151
|
Shippy DC, Wilhelm C, Viharkumar PA, Raife TJ, Ulland TK. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer's disease pathology. J Neuroinflammation 2020; 17:280. [PMID: 32958021 PMCID: PMC7507727 DOI: 10.1186/s12974-020-01948-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, late-onset dementia with no effective treatment available. Recent studies suggest that AD pathology is driven by age-related changes in metabolism. Alterations in metabolism, such as placing patients on a ketogenic diet, can alter cognition by an unknown mechanism. One of the ketone bodies produced as a result of ketogenesis, β-hydroxybutyrate (BHB), is known to inhibit NLRP3 inflammasome activation. Therefore, we tested if BHB inhibition of the NLRP3 inflammasome reduces overall AD pathology in the 5XFAD mouse model of AD. Here, we find BHB levels are lower in red blood cells and brain parenchyma of AD patients when compared with non-AD controls. Furthermore, exogenous BHB administration reduced plaque formation, microgliosis, apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) speck formation, and caspase-1 activation in the 5XFAD mouse model of AD. Taken together, our findings demonstrate that BHB reduces AD pathology by inhibiting NLRP3 inflammasome activation. Additionally, our data suggest dietary or pharmacological approaches to increase BHB levels as promising therapeutic strategies for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Connor Wilhelm
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Patel A Viharkumar
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Thomas J Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
152
|
Shippy DC, Ulland TK. Microglial Immunometabolism in Alzheimer's Disease. Front Cell Neurosci 2020; 14:563446. [PMID: 33192310 PMCID: PMC7531234 DOI: 10.3389/fncel.2020.563446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
153
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 545] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
154
|
Abe S, Ezaki O, Suzuki M. Medium-Chain Triglycerides (8:0 and 10:0) Increase Mini-Mental State Examination (MMSE) Score in Frail Elderly Adults in a Randomized Controlled Trial. J Nutr 2020; 150:2383-2390. [PMID: 32652024 DOI: 10.1093/jn/nxaa186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/18/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Supplementation with medium-chain triglycerides (MCTs) was previously shown to increase muscle function in frail elderly individuals. OBJECTIVE We aimed to assess effects of MCTs on cognition in such individuals. METHODS We enrolled 64 elderly nursing home residents (85.5 ± 6.8 y; 13 men, 51 women; BMI 18.6 ± 2.5 kg/m2) in a 3-mo randomized, controlled, single-blinded, intervention trial. Participants were randomly allocated to 3 groups: the first group received supplemental L-leucine (1.2 g) and cholecalciferol (20 μg) enriched with 6 g/d of MCTs (LD + MCT group) as a positive control, the second group received 6 g/d of MCTs (MCT group) as the test nutrient, and the third group received 6 g/d of long-chain triglycerides (LCT group) as a negative control. Cognition (secondary outcome) was monitored 4 times: baseline, 1.5 and 3 mo after initiation of the intervention (intervention), and 1.5 mo after termination of the intervention (postintervention follow-up). Cognition scores were assessed by a linear mixed model (intention-to-treat analysis). RESULTS MCT supplementation increased the Mini-Mental State Examination (MMSE) score by 3.5 points at the 3-mo intervention from baseline (P < 0.001) [intention-to-treat adjusted means: baseline 17.5 points (95% CI: 14.9, 20.2), 3-mo intervention 21.0 points (18.3, 23.7)], whereas LCT supplementation decreased the MMSE score by -0.7 points [baseline 17.0 points (95% CI: 14.4, 19.6), 3-mo intervention 16.3 points (13.6, 18.9)]. At the 3-mo intervention, the difference in MMSE score between the MCT (21.0 points) and LCT (16.3 points) groups became significant (P < 0.05). The increase in MMSE score in response to MCTs was 2.1-fold greater at 3 mo than at 1.5 mo and had returned to baseline value at the 4.5-mo postintervention follow-up visit. CONCLUSION Supplementation with 6 g MCTs/d may improve the cognition of frail elderly individuals. This trial was registered at umin.ac.jp as UMIN000023302.
Collapse
Affiliation(s)
- Sakiko Abe
- Institute of Women's Health Science, Showa Women's University, Tokyo, Japan.,Day Care SKY, Yokohama, Japan
| | - Osamu Ezaki
- Institute of Women's Health Science, Showa Women's University, Tokyo, Japan
| | | |
Collapse
|
155
|
De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, Blasco-Lafarga C, Garcia-Dominguez E, Carretero A, Correas AG, Viña J, Gomez-Cabrera MC. Physical exercise in the prevention and treatment of Alzheimer's disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:394-404. [PMID: 32780691 PMCID: PMC7498620 DOI: 10.1016/j.jshs.2020.01.004] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 05/02/2023]
Abstract
Dementia is one of the greatest global challenges for health and social care in the 21st century. Alzheimer's disease (AD), the most common type of dementia, is by no means an inevitable consequence of growing old. Several lifestyle factors may increase, or reduce, an individual's risk of developing AD. Much has been written over the ages about the benefits of exercise and physical activity. Among the risk factors associated with AD is a low level of physical activity. The relationship between physical and mental health was established several years ago. In this review, we discuss the role of exercise (aerobic and resistance) training as a therapeutic strategy for the treatment and prevention of AD. Older adults who exercise are more likely to maintain cognition. We address the main protective mechanism on brain function modulated by physical exercise by examining both human and animal studies. We will pay especial attention to the potential role of exercise in the modulation of amyloid β turnover, inflammation, synthesis and release of neurotrophins, and improvements in cerebral blood flow. Promoting changes in lifestyle in presymptomatic and predementia disease stages may have the potential for delaying one-third of dementias worldwide. Multimodal interventions that include the adoption of an active lifestyle should be recommended for older populations.
Collapse
Affiliation(s)
- Adrian De la Rosa
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Coralie Arc-Chagnaud
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain; INRA, UMR866 Muscle dynamics and metabolism, University of Montpellier, F-34060, Montpellier, France
| | - Fernando Millan
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Andrea Salvador-Pascual
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | | | | | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Aitor Carretero
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Angela G Correas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain.
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Insitute of Health Research-INCLIVA, Valencia 46010, Spain.
| |
Collapse
|
156
|
Brandt J, Buchholz A, Henry-Barron B, Vizthum D, Avramopoulos D, Cervenka MC. Preliminary Report on the Feasibility and Efficacy of the Modified Atkins Diet for Treatment of Mild Cognitive Impairment and Early Alzheimer's Disease. J Alzheimers Dis 2020; 68:969-981. [PMID: 30856112 DOI: 10.3233/jad-180995] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ketone bodies, the products of fat metabolism, are a source of energy for the brain and are available even when glucose supplies are inadequate (such as with severe carbohydrate deprivation) or its metabolism is faulty (as it is in Alzheimer's disease). This phase I/II randomized clinical trial examined the feasibility of using a modified Atkins diet (MAD) to induce ketogenesis in persons with mild cognitive impairment (MCI) or early AD, and the effect of this diet on memory and other clinical outcomes. In the first 2.5 years of active recruitment, only 27 eligible and willing patients enrolled. After extensive assessment and education, they and their study partners were randomly assigned for 12 weeks to either the MAD or the National Institute on Aging (NIA) recommended diet for seniors. As of April 2018, 9 patients in the MAD arm and 5 in the NIA arm have completed the trial. In spite of extensive teaching, coaching, and monitoring, adherence to both diets was only fair. Among those in the MAD arm who generated at least trace amounts of urinary ketones, there was a large (effect size = 0.53) and statistically significant (p = 0.03) increase in Memory Composite Score between the baseline and week-6 assessment. MAD participants also reported increased energy between baseline and week-6 assessment. Despite challenges to implementing this trial, resulting in a small sample, our preliminary data suggest that the generation of even trace ketones might enhance episodic memory and patient-reported vitality in very early AD.
Collapse
Affiliation(s)
- Jason Brandt
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison Buchholz
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bobbie Henry-Barron
- Institute for Clinical and Translational Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane Vizthum
- Institute for Clinical and Translational Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mackenzie C Cervenka
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
157
|
Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer's Disease. Mol Neurobiol 2020; 57:4961-4977. [PMID: 32820459 DOI: 10.1007/s12035-020-02065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and chronic neurodegenerative disorder that interferes with memory, thinking, and behavior. The consumption of dietary fat has been considered a vital factor for AD as this disease is related to blood-brain barrier function and cholesterol signaling. The ε4 allele of apolipoprotein E (APOE4) is a primary genetic risk factor that encodes one of many proteins accountable for the transport of cholesterol and it is deemed as the leading cholesterol transport proteins in the brain. In case of AD development, the causative factor is the high level of serum/plasma cholesterol. However, this statement is arguable and, in the meantime, the levels of brain cholesterol in individuals with AD are extremely inconstant and levels of cholesterol in the brain and serum/plasma of AD individuals do not reflect cholesterol as a risk factor. In fact, APOE4 is neither fundamental nor sufficient for the advancement of AD; it just acts as a synergistic and increases the danger of AD. Another noticeable characteristic of AD is area-specific decreases in the metabolism of brain glucose. It has been found that the brain cells cannot efficiently metabolize fats; hence, they totally rely upon glucose as a vitality substrate. Thus, suppression of glucose metabolism can possess an intense effect on brain actions. Hypometabolism is frequently found in AD and has quite recently achieved impressive consideration as a plausible target for interfering in the progression of the disease. One promising approach is to keep up the normal supply of glucose to the brain with ketone bodies from the ketogenic diet signifies a potential therapeutic agent for AD. Therefore, this review represents the role of ketogenic diets to combat AD pathogenesis by considering the influence of APOE.
