151
|
Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 2001; 3:158-64. [PMID: 11175748 DOI: 10.1038/35055065] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under conditions of endoplasmic reticulum (ER) stress, mammalian cells induce both translational repression and the unfolded protein response that transcriptionally activates genes encoding ER-resident molecular chaperones. To date, the only known pathway for translational repression in response to ER stress has been the phosphorylation of eIF-2alpha by the double-stranded RNA-activated protein kinase (PKR) or the transmembrane PKR-like ER kinase (PERK). Here we report another pathway in which the ER transmembrane kinase/ribonuclease IRE1beta induces translational repression through 28S ribosomal RNA cleavage in response to ER stress. The evidence suggests that both pathways are important for efficient translational repression during the ER stress response.
Collapse
Affiliation(s)
- T Iwawaki
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 2001; 12:323-37. [PMID: 11179418 PMCID: PMC30946 DOI: 10.1091/mbc.12.2.323] [Citation(s) in RCA: 1005] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2000] [Revised: 10/31/2000] [Accepted: 11/14/2000] [Indexed: 11/11/2022] Open
Abstract
We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves approximately 10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.
Collapse
Affiliation(s)
- H C Causton
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 2001; 29:15-32. [PMID: 11182078 DOI: 10.1016/s0896-6273(01)00177-5] [Citation(s) in RCA: 740] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M Y Sherman
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.
| | | |
Collapse
|
154
|
Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 2000; 279:445-50. [PMID: 11118306 DOI: 10.1006/bbrc.2000.3987] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) is a signal transduction pathway induced by a variety of endoplasmic reticulum (ER) stresses and functions to maintain homeostasis of the cellular membrane in eukaryotes. Various ER stresses result in the accumulation of unfolded proteins in the ER, which is sensed by the transmembrane protein kinase/ribonuclease Ire1p that transmits a signal from the ER to the nucleus in Saccharomyces cerevisiae. Here we report that the yeast ER chaperone Kar2p/BiP, a member of the HSP70 family found in the ER, directly regulates the UPR by the interaction with Ire1p. In the absence of ER stress, Kar2p binds the lumenal domain of Ire1p and keeps Ire1p in an inactive unphosphorylated state. Upon exposure of cells to ER stresses, Kar2p is released from Ire1p, resulting in activation of Ire1p and signal transduction to the nucleus. Subsequently, KAR2 mRNA is induced and Kar2p accumulates in the ER in a time-dependent manner, restoring the system to the basal state. This negative autoregulation is similar to the regulation of mammalian cytosolic chaperone Hsp70 via its interaction with heat shock factor 1.
Collapse
Affiliation(s)
- K Okamura
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| | | | | | | | | |
Collapse
|
155
|
Schröder M, Chang JS, Kaufman RJ. The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes Dev 2000; 14:2962-75. [PMID: 11114886 PMCID: PMC317105 DOI: 10.1101/gad.852300] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diploid budding yeast exhibits two developmental programs in response to nitrogen starvation, pseudohyphal growth, and sporulation. Here we show that both programs are repressed by activation of the unfolded protein response (UPR), a stress-signal transduction pathway responsible for induction of endoplasmic reticulum (ER)-resident chaperones when protein folding in the ER is impaired. Pseudohyphal growth was derepressed in ire1Delta/ire1Delta and hac1Delta/hac1Delta strains. Activation of the UPR or overexpression of the transcription factor Hac1(i)p, the product of an unconventional splicing reaction regulated by the UPR, was sufficient for repression of pseudohyphal growth and meiosis. HAC1 splicing occurred in a nitrogen-rich environment but ceased rapidly on nitrogen starvation. Further, addition of ammonium salts to nitrogen-starved cells was sufficient to rapidly reactivate HAC1 splicing. We propose that high translation rates in a nitrogen-rich environment are coupled to limited protein unfolding in the ER, thereby activating the UPR. An activated UPR then represses pseudohyphal growth and meiosis. Nitrogen starvation slows translation rates, allowing for more efficient folding of nascent polypeptide chains, down-regulation of the UPR, and subsequent derepression of pseudohyphal growth and meiosis. These findings significantly broaden the range of physiological functions of the UPR and define a role for the UPR in nitrogen sensing.
Collapse
Affiliation(s)
- M Schröder
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | | | |
Collapse
|
156
|
Abstract
This report summarizes recent findings in the field of basic and translational apoptosis research which were presented at the 1st Conference on 'Mechanisms of Cell Death and Disease: Advances in Therapeutic Intervention' organized by the European School of Hematology and the University of Texas MD Anderson Cancer Center, 13-17 May, in Dublin, Ireland, and puts them in the context of the literature. Recent discoveries have significantly advanced the understanding of biochemical and genetic requirements of distinct apoptosis pathways (ie mitochondrial, death-receptor and endoplasmic reticulum-mediated apoptosis) and their dysregulation in disease. Progress has been made especially in the elucidation of the mechanisms of action of the Bcl-2 family members, in detail the formation of channels and their regulation in the mitochondrial membranes, conformational changes in Bax and Bak, and crosstalk of death receptor-triggered apoptosis to the mitochondria by activation of Bax via Bid. In addition, novel insights have been gained about the regulation of caspases and novel caspase signaling pathways, such as activation of caspase-12 by the endoplasmic reticulum stress response. Therapeutic applications of apoptosis manipulation include (1) the inhibition of caspases in acute and chronic neurodegenerative diseases, ie stroke, Alzheimer's or Huntington's disease by drugs and (2) sensitization of cancer cells for drug/radiation-induced apoptosis by modulation of survival signals and viral transfer of apoptosis promoting genes.
Collapse
Affiliation(s)
- P T Daniel
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Humboldt University Berlin, Germany
| |
Collapse
|
157
|
Pedersen PA, Jorgensen JR, Jorgensen PL. Importance of conserved alpha -subunit segment 709GDGVND for Mg2+ binding, phosphorylation, and energy transduction in Na,K-ATPase. J Biol Chem 2000; 275:37588-95. [PMID: 10982798 DOI: 10.1074/jbc.m005610200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The segment (708)TGDGVNDSPALKK(720) in the alpha-subunit P domain of Na,K-ATPase is highly conserved among cation pumps, but little is known about its role in binding of Mg(2+) or ATP and energy transduction. Here, 11 mutations of polar residues are expressed at reduced temperature in yeast with preserved capacities for high affinity binding of ouabain and ATP, whereas the Thr(708) --> Ser mutation and alterations of Asp(714) abolish all catalytic reactions. In mutations of Asp(710) and Asn(713), ATP affinity is preserved or increased, whereas Na,K-ATPase activity is severely reduced. Assay of phosphorylation from ATP in the presence of oligomycin shows that Asp(710) contributes to coordination of Mg(2+) during transfer of gamma-phosphate to Asp(369) in the high energy Mg.E(1)P[3Na] intermediate and that Asn(713) is involved in these processes. In contrast, Asp(710) and Asp(713) do not contribute to Mg(2+) binding in the E(2)P.ouabain complex. Transition to E(2)P thus involves a shift of Mg(2+) coordination away from Asp(710) and Asn(713), and the two residues become more important for hydrolysis of the acyl phosphate bond at Asp(369). The Asp(710) --> Ala mutation blocks interaction with vanadate, whereas Asn(713) --> Ala interferes with phosphorylation from P(i) of the E(2).ouabain complex, showing that the GDGVND segment is required for stabilization of the transition state and for the phosphorylation reaction. The Asp(710) --> Ala mutation also interferes with transmission of structural changes to the ouabain site and reduces the affinity for binding of Tl(+) 2- to 3-fold, suggesting a role in transmission of K(+) stimulation of phospho-enzyme hydrolysis from transmembrane segment 5 to the P domain.
