1-null mice was due to a colonic, rather than a hematologic, defect. Importantly, the epithelium of DSS-treated Mtgr1-null mice failed to completely regenerate, showing changes consistent with chronic colitis, even 10 weeks after a single DSS treatment. CONCLUSIONS These findings suggest that Mtgr1 has an important role in crypt survival and regeneration after colonic epithelial ulceration.
Collapse
Affiliation(s)
- J Andres Martinez
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
De Toni F, Racaud-Sultan C, Chicanne G, Mas VMD, Cariven C, Mesange F, Salles JP, Demur C, Allouche M, Payrastre B, Manenti S, Ysebaert L. A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 2006; 25:3113-22. [PMID: 16407823 DOI: 10.1038/sj.onc.1209346] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Relapses following chemotherapy are a major hindrance to patients' survival in acute myeloid leukemia (AML). To investigate the role of the hematopoietic niche in the chemoresistance of leukemic cells, we examined two pathways: one mediated by adhesion molecules/integrins, and the other by soluble factors of the morphogen Wnt pathway. In our study, both the adhesion of leukemic blasts to fibronectin and the addition of Wnt antagonists induced, independently, resistance of AML cells to daunorubicin in a cell survival assay. Using pharmacological inhibitors and siRNA, we showed that both resistance pathways required the activity of the glycogen synthase kinase 3beta (GSK3beta). Moreover, the AML cell protection downstream of GSK3beta was mediated by NF-kappaB. A link between the adhesion and the Wnt pathway was found, as adhesion of U937 on human osteoblasts, a component of the hematopoietic niche, triggered the secretion of the Wnt antagonist sFRP-1 and supported resistance to daunorubicin. The osteoblast-conditioned medium could also confer chemoresistance to U937 cells cultured in suspension, and this cell protective effect was abrogated after depletion of sFRP-1. In the context of this potential double in vivo resistance, modulators of the common signal GSK3beta and of its target NF-kappaB could represent important novel therapeutic tools.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Blast Crisis
- Cell Adhesion/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Daunorubicin/pharmacology
- Drug Resistance, Neoplasm
- Fibronectins/metabolism
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/cytology
- Osteoblasts/metabolism
- RNA, Small Interfering/pharmacology
- Signal Transduction
- U937 Cells/metabolism
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- F De Toni
- Département d'Oncogenèse et Signalisation Cellulaire dans les Cellules Hématopoïétiques, Institut National de la Santé et de la Recherche Médicale Unité 563, Centre Hospitalier Universitaire Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB, Mansat-De Mas V, Rigal-Huguet F, Laurent G, Payrastre B, Manenti S, Racaud-Sultan C. Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006; 20:1211-6. [PMID: 16688229 DOI: 10.1038/sj.leu.2404239] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the Wnt/beta-catenin pathway has recently been shown to be crucial to the establishment of leukemic stem cells in chronic myeloid leukemia. We sought to determine whether beta-catenin was correlated to clonogenic capacity also in the acute myeloid leukemia (AML) setting. Eighty-two patients were retrospectively evaluated for beta-catenin expression by Western blot. beta-Catenin was expressed (although at various protein levels) in 61% of patients, and was undetectable in the remaining cases. In our cohort, beta-catenin expression was correlated with the clonogenic proliferation of AML-colony forming cells (AML-CFC or CFU-L) in methylcellulose in the presence of 5637-conditioned medium, and more strikingly with self-renewing of leukemic cells, as assessed in vitro by a re-plating assay. In survival analyses, beta-catenin appeared as a new independent prognostic factor predicting poor event-free survival and shortened overall survival (both with P<0.05). Furthermore, variations in beta-catenin protein levels were dependent on post-transcriptional mechanisms involving the Wnt/beta-catenin pathway only in leukemic cells. Indeed, beta-catenin negative leukemic cells were found to increase beta-catenin in response to Wnt3a agonist in contrast to normal counterparts. Altogether, our data pave the way to the evaluation of Wnt pathway inhibition as a new rationale for eradicating the clonogenic pool of AML cells.
