151
|
Nehvi IB, Quadir N, Khubaib M, Sheikh JA, Shariq M, Mohareer K, Banerjee S, Rahman SA, Ehtesham NZ, Hasnain SE. ArgD of Mycobacterium tuberculosis is a functional N-acetylornithine aminotransferase with moonlighting function as an effective immune modulator. Int J Med Microbiol 2022; 312:151544. [DOI: 10.1016/j.ijmm.2021.151544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
|
152
|
Witkowski JM. Immune system aging and the aging-related diseases in the COVIID-19 era. Immunol Lett 2022; 243:19-27. [PMID: 35108570 PMCID: PMC8801734 DOI: 10.1016/j.imlet.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022]
Abstract
The interest in the process of aging, and specifically in how aging affects the working of our immune system, has recently enormously grown among both specialists (immunologists and gerontologists) and representatives of other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, known to affect the elderly more than younger people. In this paper current knowledge about mechanisms and complex facets of human immune system aging is presented, stemming from the knowledge about the working of various parts of the immune system, and leading to understanding of immunological mechanisms of chronic, inflammatory, aging-related diseases and of COVID-19.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
153
|
Solhaug MB, Schreurs O, Schenck K, Blix IJ, Baekkevold ES. Origin of langerin (CD207)‐expressing antigen presenting cells in the normal oral mucosa and in oral lichen planus lesions. Eur J Oral Sci 2021; 130:e12835. [DOI: 10.1111/eos.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | - Olav Schreurs
- Institute of Oral Biology University of Oslo Oslo Norway
| | - Karl Schenck
- Institute of Oral Biology University of Oslo Oslo Norway
| | - Inger Johanne Blix
- Institute of Oral Biology University of Oslo Oslo Norway
- Department of Periodontology Dental Faculty University of Oslo Oslo Norway
| | - Espen S. Baekkevold
- Institute of Oral Biology University of Oslo Oslo Norway
- Department of Pathology Oslo University Hospital and University of Oslo Oslo Norway
| |
Collapse
|
154
|
Dong F, Song X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Immunological characteristics of dendritic cells marker CD83 in flounder (Paralichthys olivaceus). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100030. [DOI: 10.1016/j.fsirep.2021.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
|
155
|
Reilly NA, Lutgens E, Kuiper J, Heijmans BT, Jukema JW. Effects of fatty acids on T cell function: role in atherosclerosis. Nat Rev Cardiol 2021; 18:824-837. [PMID: 34253911 DOI: 10.1038/s41569-021-00582-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
T cells are among the most common cell types present in atherosclerotic plaques and are increasingly being recognized as a central mediator in atherosclerosis development and progression. At the same time, triglycerides and fatty acids have re-emerged as crucial risk factors for atherosclerosis. Triglycerides and fatty acids are important components of the milieu to which the T cell is exposed from the circulation to the plaque, and increasing evidence shows that fatty acids influence T cell function. In this Review, we discuss the effects of fatty acids on four components of the T cell response - metabolism, activation, proliferation and polarization - and the influence of these changes on the pathogenesis of atherosclerosis. We also discuss how quiescent T cells can undergo a type of metabolic reprogramming induced by exposure to fatty acids in the circulation that influences the subsequent functions of T cells after activation, such as in atherosclerotic plaques.
Collapse
Affiliation(s)
- Nathalie A Reilly
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
- Department of Cardiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, Netherlands.
- Netherlands Heart Institute, Utrecht, Netherlands.
| |
Collapse
|
156
|
Losada Méndez J, Palomares F, Gómez F, Ramírez-López P, Ramos-Soriano J, Torres MJ, Mayorga C, Rojo J. Immunomodulatory Response of Toll-like Receptor Ligand-Peptide Conjugates in Food Allergy. ACS Chem Biol 2021; 16:2651-2664. [PMID: 34761908 PMCID: PMC8609526 DOI: 10.1021/acschembio.1c00765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Covalent conjugation
of allergens to toll-like receptor (TLR) agonists
appears to be a powerful strategy for the development of safety compounds
for allergen-specific immunomodulatory response toward tolerance in
allergy. In this work, we have synthesized two family of ligands,
an 8-oxoadenine derivative as a ligand for TLR7 and a pyrimido[5,4-b]indole as a ligand for TLR4, both conjugated with a T-cell
peptide of Pru p 3 allergen, the lipid transfer protein (LTP) responsible
for LTP-dependent food allergy. These conjugates interact with dendritic
cells, inducing their specific maturation, T-cell proliferation, and
cytokine production in peach allergic patients. Moreover, they increased
the Treg-cell frequencies in these patients and could induce the IL-10
production. These outcomes were remarkable in the case of the TLR7
ligand conjugated with Pru p 3, opening the door for the potential
application of these allergen–adjuvant systems in food allergy
immunotherapy.
Collapse
Affiliation(s)
- Jorge Losada Méndez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Francisca Palomares
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, 29009 Malaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Pedro Ramírez-López
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| | - Maria Jose Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, 29590 Málaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, 29009 Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, 29009 Malaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, 29590 Málaga, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC─Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
157
|
Uetz-von Allmen E, Samson GPB, Purvanov V, Maeda T, Legler DF. CAL-1 as Cellular Model System to Study CCR7-Guided Human Dendritic Cell Migration. Front Immunol 2021; 12:702453. [PMID: 34603281 PMCID: PMC8482423 DOI: 10.3389/fimmu.2021.702453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.
Collapse
Affiliation(s)
- Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Takahiro Maeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
158
|
The PD1 inhibitory pathway and mature dendritic cells contribute to abacavir hypersensitivity in human leukocyte antigen transgenic PD1 knockout mice. Toxicology 2021; 463:152971. [PMID: 34606953 DOI: 10.1016/j.tox.2021.152971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
Based on recent genome-wide association studies, abacavir-induced hypersensitivity is highly associated with human leukocyte antigen (HLA)-B*57:01 allele. However, the underlying mechanism of this occurrence is unclear. To investigate the underlying mechanism, we developed HLA-B*57:01 transgenic mice and found that application of abacavir could cause CD8 T cell activation with elevation in PD1 expression; however, severe skin hypersensitivity was not observed. To eliminate the immunosuppressive effect of PD1, HLA-B*57:01 transgenic/PD1 knockout (01Tg/PD1) mice were generated by mating HLA-B*57:01 transgenic mice and PD1 knockout mice. Thereafter, 01Tg/PD1 mice were treated with abacavir. Similar to the above results, severe skin hypersensitivity was not observed. Therefore, we treated 01Tg/PD1 mice with an anti-CD4 antibody to deplete CD4 T cells, followed by abacavir topically and orally. Severe abacavir-induced skin hypersensitivity was observed in 01Tg/PD1 mice after depletion of CD4 T cells, in addition to significant CD8 T cell activation and dendritic cell maturation. Taken together, we succeeded in reproducing severe skin hypersensitivity in a mouse model. And we found that through the combined depletion of PD1 and CD4 T cells, CD8 T cells could be activated and could proceed to clonal proliferation, which is promoted by mature dendritic cells, thereby eventually inducing severe skin hypersensitivity.