Collapse
|
158
|
Ari C, Murdun C, Goldhagen C, Koutnik AP, Bharwani SR, Diamond DM, Kindy M, D’Agostino DP, Kovacs Z. Exogenous Ketone Supplements Improved Motor Performance in Preclinical Rodent Models. Nutrients 2020; 12:nu12082459. [PMID: 32824223 PMCID: PMC7468837 DOI: 10.3390/nu12082459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Nutritional ketosis has been proven effective for neurometabolic conditions and disorders linked to metabolic dysregulation. While inducing nutritional ketosis, ketogenic diet (KD) can improve motor performance in the context of certain disease states, but it is unknown whether exogenous ketone supplements—alternatives to KDs—may have similar effects. Therefore, we investigated the effect of ketone supplements on motor performance, using accelerating rotarod test and on postexercise blood glucose and R-beta-hydroxybutyrate (R-βHB) levels in rodent models with and without pathology. The effect of KD, butanediol (BD), ketone-ester (KE), ketone-salt (KS), and their combination (KE + KS: KEKS) or mixtures with medium chain triglyceride (MCT) (KE + MCT: KEMCT; KS + MCT: KSMCT) was tested in Sprague-Dawley (SPD) and WAG/Rij (WR) rats and in GLUT-1 Deficiency Syndrome (G1D) mice. Motor performance was enhanced by KEMCT acutely, KE and KS subchronically in SPD rats, by KEKS and KEMCT groups in WR rats, and by KE chronically in G1D mice. We demonstrated that exogenous ketone supplementation improved motor performance to various degrees in rodent models, while effectively elevated R-βHB and in some cases offsets postexercise blood glucose elevations. Our results suggest that improvement of motor performance varies depending on the strain of rodents, specific ketone formulation, age, and exposure frequency.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
- Ketone Technologies, Tampa, FL 33612, USA;
- Correspondence: or ; Tel.: +1-813-240-9925
| | - Cem Murdun
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Craig Goldhagen
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Sahil R. Bharwani
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
| | - David M. Diamond
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Mark Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
| | - Dominic P. D’Agostino
- Ketone Technologies, Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovacs
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary;
| |
Collapse
|
159
|
The Evidence for Geary's Theory on the Role of Mitochondrial Functioning in Human Intelligence Is Not Entirely Convincing. J Intell 2020; 8:jintelligence8030029. [PMID: 32698405 PMCID: PMC7555447 DOI: 10.3390/jintelligence8030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
Geary (2018, 2019) suggested that heritable and environmentally caused differences in mitochondrial functioning affect the integrity and efficiency of neurons and supporting glia cells and may thus contribute to individual differences in higher-order cognitive functioning and physical health. In our comment, we want to pose three questions aimed at different aspects of Geary’s theory that critically evaluate his theory in the light of evidence from neurocognitive, cognitive enhancement, and behavioral genetics research. We question (1) if Geary’s theory explains why certain cognitive processes show a stronger age-related decline than others; (2) if intervention studies in healthy younger adults support the claim that variation in mitochondrial functioning underlies variation in human intelligence; and (3) if predictions arising from the matrilineal heredity of mitochondrial DNA are supported by behavioral genetics research. We come to the conclusion that there are likely many more biological and social factors contributing to variation in human intelligence than mitochondrial functioning.
Collapse
|
160
|
Dietary Interventions to Prevent or Delay Alzheimer’s Disease: What the Evidence Shows. Curr Nutr Rep 2020; 9:210-225. [DOI: 10.1007/s13668-020-00333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
161
|
Affiliation(s)
- Amy Jennings
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich NR4 7UK, UK
| | - Stephen C Cunnane
- Research Center on Aging and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anne Marie Minihane
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich NR4 7UK, UK,
| |
Collapse
|
162
|
Abstract
The joint attack on the body by metabolic acidosis and oxidative stress suggests that treatment in degenerative diseases, including Alzheimer's disease (AD), may require a normalizing of extracellular and intracellular pH with simultaneous supplementation of an antioxidant combination cocktail at a sufficiently high dose. Evidence is also accumulating that combinations of antioxidants may be more effective, taking advantage of synergistic effects of appropriate antioxidants as well as a nutrient-rich diet to prevent and reverse AD. This review focuses on nutritional, nutraceutical and antioxidant treatments of AD, although they can also be used in other chronic degenerative and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerald Veurink
- Naturels, Armadale, Western Australia, Australia.,Department of Surgery, University of Western Australia, Perth, Australia.,Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India.,Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, India
| |
Collapse
|
163
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
164
|
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med 2020; 10:jpm10020042. [PMID: 32455946 PMCID: PMC7354630 DOI: 10.3390/jpm10020042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the sixth leading cause of death and is correlated with obesity, which is the second leading cause of preventable diseases in the United States. Obesity, diabetes, and AD share several common features, and inflammation emerges as the central link. High-calorie intake, elevated free fatty acids, and impaired endocrine function leads to insulin resistance and systemic inflammation. Systemic inflammation triggers neuro-inflammation, which eventually hinders the metabolic and regulatory function of the brain mitochondria leading to neuronal damage and subsequent AD-related cognitive decline. As an early event in the pathogenesis of AD, chronic inflammation could be considered as a potential biomarker in the treatment strategies for AD.
Collapse
|
165
|
Sáez-Orellana F, Octave JN, Pierrot N. Alzheimer's Disease, a Lipid Story: Involvement of Peroxisome Proliferator-Activated Receptor α. Cells 2020; 9:E1215. [PMID: 32422896 PMCID: PMC7290654 DOI: 10.3390/cells9051215] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Mutations in genes encoding proteins involved in amyloid-β peptide (Aβ) production are responsible for inherited AD cases. The amyloid cascade hypothesis was proposed to explain the pathogeny. Despite the fact that Aβ is considered as the main culprit of the pathology, most clinical trials focusing on Aβ failed and suggested that earlier interventions are needed to influence the course of AD. Therefore, identifying risk factors that predispose to AD is crucial. Among them, the epsilon 4 allele of the apolipoprotein E gene that encodes the major brain lipid carrier and metabolic disorders such as obesity and type 2 diabetes were identified as AD risk factors, suggesting that abnormal lipid metabolism could influence the progression of the disease. Among lipids, fatty acids (FAs) play a fundamental role in proper brain function, including memory. Peroxisome proliferator-activated receptor α (PPARα) is a master metabolic regulator that regulates the catabolism of FA. Several studies report an essential role of PPARα in neuronal function governing synaptic plasticity and cognition. In this review, we explore the implication of lipid metabolism in AD, with a special focus on PPARα and its potential role in AD therapy.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Nathalie Pierrot
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| |
Collapse
|
166
|
Dominguez LJ, Barbagallo M, Muñoz-Garcia M, Godos J, Martinez-Gonzalez MA. Dietary Patterns and Cognitive Decline: key features for prevention. Curr Pharm Des 2020; 25:2428-2442. [PMID: 31333085 DOI: 10.2174/1381612825666190722110458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 01/24/2023]
Abstract
The decline in cognitive function is generally the result of the complex interaction of several factors. First of all, age, but also demographic, educational, genetic, socio-economic, and environmental determinants, including nutrition. Cognitive decline and dementia prevalence are increasing, and they are projected to continue increasing in the next decades due to the aging of the world population. Currently, there are no effective pharmacological treatments for these devastating and disabling conditions, which emphasize the key role of preventive strategies. There is compelling evidence of the role of diet and lifestyle on cognitive function. Therefore, dietary/ nutritional approaches that contribute to prevent, or slow cognitive decline may have a remarkable public health impact. Numerous studies have explored the role of dietary components and patterns on age-associated cognitive decline, with accruing evidence that combinations of foods and nutrients can have synergistic effects beyond those attributable to individual foods or nutrients. Dietary patterns show the strongest evidence for slowing the development of cognitive decline, Alzheimer's disease and other dementias including the Mediterranean diet, the Dietary Approaches to Stop Hypertension diet, and their combination (the MedDiet-DASH Intervention for Neurodegenerative Delay - MIND), among others with few positive results. There are also dietary patterns with no evidence of such effects. This review examines the evidence for the effects of some dietary patterns as neuroprotective with a potential to delay cognitive decline and the onset of dementia.