Collapse
MESH Headings
- Cell Line, Tumor
- Clone Cells
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/mortality
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Acute/metabolism
- Leukemia, Myelomonocytic, Acute/mortality
- Leukemia, Myelomonocytic, Acute/pathology
- Male
- Middle Aged
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/physiology
- Predictive Value of Tests
- Prognosis
- Retrospective Studies
- Signal Transduction
- Survival Analysis
- Wnt Proteins/metabolism
- beta Catenin/genetics
Collapse
Affiliation(s)
- L Ysebaert
- NSERM U563, Centre de Physiopathologie Toulouse Purpan (CPTP), Département Oncogenèse et Signalisation dans les cellules Hématopoïétiques, CHU Purpan, Toulouse Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Weerkamp F, van Dongen JJM, Staal FJT. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20:1197-205. [PMID: 16688226 DOI: 10.1038/sj.leu.2404255] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many acute lymphoblastic leukemias can be considered as malignant counterparts of cells in the various stages of normal lymphoid development in bone marrow and thymus. T-cell development in the thymus is an ordered and tightly controlled process. Two evolutionary conserved signaling pathways, which were first discovered in Drosophila, control the earliest steps of T-cell development. These are the Notch and Wnt-signaling routes, which both are deregulated in several types of leukemias. In this review we discuss both pathways, with respect to their signaling mechanisms, functions during T-cell development and their roles in development of leukemias, especially T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- F Weerkamp
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
197
|
Choi Y, Elagib KE, Delehanty LL, Goldfarb AN. Erythroid inhibition by the leukemic fusion AML1-ETO is associated with impaired acetylation of the major erythroid transcription factor GATA-1. Cancer Res 2006; 66:2990-6. [PMID: 16540647 DOI: 10.1158/0008-5472.can-05-2944] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human acute myeloid leukemias with the t(8;21) translocation express the AML1-ETO fusion protein in the hematopoietic stem cell compartment and show impairment in erythroid differentiation. This clinical finding is reproduced in multiple murine and cell culture model systems in which AML1-ETO specifically interferes with erythroid maturation. Using purified normal human early hematopoietic progenitor cells, we find that AML1-ETO impedes the earliest discernable steps of erythroid lineage commitment. Correspondingly, GATA-1, a central transcriptional regulator of erythroid differentiation, undergoes repression by AML1-ETO in a nonconventional histone deacetylase-independent manner. In particular, GATA-1 acetylation by its transcriptional coactivator, p300/CBP, a critical regulatory step in programming erythroid development, is efficiently blocked by AML1-ETO. Fusion of a heterologous E1A coactivator recruitment module to GATA-1 overrides the inhibitory effects of AML1-ETO on GATA-1 acetylation and transactivation. Furthermore, the E1A-GATA-1 fusion, but not wild-type GATA-1, rescues erythroid lineage commitment in primary human progenitors expressing AML1-ETO. These results ascribe a novel repressive mechanism to AML1-ETO, blockade of GATA-1 acetylation, which correlates with its inhibitory effects on primary erythroid lineage commitment.
Collapse
Affiliation(s)
- Youngjin Choi
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
198
|
Lacorazza HD, Yamada T, Liu Y, Miyata Y, Sivina M, Nunes J, Nimer SD. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 2006; 9:175-87. [PMID: 16530702 DOI: 10.1016/j.ccr.2006.02.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/23/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
The transcriptional circuitry that regulates the quiescence of hematopoietic stem cells is largely unknown. We report that the transcription factor known as MEF (or ELF4), which is targeted by the t(X;21)(q26;q22) in acute myelogenous leukemia, regulates the proliferation of primitive hematopoietic progenitor cells at steady state, controlling their quiescence. Mef null HSCs display increased residence in G0 with reduced 5-bromodeoxyuridine incorporation in vivo and impaired cytokine-driven proliferation in vitro. Due to their increased HSC quiescence, Mef null mice are relatively resistant to the myelosuppressive effects of chemotherapy and radiation. Thus, MEF plays an important role in the decision of stem/primitive progenitor cells to divide or remain quiescent by regulating their entry to the cell cycle.
Collapse
Affiliation(s)
- H Daniel Lacorazza
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
199
|
Licht JD. Reconstructing a disease: What essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 2006; 9:73-4. [PMID: 16473273 DOI: 10.1016/j.ccr.2006.01.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Acute promyelocytic leukemia (APL) is associated with rearrangement of the retinoic acid receptor alpha (RARalpha) gene leading to the formation of chimeric receptor proteins. In this issue of Cancer Cell, studies by Kwok et al. and Sternsdorf et al. indicate that the ability of the RARalpha oncoproteins to dimerize/multimerize is an essential feature required for the development of disease. Homodimerization allows RARalpha to bind to corepressors with increased affinity and the ability to bind to novel DNA sequences. However, artificial RARalpha dimers were weak oncogenes in vivo, indicating that the fusion partners confer additional properties to RARalpha to efficiently generate disease.
Collapse
Affiliation(s)
- Jonathan D Licht
- Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
200
|
Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C. CpG Island Methylation and Expression of the Secreted Frizzled-Related Protein Gene Family in Chronic Lymphocytic Leukemia. Cancer Res 2006; 66:653-8. [PMID: 16423993 DOI: 10.1158/0008-5472.can-05-3712] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is characterized by a clonal accumulation of mature neoplastic B cells indicating disruption of apoptosis. Restriction Landmark Genome Scanning was done to identify novel target genes silenced by CpG island methylation in CLL. Secreted frizzled-related protein 4 (SFRP4), a negative regulator of the Wnt signaling pathway, was found to be frequently methylated in CLL samples. Wnt signaling has been shown to control normal apoptotic behavior and is required for normal B-cell development whereas aberrant activation of this pathway has been observed in CLL. We show aberrant DNA methylation and silencing of SFRP4, as well as of additional SFRP family members, in primary CLL samples. Induction of their expression in a dose-dependent manner following treatment with a demethylating agent, 5-aza-2'-deoxycytidine, was shown. Of the five SFRP family members studied in detail, SFRP1 was hypermethylated and down-regulated in all CLL patient samples studied, suggesting that this epigenetic event is a critical step during leukemogenesis. Our results suggest that silencing of SFRPs by CpG island methylation is one possible mechanism contributing to aberrant activation of Wnt signaling pathway in CLL.
Collapse
Affiliation(s)
- Te-Hui Liu
- Department of Molecular Virology, Immunology, and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|