Collapse
Affiliation(s)
- P A Pedersen
- Biomembrane Research Center, August Krogh Institute, Copenhagen University, Copenhagen 2100 OE, Denmark
| | | | | |
Collapse
|
158
|
He H, McColl K, Distelhorst CW. Involvement of c-Fos in signaling grp78 induction following ER calcium release. Oncogene 2000; 19:5936-43. [PMID: 11127825 DOI: 10.1038/sj.onc.1203994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Release of calcium from the endoplasmic reticulum (ER) signals an increase in transcription of both the early response gene, c-fos, and the late response gene, grp78. We have used thapsigargin (TG), an ER calcium-ATPase pump inhibitor that induces calcium release from the ER, to investigate the possible involvement of c-Fos, a component of the AP-1 transcription factor, in grp78 induction. Two cell lines with markedly different responses to TG treatment were employed: the WEHI7.2 mouse lymphoma line in which TG fails to induce grp78, and the MDA-MB-468 mammary epithelial line in which TG induces grp78. In WEHI7.2 cells, TG-induced calcium release triggers a rapid increase in c-fos mRNA, but the level of c-Fos protein decreases due to degradation by the multicatalytic proteasome. C-FosdeltaC, a proteasome resistant c-Fos mutant with AP-1 activity similar to that of wild type c-Fos, restores grp78 induction in WEHI7.2 cells, detected by both Northern hybridization and a grp78 promoter-luciferase reporter assay. In MDA-MB-468 cells, TG-mediated calcium release induces a sustained elevation of c-Fos protein that precedes grp78 induction. A region of the grp78 promoter containing both ERSE and CORE regions, but missing TRE and CRE regions, is sufficient to mediate induction of reporter luciferase activity. Induction of this reporter was blocked by A-Fos, a dominant negative inhibitor of c-Fos. Also, the induction of grp78-luciferase reporter activity was inhibited by c-fos antisense mRNA. In summary, the findings indicate that c-Fos is involved in signaling grp78 induction following TG treatment, and that grp78 induction is inhibited by proteasome-mediated c-Fos degradation.
Collapse
Affiliation(s)
- H He
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
159
|
Affiliation(s)
- M Niwa
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
160
|
Tirasophon W, Lee K, Callaghan B, Welihinda A, Kaufman RJ. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 2000; 14:2725-36. [PMID: 11069889 PMCID: PMC317029 DOI: 10.1101/gad.839400] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The unfolded protein response (UPR) is a signal transduction pathway that is activated by the accumulation of unfolded proteins in the endoplasmic reticulum (ER). In Saccharomyces cerevisiae the ER transmembrane receptor, Ire1p, transmits the signal to the nucleus culminating in the transcriptional activation of genes encoding an adaptive response. Yeast Ire1p requires both protein kinase and site-specific endoribonuclease (RNase) activities to signal the UPR. In mammalian cells, two homologs, Ire1 alpha and Ire1 beta, are implicated in signaling the UPR. To elucidate the RNase requirement for mammalian Ire1 function, we have identified five amino acid residues within IRE1 alpha that are essential for RNase activity but not kinase activity. These mutants were used to demonstrate that the RNase activity is required for UPR activation by IRE1 alpha and IRE1 beta. In addition, the data support that IRE1 RNase is activated by dimerization-induced trans-autophosphorylation and requires a homodimer of catalytically functional RNase domains. Finally, the RNase activity of wild-type IRE1 alpha down-regulates hIre1 alpha mRNA expression by a novel mechanism involving cis-mediated IRE1 alpha-dependent cleavage at three specific sites within the 5' end of Ire1 alpha mRNA.
Collapse
Affiliation(s)
- W Tirasophon
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | | | | | | | |
Collapse
|
161
|
Patterson CE, Schaub T, Coleman EJ, Davis EC. Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol Biol Cell 2000; 11:3925-35. [PMID: 11071917 PMCID: PMC15047 DOI: 10.1091/mbc.11.11.3925] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
FKBP65 (65-kDa FK506-binding protein) is a member of the highly conserved family of intracellular receptors called immunophilins. All have the property of peptidyl-prolyl cis-trans isomerization, and most have been implicated in folding and trafficking events. In an earlier study, we identified that FKBP65 associates with the extracellular matrix protein tropoelastin during its transport through the cell. In the present study, we have carried out a detailed investigation of the subcellular localization of FKBP65 and its relationship to tropoelastin. Using subcellular fractionation, Triton X-114 phase separation, protease protection assays, and immunofluorescence microscopy (IF), we have identified that FKBP65 is contained within the lumen of the endoplasmic reticulum (ER). Subsequent IF studies colocalized FKBP65 with tropoelastin and showed that the two proteins dissociate before reaching the Golgi apparatus. Immunohistochemical localization of FKBP65 in developing lung showed strong staining of vascular and airway smooth muscle cells. Similar areas stained positive for the presence of elastic fibers in the extracellular matrix. The expression of FKBP65 was investigated during development as tropoelastin is not expressed in adult tissues. Tissue-specific expression of FKBP65 was observed in 12-d old mouse tissues; however, the pattern of expression of FKBP65 was not restricted to those tissues expressing tropoelastin. This suggests that additional ligands for FKBP65 likely exist within the ER. Remarkably, in the adult tissues examined, FKBP65 expression was absent or barely detectable. Taken together, these results support an ER-localized FKBP65-tropoelastin interaction that occurs specifically during growth and development of tissues.
Collapse
Affiliation(s)
- C E Patterson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
162
|
Van Uden E, Kang DE, Koo EH, Masliah E. LDL receptor-related protein (LRP) in Alzheimer's disease: towards a unified theory of pathogenesis. Microsc Res Tech 2000; 50:268-72. [PMID: 10936878 DOI: 10.1002/1097-0029(20000815)50:4<268::aid-jemt3>3.0.co;2-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To date, mutations in three genes, beta-amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2), have been found to be causally related to familial Alzheimer's disease (AD). In addition, polymorphisms in three other genes (among others), apolipoprotein E (apoE), alpha2-macroglobulin (alpham), and the low density lipoprotein receptor-related protein (LRP), are implicated to contribute to AD pathogenesis. Interestingly, the encoded gene products are all functionally related in various ways to LRP. Specifically apoE, alpha2m, secreted APP, and amyloid beta-protein (Abeta) complexed to either apoE or alpha2m are ligands of LRP. Furthermore, over-expression of presenilin 1 results in decreased expression of LRP. Since levels of many LRP ligands are increased in Alzheimer's disease and LRP and its ligands are present in senile plaques, decreased LRP function may be a central component in AD pathogenesis. This review explores the current knowledge of LRP in AD and its relationship to the other known AD susceptibility markers.