Collapse
|
159
|
Acevedo OA, Berrios RV, Rodríguez-Guilarte L, Lillo-Dapremont B, Kalergis AM. Molecular and Cellular Mechanisms Modulating Trained Immunity by Various Cell Types in Response to Pathogen Encounter. Front Immunol 2021; 12:745332. [PMID: 34671359 PMCID: PMC8521023 DOI: 10.3389/fimmu.2021.745332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The induction of trained immunity represents an emerging concept defined as the ability of innate immune cells to acquire a memory phenotype, which is a typical hallmark of the adaptive response. Key points modulated during the establishment of trained immunity include epigenetic, metabolic and functional changes in different innate-immune and non-immune cells. Regarding to epigenetic changes, it has been described that long non-coding RNAs (LncRNAs) act as molecular scaffolds to allow the assembly of chromatin-remodeling complexes that catalyze epigenetic changes on chromatin. On the other hand, relevant metabolic changes that occur during this process include increased glycolytic rate and the accumulation of metabolites from the tricarboxylic acid (TCA) cycle, which subsequently regulate the activity of histone-modifying enzymes that ultimately drive epigenetic changes. Functional consequences of established trained immunity include enhanced cytokine production, increased antigen presentation and augmented antimicrobial responses. In this article, we will discuss the current knowledge regarding the ability of different cell subsets to acquire a trained immune phenotype and the molecular mechanisms involved in triggering such a response. This knowledge will be helpful for the development of broad-spectrum therapies against infectious diseases based on the modulation of epigenetic and metabolic cues regulating the development of trained immunity.
Collapse
Affiliation(s)
- Orlando A. Acevedo
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berrios
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bastián Lillo-Dapremont
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
160
|
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, Zhu X, Leong KW, Liu J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. NANO TODAY 2021; 40:101280. [PMID: 34512795 PMCID: PMC8418322 DOI: 10.1016/j.nantod.2021.101280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
New vaccine technologies are urgently needed to produce safe and effective vaccines in a more timely manner to prevent future infectious disease pandemics. Here, we describe erythrocyte-mediated systemic antiviral immunization, a versatile vaccination strategy that boosts antiviral immune responses by using erythrocytes decorated with virus-mimetic nanoparticles carrying a viral antigen and a Toll-like receptor (TLR) agonist. As a proof of concept, polydopamine nanoparticles were synthesized via a simple in situ polymerization in which the nanoparticles were conjugated with the SARS-CoV-2 spike protein S1 subunit and the TLR7/8 agonist R848. The resulting SARS-CoV-2 virus-mimetic nanoparticles were attached to erythrocytes via catechol groups on the nanoparticle. Erythrocytes naturally home to the spleen and interact with the immune system. Injection of the nanoparticle-decorated erythrocytes into mice resulted in greater maturation and activation of antigen-presenting cells, humoral and cellular immune responses in the spleen, production of S1-specific immunoglobulin G (IgG) antibodies, and systemic antiviral T cell responses than a control group treated with the nanoparticles alone, with no significant negative side effects. These results show that erythrocyte-mediated systemic antiviral immunization using viral antigen- and TLR agonist-presenting polydopamine nanoparticles-a generalizable method applicable to many viral infections-is effective new approach to developing vaccines against severe infectious diseases.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangjie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
161
|
Immunostimulatory Potential of Extracellular Vesicles Isolated from an Edible Plant, Petasites japonicus, via the Induction of Murine Dendritic Cell Maturation. Int J Mol Sci 2021; 22:ijms221910634. [PMID: 34638974 PMCID: PMC8508627 DOI: 10.3390/ijms221910634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have recently been isolated from different plants. Plant-derived EVs have been proposed as potent therapeutics and drug-delivery nanoplatforms for delivering biomolecules, including proteins, RNAs, DNAs, and lipids. Herein, Petasites japonicus-derived EVs (PJ-EVs) were isolated through a series of centrifugation steps and characterized using dynamic light scattering and transmission electron microscopy. Immunomodulatory effects of PJ-EVs were assessed using dendritic cells (DCs). PJ-EVs exhibited a spherical morphology with an average size of 122.6 nm. They induced the maturation of DCs via an increase in the expression of surface molecules (CD80, CD86, MHC-I, and MHC-II), production of Th1-polarizing cytokines (TNF-α and IL-12p70), and antigen-presenting ability; however, they reduced the antigen-uptake ability. Furthermore, maturation of DCs induced by PJ-EVs was dependent on the activation and phosphorylation of MAPK and NF-κB signal pathways. Notably, PJ-EV-treated DCs strongly induced the proliferation and differentiation of naïve T cells toward Th1-type T cells and cytotoxic CD8+ T cells along with robust secretion of IFN-γ and IL-2. In conclusion, our study indicates that PJ-EVs can be potent immunostimulatory candidates with an ability of strongly inducing the maturation of DCs.
Collapse
|
162
|
Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA, Ganjalikhani-hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021; 9:1060. [PMID: 34696168 PMCID: PMC8540049 DOI: 10.3390/vaccines9101060] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma is one of the most aggressive forms of cancer and the leading cause of death from skin tumors. Given the increased incidence of melanoma diagnoses in recent years, it is essential to develop effective treatments to control this disease. In this regard, the use of cancer vaccines to enhance cell-mediated immunity is considered to be one of the most modern immunotherapy options for cancer treatment. The most recent cancer vaccine options are mRNA vaccines, with a focus on their usage as modern treatments. Advantages of mRNA cancer vaccines include their rapid production and low manufacturing costs. mRNA-based vaccines are also able to induce both humoral and cellular immune responses. In addition to the many advantages of mRNA vaccines for the treatment of cancer, their use is associated with a number of challenges. For this reason, before mRNA vaccines can be used for the treatment of cancer, comprehensive information about them is required and a large number of trials need to be conducted. Here, we reviewed the general features of mRNA vaccines, including their basis, stabilization, and delivery methods. We also covered clinical trials involving the use of mRNA vaccines in melanoma cancer and the challenges involved with this type of treatment. This review also emphasized the combination of treatment with mRNA vaccines with the use of immune-checkpoint blockers to enhance cell-mediated immunity.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Yue Zhao
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
| | - Natalia G. Shebardina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alexey V. Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Mazdak Ganjalikhani-hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
163
|
Zhan Y, Zhang Y, Zhang S, Coughlan H, Baldoni PL, Jacquelot N, Cao WHJ, Preston S, Louis C, Rautela J, Pellegrini M, Wicks IP, Alexander WS, Harrison LC, Lew AM, Smyth GK, Nutt SL, Chopin M. Differential requirement for the Polycomb repressor complex 2 in dendritic cell and tissue-resident myeloid cell homeostasis. Sci Immunol 2021; 6:eabf7268. [PMID: 34533976 DOI: 10.1126/sciimmunol.abf7268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Drug Discovery, Shanghai Huaota Biopharma, Shanghai, China
| | - Yuxia Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hannah Coughlan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pedro L Baldoni
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wang H J Cao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon Preston
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cynthia Louis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
164
|
Meena M, Van Delen M, De Laere M, Sterkens A, Costas Romero C, Berneman Z, Cools N. Transmigration across a Steady-State Blood-Brain Barrie Induces Activation of Circulating Dendritic Cells Partly Mediated by Actin Cytoskeletal Reorganization. MEMBRANES 2021; 11:membranes11090700. [PMID: 34564517 PMCID: PMC8472465 DOI: 10.3390/membranes11090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
The central nervous system (CNS) is considered to be an immunologically unique site, in large part given its extensive protection by the blood–brain barrier (BBB). As our knowledge of the complex interaction between the peripheral immune system and the CNS expands, the mechanisms of immune privilege are being refined. Here, we studied the interaction of dendritic cells (DCs) with the BBB in steady–state conditions and observed that transmigrated DCs display an activated phenotype and stronger T cell-stimulatory capacity as compared to non-migrating DCs. Next, we aimed to gain further insights in the processes underlying activation of DCs following transmigration across the BBB. We investigated the interaction of DCs with endothelial cells as well as the involvement of actin cytoskeletal reorganization. Whereas we were not able to demonstrate that DCs engulf membrane fragments from fluorescently labelled endothelial cells during transmigration across the BBB, we found that blocking actin restructuring of DCs by latrunculin-A significantly impaired in vitro migration of DC across the BBB and subsequent T cell-stimulatory capacity, albeit no effect on migration-induced phenotypic activation could be demonstrated. These observations contribute to the current understanding of the interaction between DCs and the BBB, ultimately leading to the design of targeted therapies capable to inhibit autoimmune inflammation of the CNS.
