151
|
Shuai L, Wang X, Wen Z, Ge J, Wang J, Zhao D, Bu Z. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antiviral Res 2017; 146:36-44. [DOI: 10.1016/j.antiviral.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
152
|
A Comparative Analysis of Viral Richness and Viral Sharing in Cave-Roosting Bats. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9030035] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
153
|
Brody T, Yavatkar AS, Park DS, Kuzin A, Ross J, Odenwald WF. Flavivirus and Filovirus EvoPrinters: New alignment tools for the comparative analysis of viral evolution. PLoS Negl Trop Dis 2017. [PMID: 28622346 PMCID: PMC5489223 DOI: 10.1371/journal.pntd.0005673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. Methodology/Principal finding We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. Conclusions/Significance EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter’s ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses. Flaviviruses, including Zika and Dengue viruses, and Filoviruses, including Ebola and Marburg viruses, are significant global public health threats. Genetic surveillance of viral isolates provides important insights into the origin of outbreaks, reveals lineage heterogeneity and diversification, and facilitates identification of novel recombinant strains and host cell modified viral genomes. We report the development of EvoPrinter, a web-accessed alignment tool for the rapid comparative analysis of viral genomes. EvoPrinter superimposes alignment data from multiple pairwise comparisons onto a single reference sequence of interest, to reveal both similarities and differences detected in hundreds of selected viral isolates. Evoprinter databases provide easy access to hundreds of non-redundant Flavivirus and Filovirus genomes. allowing the user to distinguish between sublineage identity SNPs and unique strain-specific SNPs, thus facilitating analysis of the history of viral diversification during an epidemic. EvoPrinter also proves useful in identifying recombinant strains and their parental lineages and detecting host-cell genomic editing. EvoPrinter should serve as a useful addition to existing tools for the comparative analysis of these viruses.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
- * E-mail: (TB); (WFO)
| | - Amarendra S. Yavatkar
- Division of Intramural Research Information Technology Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Dong Sun Park
- Division of Intramural Research Information Technology Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Jermaine Ross
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Ward F. Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, United States of America
- * E-mail: (TB); (WFO)
| |
Collapse
|
154
|
Buceta J, Johnson K. Modeling the Ebola zoonotic dynamics: Interplay between enviroclimatic factors and bat ecology. PLoS One 2017; 12:e0179559. [PMID: 28604813 PMCID: PMC5467914 DOI: 10.1371/journal.pone.0179559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
Understanding Ebola necessarily requires the characterization of the ecology of its main enzootic reservoir, i.e. bats, and its interplay with seasonal and enviroclimatic factors. Here we present a SIR compartmental model where we implement a bidirectional coupling between the available resources and the dynamics of the bat population in order to understand their migration patterns. Our compartmental modeling approach and simulations include transport terms to account for bats mobility and spatiotemporal climate variability. We hypothesize that environmental pressure is the main driving force for bats' migration and our results reveal the appearance of sustained migratory waves of Ebola virus infected bats coupled to resources availability. Ultimately, our study can be relevant to predict hot spots of Ebola outbreaks in space and time and suggest conservation policies to mitigate the risk of spillovers.
Collapse
Affiliation(s)
- Javier Buceta
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States of America
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, United States of America
- * E-mail:
| | - Kaylynn Johnson
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States of America
| |
Collapse
|
155
|
Albariño CG, Wiggleton Guerrero L, Jenks HM, Chakrabarti AK, Ksiazek TG, Rollin PE, Nichol ST. Insights into Reston virus spillovers and adaption from virus whole genome sequences. PLoS One 2017; 12:e0178224. [PMID: 28542463 PMCID: PMC5444788 DOI: 10.1371/journal.pone.0178224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Reston virus (family Filoviridae) is unique among the viruses of the Ebolavirus genus in that it is considered non-pathogenic in humans, in contrast to the other members which are highly virulent. The virus has however, been associated with several outbreaks of highly lethal hemorrhagic fever in non-human primates (NHPs), specifically cynomolgus monkeys (Macaca fascicularis) originating in the Philippines. In addition, Reston virus has been isolated from domestic pigs in the Philippines. To better understand virus spillover events and potential adaption to new hosts, the whole genome sequences of representative Reston virus isolates were obtained using a next generation sequencing (NGS) approach and comparative genomic analysis and virus fitness analyses were performed. Nine virus genome sequences were completed for novel and previously described isolates obtained from a variety of hosts including a human case, non-human primates and pigs. Results of phylogenetic analysis of the sequence differences are consistent with multiple independent introductions of RESTV from a still unknown natural reservoir into non-human primates and swine farming operations. No consistent virus genetic markers were found specific for viruses associated with primate or pig infections, but similar to what had been seen with some Ebola viruses detected in the large Western Africa outbreak in 2014–2016, a truncated version of VP30 was identified in a subgroup of Reston viruses obtained from an outbreak in pigs 2008–2009. Finally, the genetic comparison of two closely related viruses, one isolated from a human case and one from an NHP, showed amino acid differences in the viral polymerase and detectable differences were found in competitive growth assays on human and NHP cell lines.