Collapse
Affiliation(s)
- E Van Uden
- Department of Neurosciences, University of California-San Diego, School of Medicine, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
163
|
Liu CY, Schröder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 2000; 275:24881-5. [PMID: 10835430 DOI: 10.1074/jbc.m004454200] [Citation(s) in RCA: 306] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IRE1 and PERK are type I transmembrane serine/threonine protein kinases that are activated by unfolded proteins in the endoplasmic reticulum (ER) to signal adaptive responses. IRE1 is present in all eukaryotic cells and signals the unfolded protein response through its kinase and endoribonuclease activities. PERK signals phosphorylation of a translation initiation factor to inhibit protein synthesis in higher eukaryotic cells but is absent in the Saccharomyces cerevisiae genome. The amino acid sequences of the amino-terminal ER luminal domains (NLDs) from IRE1 and PERK display limited homology and have diverged among species. In this study, we have demonstrated that the NLD of yeast Ire1p is required for signaling. However, the NLDs from human IRE1alpha and murine IRE1beta and the Caenorhabditis elegans IRE1 and PERK function as replacements for the S. cerevisiae Ire1p-NLD to signal the unfolded protein response. Replacement of the Ire1p-NLD with a functional leucine zipper dimerization motif yielded a constitutively active kinase that surprisingly was further activated by ER stress. These results demonstrate that ER stress-induced dimerization of the NLD is sufficient for IRE1 and PERK activation and is conserved through evolution. We propose that ligand-independent activation of IRE1 and PERK permits homodimerization upon accumulation of unfolded proteins in the lumen of the ER.
Collapse
Affiliation(s)
- C Y Liu
- Howard Hughes Medical Institute and the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | | | |
Collapse
|
164
|
Rush JS, Panneerselvam K, Waechter CJ, Freeze HH. Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with Congenital Disorders of Glycosylation (CDG). Glycobiology 2000; 10:829-35. [PMID: 10929009 DOI: 10.1093/glycob/10.8.829] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Congenital Disorders of Glycosylation (CDG) are human deficiencies in glycoprotein biosynthesis. Previous studies showed that 1 mM mannose corrects defective protein N-glycosylation in cultured fibroblasts from some CDG patients. We hypothesized that these CDG cells have limited GDP-mannose (GDP-Man) and that exogenous mannose increases the GDP-Man levels. Using a well established method to measure GDP-Man, we found that normal fibroblasts had an average of 23.5 pmol GDP-Man/10(6) cells, whereas phosphomannomutase (PMM)-deficient fibroblasts had only 2.3-2.7 pmol/10(6) cells. Adding 1 mM mannose to the culture medium increased the GDP-Man level in PMM-deficient cells to approximately 15.5 pmol/10(6) cells, but had no significant effect on GDP-Man levels in normal fibroblasts. Similarly, mannose supplementation increased GDP-Man from 4.6 pmol/10(6) cells to 24.6 pmol/10(6) cells in phosphomannose isomerase (PMI)-deficient fibroblasts. Based on the specific activity of the GDP-[(3)H]Man pool present in [2-(3)H]mannose labeled cells, mannose supplementation also partially corrected the impaired synthesis of mannosylphosphoryldolichol (Man-P-Dol) and Glc(0)(-)(3)Man(9)GlcNAc(2)-P-P-Dol. These results confirm directly that deficiencies in PMM and PMI result in lowered cellular GDP-Man levels that are corrected by the addition of mannose. In contrast to these results, GDP-Man levels in fibroblasts from a CDG-Ie patient, who is deficient in Man-P-Dol synthase, were normal and unaffected by mannose supplementation even though mannose addition was found to correct abnormal lipid intermediate synthesis in another study (Kim et al. [2000] J. Clin. Invest., 105, 191-198). The mechanism by which mannose supplementation corrects abnormal protein N-glycosylation in Man-P-Dol synthase deficient cells is unknown, but this observation suggests that the regulation of Man-P-Dol synthesis and utilization may be more complex than is currently understood.
Collapse
Affiliation(s)
- J S Rush
- Department of Biochemistry, A.B.Chandler Medical Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | | | |
Collapse
|
165
|
Caspersen C, Pedersen PS, Treiman M. The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 2000; 275:22363-72. [PMID: 10748035 DOI: 10.1074/jbc.m001569200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The sarco/endoplasmic reticulum calcium-ATPase (SERCA) translocates Ca(2+) from the cytosol to the lumen of the endoplasmic reticulum. This Ca(2+) storage is important for cellular processes such as calcium signaling and endoplasmic reticulum (ER)-associated posttranslational protein modifications. We investigated the expression of the SERCA2 and SERCA3 isozymes in PC12 cells exposed to agents interfering with different aspects of the posttranslational protein processing within the ER, thereby activating the ER stress-induced unfolded protein response (UPR). All agents increased the SERCA2b mRNA level 3-4-fold, in parallel with increasing mRNA levels for the ER stress marker proteins BiP/GRP78 and CHOP/GADD153. In contrast, SERCA3 mRNA levels did not change. SERCA2b mRNA stability was not changed, indicating that the mechanism of its up-regulation was transcriptional, in accordance with the presence of ER stress response elements in the promoter region of the SERCA2 gene. SERCA2b was also increased at the protein level upon ER stress treatments. Induction of ER stress by tunicamycin, dithiothreitol, or l-azetidine 2-carboxylic acid did not result in depletion of ER calcium, showing that such depletion was not necessary for up-regulation of SERCA2b expression or UPR activation in general. We conclude that the SERCA2b expression can be controlled by the UPR pathway independently of ER Ca(2+) depletion.
Collapse
Affiliation(s)
- C Caspersen
- Department of Medical Physiology and the Biotechnology Center for Cellular Communication, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
166
|
Ng DT, Spear ED, Walter P. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 2000; 150:77-88. [PMID: 10893258 PMCID: PMC2185565 DOI: 10.1083/jcb.150.1.77] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2000] [Accepted: 05/31/2000] [Indexed: 11/22/2022] Open
Abstract
The unfolded protein response (UPR) is an intracellular signaling pathway that relays signals from the lumen of the ER to activate target genes in the nucleus. We devised a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutants that are dependent on activation of the pathway for viability. Using this strategy, we isolated mutants affecting various aspects of ER function, including protein translocation, folding, glycosylation, glycosylphosphatidylinositol modification, and ER-associated protein degradation (ERAD). Extending results gleaned from the genetic studies, we demonstrate that the UPR regulates trafficking of proteins at the translocon to balance the needs of biosynthesis and ERAD. The approach also revealed connections of the UPR to other regulatory pathways. In particular, we identified SON1/RPN4, a recently described transcriptional regulator for genes encoding subunits of the proteasome. Our genetic strategy, therefore, offers a powerful means to provide insight into the physiology of the UPR and to identify novel genes with roles in many aspects of secretory and membrane protein biogenesis.