Collapse
Affiliation(s)
- Megha Meena
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ann Sterkens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Department of Dermatology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Coloma Costas Romero
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
165
|
Gao J, Zhang YN, Cui J, Zhang J, Ming Y, Hao Z, Xu H, Cheng N, Zhang D, Jin Y, Lin D, Lin J. A Polysaccharide From the Whole Plant of Plantago asiatica L. Enhances the Antitumor Activity of Dendritic Cell-Based Immunotherapy Against Breast Cancer. Front Pharmacol 2021; 12:678865. [PMID: 34504423 PMCID: PMC8421731 DOI: 10.3389/fphar.2021.678865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes’ proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.
Collapse
Affiliation(s)
- Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi-Nan Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Toronto, Canada
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexiang Ming
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huihao Xu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Cheng
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
166
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
167
|
Picoli CC, Gonçalves BÔP, Santos GSP, Rocha BGS, Costa AC, Resende RR, Birbrair A. Pericytes cross-talks within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1876:188608. [PMID: 34384850 DOI: 10.1016/j.bbcan.2021.188608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are embedded within the tumor microenvironment and interact dynamically with its components during tumor progression. Understanding the molecular mechanisms by which the tumor microenvironment components communicate is crucial for the success of therapeutic applications. Recent studies show, by using state-of-the-art technologies, including sophisticated in vivo inducible Cre/loxP mediated systems and CRISPR-Cas9 gene editing, that pericytes communicate with cancer cells. The arising knowledge on cross-talks within the tumor microenvironment will be essential for the development of new therapies against cancer. Here, we review recent progress in our understanding of pericytes roles within tumors.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan Ô P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
168
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|
169
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
170
|
Precursor Abundance Influences Divergent Antigen-Specific CD8 + T Cell Responses after Yersinia pseudotuberculosis Foodborne Infection. Infect Immun 2021; 89:e0026521. [PMID: 34031132 DOI: 10.1128/iai.00265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primary infection of C57BL/6 mice with the bacterial pathogen Yersinia pseudotuberculosis elicits an unusually large H-2Kb-restricted CD8+ T cell response to the endogenous and protective bacterial epitope YopE69-77. To better understand the basis for this large response, the model OVA257-264 epitope was inserted into YopE in Y. pseudotuberculosis and antigen-specific CD8+ T cells in mice were characterized after foodborne infection with the resulting strain. The epitope YopE69-77 elicited significantly larger CD8+ T cell populations in the small intestine, mesenteric lymph nodes (MLNs), spleen, and liver between 7 and 30 days postinfection, despite residing in the same protein and having an affinity for H-2Kb similar to that of OVA257-264. YopE-specific CD8+ T cell precursors were ∼4.6 times as abundant as OVA-specific precursors in the MLNs, spleens, and other lymph nodes of naive mice, explaining the dominance of YopE69-77 over OVA257-264 at early infection times. However, other factors contributed to this dominance, as the ratio of YopE-specific to OVA-specific CD8+ T cells increased between 7 and 30 days postinfection. We also compared the YopE-specific and OVA-specific CD8+ T cells generated during infection for effector and memory phenotypes. Significantly higher percentages of YopE-specific cells were characterized as short-lived effectors, while higher percentages of OVA-specific cells were memory precursor effectors at day 30 postinfection in spleen and liver. Our results suggest that a large precursor number contributes to the dominance and effector and memory functions of CD8+ T cells generated in response to the protective YopE69-77 epitope during Y. pseudotuberculosis infection of C57BL/6 mice.
Collapse
|
171
|
Nudelman I, Kudrin D, Nudelman G, Deshpande R, Hartmann BM, Kleinstein SH, Myers CL, Sealfon SC, Zaslavsky E. Comparing Host Module Activation Patterns and Temporal Dynamics in Infection by Influenza H1N1 Viruses. Front Immunol 2021; 12:691758. [PMID: 34335598 PMCID: PMC8317020 DOI: 10.3389/fimmu.2021.691758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza is a serious global health threat that shows varying pathogenicity among different virus strains. Understanding similarities and differences among activated functional pathways in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To compare the types and timing of functional modules activated in host cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that addresses the need to compare functional module utilization over time. This integrative approach overlays whole genome time series expression data onto an immune-specific functional network, and extracts conserved modules exhibiting either different temporal patterns or overall transcriptional activity. We identified a common core response to influenza virus infection that is temporally shifted for different viruses. We also identified differentially regulated functional modules that reveal unique elements of responses to different virus strains. Our work highlights the usefulness of combining time series gene expression data with a functional interaction map to capture temporal dynamics of the same cellular pathways under different conditions. Our results help elucidate conservation of the immune response both globally and at a granular level, and provide mechanistic insight into the differences in the host response to infection by influenza strains of varying pathogenicity.
Collapse
Affiliation(s)
- Irina Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of General Internal Medicine, New York University Langone Medical Centre, New York, NY, United States
| | - Daniil Kudrin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, United States
| | - Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steven H Kleinstein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, United States.,Program in Biomedical Informatics and Computational Biology, University of Minnesota - Twin Cities, Minneapolis, MN, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
172
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
173
|
Systemic bacterial infections affect dendritic cell development and function. Int J Med Microbiol 2021; 311:151517. [PMID: 34233227 DOI: 10.1016/j.ijmm.2021.151517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are critical in host defense against infection. DC depletion is an early event in the course of sepsis that may impair the host defense mechanisms. Here, we addressed whether DC depletion and dysfunction are pathogen-independent, mediated via pattern recognition receptors, and are due to impaired DC development upon systemic infection with the Gram-negative bacterium Escherichia coli and the Gram-positive pathogen Staphylococcus aureus. Infection with E. coli and S. aureus led to reduced numbers of splenic DC subsets and of DC progenitors in the bone marrow (BM) with this effect persisting significantly longer in mice infected with S. aureus than with E. coli. The reduction of DC subsets and their progenitors was mainly TLR-independent as was the infection-induced monopoiesis. Moreover, de novo DC development was impaired in mice infected with S. aureus, and BM cells from E. coli or S. aureus infected mice favored macrophage differentiation in vitro. As a consequence of reduced DC numbers and their reduced expression of MHC II less CD4+ and CD8+ T cells, especially Th1 and IFN-γ producing CD8+ T cells, could be detected in S. aureus compared to E. coli infected mice. These differences are reflected in the rapid killing of E. coli as opposed to an increase in bacterial load in S. aureus. In summary, our study supports the idea that systemic bacterial infections generally affect the number and development of DCs and thereby the T cell responses, but the magnitude is pathogen-dependent.