Collapse
Affiliation(s)
- César G. Albariño
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | | | - Harley M. Jenks
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ayan K. Chakrabarti
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Thomas G. Ksiazek
- University of Texas Medical Branch, Galveston, TX, United States of America
| | - Pierre E. Rollin
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stuart T. Nichol
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
156
|
Zhang YJ, Ding JN, Zhong H, Han JG. Exploration micromechanism of VP35 IID interaction and recognition dsRNA: A molecular dynamics simulation. Proteins 2017; 85:1008-1023. [PMID: 28205249 DOI: 10.1002/prot.25269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/22/2017] [Accepted: 02/05/2017] [Indexed: 01/25/2023]
Abstract
Multifunctional viral protein (VP35) encoded by the highly pathogenic Ebola viruses (EBOVs) can antagonize host double-stranded RNA (dsRNA) sensors and immune response because of the simultaneous recognition of dsRNA backbone and blunt ends. Mutation of select hydrophobic conserved basic residues within the VP35 inhibitory domain (IID) abrogates its dsRNA-binding activity, and impairs VP35-mediated interferon (IFN) antagonism. Herein the detailed binding mechanism between dsRNA and WT, single mutant, and double mutant were investigated by all-atom molecular dynamics (MD) simulation and binding energy calculation. R312A/R322A double mutations results in a completely different binding site and orientation upon the structure analyses. The calculated binding free energy results reveal that R312A, R322A, and K339A single mutations decrease the binding free energies by 17.82, 13.18, and 13.68 kcal mol-1 , respectively. The binding energy decomposition indicates that the strong binding affinity of the key residues is mainly due to the contributions of electrostatic interactions in the gas phase, where come from the positively charged side chain and the negatively charged dsRNA backbone. R312A, R322A, and K339A single mutations have no significant effect on VP35 IID conformation, but the mutations influence the contributions of electrostatic interactions in the gas phase. The calculated results reveal that end-cap residues which mainly contribute VDW interactions can recognize and capture dsRNA blunt ends, and the central basic residues (R312, R322, and K339) which mainly contribute favorable electrostatic interactions with dsRNA backbone can fix dsRNA binding site and orientation. Proteins 2017; 85:1008-1023. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan-Jun Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jing-Na Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Hui Zhong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Ju-Guang Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| |
Collapse
|
157
|
Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, Wang N, Wang L, Waruhiu C, Zhou JH, Li SY, Daszak P, Wang LF, Shi ZL. Genetically Diverse Filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerg Infect Dis 2017. [DOI: 10.3201/eid2302.161119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
158
|
Abstract
While Reston and Lloviu viruses have never been associated with human disease, the other filoviruses cause outbreaks of hemorrhagic fever characterised by person-to-person transmission and high case fatality ratios. Cumulative evidence suggests that bats are the most likely reservoir hosts of the filoviruses. Ecological investigations following Marburg virus disease outbreaks associated with entry into caves inhabited by Rousettus aegyptiacus bats led to the identification of this bat species as the natural reservoir host of the marburgviruses. Experimental infection of R. aegyptiacus with Marburg virus has provided insight into the natural history of filovirus infection in bats that may help guide the search for the reservoir hosts of the ebolaviruses.
Collapse
Affiliation(s)
- Amy J Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
159
|
Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun 2017; 8:14446. [PMID: 28194016 PMCID: PMC5316840 DOI: 10.1038/ncomms14446] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/30/2016] [Indexed: 11/17/2022] Open
Abstract
The Egyptian rousette bat (ERB) is a natural reservoir host for Marburg virus (MARV); however, the mechanisms by which MARV is transmitted bat-to-bat and to other animals are unclear. Here we co-house MARV-inoculated donor ERBs with naive contact ERBs. MARV shedding is detected in oral, rectal and urine specimens from inoculated bats from 5–19 days post infection. Simultaneously, MARV is detected in oral specimens from contact bats, indicating oral exposure to the virus. In the late study phase, we provide evidence that MARV can be horizontally transmitted from inoculated to contact ERBs by finding MARV RNA in blood and oral specimens from contact bats, followed by MARV IgG antibodies in these same bats. This study demonstrates that MARV can be horizontally transmitted from inoculated to contact ERBs, thereby providing a model for filovirus maintenance in its natural reservoir host and a potential mechanism for virus spillover to other animals. Bats are natural hosts for Marburg virus (MARV), but the mechanism of bat-to-bat transmission is unclear. Here, Schuh et al. monitor MARV infection in a cohort of 38 bats over nine months, find ‘supershedders' and show that MARV can horizontally transmit between bats.
Collapse
|
160
|
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res 2017; 141:48-61. [PMID: 28192094 DOI: 10.1016/j.antiviral.2017.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Filoviruses are important pathogens that cause severe and often fatal hemorrhagic fever in humans, for which no approved vaccines and antiviral treatments are yet available. In an earlier article (Martin et al., Antiviral Research, 2016), we reviewed the role of the filovirus surface glycoprotein in replication and as a target for drugs and vaccines. In this review, we focus on recent findings on the filovirus replication machinery and how they could be used for the identification of new therapeutic targets and the development of new antiviral compounds. First, we summarize the recent structural and functional advances on the molecules involved in filovirus replication/transcription cycle, particularly the NP, VP30, VP35 proteins, and the "large" protein L, which harbors the RNA-dependent RNA polymerase (RdRp) and mRNA capping activities. These proteins are essential for viral mRNA synthesis and genome replication, and consequently they constitute attractive targets for drug design. We then describe how these insights into filovirus replication mechanisms and the structure/function characterization of the involved proteins have led to the development of new and innovative antiviral strategies that may help reduce the filovirus disease case fatality rate through post-exposure or prophylactic treatments.
Collapse
|
161
|
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The Pathogenesis of Ebola Virus Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:387-418. [DOI: 10.1146/annurev-pathol-052016-100506] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Baseler
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Karl M. Johnson
- Founder, Special Pathogens Branch, Centers for Disease Control and Prevention, Placitas, New Mexico 87043
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840
| | - David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
162
|
Guterres A, de Oliveira RC, Fernandes J, de Lemos ERS, Schrago CG. New bunya-like viruses: Highlighting their relations. INFECTION GENETICS AND EVOLUTION 2017; 49:164-173. [PMID: 28111322 DOI: 10.1016/j.meegid.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/18/2022]
Abstract
The standard virus classification scheme for arenaviruses and bunyaviruses shifted dramatically when several groups reported the detection and isolation of divergent groups of viruses in a variety of insect collections. Although these viral families can differ in terms of morphology, structure and genetics, recent findings indicate these viruses may have a shared evolutionary origin. To determine the phylogenetic relations among these families, we inferred phylogenetic trees using three methods. The Maximum Likelihood and Bayesian trees were rooted as suggested by the (molecular clock-rooted) BEAST tree. Our results highlight a noteworthy relation among these viral supergroups of different genome organizations. Our study suggests that the best scenario is the existence of at least three monophyletic supergroups, all of them well supported. The recent data indicate that these viruses are evolutionarily and genetically interconnected. While these supergroups appear to be closely related in our phylogenetic analysis, other viruses should be investigated in future research. In sum, our results also provide insights into the classification scheme, thereby providing a new perspective about the fundamental questions of family origins, diversity and genome evolution.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata Carvalho de Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jorlan Fernandes
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Carlos Guerra Schrago
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
163
|
Abstract
Since the discovery of Marburg virus 50 years ago, filoviruses have reemerged in the human population more than 40 times. Already the first episode was as dramatic as most of the subsequent ones, but none of them was as devastating as the West-African Ebola virus outbreak in 2013-2015. Although progress toward a better understanding of the viruses is impressive, there is clearly a need to improve and strengthen the measures to detect and control these deadly infections.