Collapse
Affiliation(s)
- Ligia J Dominguez
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | - Mariana Muñoz-Garcia
- Department of Preventive Medicine and Public Health, University of Navarra-IDISNA, Pamplona, Spain
| | | | - Miguel Angel Martinez-Gonzalez
- Department of Preventive Medicine and Public Health, University of Navarra-IDISNA, Pamplona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, United States
| |
Collapse
|
167
|
Norgren J, Sindi S, Sandebring-Matton A, Kåreholt I, Daniilidou M, Akenine U, Nordin K, Rosenborg S, Ngandu T, Kivipelto M. Ketosis After Intake of Coconut Oil and Caprylic Acid-With and Without Glucose: A Cross-Over Study in Healthy Older Adults. Front Nutr 2020; 7:40. [PMID: 32351966 PMCID: PMC7175812 DOI: 10.3389/fnut.2020.00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: Medium-chain-triglycerides (MCT), formed by fatty acids with a length of 6-12 carbon atoms (C6-C12), constitute about two thirds of coconut oil (Coc). MCT have specific metabolic properties which has led them to be described as ketogenic even in the absence of carbohydrate restriction. This effect has mainly been demonstrated for caprylic acid (C8), which constitutes about 6-8% of coconut oil. Our aim was to quantify ketosis and blood glucose after intake of Coc and C8, with and without glucose intake. Sunflower oil (Suf) was used as control, expected to not break fasting ketosis, nor induce supply-driven ketosis. Method: In a 6-arm cross-over design, 15 healthy volunteers-age 65-73, 53% women-were tested once a week. After a 12-h fast, ketones were measured during 4 h after intake of coffee with cream, in combination with each of the intervention arms in a randomized order: 1. Suf (30 g); 2. C8 (20 g) + Suf (10 g); 3. C8 (20 g) + Suf (10 g) + Glucose (50 g); 4. Coc (30 g); 5. Coc (30 g) + Glucose (50 g); 6. C8 (20 g) + Coc (30 g). The primary outcome was absolute blood levels of the ketone β-hydroxybutyrate, area under the curve (AUC). ANOVA for repeated measures was performed to compare arms. Results: β-hydroxybutyrate, AUC/time (mean ± SD), for arms were 1: 0.18 ± 0.11; 2: 0.45 ± 0.19; 3: 0.28 ± 0.12; 4: 0.22 ± 0.12; 5: 0.08 ± 0.04; 6: 0.45 ± 0.20 (mmol/L). Differences were significant (all p ≤ 0.02), except for arm 2 vs. 6, and 4 vs. 1 & 3. Blood glucose was stable in arm 1, 2, 4, & 6, at levels slightly below baseline (p ≤ 0.05) at all timepoints hours 1-4 after intake. Conclusions: C8 had a higher ketogenic effect than the other components. Coc was not significantly different from Suf, or C8 with glucose. In addition, we report that a 16-h non-carbohydrate window contributed to a mild ketosis, while blood glucose remained stable. Our results suggest that time-restricted feeding regarding carbohydrates may optimize ketosis from intake of MCT. Clinical Trial Registration: The study was registered as a clinical trial on ClinicalTrials.gov, NCT03904433.
Collapse
Affiliation(s)
- Jakob Norgren
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Anna Sandebring-Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Neuro Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Kåreholt
- Department of Neurobiology, Care Sciences and Society (NVS), Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,School of Health and Welfare, Institute of Gerontology, Aging Research Network-Jönköping (ARN-J), School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Makrina Daniilidou
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Akenine
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Nordin
- Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Rosenborg
- Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Public Health Promotion Unit, Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, United Kingdom.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurology, Institute of Clinical Medicine and Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Research and Development Unit, Stockholms Sjukhem, Stockholm, Sweden
| |
Collapse
|
168
|
Lilamand M, Porte B, Cognat E, Hugon J, Mouton-Liger F, Paquet C. Are ketogenic diets promising for Alzheimer's disease? A translational review. ALZHEIMERS RESEARCH & THERAPY 2020; 12:42. [PMID: 32290868 PMCID: PMC7158135 DOI: 10.1186/s13195-020-00615-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 01/22/2023]
Abstract
Background Brain amyloid deposition and neurofibrillary tangles in Alzheimer’s disease (AD) are associated with complex neuroinflammatory reactions such as microglial activation and cytokine production. Glucose metabolism is closely related to neuroinflammation. Ketogenic diets (KDs) include a high amount of fat, low carbohydrate and medium-chain triglyceride (MCT) intake. KDs lead to the production of ketone bodies to fuel the brain, in the absence of glucose. These nutritional interventions are validated treatments of pharmacoresistant epilepsy, consequently leading to a better intellectual development in epileptic children. In neurodegenerative diseases and cognitive decline, potential benefits of KD were previously pointed out, but the published evidence remains scarce. The main objective of this review was to critically examine the evidence regarding KD or MCT intake effects both in AD and ageing animal models and in humans. Main body We conducted a review based on a systematic search of interventional trials published from January 2000 to March 2019 found on MEDLINE and Cochrane databases. Overall, 11 animal and 11 human studies were included in the present review. In preclinical studies, this review revealed an improvement of cognition and motor function in AD mouse model and ageing animals. However, the KD and ketone supplementation were also associated with significant weight loss. In human studies, most of the published articles showed a significant improvement of cognitive outcomes (global cognition, memory and executive functions) with ketone supplementation or KD, regardless of the severity of cognitive impairments previously detected. Both interventions seemed acceptable and efficient to achieve ketosis. Conclusion The KD or MCT intake might be promising ways to alter cognitive symptoms in AD, especially at the prodromal stage of the disease. The need for efficient disease-modifying strategies suggests to pursue further KD interventional studies to assess the efficacy, the adherence to this diet and the potential adverse effects of these nutritional approaches.
Collapse
Affiliation(s)
- Matthieu Lilamand
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France. .,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France. .,Department of Geriatrics, Bichat and Bretonneau Hospitals, APHP Nord Université de Paris, 75018, Paris, France.
| | - Baptiste Porte
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - Emmanuel Cognat
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - Jacques Hugon
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - François Mouton-Liger
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| | - Claire Paquet
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France.,Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital 200, rue du Faubourg Saint Denis, 75010, Paris, France
| |
Collapse
|
169
|
Vinciguerra F, Graziano M, Hagnäs M, Frittitta L, Tumminia A. Influence of the Mediterranean and Ketogenic Diets on Cognitive Status and Decline: A Narrative Review. Nutrients 2020; 12:E1019. [PMID: 32276339 PMCID: PMC7231139 DOI: 10.3390/nu12041019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia, accounting for up to 70% of dementia cases. AD is a slowly progressive disease, which causes global mental deterioration by affecting various cognitive areas. A growing body of evidence has demonstrated that lifestyle habits and nutritional patterns could delay the natural course of the neurodegeneration process. There is no single dietary pattern unequivocally proven to prevent AD. Nevertheless, epidemiological data suggest that by adopting several dietary habits, especially if accompanied with a healthy lifestyle, the negative consequences of AD could potentially be delayed. Alongside with others, two specific eating patterns have been well investigated concerning their potential beneficial effect on cognitive status: the Mediterranean diet (MedDi) and the Ketogenic Diet (KD). Despite the different underlying mechanisms, both of them have demonstrated a fairly profitable role in reducing or delaying cognitive impairment. The aim of the present narrative review is to overview the existing research on the efficacy of MedDi and KD against AD-related cognitive decline, focusing on the proposed protective mechanisms of action. Although the current knowledge on this complex topic does not allow us, at this point, to make exhaustive conclusions, this information could be of help in order to better characterize the possible role of MedDi and KD as nonpharmacological therapies in the treatment of AD and, more generically, of neurodegenerative disorders.
Collapse
Affiliation(s)
- Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| | - Marco Graziano
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| | - Maria Hagnäs
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
- Center for Life Course Health Research, University of Oulu, Aapistie 5/PO Box 5000, 90014 Oulu, Finland
- Rovaniemi Health Center, Koskikatu 25, 96200 Rovaniemi, Finland
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
- Diabetes, Obesity and Dietetic Center, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy
| | - Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Medical Center, Via Palermo 636, 95122 Catania, Italy; (F.V.); (M.G.); (M.H.); (L.F.)
| |
Collapse
|
170
|
Dąbek A, Wojtala M, Pirola L, Balcerczyk A. Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients 2020; 12:nu12030788. [PMID: 32192146 PMCID: PMC7146425 DOI: 10.3390/nu12030788] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ketone bodies (KBs), comprising β-hydroxybutyrate, acetoacetate and acetone, are a set of fuel molecules serving as an alternative energy source to glucose. KBs are mainly produced by the liver from fatty acids during periods of fasting, and prolonged or intense physical activity. In diabetes, mainly type-1, ketoacidosis is the pathological response to glucose malabsorption. Endogenous production of ketone bodies is promoted by consumption of a ketogenic diet (KD), a diet virtually devoid of carbohydrates. Despite its recently widespread use, the systemic impact of KD is only partially understood, and ranges from physiologically beneficial outcomes in particular circumstances to potentially harmful effects. Here, we firstly review ketone body metabolism and molecular signaling, to then link the understanding of ketone bodies’ biochemistry to controversies regarding their putative or proven medical benefits. We overview the physiological consequences of ketone bodies’ consumption, focusing on (i) KB-induced histone post-translational modifications, particularly β-hydroxybutyrylation and acetylation, which appears to be the core epigenetic mechanisms of activity of β-hydroxybutyrate to modulate inflammation; (ii) inflammatory responses to a KD; (iii) proven benefits of the KD in the context of neuronal disease and cancer; and (iv) consequences of the KD’s application on cardiovascular health and on physical performance.
Collapse
Affiliation(s)
- Arkadiusz Dąbek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (M.W.)
| | - Martyna Wojtala
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (M.W.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, 165 Chemin du Grand Revoyet - BP12, F-69495 Pierre Bénite CEDEX, France;
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (M.W.)