Collapse
|
174
|
Masurel L, Bianca C, Lemarchand A. Space-velocity thermostatted kinetic theory model of tumor growth. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5525-5551. [PMID: 34517499 DOI: 10.3934/mbe.2021279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The competition between cancer cells and immune system cells in inhomogeneous conditions is described at cell scale within the framework of the thermostatted kinetic theory. Cell learning is reproduced by increased cell activity during favorable interactions. The cell activity fluctuations are controlled by a thermostat. The direction of cell velocity is changed according to stochastic rules mimicking a dense fluid. We develop a kinetic Monte Carlo algorithm inspired from the direct simulation Monte Carlo (DSMC) method initially used for dilute gases. The simulations generate stochastic trajectories sampling the kinetic equations for the distributions of the different cell types. The evolution of an initially localized tumor is analyzed. Qualitatively different behaviors are observed as the field regulating activity fluctuations decreases. For high field values, i.e. efficient thermalization, cancer is controlled. For small field values, cancer rapidly and monotonously escapes from immunosurveillance. For the critical field value separating these two domains, the 3E's of immunotherapy are reproduced, with an apparent initial elimination of cancer, a long quasi-equilibrium period followed by large fluctuations, and the final escape of cancer, even for a favored production of immune system cells. For field values slightly smaller than the critical value, more regular oscillations of the number of immune system cells are spontaneously observed in agreement with clinical observations. The antagonistic effects that the stimulation of the immune system may have on oncogenesis are reproduced in the model by activity-weighted rate constants for the autocatalytic productions of immune system cells and cancer cells. Local favorable conditions for the launching of the oscillations are met in the fluctuating inhomogeneous system, able to generate a small cluster of immune system cells with larger activities than those of the surrounding cancer cells.
Collapse
Affiliation(s)
- Léon Masurel
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| | - Carlo Bianca
- École Supérieure d'Ingénieurs en Génie Électrique, Productique et Management Industriel, Laboratoire Quartz EA 7393, Laboratoire de Recherche en Eco-innovation Industrielle et Energétique, 13 Boulevard de l'Hautil, 95092 Cergy Pontoise Cedex, France
| | - Annie Lemarchand
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| |
Collapse
|
175
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
176
|
Marijt KA, Griffioen L, Blijleven L, van der Burg SH, van Hall T. Cross-presentation of a TAP-independent signal peptide induces CD8 T immunity to escaped cancers but necessitates anchor replacement. Cancer Immunol Immunother 2021; 71:289-300. [PMID: 34142235 PMCID: PMC8783882 DOI: 10.1007/s00262-021-02984-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Cancer cells frequently display defects in their antigen-processing pathway and thereby evade CD8 T cell immunity. We described a novel category of cancer antigens, named TEIPP, that emerge on cancers with functional loss of the peptide pump TAP. TEIPPs are non-mutated neoantigens despite their ‘self’ origin by virtue of their absence on normal tissues. Here, we describe the development of a synthetic long peptide (SLP) vaccine for the most immunogenic TEIPP antigen identified thus far, derived from the TAP-independent LRPAP1 signal sequence. LRPAP121–30-specific CD8 T cells were present in blood of all tested healthy donors as well as patients with non-small cell lung adenocarcinoma. SLPs with natural flanking, however, failed to be cross-presented by monocyte-derived dendritic cells. Since the C-terminus of LRPAP121–30 is an unconventional and weakly binding serine (S), we investigated if replacement of this anchor would result in efficient cross-presentation. Exchange into a valine (V) resulted in higher HLA-A2 binding affinity and enhanced T cell stimulation. Importantly, CD8 T cells isolated using the V-variant were able to bind tetramers with the natural S-variant and respond to TAP-deficient cancer cells. A functional screen with an array of N-terminal and C-terminal extended SLPs pointed at the 24-mer V-SLP, elongated at the N-terminus, as most optimal vaccine candidate. This SLP was efficiently cross-presented and consistently induced a strong polyclonal LRPAP121–30-specific CD8 T cells from the endogenous T cell repertoire. Thus, we designed a TEIPP SLP vaccine from the LRPAP1 signal sequence ready for validation in clinical trials.
Collapse
Affiliation(s)
- Koen A Marijt
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Laura Blijleven
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
177
|
Li Y, Mateu E. Interaction of Type 1 Porcine Reproductive and Respiratory Syndrome Virus With In Vitro Derived Conventional Dendritic Cells. Front Immunol 2021; 12:674185. [PMID: 34177915 PMCID: PMC8221110 DOI: 10.3389/fimmu.2021.674185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
The present study delineates the interaction of a typical PRRSV1.1 isolate 3267 (moderate virulence) with in vitro derived pig conventional dendritic cells, cDC1, cDC2, and a CD14+ population (designated as CD14+ DCs). cDC1 and cDC2 were not susceptible to 3267 infection, but a fraction of CD14+ DCs were infected. After exposure to the virus, all three DC types remained immature as determined by no increase of maturation molecules (MHC-I, MHC-II, CD80/86, CCR7), no release of cytokines, no modification of antigen presentation abilities, and no alteration of endocytic/phagocytic capabilities. However, when infected MARC-145 cells were used as a source of viral antigens, cDC2 and CD14+ DCs showed a significant increase in the expression of maturation molecules and substantial release of cytokines, notably IL-12/IL-23p40 (by both DC types) and IL-10 (by CD14+ DCs). To address the impact of PRRSV1 3267 on TLR3- and TLR7-mediated activation, cDC1, cDC2, and CD14+ DCs were inoculated by the virus (live or UV-inactivated) for 6 h prior to or simultaneously with the addition of poly I:C (TLR3 ligand) or gardiquimod (TLR7 ligand; not used for cDC1). Compared with using TLR ligand alone, combination with the virus did not result in any alteration to the maturation markers on all DC types but changed the cytokine response to either TLR3 or TLR7 ligand. Pre-exposure of cDC2 or CD14+ DCs to the live virus resulted in an increased production of IFN-α upon poly I:C stimulation, while pre-exposure to UV-inactivated virus tended to enhance the release of IL-10 upon gardiquimod stimulation. Simultaneous addition of the live virus and the TLR ligand either had no effect (mainly in cDC2) or impaired most of the cytokine release after gardiquimod stimulation (in CD14+ DCs). When used as antigen presenting cells, cDC2 pre-inoculated by the live virus before addition of gardiquimod impaired the proliferation of CD4–CD8– T cells. In the case of CD14+ DCs, pre-exposure to the live virus or simultaneously added with TLR3 or TLR7 ligand largely decreased the proliferation of CD4–CD8+ and CD4–CD8+ T-cell subsets. For cDC1, no significant changes were observed in cytokine responses or T-cell proliferation after poly I:C stimulation. Of note, cDC1 had a short life during in vitro culturing, for which the results obtained might be biased. Overall, exposure to PRRSV1 did not induce maturation of cDC1, cDC2, or CD14+ DCs, but modified TLR3 and TLR7-associated responses (except for cDC1), which may affect the development of adaptive immunity during PRRSV1 infection. Moreover, the sensing of infected cells was different from that of the free virus.