Collapse
Affiliation(s)
- Hans Dieter Klenk
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Werner Slenczka
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
164
|
|
165
|
Amman BR, Swanepoel R, Nichol ST, Towner JS. Ecology of Filoviruses. Curr Top Microbiol Immunol 2017; 411:23-61. [PMID: 28710694 DOI: 10.1007/82_2017_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Filoviruses can cause severe and often fatal disease in humans. To date, there have been 47 outbreaks resulting in more than 31,500 cases of human illness and over 13,200 reported deaths. Since their discovery, researchers from many scientific disciplines have worked to better understand the natural history of these deadly viruses. Citing original research wherever possible, this chapter reviews laboratory and field-based studies on filovirus ecology and summarizes efforts to identify where filoviruses persist in nature, how virus is transmitted to other animals and ultimately, what drivers cause spillover to human beings. Furthermore, this chapter discusses concepts on what constitutes a reservoir host and highlights challenges encountered while conducting research on filovirus ecology, particularly field-based investigations.
Collapse
Affiliation(s)
- Brian R Amman
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. Ne, Atlanta, GA, USA.
| | - Robert Swanepoel
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, PO Box X323, Arcadia, Pretoria, 0007, RSA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. Ne, Atlanta, GA, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. Ne, Atlanta, GA, USA. .,Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks, Athens, GA, USA.
| |
Collapse
|
166
|
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO. Filovirus Structural Biology: The Molecules in the Machine. Curr Top Microbiol Immunol 2017; 411:381-417. [PMID: 28795188 DOI: 10.1007/82_2017_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hal Wasserman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, 92037, USA.
| |
Collapse
|
167
|
Abstract
Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs.
Collapse
|
168
|
Abstract
Taxonomical classification of newly discovered viruses and reclassification of previously discovered viruses provide an important foundation for detailing biological differences of scientific and clinical interest. The development of molecular analytical methods has enabled finer levels and more precise levels of classification. Periodically, there is need to refresh the literature and common understanding of current taxonomic classification, which we attempt to do here in addressing changes in human and animal viruses of medical significance between 2012 and 2015.
Collapse
|
169
|
Lawrence P, Danet N, Reynard O, Volchkova V, Volchkov V. Human transmission of Ebola virus. Curr Opin Virol 2016; 22:51-58. [PMID: 28012412 DOI: 10.1016/j.coviro.2016.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Ever since the first recognised outbreak of Ebolavirus in 1976, retrospective epidemiological analyses and extensive studies with animal models have given us insight into the nature of the pathology and transmission mechanisms of this virus. In this review focusing on Ebolavirus, we present an outline of our current understanding of filovirus human-to-human transmission and of our knowledge concerning the molecular basis of viral transmission and potential for adaptation, with particular focus on what we have learnt from the 2014 outbreak in West Africa. We identify knowledge gaps relating to transmission and pathogenicity mechanisms, molecular adaptation and filovirus ecology.
Collapse
Affiliation(s)
- Philip Lawrence
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon - EPHE, Lyon 69288, France
| | - Nicolas Danet
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Olivier Reynard
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Valentina Volchkova
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| |
Collapse
|
170
|
The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies. J Virol 2016; 90:11075-11086. [PMID: 27707924 DOI: 10.1128/jvi.01563-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. IMPORTANCE Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction.
Collapse
|
171
|
Hassanin A, Nesi N, Marin J, Kadjo B, Pourrut X, Leroy É, Gembu GC, Musaba Akawa P, Ngoagouni C, Nakouné E, Ruedi M, Tshikung D, Pongombo Shongo C, Bonillo C. Comparative phylogeography of African fruit bats (Chiroptera, Pteropodidae) provide new insights into the outbreak of Ebola virus disease in West Africa, 2014–2016. C R Biol 2016; 339:517-528. [DOI: 10.1016/j.crvi.2016.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
|
172
|
El Sayed SM, Abdelrahman AA, Ozbak HA, Hemeg HA, Kheyami AM, Rezk N, El-Ghoul MB, Nabo MMH, Fathy YM. Updates in diagnosis and management of Ebola hemorrhagic fever. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2016; 21:84. [PMID: 28163730 PMCID: PMC5244689 DOI: 10.4103/1735-1995.192500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/22/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
Abstract
Ebola hemorrhagic fever is a lethal viral disease transmitted by contact with infected people and animals. Ebola infection represents a worldwide health threat causing enormous mortality rates and fatal epidemics. Major concern is pilgrimage seasons with possible transmission to Middle East populations. In this review, we aim to shed light on Ebola hemorrhagic fever as regard: virology, transmission, biology, pathogenesis, clinical picture, and complications to get the best results for prevention and management. We also aim to guide future research to new therapeutic perspectives to precise targets. Our methodology was to review the literature extensively to make an overall view of the biology of Ebola virus infection, its serious health effects and possible therapeutic benefits using currently available remedies and future perspectives. Key findings in Ebola patients are fever, hepatic impairment, hepatocellular necrosis, lymphopenia (for T-lymphocyte and natural killer cells) with lymphocyte apoptosis, hemorrhagic manifestations, and complications. Pathogenesis in Ebola infection includes oxidative stress, immune suppression of both cell-mediated and humoral immunities, hepatic and adrenal impairment and failure, hemorrhagic fever, activation of deleterious inflammatory pathways, for example, tumor necrosis factor-related apoptosis-inducing ligand, and factor of apoptotic signal death receptor pathways causing lymphocyte depletion. Several inflammatory mediators and cytokines are involved in pathogenesis, for example, interleukin-2, 6, 8, and 10 and others. In conclusion, Ebola hemorrhagic fever is a serious fatal viral infection that can be prevented using strict health measures and can be treated to some extent using some currently available remedies. Newer treatment lines, for example, prophetic medicine remedies as nigella sativa may be promising.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Clinical Biochemistry and Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
- Department of Clinical Biochemistry, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ali A. Abdelrahman
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | - Hani Adnan Ozbak
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | - Hassan Abdullah Hemeg
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | - Ali Mohammed Kheyami
- Molecular Virology Unit, Central Laboratories and Blood Bank, Directorate of Health, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | - Nasser Rezk
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | - Mohamed Baioumy El-Ghoul