- Correspondence: ; Tel.: +48 42 635 45 10
| |
Collapse
|
171
|
Chatterjee P, Fernando M, Fernando B, Dias CB, Shah T, Silva R, Williams S, Pedrini S, Hillebrandt H, Goozee K, Barin E, Sohrabi HR, Garg M, Cunnane S, Martins RN. Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease. Mech Ageing Dev 2020; 186:111209. [DOI: 10.1016/j.mad.2020.111209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
|
172
|
Avgerinos KI, Egan JM, Mattson MP, Kapogiannis D. Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer's disease. A systematic review and meta-analysis of human studies. Ageing Res Rev 2020; 58:101001. [PMID: 31870908 DOI: 10.1016/j.arr.2019.101001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/AIM The brain in Alzheimer's disease shows glucose hypometabolism but may utilize ketones for energy production. Ketone levels can potentially be boosted through oral intake of Medium Chain Triglycerides (MCTs). The aim of this meta-analysis is to investigate the effect of MCTs on peripheral ketone levels and cognitive performance in patients with mild cognitive impairment and Alzheimer's disease. METHODS Medline, Scopus and Web of Science were searched for literature up to March 1, 2019. Meta-analyses were performed by implementing continuous random-effects models and outcomes were reported as weighted Mean Differences (MDs) or Standardized Mean Differences (SMDs). RESULTS Twelve records (422 participants) were included. Meta-analysis of RCTs showed that, compared with placebo, MCTs elevated beta-hydroxybutyrate [MD = 0.355; 95 % CI (0.286, 0.424), I2 = 0 %], showed a trend towards cognitive improvement on ADAS-Cog [MD = -0.539; 95% CI (-1.239, -0.161), I2 = 0 %], and significantly improved cognition on a combined measure (ADAS-Cog with MMSE) [SMD = -0.289; 95 % CI (-0.551, -0.027), I2 = 0 %]. CONCLUSIONS In this meta-analysis, we demonstrated that MCTs can induce mild ketosis and may improve cognition in patients with mild cognitive impairment and Alzheimer's disease. However, risk of bias of existing studies necessitates future trials.
Collapse
|
173
|
White H, Venkatesh B, Jones M, Kruger PS, Walsham J, Fuentes H. Inducing ketogenesis via an enteral formulation in patients with acute brain injury:a phase II study. Neurol Res 2020; 42:275-285. [PMID: 32098578 DOI: 10.1080/01616412.2019.1709743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Although extensively studied in children, the safety and tolerability of ketone supplementation in adults is unclear, particularly in the acute brain injury population. The purpose of this study was to examine the feasibility and safety of inducing ketosis using an enteric ketogenic formulation and determine its impact on intracranial and cerebral perfusion pressures and metabolic parameters.Methods: Prospective interventional Phase II trial of ventilated critically ill patients with acute brain injury administered a ketogenic feed over a 6 day period.Results: 20 patients were recruited, 5 females and 15 males, 3 with stroke, 2 with subarachnoid haemorrhage and 15 with traumatic brain injury. Feeds were well tolerated with 19 patients completing study. There was a significant increase in both plasma beta-hydroxybutyrate and acetoacetate from 0.24± 0.31 mmol/l and 0.19 ± 0.16 mmol/l to 0.61 ± 0.53 mmol/l (p =0.0005) and 0.52 ± 0.40 mmol/l (p<0.0001) respectively over the 6 day period. Total daily Ketocal® caloric intake was positively correlated with plasma beta-hydroxybutyrate concentrations (p=0.0011). There was no significant correlation between the cerebral hypertension and cerebral hypoperfusion indices and plasma ketone concentrations. In 95% of patients there were no clinically significant changes in acid/base status over the 6 days with pH remaining within normal range.Conclusion: In patients with acute brain injury, an enterally administered ketogenic formulation increased plasma ketone concentrations, was well tolerated, did not impact on cerebral hemodynamics and can be safely administered.Clinical trial registered at the Australian New Zealand Clinical Trials Registry (ACTRN12616000332426)Abbreviations: BHB: betahydroxybutyrate; AcAc: acetoacetate; ABI: acute brain injury; TBI: traumatic brain injury; CSF: cerebrospinal fluid; SAH: subarachnoid injury; CVA: cerebrovascular accidents; ICP: intracranial pressure; CPP: cerebral perfusion pressure; ICU: intensive care unit; EVD: external ventricular device; CHI: cerebral hypoperfusion index; IHI: intracranial hypertension index; GCS: Glasgow Coma Scale.
Collapse
Affiliation(s)
- Hayden White
- Critical Care Medicine, Department of Intensive Care, Griffiths University, Logan Hospital, Logan, Australia
| | - Balasubramanian Venkatesh
- Critical Care Medicine, University of Queensland, Princess Alexandra & Wesley Hospitals, Brisbane, Australia
| | - Mark Jones
- School of Public Health, Faculty of Medicine and Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Peter S Kruger
- Critical Care Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
| | - James Walsham
- Department of intensive care medicine, Princess Alexandra Hospitals
| | - Hesly Fuentes
- Department of Intensive Care, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
174
|
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041505. [PMID: 32098382 PMCID: PMC7073164 DOI: 10.3390/ijms21041505] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids, as the basic component of cell membranes, play an important role in human health as well as brain function. The brain is highly enriched in lipids, and disruption of lipid homeostasis is related to neurologic disorders as well as neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is associated with changes in lipid composition. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were found in the early stage of AD. Genetic and environmental factors such as apolipoprotein and lipid transporter carrying status and dietary lipid content are associated with AD. Insight into the connection between lipids and AD is crucial to unraveling the metabolic aspects of this puzzling disease. Recent advances in lipid analytical methodology have led us to gain an in-depth understanding on lipids. As a result, lipidomics have becoming a hot topic of investigation in AD, in order to find biomarkers for disease prediction, diagnosis, and prevention, with the ultimate goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
| | - Yuan-Kun Tu
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - I-Ming Jou
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-4254; Fax: +886-6-275-8781
| |
Collapse
|
175
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
176
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
177
|
Veiga S, Rodríguez-Martín A, Garcia-Ribas G, Arribas I, Menacho-Román M, Calero M. Validation of a novel and accurate ApoE4 assay for automated chemistry analyzers. Sci Rep 2020; 10:2138. [PMID: 32034174 PMCID: PMC7005722 DOI: 10.1038/s41598-020-58841-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 11/19/2022] Open
Abstract
The allele ε4 of the apolipoprotein E gene (APOE ε4) is the major genetic risk factor for non-dominantly inherited Alzheimer’s Disease (AD). Current techniques for APOE ε4 carriers identification show good accuracy but have several disadvantages that limit its implementation in a clinical laboratory. These include the need for sample preprocessing, poor automation, low throughput, requirement of additional equipment, and high cost. We followed ISO 13485 guidelines to validate the e4Risk test, a new latex-enhanced immunoturbidimetric blood assay for apolipoprotein E4 (ApoE4) determination in human plasma samples. The test showed high performance in terms of lot to lot variability, precision, interferences, reagents stability, prozone, and detectability. Furthermore, diagnostic accuracy is almost equal (99%) to the gold standard, APOE ε4 genotyping by polymerase chain reaction (PCR). Furthermore, we demonstrated that the e4Risk test can be adapted to any clinical chemistry analyzer, including the high throughput analyzers present in most hospitals and clinical laboratories. The e4Risk test versatility, low cost, and easiness provides an excellent solution for APOE ε4 carriers identification using the same blood sample drawn for biochemical diagnostic work-up of AD patients, which can have important advantages for patient stratification in clinical trials, preventative strategies for AD, and clinical assessment of risk for brain amyloidosis.
Collapse
Affiliation(s)
| | | | - Guillermo Garcia-Ribas
- Department of Neurology, Ramón y Cajal University Hospital, Madrid, Spain.,Institute Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
| | - Ignacio Arribas
- Department of Clinical Biochemistry, Ramón y Cajal University Hospital, Madrid, Spain.,Institute Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
| | - Miriam Menacho-Román
- Department of Clinical Biochemistry, Ramón y Cajal University Hospital, Madrid, Spain.,Institute Ramón y Cajal for Health Research (IRYCIS), Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme (UFIEC), CIBERNED, and CIEN Foundation, Queen Sofia Foundation's Alzheimer Center, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
178
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
179
|
Vandenberghe C, St-Pierre V, Fortier M, Castellano CA, Cuenoud B, Cunnane SC. Medium Chain Triglycerides Modulate the Ketogenic Effect of a Metabolic Switch. Front Nutr 2020; 7:3. [PMID: 32083091 PMCID: PMC7005013 DOI: 10.3389/fnut.2020.00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ketones provide an alternative brain fuel and may be neuroprotective in older people. Little is known of how to optimize the ketogenic effect of C8:0–C10:0 medium chain triglyceride supplement (kMCT). Metabolic switching (MS) from glucose to ketones as a fuel may have metabolic benefits but has not been extensively studied in humans. The objective of the present study was to use an 8 h metabolic study day protocol to assess the influence of typical components of MS, including a kMCT supplement, low-carbohydrate meal and meal timing, on blood ketones, glucose, insulin and free fatty acids (FFA). In one test, the effect of age was also investigated. Over the 8 h metabolic study day, two 10 g doses of the kMCT increased the plasma ketone response by 19% while reducing overall glycemia by 12% without altering insulin or FFA levels. Moreover, a single early meal (breakfast but no lunch) potentiated the ketogenic effect of MS over 8 h, compared to a single delayed meal (lunch but no breakfast). Age and the low carbohydrate meal did not affect the ketones response. We conclude that an 8-h test period can be used to assess metabolic changes during short-term MS. kMCT provide a robust short-term increase in ketones and might enhance the metabolic effectiveness of short-term or intermittent fasting as a component of MS.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen C Cunnane
- Research Center on Aging, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
180
|
Versele R, Corsi M, Fuso A, Sevin E, Businaro R, Gosselet F, Fenart L, Candela P. Ketone Bodies Promote Amyloid-β 1-40 Clearance in a Human in Vitro Blood-Brain Barrier Model. Int J Mol Sci 2020; 21:E934. [PMID: 32023814 PMCID: PMC7037612 DOI: 10.3390/ijms21030934] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-β (Aβ) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aβ across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aβ load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aβ transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aβ transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aβ clearance. Finally, the combined use of KBs promotes Aβ efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aβ clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.