Collapse
Affiliation(s)
- D T Ng
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
167
|
Coscoy L, Ganem D. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci U S A 2000; 97:8051-6. [PMID: 10859362 PMCID: PMC16668 DOI: 10.1073/pnas.140129797] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down-regulation of the cell surface display of class I MHC proteins is an important mechanism of immune evasion by human and animal viruses. Herpesviruses in particular encode a variety of proteins that function to lower MHC I display by several mechanisms. These include binding and retention of MHC I chains in the endoplasmic reticulum, dislocation of class I chains from the ER, inhibition of the peptide transporter (TAP) involved in antigen presentation, and shunting of newly assembled chains to lysosomes. Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a human herpesvirus strongly linked to the development of KS and to certain AIDS-associated lymphoproliferative disorders. Here we show that KSHV encodes two distinctive gene products that function to dramatically reduce cell surface MHC I expression. These viral proteins are localized predominantly to the ER. However, unlike previously described MHC I inhibitors, they do not interfere with the synthesis, translocation, or assembly of class I chains, nor do they retain them in the ER. Rather, they act to enhance endocytosis of MHC I from the cell surface; internalized class I chains are delivered to endolysosomal vesicles, where they undergo degradation. These KSHV proteins define a mechanism of class I down-regulation distinct from the mechanisms of other herpesviruses and are likely to contribute importantly to immune evasion during viral infection.
Collapse
Affiliation(s)
- L Coscoy
- Howard Hughes Medical Institute and Departments of Microbiology and Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
168
|
Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2000; 2:379-84. [PMID: 10878801 DOI: 10.1038/35017001] [Citation(s) in RCA: 365] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ubiquitin conjugation during endoplasmic-reticulum-associated degradation (ERAD) depends on the activity of Ubc7. Here we show that Ubc1 acts as a further ubiquitin-conjugating enzyme in this pathway. Absence of both enzymes results in marked stabilization of an ERAD substrate and induction of the unfolded-protein response (UPR). Furthermore, basic ERAD activity is sufficient to eliminate unfolded proteins under normal conditions. However, when stress is applied, the UPR is required to increase ERAD activity. We thus demonstrate, for the first time, a regulatory loop between ERAD and the UPR, which is essential for normal growth of yeast cells.
Collapse
Affiliation(s)
- R Friedlander
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
169
|
Abstract
In response to elevated levels of HMG-CoA reductase, an integral endoplasmic reticulum (ER) membrane protein, cells assemble novel ER arrays. These membranes provide useful models for exploration of ER structure and function, as well as general features of membrane biogenesis and turnover. Yeast express two functional HMG-CoA reductase isozymes, Hmg1p and Hmg2p, each of which induces morphologically different ER arrays. Hmg1p induces stacks of paired nuclear-associated membranes called karmellae. In contrast, Hmg2p induces peripheral ER membrane arrays and short nuclear-associated membrane stacks. In spite of their ability to induce different cellular responses, both Hmg1p and Hmg2p have similar structures, including a polytopic membrane domain containing eight predicted transmembrane helices. By examining a series of recombinant HMG-CoA reductase proteins, our laboratory previously demonstrated that the last ER-lumenal loop (Loop G) of the Hmg1p membrane domain contains a signal needed for proper karmellae assembly. Our goal was to examine the primary sequence requirements within Loop G that were critical for proper function of this signal. To this end, we randomly mutagenized the Loop G sequence, expressed the mutagenized Hmg1p in yeast, and screened for inability to generate karmellae at wild-type levels. Out of approximately 4000 strains with Loop G mutations, we isolated 57 that were unable to induce wild-type levels of karmellae assembly. Twenty-nine of these mutants contained one or more point mutations in the Loop G sequence, including nine single point mutants, four of which had severe defects in karmellae assembly. Comparison of these mutations to single point mutations that did not affect karmellae assembly did not reveal obvious patterns of sequence requirements. For example, both conservative and non-conservative changes were present in both groups and changes that altered the total charge of the Loop G region were observed in both groups. Our hypothesis is that Loop G serves as a karmellae-inducing signal by mediating protein-protein or protein-lipid interactions and that amino acids revealed by this analysis may be important for maintaining the proper secondary structure needed for these interactions.
Collapse
Affiliation(s)
- D A Profant
- Department of Zoology, Box 351800, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
170
|
Xu W, Manichella D, Jiang H, Vallat JM, Lilien J, Baron P, Scarlato G, Kamholz J, Shy ME. Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J Neurosci Res 2000; 60:714-24. [PMID: 10861783 DOI: 10.1002/1097-4547(20000615)60:6<714::aid-jnr3>3.0.co;2-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
P0, the major peripheral nervous system (PNS) myelin protein, is a member of the immunoglobulin supergene family of membrane proteins and can mediate homotypic adhesion. P0 is an essential structural component of PNS myelin; mice in which P0 expression has been eliminated by homologous recombination (P0-/-) develop a severe dysmyelinating neuropathy with predominantly uncompacted myelin. Although P0 is thought to play a role in myelin compaction by promoting adhesion between adjacent extracellular myelin wraps, as an adhesion molecule it could also have a regulatory function. Consistent with this hypothesis, Schwann cells in adult P0-/- mice display a novel molecular phenotype: PMP22 expression is down-regulated, MAG and PLP expression are up-regulated, and MBP expression is unchanged. As in quaking viable mutant mice (qk(v)), which have uncompacted myelin morphologically similar to that found in P0-/- mice, neither the qKI-6 or qKI-7 proteins are expressed in P0-/- peripheral nerve. In addition to these changes in gene expression in the P0 knockout, PLP/DM-20 accumulates in the endoplasmic reticulum of P0-/- Schwann cells, whereas MAG accumulates in redundant loops of uncompacted myelin, not at nodes of Ranvier or Schmidt-Lantermann incisures. Taken together, these results demonstrate that P0 is involved, either directly or indirectly, in the regulation of both myelin gene expression and myelin morphogenesis.