- Department of Medicine, Uhud General Hospital, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | - Manal Mohamed Helmy Nabo
- Department of Pediatrics, Sohag Teaching Hospital, Sohag, Egypt
- Department of Pediatrics, Division of Pediatric Cardiology, Maternity and Children Hospital, King Abdullah Medical City, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
| | | |
Collapse
|
173
|
Salu OB, James AB, Oke BO, Orenolu MR, Anyanwu RA, Abdullah MA, Happi C, Idris J, Abdus-Salam IA, Nasidi AS, Ogunsola FT, Tomori O, Omilabu SA. Biosafety level-2 laboratory diagnosis of Zaire Ebola virus disease imported from Liberia to Nigeria. Afr J Lab Med 2016; 5:468. [PMID: 28879118 PMCID: PMC5436409 DOI: 10.4102/ajlm.v5i1.468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/09/2016] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Global travel is an efficient route of transmission for highly infectious pathogens and increases the chances of such pathogens moving from high disease-endemic areas to new regions. We describe the rapid and safe identification of the first imported case of Ebola virus disease in a traveler to Lagos, Nigeria, using conventional reverse transcription polymerase chain reaction (RT-PCR) in a biosafety level (BSL)-2 facility. CASE PRESENTATION On 20 July 2014, a traveler arrived from Liberia at Lagos International Airport and was admitted to a private hospital in Lagos, with clinical suspicion of Ebola virus disease. METHODOLOGY AND OUTCOME Blood and urine specimens were collected, transported to the Virology Unit Laboratory at the College of Medicine, University of Lagos, and processed under stringent biosafety conditions for viral RNA extraction. RT-PCR was set-up to query the Ebola, Lassa and Dengue fever viruses. Amplicons for pan-filoviruses were detected as 300 bp bands on a 1.5% agarose gel image; there were no detectable bands for Lassa and Dengue viral RNA. Nucleotide BLAST and phylogenetic analysis of sequence data of the RNA-dependent RNA polymerase (L) gene confirmed the sequence to be Zaire ebolavirus (EBOV/Hsap/NGA/2014/LIB-NIG 01072014; Genbank: KM251803.1). CONCLUSION Our BSL-2 facility in Lagos, Nigeria, was able to safely detect Ebola virus disease using molecular techniques, supporting the reliability of molecular detection of highly infectious viral pathogens under stringent safety guidelines in BSL-2 laboratories. This is a significant lesson for the many under-facilitated laboratories in resource-limited settings, as is predominantly found in sub-Saharan Africa.
Collapse
Affiliation(s)
- Olumuyiwa B Salu
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayorinde B James
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos, Nigeria
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Bamidele O Oke
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Mercy R Orenolu
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Roosevelt A Anyanwu
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Maryam A Abdullah
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christian Happi
- African Center of Excellence for Genomics of Infectious Diseases, Redeemers University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Jide Idris
- Honourable Commissioner for Health, Lagos State Ministry of Health, Alausa, Ikeja, Lagos, Nigeria
| | - Ismail A Abdus-Salam
- Epidemiology Unit, Directorate of Disease Control, Lagos State Ministry of Health, Alausa, Ikeja, Lagos, Nigeria
| | - Abdul-Salam Nasidi
- Nigeria Center for Disease Control, Federal Ministry of Health, Abuja, Nigeria
| | - Folashade T Ogunsola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Sunday A Omilabu
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
- Central Research Laboratory, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
174
|
Moekotte AL, Huson MAM, van der Ende AJ, Agnandji ST, Huizenga E, Goorhuis A, Grobusch MP. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin Investig Drugs 2016; 25:1325-1335. [PMID: 27676206 DOI: 10.1080/13543784.2016.1240785] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To date, the management of patients with suspected or confirmed Ebolavirus disease (EVD) depends on quarantine, symptomatic management and supportive care, as there are no approved vaccines or treatments available for human use. However, accelerated by the recent large outbreak in West Africa, significant progress has been made towards vaccine development but also towards specific treatment with convalescent plasma and monoclonal antibodies. Areas covered: We describe recent developments in monoclonal antibody treatment for EVD, encompassing mAb114 and the MB-003, ZMAb, ZMapp™ and MIL-77E cocktails. Expert opinion: Preventive measures, are, and will remain essential to curb EVD outbreaks; even more so with vaccine development progressing. However, research for treatment options must not be neglected. Small-scale animal and individual human case studies show that monoclonal antibodies (mAbs) can be effective for EVD treatment; thus justifying exploration in clinical trials. Potential limitations are that high doses may be needed to yield clinical efficacy; epitope mutations might reduce efficacy; and constant evolution of (outbreak-specific) mAb mixtures might be required. Interim advice based on the clinical experience to date is that treatment of patients with mAbs is sensible, provided those could be made available in the necessary amounts in time.
Collapse
Affiliation(s)
- A L Moekotte
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - M A M Huson
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A J van der Ende
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - S T Agnandji
- d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| | - E Huizenga
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - A Goorhuis
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - M P Grobusch
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone.,d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| |
Collapse
|
175
|
Theiler J, Yoon H, Yusim K, Picker LJ, Fruh K, Korber B. Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine. Sci Rep 2016; 6:33987. [PMID: 27703185 PMCID: PMC5050445 DOI: 10.1038/srep33987] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022] Open
Abstract
Epigraph is an efficient graph-based algorithm for designing vaccine antigens to optimize potential T-cell epitope (PTE) coverage. Epigraph vaccine antigens are functionally similar to Mosaic vaccines, which have demonstrated effectiveness in preliminary HIV non-human primate studies. In contrast to the Mosaic algorithm, Epigraph is substantially faster, and in restricted cases, provides a mathematically optimal solution. Epigraph furthermore has new features that enable enhanced vaccine design flexibility. These features include the ability to exclude rare epitopes from a design, to optimize population coverage based on inexact epitope matches, and to apply the code to both aligned and unaligned input sequences. Epigraph was developed to provide practical design solutions for two outstanding vaccine problems. The first of these is a personalized approach to a therapeutic T-cell HIV vaccine that would provide antigens with an excellent match to an individual’s infecting strain, intended to contain or clear a chronic infection. The second is a pan-filovirus vaccine, with the potential to protect against all known viruses in the Filoviradae family, including ebolaviruses. A web-based interface to run the Epigraph tool suite is available (http://www.hiv.lanl.gov/content/sequence/EPIGRAPH/epigraph.html).