Collapse
Affiliation(s)
- Romain Versele
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Mariangela Corsi
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Dip. di Chirurgia “P. Valdoni”, Via A. Scarpa 16, 00161 Rome, Italy;
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Laurence Fenart
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| |
Collapse
|
181
|
Li RJ, Liu Y, Liu HQ, Li J. Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration. J Food Biochem 2020; 44:e13140. [PMID: 31943235 DOI: 10.1111/jfbc.13140] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Ketogenic diet (KD), the "High-fat, low-carbohydrate, adequate-protein" diet strategy, replacing glucose with ketone bodies, is effective against several diseases, from intractable epileptic seizures, metabolic disorders, tumors, autosomal dominant polycystic kidney disease, and neurodegeneration to skeletal muscle atrophy and peripheral neuropathy. Key mechanisms include augmented mitochondrial efficiency, reduced oxidative stress, and regulated phospho-AMP-activated protein kinase, gamma-aminobutyric acid-glutamate, Na+/ K+ pump, leptin and adiponectin levels, ghrelin levels, lipogenesis, ketogenesis, lipolysis, and gluconeogenesis. In cancer cells, KD targets glucose metabolism, suppresses insulin-like growth factor-1 and PI3K/AKT/mTOR pathways, and reduces cancer cachexia and muscle waste and fatigue. An associated increased skeletal proliferator-activated receptor-γ coactivator-1α activity alters systemic ketone body homeostasis, contributing toward attenuated diabetic hyperketonemia. Antioxidative and anti-inflammatory properties enable KD enhance endurance and sports performances while preventing exercise-induced muscle and organ debility. KD reduces metabolic syndromes-associated allodynia and promotes peripheral axonal and sensory regeneration. This review enlightens effects of KD on various disease conditions. PRACTICAL APPLICATIONS: It is increasingly being realized that diet plays a very important role in our fight against several diseases. This can range from neurological disorders to diabetes and cancer. In this context, the potential of KD, the "High-fat, low-carbohydrate, adequate-protein" diet strategy, is increasingly being realized. In this article, we provide a comprehensive analysis of the benefits of KD against many diseases and discuss the underlying biochemical mechanisms. We hope that our write-up will stimulate further research on KD and help generate an interest for the populations to adopt this healthy diet. It can help overcome the problems associated with weight and dysregulated metabolism.
Collapse
Affiliation(s)
- Rui-Jun Li
- The Handsurgery Department, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- The Handsurgery Department, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- The Anesthesia Department, The First Hospital of Jilin University, Changchun, China
| | - Ji Li
- The Anesthesia Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
182
|
Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:79-110. [PMID: 32739015 PMCID: PMC9989941 DOI: 10.1016/bs.irn.2020.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To meet its high energy demands, the brain mostly utilizes glucose. However, the brain has evolved to exploit additional fuels, such as ketones, especially during prolonged fasting. With aging and neurodegenerative diseases (NDDs), the brain becomes inefficient at utilizing glucose due to changes in glia and neurons that involve glucose transport, glycolytic and Krebs cycle enzyme activities, and insulin signaling. Positron emission tomography and magnetic resonance spectroscopy studies have identified glucose metabolism abnormalities in aging, Alzheimer's disease (AD) and other NDDs in vivo. Despite glucose hypometabolism, brain cells can utilize ketones efficiently, thereby providing a rationale for the development of therapeutic ketogenic interventions in AD and other NDDs. This review compares available ketogenic interventions and discusses the potential of the potent oral Ketone Ester for future therapeutic use in AD and other NDDs characterized by inefficient glucose utilization.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
183
|
Caplliure‐Llopis J, Peralta‐Chamba T, Carrera‐Juliá S, Cuerda‐Ballester M, Drehmer‐Rieger E, López‐Rodriguez MM, de la Rubia Ortí JE. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci Nutr 2020; 8:23-35. [PMID: 31993129 PMCID: PMC6977418 DOI: 10.1002/fsn3.1324] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to have a neuroprotective effect to improve energy balance, increasing survival and the number of motor neurons. This ketogenesis can be achieved after following a Mediterranean diet which is associated with great benefits in other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS. These benefits are due to the high antioxidant power especially based on polyphenols contained mainly in olive oil, wine, nuts, or berries. In short, KBs could be considered as a promising option to treat ALS, representing an alternative source to glucose in motor neurons by providing neuroprotection. In addition, treatment results can be improved as ketogenesis can be achieved (increase in KBs) by following a Mediterranean diet, thanks to the high antioxidant properties which, at the same time, would improve the high oxidative stress that characterizes the disease.
Collapse
Affiliation(s)
- Jordi Caplliure‐Llopis
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- University Hospital la RiberaAlziraSpain
| | | | - Sandra Carrera‐Juliá
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- Faculty of Medicine and OdontologyCatholic. University of ValenciaValenciaSpain
| | | | - Eraci Drehmer‐Rieger
- Department of Health and Functional ValorizationCatholic University of ValenciaValenciaSpain
| | | | | |
Collapse
|
184
|
Fatima Z, Singh S, Hameed S. Nanophytotherapeutic Potential of Essential Oils Against Candida Infections. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
185
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid β in the form of extracellular plaques and by intracellular neurofibrillary tangles, with eventual neurodegeneration and dementia. There is currently no disease-modifying treatment though several symptomatic medications exist with modest benefit on cognition. Acetylcholinesterase inhibitors have a consistent benefit across all stages of dementia; their benefit in mild cognitive impairment and prodromal AD is unproven. Memantine has a smaller benefit on cognition overall which is limited to the moderate to severe stages, and the combination of a cholinesterase inhibitor and memantine may have additional efficacy. Evidence for the efficacy of vitamin E supplementation and medical foods is weak but might be considered in the context of cost, availability, and safety in individual patients. Apparently promising disease-modifying interventions, mostly addressing the amyloid cascade hypothesis of AD, have recently failed to demonstrate efficacy so novel approaches must be considered.
Collapse
Affiliation(s)
- Elizabeth Joe
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| | - John M Ringman
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| |
Collapse
|
186
|
Stoykovich S, Gibas K. APOE ε4, the door to insulin-resistant dyslipidemia and brain fog? A case study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:264-269. [PMID: 30923733 PMCID: PMC6423699 DOI: 10.1016/j.dadm.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For decades, scientists have known that carriers of the apolipoprotein E ε4 (APOE ε4) allele (homozygous/heterozygous) are at respectively higher risk for developing Alzheimer's disease (AD). Although previous research reveals that the APOE ε4 variant impacts the clearance capacity and degradation of β-amyloid from the brain, as compared with APOE ε3 (wild type with normal risk) and APOE ε2 (variant with accelerated clearance and reduced risk), little has been documented about APOE ε4's dual role in cholesterol transport, both peripheral and cerebral, and the effects of sluggish APOE ε4 cholesterol transport on cerebral metabolic rate. An understanding of the connection between brain metabolism and brain fat/cholesterol transport may unlock new prevention strategies for treating patients with a comorbidity of metabolic syndrome (MetS) with cognitive impairment. Recent findings suggest that the APOE ε4 carrier impedes the shuttling of lipids from neurons and circumvents the storage of fat within the glia lipid droplets. This sluggish transport of lipids to triglyceride droplets in the glia cells can lead to dangerous reactive oxygen species and hydroxyl-free radicals as lipids are prematurely oxidized. This case study evaluates the effects of a 10-week clinically prescribed ketogenic diet (KD) with a 68-year-old male, heterozygous APOE ε4 carrier, with a dual diagnosis of mild AD and type 2 diabetes (T2DM). The patient was administering both long- and short-acting injectable insulin to mediate his T2DM for 15+ years. Clinical goals of the intervention included increased hypothalamic and peripheral insulin sensitivity as measured via blood ketones with the Abbott Precision Xtra Blood Ketone Meter to confirm metabolic flexibility; controlled plasma glucose as measured via Abbott Precision Xtra Blood Glucose Meter and HgA1c via venous draw; normalization of lipid panel via venous draw and improved memory with restoration of cognitive functionality measured via the Montreal Cognitive Assessment. The Montreal Cognitive Assessment is considered to be a gold standard assessment in the diagnosis of early AD. Physiological biomarkers for T2DM/MetS and cognitive functionality were assessed before/during/after intervention. These measures included HOMA-IR, triglycerides/HDL ratio, HgA1c, fasting glucose, fasting insulin, complete fasting lipid panel and the PEAK mobile application for real-time measurement of cognitive improvement. The results were statistically significant. The patient's baseline Montreal Cognitive Assessment improved from 23/30 (mild AD) to 29/30 (normal ≥ 26). His T2DM was reversed. Pre-intervention HgA1c was 7.8% (T2DM); post intervention HgA1c measured 5.5% (normal). Likewise, the patient achieved statistically significant improvements in the other aforementioned biomarkers of MetS. The results of this case study suggest that a clinically prescribed ketogenic diet has strong potential to restore systemic insulin sensitivity and metabolic flexibility in diabetic, APOE ε4 heterozygous carriers. Mechanisms of action point to normalization of homeostatic negative feedback loops resetting/restoring lipid synthesis/utilization and glucose (insulin)/fatty acid (glucagon) utilization/production in both the body and brain, resulting in increased cerebral metabolism, improved cognition, and reversal of T2DM via renewed cellular insulin sensitivity.