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| |
Collapse
|
178
|
Sun D, Ko MK, Shao H, Kaplan HJ. Augmented Th17-stimulating activity of BMDCs as a result of reciprocal interaction between γδ and dendritic cells. Mol Immunol 2021; 134:13-24. [PMID: 33689926 PMCID: PMC8629029 DOI: 10.1016/j.molimm.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Our previous studies demonstrated that γδ T cells have a strong regulatory effect on Th17 autoimmune responses in experimental autoimmune uveitis (EAU). In the current study, we show that reciprocal interactions between mouse γδ T cells and dendritic cells (DCs) played a major role in γδ regulation of Th17 responses. Mouse bone marrow-derived dendritic cells (BMDCs) acquired an increased ability to enhance Th17 autoimmune responses after exposure to γδ T cells; meanwhile, after exposure, a significant portion of the BMDCs expressed CD73 - a molecule that is fundamental in the conversion of immunostimulatory ATP into immunosuppressive adenosine. Functional studies showed that CD73+ BMDCs were uniquely effective in stimulating the Th17 responses, as compared to CD73- BMDCs; and activated γδ T cells are much more effective than non-activated γδ T cells at inducing CD73+ BMDCs. As a result, activated γδ T cells acquired greater Th17-enhancing activity. Treatment of BMDCs with the CD73-specific antagonist APCP abolished the enhancing effect of the BMDCs. γδ T cells more effectively induced CD73+ BMDCs from the BMDCs that were pre-exposed to TLR ligands, and the response was further augmented by adenosine. Moreover, BMDCs acquired increased ability to stimulate γδ activation after pre-exposure to TLR ligands and adenosine. Our results demonstrated that both extra-cellular adenosine and TLR ligands are critical factors in augmented Th17 responses in this autoimmune disease, and the reciprocal interactions between γδ T cells and DCs play a major role in promoting Th17 responses.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States.
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
179
|
Jittimanee S, Wongratanacheewin S, Kaewraemruaen C, Jittimanee J. Opisthorchis viverrini antigens up-regulates the expression of CD80 and MHC class II in JAWSII mouse dendritic cells and promotes IL-10 and TGF-β secretions. Parasitol Int 2021; 84:102401. [PMID: 34082134 DOI: 10.1016/j.parint.2021.102401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APC) involved in the initiation of immune responses. Maturation of DCs is characterized by the high expression of major histocompatibility complex (MHC) class II and co-stimulatory clusters of differentiation (CD) 40, CD80, and CD86 molecules. Matured DCs are required for T cell differentiation and proliferation. However, the response of DCs to Opisthorchis viverrini antigens has not yet been understood. Therefore, this study sought to determine the expression of surface molecules of JAWSII mouse DCs stimulated by crude somatic (CS) and excretory-secretory (ES) antigens of O. viverrini. ES antigen significantly induced only mRNA expression of CD80 and MHC class II in JAWSII mouse DCs, while CS antigen promoted up-regulation of both mRNA and protein levels of CD80 and MHC class II, indicating relative maturation of JAWII mouse DCs. Moreover, the secreted cytokines from the co-cultures of O. viverrini antigens stimulated JAWSII DC with naïve CD4+ T cells was determined. Significantly increased levels of immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) were found. The up-regulation of these cytokines may indicate the response of regulatory T cells (Treg) to CS antigen-stimulated JAWSII DC. These findings may lead to a better understanding of the role that DCs play in O. viverrini infection.
Collapse
Affiliation(s)
- Suphattra Jittimanee
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Chamraj Kaewraemruaen
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campas, Nakhon Pathom, 73140, Thailand.
| | - Jutharat Jittimanee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
180
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
181
|
Kawaguchi H, Sakamoto T, Koya T, Togi M, Date I, Watanabe A, Yoshida K, Kato T, Nakamura Y, Ishigaki Y, Shimodaira S. Quality Verification with a Cluster-Controlled Manufacturing System to Generate Monocyte-Derived Dendritic Cells. Vaccines (Basel) 2021; 9:vaccines9050533. [PMID: 34065520 PMCID: PMC8160655 DOI: 10.3390/vaccines9050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin (IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs to be optimized for the clinical development of DC vaccines. In this study, we examined the effects of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are useful for generating homogeneous and functional IL-4−DCs that would be expected to promote long−lasting effects in DC vaccines.
Collapse
Affiliation(s)
- Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
182
|
Arora R, Malla WA, Tyagi A, Mahajan S, Sajjanar B, Tiwari AK. Canine Parvovirus and Its Non-Structural Gene 1 as Oncolytic Agents: Mechanism of Action and Induction of Anti-Tumor Immune Response. Front Oncol 2021; 11:648873. [PMID: 34012915 PMCID: PMC8127782 DOI: 10.3389/fonc.2021.648873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The exploration into the strategies for the prevention and treatment of cancer is far from complete. Apart from humans, cancer has gained considerable importance in animals because of increased awareness towards animal health and welfare. Current cancer treatment regimens are less specific towards tumor cells and end up harming normal healthy cells. Thus, a highly specific therapeutic strategy with minimal side effects is the need of the hour. Oncolytic viral gene therapy is one such specific approach to target cancer cells without affecting the normal cells of the body. Canine parvovirus (CPV) is an oncolytic virus that specifically targets and kills cancer cells by causing DNA damage, caspase activation, and mitochondrial damage. Non-structural gene 1 (NS1) of CPV, involved in viral DNA replication is a key mediator of cytotoxicity of CPV and can selectively cause tumor cell lysis. In this review, we discuss the oncolytic properties of Canine Parvovirus (CPV or CPV2), the structure of the NS1 protein, the mechanism of oncolytic action as well as role in inducing an antitumor immune response in different tumor models.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR - Central Avian Research Institute, Izatnagar, India
| |
Collapse
|
183
|
Saichi M, Ladjemi MZ, Korniotis S, Rousseau C, Ait Hamou Z, Massenet-Regad L, Amblard E, Noel F, Marie Y, Bouteiller D, Medvedovic J, Pène F, Soumelis V. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol 2021; 23:538-551. [PMID: 33972731 DOI: 10.1038/s41556-021-00681-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we perform single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: (1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore the defective immune defence.