Collapse
Affiliation(s)
- James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Louis J Picker
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Klaus Fruh
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
176
|
Peterson AT, Samy AM. Geographic potential of disease caused by Ebola and Marburg viruses in Africa. Acta Trop 2016; 162:114-124. [PMID: 27311387 DOI: 10.1016/j.actatropica.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023]
Abstract
Filoviruses represent a significant public health threat worldwide. West Africa recently experienced the largest-scale and most complex filovirus outbreak yet known, which underlines the need for a predictive understanding of the geographic distribution and potential for transmission to humans of these viruses. Here, we used ecological niche modeling techniques to understand the relationship between known filovirus occurrences and environmental characteristics. Our study derived a picture of the potential transmission geography of Ebola virus species and Marburg, paired with views of the spatial uncertainty associated with model-to-model variation in our predictions. We found that filovirus species have diverged ecologically, but only three species are sufficiently well known that models could be developed with significant predictive power. We quantified uncertainty in predictions, assessed potential for outbreaks outside of known transmission areas, and highlighted the Ethiopian Highlands and scattered areas across East Africa as additional potentially unrecognized transmission areas.
Collapse
Affiliation(s)
| | - Abdallah M Samy
- Biodiversity Institute, The University of Kansas, Lawrence, KS, 66045, USA; Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
177
|
Abstract
Long-term control of viral outbreaks requires the use of vaccines to impart acquired resistance and ensuing protection. In the wake of an epidemic, established immunity against a particular disease can limit spread and significantly decrease mortality. Creation of a safe and efficacious vaccine against Ebola virus (EBOV) has proven elusive so far, but various inventive strategies are now being employed to counteract the threat of outbreaks caused by EBOV and related filoviruses. Here, we present a current overview of progress in the field of Ebola virus vaccine development.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College,Thomas Jefferson University, Philadelphia, Pennsylvania 19107;
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College,Thomas Jefferson University, Philadelphia, Pennsylvania 19107;
| |
Collapse
|
178
|
Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135:1-14. [PMID: 27640102 PMCID: PMC7113884 DOI: 10.1016/j.antiviral.2016.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
This review focuses on the recent progress in our understanding of filovirus protein structure/function and its impact on antiviral research. Here we focus on the surface glycoprotein GP1,2 and its different roles in filovirus entry. We first describe the latest advances on the characterization of GP gene-overlapping proteins sGP, ssGP and Δ-peptide. Then, we compare filovirus surface GP1,2 proteins in terms of structure, synthesis and function. As they bear potential in drug-design, the discovery of small organic compounds inhibiting filovirus entry is a currently very active field. Although it is at an early stage, the development of antiviral drugs against Ebola and Marburg virus entry might prove essential to reduce outbreak-associated fatality rates through post-exposure treatment of both suspected and confirmed cases. The filovirus surface glycoprotein is the key player protein responsible for viral entry. Secreted forms of the glycoprotein have been suggested to participate to filovirus virus pathogenicity. Recent structural insights of the filovirus surface glycoprotein highlight new antiviral perspectives. Interesting compounds and innovative antiviral strategies emerge from research and development to inhibit filovirus entry.
Collapse
|
179
|
Banadyga L, Dolan MA, Ebihara H. Rodent-Adapted Filoviruses and the Molecular Basis of Pathogenesis. J Mol Biol 2016; 428:3449-66. [PMID: 27189922 PMCID: PMC5010511 DOI: 10.1016/j.jmb.2016.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Ebola, Marburg, and Ravn viruses, all filoviruses, are the causative agents of severe hemorrhagic fever. Much of what we understand about the pathogenesis of filovirus disease is derived from work with animal models, including nonhuman primates, which are considered the "gold standard" filovirus model since they faithfully recapitulate the clinical hallmarks of filovirus disease. However, rodent models, including the mouse, guinea pig, and hamster, also exist for Ebola, Marburg, and Ravn viruses, and although they may not reproduce all the clinical signs of filovirus disease, thanks to their relative ease of use and low cost, they are often the first choice for initial descriptions of virus pathogenesis and evaluation of antiviral prophylactics and therapeutics. Since filoviruses do not cause significant disease in adult, immunocompetent rodents, these models rely on "rodent-adapted" viruses that have been passaged several times through their host until virulence and lethality are achieved. In the process of adaptation, the viruses acquire numerous nucleotide/amino acid mutations that contribute to virulence in their rodent host. Interestingly, virus protein 24 (VP24) and nucleoprotein (NP) appear to be major virulence factors for ebolaviruses in rodents, whereas VP40 appears to be the major virulence factor for marburgviruses. By characterizing these mutations and understanding the molecular mechanisms that lead to the acquisition of virulence, we can gain better insight into the pathogenic processes that underlie filovirus disease in humans. These processes, and the viral and/or cellular proteins that contribute to them, will make attractive targets for the development of novel therapeutics and counter-measures.
Collapse
Affiliation(s)
- Logan Banadyga
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
180
|
Abstract
Bats are hosts of a range of viruses, including ebolaviruses, and many important human viral infections, such as measles and mumps, may have their ancestry traced back to bats. Here, I review viruses of all viral families detected in global bat populations. The viral diversity in bats is substantial, and viruses with all known types of genomic structures and replication strategies have been discovered in bats. However, the discovery of viruses is not geographically even, with some apparently undersampled regions, such as South America. Furthermore, some bat families, including those with global or wide distributions such as Emballonuridae and Miniopteridae, are underrepresented on viral databases. Future studies, including those that address these sampling gaps along with those that develop our understanding of viral-host relationships, are highlighted.
Collapse
Affiliation(s)
- David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North 4442, New Zealand;
| |
Collapse
|
181
|
Pontremoli C, Forni D, Cagliani R, Filippi G, De Gioia L, Pozzoli U, Clerici M, Sironi M. Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface. Mol Biol Evol 2016; 33:2836-2847. [PMID: 27512112 DOI: 10.1093/molbev/msw158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Collapse
Affiliation(s)
- Chiara Pontremoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
182
|
Judson SD, Fischer R, Judson A, Munster VJ. Ecological Contexts of Index Cases and Spillover Events of Different Ebolaviruses. PLoS Pathog 2016; 12:e1005780. [PMID: 27494600 PMCID: PMC4975397 DOI: 10.1371/journal.ppat.1005780] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
Ebola virus disease afflicts both human and animal populations and is caused by four ebolaviruses. These different ebolaviruses may have distinct reservoir hosts and ecological contexts that determine how, where, and when different ebolavirus spillover events occur. Understanding these virus-specific relationships is important for preventing transmission of ebolaviruses from wildlife to humans. We examine the ecological contexts surrounding 34 human index case infections of ebolaviruses from 1976-2014. Determining possible sources of spillover from wildlife, characterizing the environment of each event, and creating ecological niche models to estimate habitats suitable for spillover, we find that index case infections of two ebolaviruses, Ebola virus and Sudan virus, have occurred under different ecological contexts. The index cases of Ebola virus infection are more associated with tropical evergreen broadleaf forests and consuming bushmeat than the cases of Sudan virus. Given these differences, we emphasize caution when generalizing across different ebolaviruses and that location and virus-specific ecological knowledge will be essential to unravelling how human and animal behavior lead to the emergence of Ebola virus disease.