Collapse
|
187
|
Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macías-González M, Tinahones FJ. Keto microbiota: A powerful contributor to host disease recovery. Rev Endocr Metab Disord 2019; 20:415-425. [PMID: 31720986 PMCID: PMC6938789 DOI: 10.1007/s11154-019-09518-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gut microbiota (GM) is a key contributor to host metabolism and physiology. Data generated on comparing diseased and healthy subjects have reported changes in the GM profile between both health states, suggesting certain bacterial composition could be involved in pathogenesis. Moreover, studies reported that reshaping of GM could contribute actively to disease recovery. Interestingly, ketogenic diets (KD) have emerged recently as new economic dietotherapeutic strategy to combat a myriad of diseases (refractory epilepsy, obesity, cancer, neurodegenerative diseases…). KD, understood in a broad sense, refers to whatever dietetic approximation, which causes physiological ketosis. Therefore, high fat-low carbs diets, fasting periods or caloric restriction constitute different strategies to produce an increase of main ketones bodies, acetoacetate and β-hydroxybutyrate, in blood. Involved biological mechanisms in ketotherapeutic effects are still to be unravelled. However, it has been pointed out that GM remodelling by KD, from now on "keto microbiota", may play a crucial role in patient response to KD treatment. In fact, germ-free animals were resistant to ketotherapeutic effects; reinforcing keto microbiota may be a powerful contributor to host disease recovery. In this review, we will comment the influence of gut microbiota on host, as well as, therapeutic potential of ketogenic diets and keto microbiota to restore health status. Current progress and limitations will be argued too. In spite of few studies have defined applicability and mechanisms of KD, in the light of results, keto microbiota might be a new useful therapeutic agent.
Collapse
Affiliation(s)
- Amanda Cabrera-Mulero
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Alberto Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
| | - Borja Bandera
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Macías-González
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
188
|
Wu Y, Gong Y, Luan Y, Li Y, Liu J, Yue Z, Yuan B, Sun J, Xie C, Li L, Zhen J, Jin X, Zheng Y, Wang X, Xie L, Wang W. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer's disease. FASEB J 2019; 34:1412-1429. [PMID: 31914599 DOI: 10.1096/fj.201901984r] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Accumulation of amyloid β (Aβ) peptide, inflammation, and oxidative stress contribute to Alzheimer's disease (AD) and trigger complex pathogenesis. The ketone body β-hydroxybutyrate (BHBA) is an endogenous metabolic intermediate that protects against stroke and neurodegenerative diseases, but the underlying mechanisms are unclear. The present study aims to elucidate the protective effects of BHBA in the early stage of AD model and investigate the underlying molecular mechanisms. Three-and-half-month-old double-transgenic mice (5XFAD) overexpressing β-amyloid precursor protein (APP) and presenilin-1 (PS1) were used as the AD model. The 5XFAD mice received 1.5 mmol/kg/d BHBA subcutaneously for 28 days. Morris water maze test, nest construction, and passive avoidance experiments were performed to assess the therapeutic effects on AD prevention in vivo, and brain pathology of 5XFAD mice including amyloid plaque deposition and microglia activation were assessed. Gene expression profiles in the cortexes of 5XFAD- and BHBA-treated 5XFAD mice were performed with high-throughput sequencing and bioinformatic analysis. Mouse HT22 cells were treated with 2 mM BHBA to explore its in vitro protective effects of BHBA on hippocampal neurons against Aβ oligomer toxicity, ATP production, ROS generation, and mitochondrial aerobic respiratory function. APP, BACE1, and neprilysin (NEP) expression levels were evaluated in HT22 cells following treatment with BHBA by measuring the presence or absence of G protein-coupled receptor 109A (GPR109A). BHBA improved cognitive function of 5XFAD mice in Morris water maze test, nesting construction and passive avoidance experiments, and attenuated Aβ accumulation and microglia overactivation in the brain. BHBA also enhanced mitochondrial respiratory function of hippocampal neurons and protected it from Aβ toxicity. The enzymes, APP and NEP were regulated by BHBA via G-protein-coupled receptor 109A (GPR109A). Furthermore, RNA sequencing revealed that BHBA-regulated genes mainly annotated in aging, immune system, nervous system, and neurodegenerative diseases. Our data suggested that BHBA confers protection against the AD-like pathological events in the AD mouse model by targeting multiple aspects of AD and it may become a promising candidate for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yancheng Wu
- Innovative Institute of Animal Healthy Breeding, Key Laboratory of Waterfowl Healthy Breeding of Guangdong Province, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China.,College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yuhong Gong
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yongxin Luan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Yang Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zitong Yue
- Changchun Jida Middle School Experimental School, Changchun, P.R. China
| | - Boyu Yuan
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Jingxuan Sun
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Changxin Xie
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Lijuan Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China.,The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Junli Zhen
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Xinxin Jin
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Yan Zheng
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Xiaomin Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, P.R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, Key Laboratory of Waterfowl Healthy Breeding of Guangdong Province, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China.,College of Veterinary Medicine, Jilin University, Changchun, P.R. China.,Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
189
|
Camberos-Luna L, Massieu L. Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochem Int 2019; 133:104614. [PMID: 31785349 DOI: 10.1016/j.neuint.2019.104614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The therapeutic use of ketone bodies (KB) against acute brain injury and neurodegenerative disorders has lately been suggested by many studies. Several mechanisms responsible for the protective action of KB have been described, including metabolic, anti-inflammatory and epigenetic. However, it is still not clear whether a specific mechanism of action can be associated with a particular neurological disorder. Different strategies to induce ketosis including the ketogenic diet (KD), caloric restriction (CR), intermittent fasting (IF), as well as the administration of medium chain triglycerides (MCTs), exogenous ketones or KB derivatives, have been used in animal models of brain injury and in humans. They have shown different degrees of success to prevent neuronal damage, motor alterations and cognitive decline. However, more investigation is needed in order to establish safe protocols for clinical application. Throughout the present review, we describe the different approaches that have been used to elevate blood KB and discuss their effectiveness considering their advantages and limitations, as tested in models of brain injury, neurodegeneration and clinical research. We also describe the mechanisms of action of KB in non-pathologic conditions and in association with their protective effect against neuronal damage in acute neurological disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucy Camberos-Luna
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico.
| |
Collapse
|
190
|
McAllister MJ, Waldman HS, Rentería LI, Gonzalez AE, Butawan MB, Bloomer RJ. Acute coffee ingestion with and without medium-chain triglycerides decreases blood oxidative stress markers and increases ketone levels. Can J Physiol Pharmacol 2019; 98:194-200. [PMID: 31689118 DOI: 10.1139/cjpp-2019-0458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ingestion of ketone supplements, caffeine, and medium-chain triglycerides (MCTs) may all be effective strategies to increase blood levels of the ketone body beta-hydroxybutyrate (D-BHB). However, acute ingestion of a bolus of lipids may increase oxidative stress (OS). The purpose of the study was to investigate the impact of adding varying amounts of MCTs to coffee on blood levels of D-BHB and markers of OS. Ten college-aged men ingested coffee with 0, 28, and 42 g of MCT in a randomized order. Blood samples were collected pre- as well as 2 and 4 h postprandial and analyzed for D-BHB, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), glucose, triglycerides (TAG), insulin, and OS markers: advanced oxidation protein products (AOPP), glutathione (GSH), malondialdehyde (MDA), and hydrogen peroxide (H2O2). All three treatments resulted in a significant increase in D-BHB, HDL-c, and TC as well as a significant decrease in TAG, MDA, H2O2, and insulin. The 42 g treatment was associated with significantly higher levels of AOPP and MDA. Acute ingestion of coffee results in favorable changes to markers of cardiometabolic health that were not impacted by the addition of 28 g of MCT. However, 42 g of MCT caused significantly greater OS.