Collapse
Affiliation(s)
| | - Maha Zohra Ladjemi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | | | - Christophe Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Zakaria Ait Hamou
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | - Lucile Massenet-Regad
- Université de Paris, INSERM U976, Paris, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Elise Amblard
- Université de Paris, INSERM U976, Paris, France
- Université de Paris, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Yannick Marie
- Institut du Cerveau (ICM), Plateforme de Génotypage Séquençage, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Delphine Bouteiller
- Institut du Cerveau (ICM), Plateforme de Génotypage Séquençage, Paris, France
| | | | - Frédéric Pène
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.
- AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France.
| |
Collapse
|
184
|
Nam JH, Lee JH, Choi SY, Jung NC, Song JY, Seo HG, Lim DS. Functional Ambivalence of Dendritic Cells: Tolerogenicity and Immunogenicity. Int J Mol Sci 2021; 22:ijms22094430. [PMID: 33922658 PMCID: PMC8122871 DOI: 10.3390/ijms22094430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) and inducers of T cell-mediated immunity. Although DCs play a central role in promoting adaptive immune responses against growing tumors, they also establish and maintain peripheral tolerance. DC activity depends on the method of induction and/or the presence of immunosuppressive agents. Tolerogenic dendritic cells (tDCs) induce immune tolerance by activating CD4+CD25+Foxp3+ regulatory T (Treg) cells and/or by producing cytokines that inhibit T cell activation. These findings suggest that tDCs may be an effective treatment for autoimmune diseases, inflammatory diseases, and infertility.
Collapse
Affiliation(s)
- Ji-Hee Nam
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Korea; (J.-H.N.); (S.-Y.C.)
| | - Jun-Ho Lee
- Pharos Vaccine Inc., 14 Galmachiro 288 bun-gil, Jungwon-gu, Seongnam, Gyeonggi-do 13201, Korea; (J.-H.L.); (N.-C.J.)
| | - So-Yeon Choi
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Korea; (J.-H.N.); (S.-Y.C.)
| | - Nam-Chul Jung
- Pharos Vaccine Inc., 14 Galmachiro 288 bun-gil, Jungwon-gu, Seongnam, Gyeonggi-do 13201, Korea; (J.-H.L.); (N.-C.J.)
| | - Jie-Young Song
- Department of Radiation Cancer Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea;
| | - Han-Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Korea; (J.-H.N.); (S.-Y.C.)
- Correspondence: ; Tel.: +82-10-2770-4777
| |
Collapse
|
185
|
Luu T, Cheung JF, Baccon J, Waldner H. Priming of myelin-specific T cells in the absence of dendritic cells results in accelerated development of Experimental Autoimmune Encephalomyelitis. PLoS One 2021; 16:e0250340. [PMID: 33891644 PMCID: PMC8064509 DOI: 10.1371/journal.pone.0250340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis (MS). Inflammatory CD4+ T cell responses directed against CNS antigens, including myelin proteolipid protein (PLP), are key mediators of EAE. Dendritic cells (DCs) are critical for the induction of T cell responses against infectious agents. However, the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear. To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.
Collapse
Affiliation(s)
- Thaiphi Luu
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Julie F. Cheung
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jennifer Baccon
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hanspeter Waldner
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
186
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
187
|
Zhang S, Coughlan HD, Ashayeripanah M, Seizova S, Kueh AJ, Brown DV, Cao W, Jacquelot N, D'Amico A, Lew AM, Zhan Y, Tonkin CJ, Villadangos JA, Smyth GK, Chopin M, Nutt SL. Type 1 conventional dendritic cell fate and function are controlled by DC-SCRIPT. Sci Immunol 2021; 6:6/58/eabf4432. [PMID: 33811060 DOI: 10.1126/sciimmunol.abf4432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The functional diversification of dendritic cells (DCs) is a key step in establishing protective immune responses. Despite the importance of DC lineage diversity, its genetic basis is not fully understood. The transcription factor DC-SCRIPT is expressed in conventional DCs (cDCs) and their committed bone marrow progenitors but not in plasmacytoid DCs (pDCs). We show that mice lacking DC-SCRIPT displayed substantially impaired development of IRF8 (interferon regulatory factor 8)-dependent cDC1, whereas cDC2 numbers increased marginally. The residual DC-SCRIPT-deficient cDC1s had impaired capacity to capture and present cell-associated antigens and to secrete IL-12p40, two functional hallmarks of this population. Genome-wide mapping of DC-SCRIPT binding and gene expression analyses revealed a key role for DC-SCRIPT in maintaining cDC1 identity via the direct regulation of cDC1 signature genes, including Irf8 Our study reveals DC-SCRIPT to be a critical component of the gene regulatory program shaping the functional attributes of cDC1s.
Collapse
Affiliation(s)
- Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hannah D Coughlan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, University of Melbourne at Peter Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Simona Seizova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel V Brown
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Angela D'Amico
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, University of Melbourne at Peter Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
188
|
Sun YF, Pi J, Xu JF. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Front Immunol 2021; 12:628973. [PMID: 33868247 PMCID: PMC8047325 DOI: 10.3389/fimmu.2021.628973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for secreting cells, and act as significant signal transport vectors for cell-cell communication and immune modulation. Immune-cell-derived exosomes have been found to contain molecules involved in immunological pathways, such as MHCII, cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for tuberculosis escapes the immune defense and continues to replicate despite rigorous and complicate host cell mechanisms. The infected-cell-derived exosomes under this circumstance are found to trigger different immune responses, such as inflammation, antigen presentation, and activate subsequent pathways, highlighting the critical role of exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system, exosomes show potential in developing new vaccination and treatment of tuberculosis. We here summarize recent research progress regarding exosomes in the immune environment during MTB infection, and further discuss the potential of exosomes as delivery system for novel anti-MTB vaccines and therapies.
Collapse
Affiliation(s)
- Yin-Fu Sun
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
189
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
190
|
Wui SR, Ko A, Ryu JI, Sim E, Lim SJ, Park SA, Kim KS, Kim H, Youn H, Lee NG. The Effect of a TLR4 Agonist/Cationic Liposome Adjuvant on Varicella-Zoster Virus Glycoprotein E Vaccine Efficacy: Antigen Presentation, Uptake, and Delivery to Lymph Nodes. Pharmaceutics 2021; 13:pharmaceutics13030390. [PMID: 33804176 PMCID: PMC8001429 DOI: 10.3390/pharmaceutics13030390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adjuvant CIA09, composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes and the toll-like receptor 4 agonist de-O-acylated lipooligosaccharide (dLOS), has been shown to enhance antibody and cellular immune responses to varicella-zoster virus (VZV) glycoprotein E (gE), recombinant tuberculosis vaccine antigen, and inactivated Japanese encephalitis vaccine. In this study, we investigated its modes of action using VZV gE as a model antigen. Liposomes adsorbed gE and cooperatively with dLOS promoted endocytosis-mediated cellular uptake of gE by mouse dendritic cells in vitro. CIA09 increased the stability and cellular uptake of the antigen at the muscle site of injection, and induced immune cell recruitment and cytokine and chemokine production, which led to efficient antigen delivery to draining lymph nodes. Mouse bone marrow-derived dendritic cells, pulsed with CIA09-adjuvanted gE, efficiently presented gE to antigen-specific T cells, inducing Th1-type biased immunity, as shown by high IFN-γ production. The data indicate that liposomes and dLOS cooperate in the adjuvant activity of CIA09 by promoting antigen uptake and delivery to lymph nodes as well as antigen presentation to T cells.