Collapse
Affiliation(s)
- Seth D. Judson
- Virus Ecology Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Robert Fischer
- Virus Ecology Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Andrew Judson
- Square Inc, San Francisco, California, United States of America
| | - Vincent J. Munster
- Virus Ecology Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| |
Collapse
|
183
|
Wacharapluesadee S, Olival KJ, Kanchanasaka B, Duengkae P, Kaewchot S, Srongmongkol P, Ieamsaard G, Maneeorn P, Sittidetboripat N, Kaewpom T, Petcharat S, Yingsakmongkon S, Rollin PE, Towner JS, Hemachudha T. Surveillance for Ebola Virus in Wildlife, Thailand. Emerg Infect Dis 2016; 21:2271-3. [PMID: 26584224 PMCID: PMC4672430 DOI: 10.3201/eid2112.150860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
184
|
Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR, Palacios G, Bavari S, Jahrling PB, Kuhn JH. Neglected filoviruses. FEMS Microbiol Rev 2016; 40:494-519. [PMID: 27268907 PMCID: PMC4931228 DOI: 10.1093/femsre/fuw010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Eight viruses are currently assigned to the family Filoviridae Marburg virus, Sudan virus and, in particular, Ebola virus have received the most attention both by researchers and the public from 1967 to 2013. During this period, natural human filovirus disease outbreaks occurred sporadically in Equatorial Africa and, despite high case-fatality rates, never included more than several dozen to a few hundred infections per outbreak. Research emphasis shifted almost exclusively to Ebola virus in 2014, when this virus was identified as the cause of an outbreak that has thus far involved more than 28 646 people and caused more than 11 323 deaths in Western Africa. Consequently, major efforts are currently underway to develop licensed medical countermeasures against Ebola virus infection. However, the ecology of and mechanisms behind Ebola virus emergence are as little understood as they are for all other filoviruses. Consequently, the possibility of the future occurrence of a large disease outbreak caused by other less characterized filoviruses (i.e. Bundibugyo virus, Lloviu virus, Ravn virus, Reston virus and Taï Forest virus) is impossible to rule out. Yet, for many of these viruses, not even rudimentary research tools are available, let alone medical countermeasures. This review summarizes the current knowledge on these less well-characterized filoviruses.
Collapse
Affiliation(s)
- Robin Burk
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Baden-Württemberg, Germany
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Joshua C. Johnson
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
185
|
Bat-man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discov 2016; 2:16048. [PMID: 27551536 PMCID: PMC4979447 DOI: 10.1038/cddiscovery.2016.48] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022] Open
Abstract
Bats are natural reservoir hosts and sources of infection of several microorganisms, many of which cause severe human diseases. Because of contact between bats and other animals, including humans, the possibility exists for additional interspecies transmissions and resulting disease outbreaks. The purpose of this article is to supply an overview on the main pathogens isolated from bats that have the potential to cause disease in humans.
Collapse
|
186
|
Miller MR, McMinn RJ, Misra V, Schountz T, Müller MA, Kurth A, Munster VJ. Broad and Temperature Independent Replication Potential of Filoviruses on Cells Derived From Old and New World Bat Species. J Infect Dis 2016; 214:S297-S302. [PMID: 27354372 DOI: 10.1093/infdis/jiw199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Filoviruses are strongly associated with several species of bats as their natural reservoirs. In this study, we determined the replication potential of all filovirus species: Marburg marburgvirus, Taï Forest ebolavirus, Reston ebolavirus, Sudan ebolavirus, Zaire ebolavirus, and Bundibugyo ebolavirus. Filovirus replication was supported by all cell lines derived from 6 Old and New World bat species: the hammer-headed fruit bat, Buettikofer's epauletted fruit bat, the Egyptian fruit bat, the Jamaican fruit bat, the Mexican free-tailed bat and the big brown bat. In addition, we showed that Marburg virus Angola and Ebola virus Makona-WPGC07 efficiently replicated at 37°C, 37°-41°C, or 41°C, contrary to the hypothesis that temporal elevation in temperature due to flight affects filovirus replication in bats.
Collapse
Affiliation(s)
- Megan R Miller
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Rebekah J McMinn
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| | - Vikram Misra
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Tony Schountz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins
| | | | - Andreas Kurth
- Biosafety Level 4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana
| |
Collapse
|
187
|
Evidence for widespread infection of African bats with Crimean-Congo hemorrhagic fever-like viruses. Sci Rep 2016; 6:26637. [PMID: 27217069 PMCID: PMC4877572 DOI: 10.1038/srep26637] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022] Open
Abstract
Crimean Congo hemorrhagic fever virus (CCHFV) is a highly virulent tick-borne pathogen that causes hemorrhagic fever in humans. The geographic range of human CCHF cases largely reflects the presence of ticks. However, highly similar CCHFV lineages occur in geographically distant regions. Tick-infested migratory birds have been suggested, but not confirmed, to contribute to the dispersal. Bats have recently been shown to carry nairoviruses distinct from CCHFV. In order to assess the presence of CCHFV in a wide range of bat species over a wide geographic range, we analyzed 1,135 sera from 16 different bat species collected in Congo, Gabon, Ghana, Germany, and Panama. Using a CCHFV glycoprotein-based indirect immunofluorescence test (IIFT), we identified reactive antibodies in 10.0% (114/1,135) of tested bats, pertaining to 12/16 tested species. Depending on the species, 3.6%–42.9% of cave-dwelling bats and 0.6%–7.1% of foliage-living bats were seropositive (two-tailed t-test, p = 0.0447 cave versus foliage). 11/30 IIFT-reactive sera from 10 different African bat species had neutralizing activity in a virus-like particle assay. Neutralization of full CCHFV was confirmed in 5 of 7 sera. Widespread infection of cave-dwelling bats may indicate a role for bats in the life cycle and geographic dispersal of CCHFV.