Collapse
Affiliation(s)
- W Xu
- Department of Neurology and The Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Higashio H, Kimata Y, Kiriyama T, Hirata A, Kohno K. Sfb2p, a yeast protein related to Sec24p, can function as a constituent of COPII coats required for vesicle budding from the endoplasmic reticulum. J Biol Chem 2000; 275:17900-8. [PMID: 10749860 DOI: 10.1074/jbc.m000751200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COPII coat is required for vesicle budding from the endoplasmic reticulum (ER), and consists of two heterodimeric subcomplexes, Sec23p/Sec24p, Sec13p/Sec31p, and a small GTPase, Sar1p. We characterized a yeast mutant, anu1 (abnormal nuclear morphology) exhibiting proliferated ER as well as abnormal nuclear morphology at the restrictive temperature. Based on the finding that ANU1 is identical to SEC24, we confirmed a temperature-sensitive protein transport from the ER to the Golgi in anu1-1/sec24-20 cells. Overexpression of SFB2, a SEC24 homologue with 56% identity, partially suppressed not only the mutant phenotype of sec24-20 cells but also rescued the SEC24-disrupted cells. Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p. In SEC24-disrupted cells rescued by overexpression of SFB2, some cargo proteins were still retained in the ER, while most of the protein transport was restored. Together, these findings strongly suggest that Sfb2p functions as the component of COPII coats in place of Sec24p, and raise the possibility that each member of the SEC24 family of proteins participates directly and/or indirectly in cargo-recognition events with its own cargo specificity at forming ER-derived vesicles.
Collapse
Affiliation(s)
- H Higashio
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
172
|
Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2:326-32. [PMID: 10854322 DOI: 10.1038/35014014] [Citation(s) in RCA: 2156] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PERK and IRE1 are type-I transmembrane protein kinases that reside in the endoplasmic reticulum (ER) and transmit stress signals in response to perturbation of protein folding. Here we show that the lumenal domains of these two proteins are functionally interchangeable in mediating an ER stress response and that, in unstressed cells, both lumenal domains form a stable complex with the ER chaperone BiP. Perturbation of protein folding promotes reversible dissociation of BiP from the lumenal domains of PERK and IRE1. Loss of BiP correlates with the formation of high-molecular-mass complexes of activated PERK or IRE1, and overexpression of BiP attenuates their activation. These findings are consistent with a model in which BiP represses signalling through PERK and IRE1 and protein misfolding relieves this repression by effecting the release of BiP from the PERK and IRE1 lumenal domains.
Collapse
Affiliation(s)
- A Bertolotti
- Skirball Institute of Biomolecular Medicine, Departments of Medicine and Cell Biology and the Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
173
|
Häcki J, Egger L, Monney L, Conus S, Rossé T, Fellay I, Borner C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 2000; 19:2286-95. [PMID: 10822379 DOI: 10.1038/sj.onc.1203592] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis involves mitochondrial steps such as the release of the apoptogenic factor cytochrome c which are effectively blocked by Bcl-2. Although Bcl-2 may have a direct action on the mitochondrial membrane, it also resides and functions on the endoplasmic reticulum (ER), and there is increasing evidence for a role of the ER in apoptosis regulation as well. Here we uncover a hitherto unrecognized, apoptotic crosstalk between the ER and mitochondria that is controlled by Bcl-2. After triggering massive ER dilation due to an inhibition of secretion, the drug brefeldin A (BFA) induces the release of cytochrome c from mitochondria in a caspase-8- and Bid-independent manner. This is followed by caspase-3 activation and DNA/nuclear fragmentation. Surprisingly, cytochrome c release by BFA is not only blocked by wild-type Bcl-2 but also by a Bcl-2 variant that is exclusively targeted to the ER (Bcl-2/cb5). Similar findings were obtained with tunicamycin, an agent interfering with N-linked glycosylations in the secretory system. Thus, apoptotic agents perturbing ER functions induce a novel crosstalk between the ER and mitochondria that can be interrupted by ER-based Bcl-2.
Collapse
Affiliation(s)
- J Häcki
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
174
|
Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101:249-58. [PMID: 10847680 DOI: 10.1016/s0092-8674(00)80835-1] [Citation(s) in RCA: 1550] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) regulates gene expression in response to stress in the endoplasmic reticulum (ER). We determined the transcriptional scope of the UPR using DNA microarrays. Rather than regulating only ER-resident chaperones and phospholipid biosynthesis, as anticipated from earlier work, the UPR affects multiple ER and secretory pathway functions. Studies of UPR targets engaged in ER-associated protein degradation (ERAD) reveal an intimate coordination between these responses: efficient ERAD requires an intact UPR, and UPR induction increases ERAD capacity. Conversely, loss of ERAD leads to constitutive UPR induction. Finally, simultaneous loss of ERAD and the UPR greatly decreases cell viability. Thus, the UPR and ERAD are dynamic responses required for the coordinated disposal of misfolded proteins even in the absence of acute stress.
Collapse
Affiliation(s)
- K J Travers
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
175
|
Springer S, Chen E, Duden R, Marzioch M, Rowley A, Hamamoto S, Merchant S, Schekman R. The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2000; 97:4034-9. [PMID: 10737764 PMCID: PMC18138 DOI: 10.1073/pnas.070044097] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the factors involved in the sorting of cargo proteins into COPII endoplasmic reticulum (ER) to Golgi apparatus transport vesicles, we have created a strain of S. cerevisiae (p24Delta8) that lacks all eight members of the p24 family of transmembrane proteins (Emp24p, Erv25p, and Erp1p to Erp6p). The p24 proteins have been implicated in COPI and COPII vesicle formation, cargo protein sorting, and regulation of vesicular transport in eukaryotic cells. We find that p24Delta8 cells grow identically to wild type and show delays of invertase and Gas1p ER-to-Golgi transport identical to those seen in a single Deltaemp24 deletion strain. Thus, p24 proteins do not have an essential function in the secretory pathway. Instead, they may serve as quality control factors to restrict the entry of proteins into COPII vesicles.
Collapse
Affiliation(s)
- S Springer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, 401 Barker Hall #3202, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Tartakoff AM, Lichtenstein M, Nanduri J, Tsao HM. Review: dynamic stability of the interphase nucleus in health and disease. J Struct Biol 2000; 129:144-58. [PMID: 10806065 DOI: 10.1006/jsbi.2000.4225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ongoing export of newly synthesized RNAs, as well as control of transcriptional activity, involves dynamic nucleocytoplasmic transport of proteins. Some proteins that shuttle reside primarily in the nucleus while others are concentrated in the cytoplasm. Moreover, some proteins shuttle continuously, while others shuttle only once. A third group is stimulated to relocate either into or out of the nucleus as a result of interruption of shuttling. In addition to these protein-specific events, several physiological stimuli have global effects on nucleocytoplasmic transport. In related events, selected proteins move between distinct sites in the nucleoplasm, others enter and leave the nucleolus, and still others transit between the nuclear envelope and cytoplasmic membranes. These multiple dynamic distributions provide numerous opportunities for precise communication between spatially distant sites in the cell.