Collapse
Affiliation(s)
- Seo Ri Wui
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Ara Ko
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Ji In Ryu
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Eojin Sim
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Soo Jeong Lim
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | | | - Kwang Sung Kim
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
- R & D Center, EyeGene, Goyang 10551, Korea;
| | - Ha Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.K.); (H.Y.)
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyewon Youn
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.K.); (H.Y.)
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Korea
| | - Na Gyong Lee
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
- Correspondence: ; Tel.: +82-2-3408-3765; Fax: +82-2-3408-3334
| |
Collapse
|
191
|
Kohn M, Lanfermann C, Laudeley R, Glage S, Rheinheimer C, Klos A. Complement and Chlamydia psittaci: Early Complement-Dependent Events Are Important for DC Migration and Protection During Mouse Lung Infection. Front Immunol 2021; 12:580594. [PMID: 33767691 PMCID: PMC7986412 DOI: 10.3389/fimmu.2021.580594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/10/2021] [Indexed: 11/24/2022] Open
Abstract
The zoonotic intracellular bacterium Chlamydia psittaci causes life-threatening pneumonia in humans. During mouse lung infection, complement factor C3 and the anaphylatoxin C3a augment protection against C. psittaci by a so far unknown mechanism. To clarify how complement contributes to the early, innate and the late, specific immune response and resulting protection, this study addresses the amount of C3, the timing when its presence is required as well as the anaphylatoxin receptor(s) mediating its effects and the complement-dependent migration of dendritic cells. Challenge experiments with C. psittaci on various complement KO mice were combined with transient decomplementation by pharmacological treatment, as well as the analysis of in vivo dendritic cells migration. Our findings reveal that a plasma concentration of C3 close to wildtype levels was required to achieve full protection. The diminished levels of C3 of heterozygote C3+/- mice permitted already relative effective protection and improved survival as compared to C3-/- mice, but overall recovery of these animals was delayed. Complement was in particular required during the first days of infection. However, additionally, it seems to support protection at later stages. Migration of CD103+ dendritic cells from the infected lung to the draining lymph node-as prerequisite of antigen presentation-depended on C3 and C3aR and/or C5aR. Our results provide unique mechanistic insight in various aspects of complement-dependent immune responses under almost identical, rather physiological experimental conditions. Our study contributes to an improved understanding of the role of complement, and C3a in particular, in infections by intracellular bacteria.
Collapse
Affiliation(s)
- Martin Kohn
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Christian Lanfermann
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Robert Laudeley
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Silke Glage
- Medical School Hannover, Institute for Laboratory Animal Science, Hannover, Germany
| | - Claudia Rheinheimer
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Andreas Klos
- Medical School Hannover, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| |
Collapse
|
192
|
Primary Human Dendritic Cells and Whole-Blood Based Assays to Evaluate Immuno-Modulatory Properties of Heat-Killed Commensal Bacteria. Vaccines (Basel) 2021; 9:vaccines9030225. [PMID: 33807734 PMCID: PMC8001086 DOI: 10.3390/vaccines9030225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
There is mounting evidence that the microbiome plays a critical role in training and maturation of the host immune system. Pre-clinical and clinical studies have shown that microbiome perturbation is correlated with sub-optimal host responses to vaccines and cancer immunotherapy. As such, identifying species of commensal bacteria capable of modulating immunological outcomes is of considerable interest. Currently, the lack of reliable primary immune cell-based assays capable of differentiating immuno-modulatory properties of various commensal bacteria is a major limitation. Here, we demonstrate that primary human monocyte-derived dendritic cells (MoDC) are capable of stratifying different strains of live and heat-killed commensal bacteria in an in vitro culture system. Specifically, heat-killed bacterial strains were able to differentially modulate co-stimulation/maturation markers CD80, CD83, and HLA-DR, as well as cytokine/chemokine signatures, such as IL-1b, MIP-1a, and TNFa in primary human MoDC. We further validated our observations using the TruCulture® (Myriad RBM, Inc., Austin, TX, USA) whole-blood ex vivo culture system. Using this ex vivo system allowed us to measure immune-altering effects of commensal bacteria in primary human whole-blood. As such, we report that both these primary in vitro and ex vivo systems are robust and enable identification, stratification, and differentiation of various commensal bacteria as potential modulators of host immunity.
Collapse
|
193
|
Chen Y, Yang H, Chen Y, Song M, Liu B, Song J, Liu X, Li H. Full-length transcriptome sequencing and identification of immune-related genes in the critically endangered Hucho bleekeri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103934. [PMID: 33242569 DOI: 10.1016/j.dci.2020.103934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Hucho bleekeri is a glacial relict and critically endangered fish restricted to the Yangtze River drainage in China. The lack of basic genomic information and immune characteristics will hinder the way toward protecting this species. In the present study, we conducted the first transcriptome analysis of H. bleekeri using the combination of SMRT and Illumina sequencing technology. Transcriptome sequencing generated a total of 93,330 non-redundant full-length unigenes with a mean length of 3072 bp. A total of 92,472 (99.08%) unigenes were annotated in at least one of the Nr protein, Swiss-Prot, KEGG, KOG, GO, Nt and Pfam databases. KEGG analysis showed that a total of 7240 unigenes belonging to 28 immune pathways were annotated to the immune system category. Meanwhile, differentially expressed genes between mucosa-associated tissues (skin, gill and hindgut) and systemic-immune tissues (spleen, head kidney and liver) were obtained. Importantly, genes participating in diverse immune signalling pathways and their expression profiles in H. bleekeri were discussed. In addition, a large number of long non-coding RNAs (lncRNAs) and simple sequence repeats (SSRs) were obtained in the H. bleekeri transcriptome. The present study will provide basic genomic information for H. bleekeri and for further research on analysing the characteristics of both the innate and adaptive immune systems of this critically endangered species.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Huanchao Yang
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Yanling Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Bo Liu
- Ya'an Fishery Development Center, Ya'an, 625000, China
| | - Jingguo Song
- Sichuan Zumuzu River Basin Hydropower Development Co., Ltd, Chengdu, 610094, China
| | - Xin Liu
- Sichuan Zumuzu River Basin Hydropower Development Co., Ltd, Chengdu, 610094, China
| | - Hua Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
194
|
van Leeuwen T, Araman C, Pieper Pournara L, Kampstra ASB, Bakkum T, Marqvorsen MHS, Nascimento CR, Groenewold GJM, van der Wulp W, Camps MGM, Janssen GMC, van Veelen PA, van Westen GJP, Janssen APA, Florea BI, Overkleeft HS, Ossendorp FA, Toes REM, van Kasteren SI. Bioorthogonal protein labelling enables the study of antigen processing of citrullinated and carbamylated auto-antigens. RSC Chem Biol 2021; 2:855-862. [PMID: 34212151 PMCID: PMC8190914 DOI: 10.1039/d1cb00009h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Proteolysis is fundamental to many biological processes. In the immune system, it underpins the activation of the adaptive immune response: degradation of antigenic material into short peptides and presentation thereof on major histocompatibility complexes, leads to activation of T-cells. This initiates the adaptive immune response against many pathogens. Studying proteolysis is difficult, as the oft-used polypeptide reporters are susceptible to proteolytic sequestration themselves. Here we present a new approach that allows the imaging of antigen proteolysis throughout the processing pathway in an unbiased manner. By incorporating bioorthogonal functionalities into the protein in place of methionines, antigens can be followed during degradation, whilst leaving reactive sidechains open to templated and non-templated post-translational modifications, such as citrullination and carbamylation. Using this approach, we followed and imaged the post-uptake fate of the commonly used antigen ovalbumin, as well as the post-translationally citrullinated and/or carbamylated auto-antigen vinculin in rheumatoid arthritis, revealing differences in antigen processing and presentation.