Collapse
|
188
|
Mekibib B, Ariën KK. Aerosol Transmission of Filoviruses. Viruses 2016; 8:v8050148. [PMID: 27223296 PMCID: PMC4885103 DOI: 10.3390/v8050148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022] Open
Abstract
Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013–2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses.
Collapse
Affiliation(s)
- Berhanu Mekibib
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp B-2000, Belgium.
- School of Veterinary Medicine, College of Natural and Computational Sciences, Hawassa University, P.O. Box 05, Hawassa, Ethiopia.
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp B-2000, Belgium.
| |
Collapse
|
189
|
|
190
|
Yusim K, Yoon H, Foley B, Feng S, Macke J, Dimitrijevic M, Abfalterer W, Szinger J, Fischer W, Kuiken C, Korber B. Integrated sequence and immunology filovirus database at Los Alamos. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw047. [PMID: 27103629 PMCID: PMC4839628 DOI: 10.1093/database/baw047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
The Ebola outbreak of 2013–15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy. Database URL: www.hfv.lanl.gov
Collapse
Affiliation(s)
- Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Brian Foley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shihai Feng
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | - Will Fischer
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carla Kuiken
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
191
|
Ilinykh PA, Shen X, Flyak AI, Kuzmina N, Ksiazek TG, Crowe JE, Bukreyev A. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies. J Virol 2016; 90:3890-3901. [PMID: 26819310 PMCID: PMC4810552 DOI: 10.1128/jvi.00101-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| |
Collapse
|
192
|
A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles. mSphere 2016; 1:mSphere00007-16. [PMID: 27303731 PMCID: PMC4894689 DOI: 10.1128/msphere.00007-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Identifying cellular factors that determine susceptibility to infection can help us understand how Ebola virus is transmitted. We asked if the EBOV receptor Niemann-Pick C1 (NPC1) could explain why reptiles are resistant to EBOV infection. We demonstrate that cells derived from the Russell’s viper are not susceptible to infection because EBOV cannot bind to viper NPC1. This resistance to infection can be mapped to a single amino acid residue in viper NPC1 that renders it unable to bind to EBOV GP. The newly solved structure of EBOV GP bound to NPC1 confirms our findings, revealing that this residue dips into the GP receptor-binding pocket and is therefore critical to the binding interface. Consequently, this otherwise well-conserved residue in vertebrate species influences the ability of reptilian NPC1 proteins to bind to EBOV GP, thereby affecting viral host range in reptilian cells. Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa. One obstacle to controlling these epidemics is our poor understanding of the host range of filoviruses and their natural reservoirs. Here, we investigated the role of the intracellular filovirus receptor, Niemann-Pick C1 (NPC1) as a molecular determinant of Ebola virus (EBOV) host range at the cellular level. Whereas human cells can be infected by EBOV, a cell line derived from a Russell’s viper (Daboia russellii) (VH-2) is resistant to infection in an NPC1-dependent manner. We found that VH-2 cells are resistant to EBOV infection because the Russell’s viper NPC1 ortholog bound poorly to the EBOV spike glycoprotein (GP). Analysis of panels of viper-human NPC1 chimeras and point mutants allowed us to identify a single amino acid residue in NPC1, at position 503, that bidirectionally influenced both its binding to EBOV GP and its viral receptor activity in cells. Significantly, this single residue change perturbed neither NPC1’s endosomal localization nor its housekeeping role in cellular cholesterol trafficking. Together with other recent work, these findings identify sequences in NPC1 that are important for viral receptor activity by virtue of their direct interaction with EBOV GP and suggest that they may influence filovirus host range in nature. Broader surveys of NPC1 orthologs from vertebrates may delineate additional sequence polymorphisms in this gene that control susceptibility to filovirus infection. IMPORTANCE Identifying cellular factors that determine susceptibility to infection can help us understand how Ebola virus is transmitted. We asked if the EBOV receptor Niemann-Pick C1 (NPC1) could explain why reptiles are resistant to EBOV infection. We demonstrate that cells derived from the Russell’s viper are not susceptible to infection because EBOV cannot bind to viper NPC1. This resistance to infection can be mapped to a single amino acid residue in viper NPC1 that renders it unable to bind to EBOV GP. The newly solved structure of EBOV GP bound to NPC1 confirms our findings, revealing that this residue dips into the GP receptor-binding pocket and is therefore critical to the binding interface. Consequently, this otherwise well-conserved residue in vertebrate species influences the ability of reptilian NPC1 proteins to bind to EBOV GP, thereby affecting viral host range in reptilian cells.
Collapse
|
193
|
Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. mBio 2016; 7:e02154-15. [PMID: 26908579 PMCID: PMC4791852 DOI: 10.1128/mbio.02154-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. IMPORTANCE Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs.
Collapse
|
194
|
Hoffmann M, González Hernández M, Berger E, Marzi A, Pöhlmann S. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent. PLoS One 2016; 11:e0149651. [PMID: 26901159 PMCID: PMC4762945 DOI: 10.1371/journal.pone.0149651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022] Open
Abstract
Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail: (SP); (MH)
| | | | - Elisabeth Berger
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail: (SP); (MH)
| |
Collapse
|
195
|
Pathogen Discovery. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
196
|
Ebola vaccine, therapeutics, and diagnostics. Uirusu 2016; 66:63-72. [PMID: 28484180 DOI: 10.2222/jsv.66.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ebolaviruses, members of the family Filoviridae, cause severe hemorrhagic fever in humans and nonhuman primates, with human case fatality rates of up to 90%. No effective prophylaxis or treatment for Ebola virus disease (EVD) is yet commercially available. During the latest outbreak of EVD in West Africa, several unapproved drugs were used for the treatment of patients. This outbreak has indeed accelerated efforts to develop antiviral strategies and some of the vaccine and drug candidates have undergone clinical trials. This article reviews previous researches and recent advances on the development of vaccine, therapeutics, and diagnostics for EVD.