Collapse
Affiliation(s)
- A M Tartakoff
- Pathology Department, Cell Biology Program, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, Ohio, 44106, USA
| | | | | | | |
Collapse
|
177
|
Casagrande R, Stern P, Diehn M, Shamu C, Osario M, Zúñiga M, Brown PO, Ploegh H. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell 2000; 5:729-35. [PMID: 10882108 DOI: 10.1016/s1097-2765(00)80251-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To dissect the requirements of membrane protein degradation from the ER, we expressed the mouse major histocompatibility complex class I heavy chain H-2K(b) in yeast. Like other proteins degraded from the ER, unassembled H-2K(b) heavy chains are not transported to the Golgi but are degraded in a proteasome-dependent manner. The overexpression of H-2K(b) heavy chains induces the unfolded protein response (UPR). In yeast mutants unable to mount the UPR, H-2K(b) heavy chains are greatly stabilized. This defect in degradation is suppressed by the expression of the active form of Hac1p, the transcription factor that upregulates UPR-induced genes. These results indicate that induction of the UPR is required for the degradation of protein substrates from the ER.
Collapse
Affiliation(s)
- R Casagrande
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Brown MS, Ye J, Rawson RB, Goldstein JL. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000; 100:391-8. [PMID: 10693756 DOI: 10.1016/s0092-8674(00)80675-3] [Citation(s) in RCA: 1070] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- M S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75390-9046, USA.
| | | | | | | |
Collapse
|
179
|
Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Toxicol Appl Pharmacol 2000; 162:207-17. [PMID: 10652249 DOI: 10.1006/taap.1999.8842] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which trichothecene mycotoxins cause immunological effects in leukocytes such as cytokine up-regulation, aberrant IgA production, or apoptotic cell death are not fully understood. In the present study, mRNA differential display analysis was used to evaluate changes in gene expression induced by the trichothecene vomitoxin (VT or deoxynivalenol) in a T-cell model, the murine EL-4 thymoma, that was stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (ION). Ten differentially expressed fragments of cDNA were isolated and sequenced and three of these were identified as the known genes GRP78/BiP, P58(IPK), and RAD17. Most notably, expression of GRP78/BiP (a 78-kDa glucose-regulated protein), a stress-response gene induced by agents or conditions that adversely affect endoplasmic reticulum (ER) function, was found to decrease in VT-exposed cells. Competitive RT-PCR analysis revealed that 250 ng/ml VT decreased GRP78/BiP mRNA expression in both unstimulated and PMA/ION-stimulated EL-4 cells at 6 and 24 h after VT treatment. Western blotting confirmed that VT (50 to 1000 ng/ml) also significantly diminished GRP/BiP protein levels in a dose-response manner in PMA/ION-stimulated cells. GRP78/BiP has been shown to play a role in regulation of protein folding and secretion, and to protect cells from apoptosis. When PMA/ION-stimulated cells were incubated with 50 to 1000 ng/ml VT for 24 h, 200-bp DNA laddering, a hallmark of apoptosis, increased in a dose-dependent manner. In addition to GRP78, mRNA expression of the cochaperone P58(IPK), which is the 58-kDa cellular inhibitor of the double-stranded RNA-regulated protein kinase (PKR), was also shown to be suppressed by VT-treatment. GRP78 and P58(IPK) are critical for maintenance of cell homeostasis and prevention of apoptosis. The down-regulation of these molecular chaperones by VT represent a novel observation and has the potential to impact immune function at multiple levels.
Collapse
Affiliation(s)
- G H Yang
- National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | | |
Collapse
|
180
|
Kamholz J, Menichella D, Jani A, Garbern J, Lewis RA, Krajewski KM, Lilien J, Scherer SS, Shy ME. Charcot-Marie-Tooth disease type 1: molecular pathogenesis to gene therapy. Brain 2000; 123 ( Pt 2):222-33. [PMID: 10648431 DOI: 10.1093/brain/123.2.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1) is caused by mutations in the peripheral myelin protein, 22 kDa (PMP22) gene, protein zero (P0) gene, early growth response gene 2 (EGR-2) and connexin-32 gene, which are expressed in Schwann cells, the myelinating cells of the peripheral nervous system. Although the clinical and pathological phenotypes of the various forms of CMT1 are similar, including distal muscle weakness and sensory loss, their molecular pathogenesis is likely to be quite distinct. In addition, while demyelination is the hallmark of CMT1, the clinical signs and symptoms of the disease are probably produced by axonal degeneration, not demyelination itself. In this review we discuss the molecular pathogenesis of CMT1, as well as approaches to an effective gene therapy for this disease.
Collapse
Affiliation(s)
- J Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Skehel PA, Fabian-Fine R, Kandel ER. Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proc Natl Acad Sci U S A 2000; 97:1101-6. [PMID: 10655491 PMCID: PMC15535 DOI: 10.1073/pnas.97.3.1101] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
VAMP/synaptobrevin is a synaptic vesicle protein that is essential for neurotransmitter release. Intracellular injection of antisera against the Aplysia californica VAMP/synaptobrevin-binding protein ApVAP33 inhibited evoked excitatory postsynaptic potentials (EPSPs) in cultured cells, suggesting that this association may regulate the function of VAMP/synaptobrevin. We have identified and characterized a mouse homologue of ApVAP33, mVAP33. The overall domain structure of the proteins is conserved, and they have similar biochemical properties. mVAP33 mRNA is detectable in all mouse tissues examined, in contrast to the more restricted expression seen in A. californica. We analyzed the cellular distribution of mVAP33 protein in brain slices and cultured cortical cells by light and electron microscopy. Although present at higher levels in neurons, immunoreactivity was detected throughout both neurons and glia in a reticular pattern similar to that of endoplasmic reticulum-resident proteins. mVAP33 does not colocalize with VAMP/synaptobrevin at synaptic structures, but expression overlaps with lower levels of VAMP/synaptobrevin in the soma. Ultrastructural analysis revealed mVAP33 associated with microtubules and intracellular vesicles of heterogeneous size. In primary neuronal cultures, large aggregates of mVAP33 are also detected in short filamentous structures, which are occasionally associated with intracellular membranes. There is no evidence for accumulation of mVAP33 on synaptic vesicles or at the plasma membrane. These data suggest that mVAP33 is an endoplasmic-reticulum-resident protein that associates with components of the cytoskeleton. Any functional interaction between mVAP33 and VAMP/synaptobrevin, therefore, most likely involves the delivery of components to synaptic terminals rather than a direct participation in synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- P A Skehel
- Division of Neurophysiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom.
| | | | | |
Collapse
|
182
|
Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem 2000; 275:2581-8. [PMID: 10644717 DOI: 10.1074/jbc.275.4.2581] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the isolation and characterization of a cDNA encoding the novel mammalian serine protease Omi. Omi protein consists of 458 amino acids and has homology to bacterial HtrA endoprotease, which acts as a chaperone at low temperatures and as a proteolytic enzyme that removes denatured or damaged substrates at elevated temperatures. The carboxyl terminus of Omi has extensive homology to a mammalian protein called L56 (human HtrA), but unlike L56, which is secreted, Omi is localized in the endoplasmic reticulum. Omi has several novel putative protein-protein interaction motifs, as well as a PDZ domain and a Src homology 3-binding domain. Omi mRNA is expressed ubiquitously, and the gene is localized on human chromosome 2p12. Omi interacts with Mxi2, an alternatively spliced form of the p38 stress-activated kinase. Omi protein, when made in a heterologous system, shows proteolytic activity against a nonspecific substrate beta-casein. The proteolytic activity of Omi is markedly up-regulated in the mouse kidney following ischemia/reperfusion.