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Hunter S Waldman
- Department of Kinesiology, University of North Alabama, Florence, AL 35632, USA
| | - Liliana I Rentería
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Andrew E Gonzalez
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Matthew B Butawan
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Richard J Bloomer
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
191
|
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2019; 24:810-834. [PMID: 31684843 DOI: 10.1080/1028415x.2019.1681088] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive functional loss of neurons in the brain, causing cognitive impairment and motoneuron disability. Although multifactorial interactions are evident, nutrition plays an essential role in the pathogenesis and evolution of these diseases. A systematic literature search was performed, and the prevalence of studies evaluated the effect of the Mediterranean diet (MeDiet), nutritional support, EPA and DHA, and vitamins on memory and cognition impairment. The data showed that malnutrition and low body mass index (BMI) is correlated with the higher development of dementia and mortality. MeDiet, nutritional support, and calorie-controlled diets play a protective effect against cognitive decline, Alzheimer's disease (AD), Parkinson disease (PD) while malnutrition and insulin resistance represent significant risk factors. Malnutrition activates also the gut-microbiota-brain axis dysfunction that exacerbate neurogenerative process. Omega-3 and -6, and the vitamins supplementation seem to be less effective in protecting neuron degeneration. Insulin activity is a prevalent factor contributing to brain health while malnutrition correlated with the higher development of dementia and mortality.
Collapse
Affiliation(s)
| | - Pomares Fredy Herrera
- Director del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia
| | - Rizzi Laura
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy
| |
Collapse
|
192
|
Berrington A, Schreck KC, Barron BJ, Blair L, Lin DDM, Hartman AL, Kossoff E, Easter L, Whitlow CT, Jung Y, Hsu FC, Cervenka MC, Blakeley JO, Barker PB, Strowd RE. Cerebral Ketones Detected by 3T MR Spectroscopy in Patients with High-Grade Glioma on an Atkins-Based Diet. AJNR Am J Neuroradiol 2019; 40:1908-1915. [PMID: 31649157 DOI: 10.3174/ajnr.a6287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Ketogenic diets are being explored as a possible treatment for several neurological diseases, but the physiologic impact on the brain is unknown. The objective of this study was to evaluate the feasibility of 3T MR spectroscopy to monitor brain ketone levels in patients with high-grade gliomas who were on a ketogenic diet (a modified Atkins diet) for 8 weeks. MATERIALS AND METHODS Paired pre- and post-ketogenic diet MR spectroscopy data from both the lesion and contralateral hemisphere were analyzed using LCModel software in 10 patients. RESULTS At baseline, the ketone bodies acetone and β-hydroxybutyrate were nearly undetectable, but by week 8, they increased in the lesion for both acetone (0.06 ± 0.03 ≥ 0.27 ± 0.06 IU, P = .005) and β-hydroxybutyrate (0.07 ± 0.07 ≥ 0.79 ± 0.32 IU, P = .046). In the contralateral brain, acetone was also significantly increased (0.041 ± 0.01 ≥ 0.16 ± 0.04 IU, P = .004), but not β-hydroxybutyrate. Acetone was detected in 9/10 patients at week 8, and β-hydroxybutyrate, in 5/10. Acetone concentrations in the contralateral brain correlated strongly with higher urine ketones (r = 0.87, P = .001) and lower fasting glucose (r = -0.67, P = .03). Acetoacetate was largely undetectable. Small-but-statistically significant decreases in NAA were also observed in the contralateral hemisphere at 8 weeks. CONCLUSIONS This study suggests that 3T MR spectroscopy is feasible for detecting small cerebral metabolic changes associated with a ketogenic diet, provided that appropriate methodology is used.
Collapse
Affiliation(s)
- A Berrington
- From the Russell H. Morgan Departments of Radiology and Radiological Science (A.B., D.D.M.L., P.B.B.)
| | - K C Schreck
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.)
| | - B J Barron
- Institute of Clinical and Translational Research (B.J.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - L Blair
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.).,Pediatrics (L.B., A.L.H.)
| | - D D M Lin
- From the Russell H. Morgan Departments of Radiology and Radiological Science (A.B., D.D.M.L., P.B.B.)
| | - A L Hartman
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.).,Pediatrics (L.B., A.L.H.)
| | - E Kossoff
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.)
| | - L Easter
- Clinical and Translational Science Institute (L.E., R.E.S.)
| | | | - Y Jung
- Departments of Radiology (C.T.W., Y.J.)
| | - F-C Hsu
- Biostatistics and Data Science (F.-C.H.), Division of Public Health Sciences
| | - M C Cervenka
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.)
| | - J O Blakeley
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.)
| | - P B Barker
- From the Russell H. Morgan Departments of Radiology and Radiological Science (A.B., D.D.M.L., P.B.B.) .,F. M. Kirby Research Center for Functional Brain Imaging (P.B.B., R.E.S.), Kennedy Krieger Institute, Baltimore, Maryland
| | - R E Strowd
- Neurology (K.C.S., L.B., A.L.H., E.K., M.C.C., J.O.B., R.E.S.).,Clinical and Translational Science Institute (L.E., R.E.S.).,Departments of Neurology, Hematology and Oncology (R.E.S.), Wake Forest School of Medicine, Winston-Salem, North Carolina.,F. M. Kirby Research Center for Functional Brain Imaging (P.B.B., R.E.S.), Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
193
|
Xu Q, Zhang Y, Zhang X, Liu L, Zhou B, Mo R, Li Y, Li H, Li F, Tao Y, Liu Y, Xue C. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer's disease patients with APOE4 -/-: A double-blind, randomized, placebo-controlled crossover trial. Clin Nutr 2019; 39:2092-2105. [PMID: 31694759 DOI: 10.1016/j.clnu.2019.10.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Previous clinical and animal studies suggested that medium-chain triglycerides (MCT) might be an alternative energy substrate for the brain and might benefit patients with Alzheimer's disease (AD), but the clinical evidence is not substantial or totally convincing. OBJECTIVE To investigate the effects of MCT on cognitive ability in patients with mild to moderate AD and explore the changes in peripheral blood metabolomics. METHODS A double-blind, randomized, placebo-controlled crossover study was undertaken in 53 mild to moderate AD patients. Participants were randomized between two sequences (placebo followed by MCT or MCT followed by placebo) and took MCT jelly or placebo jelly (canola oil) by mouth three times daily (total daily fat dose: 17.3 g MCT, or 19.7 g canola oil) for 30 days per phase. The primary outcome was cognition as measured by the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Chinese version (ADAS-Cog-C). The secondary outcome was self-care as measured by the activities of daily living scale (ADL) and changes in plasma metabolites. RESULTS This study showed a significant (p < 0.01) reduction in ADAS-Cog-C scores between the MCT (2.62 points below baseline) and placebo interventions (2.57 points above baseline). Data from 46 (86.8%) APOE4-/- subjects who completed the entire study were analyzed. Changes in ADL scores were not significantly different between the MCT and placebo interventions (p > 0.05). The concentrations of TC, HDL-C, β-hydroxybutyrate and acetoacetate were significantly higher in the MCT group than in the placebo group (p < 0.05). Lysophosphatidylcholine 16:0 (LysoPC (16:0)), LysoPC (P-18:0), LysoPC (P-18:1(9Z)), LysoPC (20:2(11Z,14Z)), and LysoPC (22:5(4Z,7Z,10Z,13Z,16Z)) were significantly increased after MCT intervention, and the concentrations of LysoPC (18:0), palmitic acid, linoleic acid, oleic acid, and 7,12-dimethylbenz[a]anthracene were significantly decreased (p < 0.05), whereas no significant changes appeared after the placebo intervention. Androstenedione concentration increased after placebo intervention. Furthermore, a significant negative correlation was observed between changes in LysoPC (P-18:1(9Z)) and ADAS-Cog-C scores after MCT intervention (r = -0.1472, p < 0.05). CONCLUSIONS MCT had positive effects on cognitive ability in mild to moderate AD patients with APOE4-/-. These effects of MCT might be related to the metabolism of LysoPC, oleic acid, linoleic acid and palmitic acid, in addition to the ketogenic effect. STUDY ID NUMBER ChiCTR-IOR-16009737. REGISTRY WEBSITE WHO ICTRP Search Portal - http://apps.who.int/trialsearch/Default.aspx.
Collapse
Affiliation(s)
- Qing Xu
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yong Zhang
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Xinsheng Zhang
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Lu Liu
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Bo Zhou
- Department of Neurology, the Second Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Rui Mo
- School of Medicine, Nankai University, Tianjin, PR China
| | - Yan Li
- Fan-Xing Biological Technology Co., Ltd., Beijing, PR China
| | - Huizi Li
- Department of Nutrition, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, PR China
| | - Feng Li
- Chinese People's Liberation Army Air Force Medical Center, Beijing, PR China
| | - Yang Tao
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yinghua Liu
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China.
| | - Changyong Xue
- Department of Nutrition, the First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
194
|
Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019; 11:nu11102497. [PMID: 31627352 PMCID: PMC6836190 DOI: 10.3390/nu11102497] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Diets low in carbohydrates and proteins and enriched in fat stimulate the hepatic synthesis of ketone bodies (KB). These molecules are used as alternative fuel for energy production in target tissues. The synthesis and utilization of KB are tightly regulated both at transcriptional and hormonal levels. The nuclear receptor peroxisome proliferator activated receptor α (PPARα), currently recognized as one of the master regulators of ketogenesis, integrates nutritional signals to the activation of transcriptional networks regulating fatty acid β-oxidation and ketogenesis. New factors, such as circadian rhythms and paracrine signals, are emerging as important aspects of this metabolic regulation. However, KB are currently considered not only as energy substrates but also as signaling molecules. β-hydroxybutyrate has been identified as class I histone deacetylase inhibitor, thus establishing a connection between products of hepatic lipid metabolism and epigenetics. Ketogenic diets (KD) are currently used to treat different forms of infantile epilepsy, also caused by genetic defects such as Glut1 and Pyruvate Dehydrogenase Deficiency Syndromes. However, several researchers are now focusing on the possibility to use KD in other diseases, such as cancer, neurological and metabolic disorders. Nonetheless, clear-cut evidence of the efficacy of KD in other disorders remains to be provided in order to suggest the adoption of such diets to metabolic-related pathologies.