Collapse
Affiliation(s)
- Tyrza van Leeuwen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Linda Pieper Pournara
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Thomas Bakkum
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Mikkel H S Marqvorsen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Clarissa R Nascimento
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - G J Mirjam Groenewold
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Willemijn van der Wulp
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Marcel G M Camps
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Drug Discovery and Safety, LACDR, Leiden University Leiden The Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry and the Oncode Institute, Leiden University Leiden The Netherlands
| | - Bogdan I Florea
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Herman S Overkleeft
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Ferry A Ossendorp
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| |
Collapse
|
195
|
Wang X, Khoshaba R, Shen Y, Cao Y, Lin M, Zhu Y, Cao Z, Liao DF, Cao D. Impaired Barrier Function and Immunity in the Colon of Aldo-Keto Reductase 1B8 Deficient Mice. Front Cell Dev Biol 2021; 9:632805. [PMID: 33644071 PMCID: PMC7907435 DOI: 10.3389/fcell.2021.632805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is downregulated in human ulcerative colitis (UC) and colorectal cancer, being a potential pathogenic factor of these diseases. Aldo-keto reductase 1B8 (AKR1B8) is the ortholog in mice of human AKR1B10. Targeted AKR1B8 deficiency disrupts homeostasis of epithelial self-renewal and leads to susceptibility to colitis and carcinogenesis. In this study, we found that in AKR1B8 deficient mice, Muc2 expression in colon was diminished, and permeability of colonic epithelium increased. Within 24 h, orally administered FITC-dextran penetrated into mesenteric lymph nodes (MLN) and liver in AKR1B8 deficient mice, but not in wild type controls. In the colon of AKR1B8 deficient mice, neutrophils and mast cells were markedly infiltrated, γδT cells were numerically and functionally impaired, and dendritic cell development was altered. Furthermore, Th1, Th2, and Th17 cells decreased, but Treg and CD8T cells increased in the colon and MLN of AKR1B8 deficient mice. In colonic epithelial cells of AKR1B8 deficient mice, p-AKT (T308 and S473), p-ERK1/2, p-IKBα, p-p65 (S536), and IKKα expression decreased, accompanied with downregulation of IL18 and CCL20 and upregulation of IL1β and CCL8. These data suggest AKR1B8 deficiency leads to abnormalities of intestinal epithelial barrier and immunity in colon.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Ramina Khoshaba
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States.,Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Yi Shen
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yu Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Minglin Lin
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yun Zhu
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Zhe Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Duan-Fang Liao
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
196
|
Onodi F, Bonnet-Madin L, Meertens L, Karpf L, Poirot J, Zhang SY, Picard C, Puel A, Jouanguy E, Zhang Q, Le Goff J, Molina JM, Delaugerre C, Casanova JL, Amara A, Soumelis V. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med 2021; 218:211734. [PMID: 33533916 PMCID: PMC7849819 DOI: 10.1084/jem.20201387] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fanny Onodi
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Lucie Bonnet-Madin
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Laurent Meertens
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Léa Karpf
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Justine Poirot
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Capucine Picard
- Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérôme Le Goff
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Michel Molina
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Constance Delaugerre
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY
| | - Ali Amara
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France
| |
Collapse
|
197
|
Li X, Zhou C, Chen K, Huang B, Liu Q, Ye H. Benchmarking HLA genotyping and clarifying HLA impact on survival in tumor immunotherapy. Mol Oncol 2021; 15:1764-1782. [PMID: 33411982 PMCID: PMC8253103 DOI: 10.1002/1878-0261.12895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.
Collapse
Affiliation(s)
- Xiangyong Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Sinotech Genomics, Shenzhen, China
| | - Chi Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao Ye
- Sinotech Genomics, Shenzhen, China.,CStone Pharmaceuticals Co., Ltd., Suzhou, China
| |
Collapse
|
198
|
Vavassori V, Mercuri E, Marcovecchio GE, Castiello MC, Schiroli G, Albano L, Margulies C, Buquicchio F, Fontana E, Beretta S, Merelli I, Cappelleri A, Rancoita PM, Lougaris V, Plebani A, Kanariou M, Lankester A, Ferrua F, Scanziani E, Cotta-Ramusino C, Villa A, Naldini L, Genovese P. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol Med 2021; 13:e13545. [PMID: 33475257 PMCID: PMC7933961 DOI: 10.15252/emmm.202013545] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X‐linked hyper‐IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one‐size‐fits‐all editing strategy for effective T‐cell correction, selection, and depletion and investigated the therapeutic potential of T‐cell and HSPC therapies in the HIGM1 mouse model. Edited patients’ derived CD4 T cells restored physiologically regulated CD40L expression and contact‐dependent B‐cell helper function. Adoptive transfer of wild‐type T cells into conditioned HIGM1 mice rescued antigen‐specific IgG responses and protected mice from a disease‐relevant pathogen. We then obtained ~ 25% CD40LG editing in long‐term repopulating human HSPC. Transplanting such proportion of wild‐type HSPC in HIGM1 mice rescued immune functions similarly to T‐cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T‐cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mercuri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Monza, Italy
| | - Genni E Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria C Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy
| | - Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Elena Fontana
- Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy.,Human Genome Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute for Biomedical Technologies, National Research Council (CNR), Segrate, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Paola Mv Rancoita
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Vassilios Lougaris
- University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Plebani
- University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Maria Kanariou
- First Department of Paediatrics, Aghia Sophia Children's Hospital, Athens, Greece
| | - Arjan Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Milano, Italy.,Department of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council (CNR), Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
199
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
200
|
Onodi F, Bonnet-Madin L, Meertens L, Karpf L, Poirot J, Zhang SY, Picard C, Puel A, Jouanguy E, Zhang Q, Le Goff J, Molina JM, Delaugerre C, Casanova JL, Amara A, Soumelis V. SARS-CoV-2 induces human plasmacytoid pre-dendritic cell diversification via UNC93B and IRAK4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33442685 PMCID: PMC7805442 DOI: 10.1101/2020.07.10.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fanny Onodi
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Lucie Bonnet-Madin
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Laurent Meertens
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Léa Karpf
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Justine Poirot
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Capucine Picard
- Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,Study center for primary immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux (AP-HP) de Paris, Paris, France, EU.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérôme Le Goff
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Jean-Michel Molina
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Constance Delaugerre
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU.,Howard Hughes Medical Institute, New York, NY, USA
| | - Ali Amara
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, F-75010, Paris, France
| |
Collapse
|