Collapse
Affiliation(s)
- L Faccio
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
183
|
Suh JK, Robertus JD. Yeast flavin-containing monooxygenase is induced by the unfolded protein response. Proc Natl Acad Sci U S A 2000; 97:121-6. [PMID: 10618381 PMCID: PMC26626 DOI: 10.1073/pnas.97.1.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1999] [Indexed: 11/18/2022] Open
Abstract
Flavin-containing monooxygenase from yeast (yFMO) carries out the O(2)- and NADPH-dependent oxidation of biological thiols, including oxidizing glutathione to glutathione disulfide. FMO provides a large fraction of the oxidizing necessary for proper folding of disulfide bond-containing proteins; deletion of the enzyme reduces proper folding of endogenous carboxypeptidase Y by about 40%. The enzyme is not essential to cell viability because other enzymes can generate a significant fraction of the oxidizing equivalents required by the cell. However, yFMO is vital to the yeast response to reductive stress. FMO1 deletion mutants grow poorly under reductive stress, and carboxypeptidase Y activity is less than 10% of that in a stressed wild type. The FMO1 gene appears to be under control of an unfolded protein response element and is inducible by factors, such as reductive stress, that elicit the unfolded protein response. Reductive stress can increase yFMO activity at least 6-fold. This increased activity allows the cell to process endogenous disulfide bond-containing proteins and also to allow correct folding of disulfide-bonded proteins expressed from multicopy plasmids. The unfolded protein response is mediated by the Hac1p transcription factor that mediates virtually all of the induction of yFMO triggered by exogenous reducing agents.
Collapse
Affiliation(s)
- J K Suh
- Institute of Cellular Biology, Department of Chemistry, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
184
|
Abstract
Using DNA microarrays, 381 genes have been found to be induced in response to unfolded proteins. The identity of the previously characterized 208 of these, and further experiments, have revealed new details on the scope of the unfolded protein response and its connection to the degradation of proteins at the endoplasmic reticulum.
Collapse
Affiliation(s)
- A A McCracken
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
185
|
Niwa M, Sidrauski C, Kaufman RJ, Walter P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 1999; 99:691-702. [PMID: 10619423 DOI: 10.1016/s0092-8674(00)81667-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unfolded protein response (UPR) mediates signaling from the endoplasmic reticulum to the nucleus. In yeast, a key regulatory step in the UPR is the spliceosome-independent splicing of HAC1 mRNA encoding a UPR-specific transcription factor, which is initiated by the transmembrane kinase/endoribonuclease Ire1. We show that yeast HAC1 mRNA is correctly spliced in mammalian cells upon UPR induction and that mammalian Ire1 can precisely cleave both splice junctions. Surprisingly, UPR induction leads to proteolytic cleavage of Ire1, releasing fragments containing the kinase and nuclease domains that accumulate in the nucleus. Nuclear localization and UPR induction are reduced in presenilin-1 knockout cells. These results suggest that the salient features of the UPR are conserved among eukaryotic cells and that presenilin-1 controls Ire1 proteolysis in mammalian cells.
Collapse
Affiliation(s)
- M Niwa
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of California, School of Medicine, San Francisco 94143-0448, USA
| | | | | | | |
Collapse
|
186
|
Abstract
Sec61p comprises the endoplasmic reticulum (ER) channel through which nascent polypeptides are imported and from which malfolded proteins have been suggested to be exported, or dislocated, back to the cytoplasm. We have devised a genetic screen for dislocation-specific mutant alleles of SEC61 from S. cerevisiae by employing the unfolded protein response to report on the accumulation of misfolded proteins in the ER. Three of the isolated sec61 alleles are fully proficient in protein translocation into the ER, but defective in the elimination of a misfolded ER luminal substrate and a short-lived ER membrane-spanning model protein, which are otherwise rapidly degraded by cytoplasmic proteolysis in wild-type cells. Our results point to the fourth luminal loop and third transmembrane domain of Sec61p that markedly influence dislocation. We suggest that distinct features of the Sec61-translocon direct the two-way translocation processes.
Collapse
Affiliation(s)
- M Zhou
- Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | |
Collapse
|
187
|
de Virgilio M, Kitzmüller C, Schwaiger E, Klein M, Kreibich G, Ivessa NE. Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response. Mol Biol Cell 1999; 10:4059-73. [PMID: 10588643 PMCID: PMC25743 DOI: 10.1091/mbc.10.12.4059] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We are studying endoplasmic reticulum-associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI(332), containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI(332) was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of approximately 45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI(332) in which the single used N-glycosylation consensus site had been removed (RI(332)-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI(332) degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI(332) to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI(332). After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI(332) and RI(332)-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI(332) and RI(332)-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI(332) was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.
Collapse
Affiliation(s)
- M de Virgilio
- Department of Molecular Genetics, University and Biocenter Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
188
|
Nanduri J, Mitra S, Andrei C, Liu Y, Yu Y, Hitomi M, Tartakoff AM. An unexpected link between the secretory path and the organization of the nucleus. J Biol Chem 1999; 274:33785-9. [PMID: 10559272 DOI: 10.1074/jbc.274.47.33785] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast sec mutations define the machinery of vesicular traffic. Surprisingly, many of these mutations also inhibit ribosome biogenesis by reducing transcription of rRNA and genes encoding ribosomal proteins. We observe that these mutants reversibly inhibit protein import into the nucleus, with import cargo accumulating at the nucleoplasmic face of nuclear pore complexes, as when Ran-GTP cannot bind importins. They also rapidly and reversibly relocate multiple nucleolar and nucleoplasmic proteins to the cytoplasm. The import block and relocation are antagonized by overexpression of yeast Ran, Hog1p kinase, or Ssa/Hsp70 proteins or by inhibition of protein synthesis. These nucleocytoplasmic signaling events document an extraordinary plasticity of nuclear organization.