Collapse
|
195
|
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2019; 134:104621. [PMID: 31628992 DOI: 10.1016/j.nbd.2019.104621] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
196
|
Ari C, Murdun C, Koutnik AP, Goldhagen CR, Rogers C, Park C, Bharwani S, Diamond DM, Kindy MS, D’Agostino DP, Kovács Z. Exogenous Ketones Lower Blood Glucose Level in Rested and Exercised Rodent Models. Nutrients 2019; 11:E2330. [PMID: 31581549 PMCID: PMC6835632 DOI: 10.3390/nu11102330] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. Compliance to KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements. In this study, we tested the changes in blood glucose and ketone (βHB) levels in response to acute, sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals were also assessed across different age ranges. Experimental groups included KD, standard diet (SD) supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), βHB mineral salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study. In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most significantly reduced blood glucose levels, compared to control. These results indicate that exogenous ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in various rodent models of different ages, with and without pathology.
Collapse
MESH Headings
- 3-Hydroxybutyric Acid/pharmacology
- Acetoacetates/pharmacology
- Animals
- Biomarkers
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Butylene Glycols/pharmacology
- Carbohydrate Metabolism, Inborn Errors/blood
- Carbohydrate Metabolism, Inborn Errors/genetics
- Carbohydrate Metabolism, Inborn Errors/physiopathology
- Carbohydrate Metabolism, Inborn Errors/therapy
- Diet, Ketogenic
- Dietary Supplements
- Disease Models, Animal
- Down-Regulation
- Epilepsy, Absence/blood
- Epilepsy, Absence/genetics
- Epilepsy, Absence/physiopathology
- Epilepsy, Absence/therapy
- Glucose Transporter Type 1/deficiency
- Glucose Transporter Type 1/genetics
- Male
- Mice, Knockout
- Monosaccharide Transport Proteins/blood
- Monosaccharide Transport Proteins/deficiency
- Monosaccharide Transport Proteins/genetics
- Physical Exertion
- Rats, Sprague-Dawley
- Rest
- Time Factors
Collapse
Affiliation(s)
- Csilla Ari
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Cem Murdun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Craig R. Goldhagen
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Collin Park
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
| | - Sahil Bharwani
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
| | - David M. Diamond
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA; (C.P.); (S.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (A.P.K.); (C.R.G.); (C.R.); (D.P.D.)
- Institute for Human and Machine Cognition, Ocala, FL 33471, USA
| | - Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary
| |
Collapse
|
197
|
Neth BJ, Mintz A, Whitlow C, Jung Y, Solingapuram Sai K, Register TC, Kellar D, Lockhart SN, Hoscheidt S, Maldjian J, Heslegrave AJ, Blennow K, Cunnane SC, Castellano CA, Zetterberg H, Craft S. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer's disease: a pilot study. Neurobiol Aging 2019; 86:54-63. [PMID: 31757576 DOI: 10.1016/j.neurobiolaging.2019.09.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 11/29/2022]
Abstract
There is currently no established therapy to treat or prevent Alzheimer's disease. The ketogenic diet supplies an alternative cerebral metabolic fuel, with potential neuroprotective effects. Our goal was to compare the effects of a modified Mediterranean-ketogenic diet (MMKD) and an American Heart Association Diet (AHAD) on cerebrospinal fluid Alzheimer's biomarkers, neuroimaging measures, peripheral metabolism, and cognition in older adults at risk for Alzheimer's. Twenty participants with subjective memory complaints (n = 11) or mild cognitive impairment (n = 9) completed both diets, with 3 participants discontinuing early. Mean compliance rates were 90% for MMKD and 95% for AHAD. All participants had improved metabolic indices following MMKD. MMKD was associated with increased cerebrospinal fluid Aβ42 and decreased tau. There was increased cerebral perfusion and increased cerebral ketone body uptake (11C-acetoacetate PET, in subsample) following MMKD. Memory performance improved after both diets, which may be due to practice effects. Our results suggest that a ketogenic intervention targeted toward adults at risk for Alzheimer's may prove beneficial in the prevention of cognitive decline.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Youngkyoo Jung
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Thomas C Register
- Department of Pathology - Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Derek Kellar
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Siobhan Hoscheidt
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joseph Maldjian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Stephen C Cunnane
- Research Centre on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
198
|
Francis HM, Stevenson RJ. Potential for diet to prevent and remediate cognitive deficits in neurological disorders. Nutr Rev 2019; 76:204-217. [PMID: 29346658 DOI: 10.1093/nutrit/nux073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pathophysiology of many neurological disorders involves oxidative stress, neuroinflammation, and mitochondrial dysfunction. There is now substantial evidence that diet can decrease these forms of pathophysiology, and an emerging body of literature relatedly suggests that diet can also prevent or even remediate the cognitive deficits observed in neurological disorders that exhibit such pathology (eg, Alzheimer's disease, multiple sclerosis, age-related cognitive decline, epilepsy). The current review summarizes the emerging evidence in relation to whole diets prominent in the scientific literature-ketogenic, caloric restriction, high polyphenol, and Mediterranean diets-and provides a discussion of the possible underlying neurophysiological mechanisms.
Collapse
Affiliation(s)
- Heather M Francis
- Psychology Department, Faculty of Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Richard J Stevenson
- Psychology Department, Faculty of Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
199
|
Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 2019; 176:3489-3507. [PMID: 30675901 PMCID: PMC6715612 DOI: 10.1111/bph.14585] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of cell bioenergetics is a common feature of neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). Disrupted energy utilization implicates mitochondria at its nexus. This review summarizes some of the evidence that points to faulty mitochondrial function in AD and highlights past and current therapeutic development efforts. Classical neuropathological hallmarks of disease (β-amyloid and τ) and sporadic AD risk genes (APOE) may trigger mitochondrial disturbance, yet mitochondrial dysfunction may incite pathology. Preclinical and clinical efforts have overwhelmingly centred on the amyloid pathway, but clinical trials have yet to reveal clear-cut benefits. AD therapies aimed at mitochondrial dysfunction are few and concentrate on reversing oxidative stress and cell death pathways. Novel research efforts aimed at boosting mitochondrial and bioenergetic function offer an alternative treatment strategy. Enhancing cell bioenergetics in preclinical models may yield widespread favourable effects that could benefit persons with AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Judit M. Perez Ortiz
- University of Kansas Alzheimer's Disease CenterFairwayKSUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer's Disease CenterFairwayKSUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKSUSA
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
- Department of Biochemistry and Molecular BiologyUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
200
|
Murack M, Messier C. The impact of lactic acid and medium chain triglyceride on blood glucose, lactate and diurnal motor activity: A re-examination of a treatment of major depression using lactic acid. Physiol Behav 2019; 208:112569. [PMID: 31175891 DOI: 10.1016/j.physbeh.2019.112569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 11/24/2022]
Abstract
While investigating the effect of alternative energy substrates on extracellular brain glucose or lactate, Béland-Millar (2017) noted a reduction of physical activity after intraperitoneal administration of lactate and ketone bodies. These observations were similar to an older study that examined the impact of drinking a sodium lactate/lactic acid solution before sleep in hospitalized patients with major depression. Patients and control participants self-reported drowsiness, early sleep onset and better overall sleep after consumption. Some patients showed improved mood after several days of treatment. We re-evaluated the effects of the solution used (0.59 g/kg) as well as several smaller doses (0.47, 0.35, 0.24 and 0.12 g/kg) on blood lactate and glucose in CD-1 mice and on sleep onset associated activity reduction. Because of adverse effects with the lactate/lactic acid solution, we also examined the effects of a medium chain triglyceride (MCT) solution (10, 5, 2.5, and 1 ml/kg) on blood lactate and glucose. Oral gavage administration of lactic acid/lactate produced adverse effects particularly for the largest doses. However consumption of 10 and 5 ml/kg volumes of MCT oils significantly increased blood lactate concentration to levels comparable to Lowenbach's solution without piloerection indicative of adverse effects. To evaluate pre-sleep activity reduction produced by lactate, mice were intraperitoneally administered diluted sodium lactate (2.0 g/kg, 1.0 g/kg, 0.5 g/kg, 0.25 g/kg, or saline) for 6 days, 120 min before their sleep period and their running activity was measured. Larger lactate doses reduced pre-sleep running each day up to 60 min post injection. Smaller doses reduced running after a single treatment only. These results suggest that the modulation of blood lactate levels may be useful in treating sleep onset problems associated with depression.
Collapse
|