Collapse
|
197
|
Ng M, Ndungo E, Kaczmarek ME, Herbert AS, Binger T, Kuehne AI, Jangra RK, Hawkins JA, Gifford RJ, Biswas R, Demogines A, James RM, Yu M, Brummelkamp TR, Drosten C, Wang LF, Kuhn JH, Müller MA, Dye JM, Sawyer SL, Chandran K. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. eLife 2015; 4. [PMID: 26698106 PMCID: PMC4709267 DOI: 10.7554/elife.11785] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature. DOI:http://dx.doi.org/10.7554/eLife.11785.001 Ebola virus and other filoviruses can cause devastating diseases in humans and other apes. Numerous small outbreaks of Ebola virus disease have occurred in Africa over the past 40 years. However, in 2013–2015, the largest outbreak on record took place in three Western African nations with no previous history of the disease. Human outbreaks of Ebola virus disease likely begin when a person encounters an infected wild animal. Though it remains unclear precisely which animals harbor Ebola virus between outbreaks, and how they transmit the virus to humans or other primates, recent work showed that some filoviruses do infect specific types of bats in nature. Ng, Ndungo, Kaczmarek et al. sought to identify the genes that influence whether or not a type of bat is susceptible to infection by Ebola virus and other filoviruses. Several filoviruses, including Ebola virus, were tested to see if they could infect cells that had been collected from four types of African fruit bats. These bats are all found in areas where outbreaks have occurred in the past. The tests revealed that a small change in the sequence of the NPC1 gene in some bat cells greatly reduced their susceptibility to Ebola virus. NPC1 encodes a protein that mammals need in order to move cholesterol within their cells. In humans, the loss of the protein encoded by NPC1 causes a rare but very severe disease called Niemann-Pick type C disease. This protein also turns out to be a receptor that the filoviruses must bind to before they can infect the cells. Further analysis then revealed that NPC1 has evolved rapidly in bats, with changes concentrated in the parts of the receptor that interact with Ebola virus. Ng, Ndungo, Kaczmarek et al. went on to discover some changes in the genome sequence of Ebola virus that could compensate for the changes in the bat’s NPC1 gene. These findings hint at one way that a filovirus could evolve to better infect a host with receptors that were less than optimal. Following on from this work, the next challenges will be to expand the investigation to include additional types of bats, other types of mammals, and other host genes that could influence filovirus infection and disease. Further studies could also examine the other side of the arms race – that is, the evolution of viral genes in bats. However, such studies would be complicated by the lack of viral sequences that have been collected from bats, because to date most have been isolated from humans and other primates instead. DOI:http://dx.doi.org/10.7554/eLife.11785.002
Collapse
Affiliation(s)
- Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Esther Ndungo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Maria E Kaczmarek
- Department of Integrative Biology, University of Texas at Austin, Austin, United States
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Ana I Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - John A Hawkins
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, United States
| | - Robert J Gifford
- University of Glasgow MRC Virology Unit, Glasgow, United Kingdom
| | - Rohan Biswas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Ann Demogines
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Rebekah M James
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Meng Yu
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, , Singapore
| | | | - Christian Drosten
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.,German Centre for Infectious Diseases Research, Bonn, Germany
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, , Singapore
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, United States
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, United States
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States.,BioFrontiers Institute, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
198
|
Brierley L, Vonhof MJ, Olival KJ, Daszak P, Jones KE. Quantifying Global Drivers of Zoonotic Bat Viruses: A Process-Based Perspective. Am Nat 2015; 187:E53-64. [PMID: 26807755 DOI: 10.1086/684391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Emerging infectious diseases (EIDs), particularly zoonoses, represent a significant threat to global health. Emergence is often driven by anthropogenic activity (e.g., travel, land use change). Although disease emergence frameworks suggest multiple steps from initial zoonotic transmission to human-to-human spread, there have been few attempts to empirically model specific steps. We create a process-based framework to separate out components of individual emergence steps. We focus on early emergence and expand the first step, zoonotic transmission, into processes of generation of pathogen richness, transmission opportunity, and establishment, each with its own hypothesized drivers. Using this structure, we build a spatial empirical model of these drivers, taking bat viruses shared with humans as a case study. We show that drivers of both viral richness (host diversity and climatic variability) and transmission opportunity (human population density, bushmeat hunting, and livestock production) are associated with virus sharing between humans and bats. We also show spatial heterogeneity between the global patterns of these two processes, suggesting that high-priority locations for pathogen discovery and surveillance in wildlife may not necessarily coincide with those for public health intervention. Finally, we offer direction for future studies of zoonotic EIDs by highlighting the importance of the processes underlying their emergence.
Collapse
|
199
|
Local Mutational Pressures in Genomes of Zaire Ebolavirus and Marburg Virus. Adv Bioinformatics 2015; 2015:678587. [PMID: 26798338 PMCID: PMC4698526 DOI: 10.1155/2015/678587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 11/18/2022] Open
Abstract
Heterogeneities in nucleotide content distribution along the length of Zaire ebolavirus and Marburg virus genomes have been analyzed. Results showed that there is asymmetric mutational A-pressure in the majority of Zaire ebolavirus genes; there is mutational AC-pressure in the coding region of the matrix protein VP40, probably, caused by its high expression at the end of the infection process; there is also AC-pressure in the 3'-part of the nucleoprotein (NP) coding gene associated with low amount of secondary structure formed by the 3'-part of its mRNA; in the middle of the glycoprotein (GP) coding gene that kind of mutational bias is linked with the high amount of secondary structure formed by the corresponding fragment of RNA negative (-) strand; there is relatively symmetric mutational AU-pressure in the polymerase (Pol) coding gene caused by its low expression level. In Marburg virus all genes, including C-rich fragment of GP coding region, demonstrate asymmetric mutational A-bias, while the last gene (Pol) demonstrates more symmetric mutational AU-pressure. The hypothesis of a newly synthesized RNA negative (-) strand shielding by complementary fragments of mRNAs has been described in this work: shielded fragments of RNA negative (-) strand should be better protected from oxidative damage and prone to ADAR-editing.
Collapse
|
200
|
Wacharapluesadee S, Olival KJ, Kanchanasaka B, Duengkae P, Kaewchot S, Srongmongkol P, Ieamsaard G, Maneeorn P, Sittidetboripat N, Kaewpom T, Petcharat S, Yingsakmongkon S, Rollin PE, Towner JS, Hemachudha T. Surveillance for Ebola Virus in Wildlife, Thailand. Emerg Infect Dis 2015. [DOI: 10.3201/eid2112.150869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|