Collapse
Affiliation(s)
- J Nanduri
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Doerrler WT, Lehrman MA. Regulation of the dolichol pathway in human fibroblasts by the endoplasmic reticulum unfolded protein response. Proc Natl Acad Sci U S A 1999; 96:13050-5. [PMID: 10557271 PMCID: PMC23898 DOI: 10.1073/pnas.96.23.13050] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells triggers the unfolded protein response (UPR), which activates transcription of several genes encoding ER chaperones and folding enzymes. This study reports that conversion of dolichol-linked Man(2-5)GlcNAc(2) intermediates into mature Glc(3)Man(9)GlcNAc(2) oligosaccharides in primary human adult dermal fibroblasts is also stimulated by the UPR. This stimulation was not evident in several immortal cell lines and did not require a cytoplasmic stress response. Inhibition of dolichol-linked Glc(3)Man(9)GlcNAc(2) synthesis by glucose deprivation could be counteracted by the UPR, improving the transfer of Glc(3)Man(9)GlcNAc(2) to asparagine residues on nascent polypeptides. Glycosidic processing of asparagine-linked Glc(3)Man(9)GlcNAc(2) in the ER leads to the production of monoglucosylated oligosaccharides that promote interaction with the lectin chaperones calreticulin and calnexin. Thus, control of the dolichol-linked Glc(3)Man(9)GlcNAc(2) supply gives the UPR the potential to maintain efficient protein folding in the ER without new synthesis of chaperones or folding enzymes.
Collapse
Affiliation(s)
- W T Doerrler
- Cell Regulation Graduate Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA
| | | |
Collapse
|
190
|
Hnatiuk S, Barry M, Zeng W, Liu L, Lucas A, Percy D, McFadden G. Role of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and viral pathogenesis. Virology 1999; 263:290-306. [PMID: 10544103 DOI: 10.1006/viro.1999.9946] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the significance of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and role in viral virulence. To accomplish this, a recombinant myxoma virus was created in which the C-terminal RDEL motif of M-T4 was deleted and a selectable marker (Ecogpt) was inserted immediately downstream. We hypothesized that removal of the RDEL motif from M-T4 would alter the subcellular localization of the protein and provide insight into its antiapoptotic role. Surprisingly, removal of the RDEL motif from M-T4 did not affect localization of the protein within the endoplasmic reticulum (ER), but it did reduce the stability of the mutant protein. Pulse-chase immunoprecipitation and endoglycosidase H analysis coupled with confocal fluorescent light microscopy demonstrated that the M-T4 RDEL(-) mutant protein is retained in the ER like wildtype M-T4 and suggests that the C-terminal RDEL motif is not the sole determinant for M-T4 localization to the ER. Infection of cultured rabbit lymphocytes with the M-T4 RDEL(-) mutant virus results in an intermediate apoptosis phenotype compared with the wildtype and M-T4 knockout mutant viruses. A novel myxomatosis phenotype was observed in European rabbits when infected with the recombinant M-T4 RDEL(-) mutant virus. Rabbits infected with the M-T4 RDEL(-) virus on day 9 postinfection exhibited an exacerbated edematous and inflammatory response at secondary sites of infections, particularly the ears. Our results indicate that the C-terminal RDEL motif may not be solely responsible for retention of M-T4 to the ER and that M-T4 may have a dual function in protecting infected lymphocytes from apoptosis and in modulating the inflammatory response to virus infection.
Collapse
Affiliation(s)
- S Hnatiuk
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | | | | | | | | | | | | |
Collapse
|
191
|
Davis DP, Khurana R, Meredith S, Stevens FJ, Argon Y. Mapping the Major Interaction Between Binding Protein and Ig Light Chains to Sites Within the Variable Domain. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Newly synthesized Ig chains are known to interact in vivo with the binding protein (BiP), a major peptide-binding chaperone in the endoplasmic reticulum. The predominant interactions between the light chain and BiP are observed early in the folding pathway, when the light chain is either completely reduced, or has only one disulfide bond. In this study, we describe the in vitro reconstitution of BiP binding to the variable domain of light chains (VL). Binding of deliberately unfolded VL was dramatically more avid than that of folded VL, mimicking the interaction in vivo. Furthermore, VL binding was inhibited by addition of ATP, was competed with excess unlabeled VL, and was demonstrated with several different VL proteins. Using this assay, peptides derived from the VL sequence were tested experimentally for their ability to bind BiP. Four peptides from both β sheets of VL were shown to bind BiP specifically, two with significantly higher affinity. As few as these two peptide sites, one from each β sheet of VL, are sufficient to explain the association of BiP with the entire light chain. These results suggest how BiP directs the folding of Ig in vivo and how it may be used in shaping the B cell repertoire.
Collapse
Affiliation(s)
- David P. Davis
- *Department of Pathology and
- 6S. Aviel et al., submitted for publication
- †Committee on Immunology, University of Chicago, Chicago, IL 60637; and
- 6S. Aviel et al., submitted for publication
| | - Ritu Khurana
- *Department of Pathology and
- 6S. Aviel et al., submitted for publication
- †Committee on Immunology, University of Chicago, Chicago, IL 60637; and
- 6S. Aviel et al., submitted for publication
| | - Stephen Meredith
- *Department of Pathology and
- 6S. Aviel et al., submitted for publication
| | - Fred J. Stevens
- ‡Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, IL 60439
- 6S. Aviel et al., submitted for publication
| | - Yair Argon
- *Department of Pathology and
- 6S. Aviel et al., submitted for publication
- †Committee on Immunology, University of Chicago, Chicago, IL 60637; and
- 6S. Aviel et al., submitted for publication
| |
Collapse
|
192
|
Aridor M, Balch WE. Integration of endoplasmic reticulum signaling in health and disease. Nat Med 1999; 5:745-51. [PMID: 10395318 DOI: 10.1038/10466] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Aridor
- Department of Cell and Molecular biology, La Jolla, California 92037, USA
| | | |
Collapse
|
193
|
Gonzalez TN, Sidrauski C, Dörfler S, Walter P. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 1999; 18:3119-32. [PMID: 10357823 PMCID: PMC1171393 DOI: 10.1093/emboj/18.11.3119] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The unfolded protein response is an intracellular signaling pathway that, in response to accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER), upregulates transcription of ER resident chaperones. A key step in this pathway is the non-conventional, regulated splicing of the mRNA encoding the positive transcriptional regulator Hac1p. In the yeast Saccharomyces cerevisiae, the bifunctional transmembrane kinase/endoribonuclease Ire1p cleaves HAC1 mRNA at both splice junctions and tRNA ligase joins the two exons together. We have reconstituted HAC1 mRNA splicing in an efficient in vitro reaction and show that, in many ways, the mechanism of HAC1 mRNA splicing resembles that of pre-tRNA splicing. In particular, Ire1p endonucleolytic cleavage leaves 2', 3'-cyclic phosphates, the excised exons remain associated by base pairing, and exon ligation by tRNA ligase follows the same chemical steps as for pre-tRNA splicing. To date, this mechanism of RNA processing is unprecedented for a messenger RNA. In contrast to the striking similarities to tRNA splicing, the structural features of the splice junctions recognized by Ire1p differ from those recognized by tRNA endonuclease. We show that small stem-loop structures predicted to form at both splice junctions of HAC1 mRNA are required and sufficient for Ire1p cleavage.
Collapse
Affiliation(s)
- T N Gonzalez
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-0448, USA
| | | | | | | |
Collapse
|