151
|
Escolano A, Steichen JM, Dosenovic P, Kulp DW, Golijanin J, Sok D, Freund NT, Gitlin AD, Oliveira T, Araki T, Lowe S, Chen ST, Heinemann J, Yao KH, Georgeson E, Saye-Francisco KL, Gazumyan A, Adachi Y, Kubitz M, Burton DR, Schief WR, Nussenzweig MC. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell 2016; 166:1445-1458.e12. [PMID: 27610569 DOI: 10.1016/j.cell.2016.07.030] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022]
Abstract
A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jon M Steichen
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pia Dosenovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Daniel W Kulp
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Devin Sok
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Tatsuya Araki
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Sarina Lowe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jennifer Heinemann
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Erik Georgeson
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Yumiko Adachi
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - William R Schief
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
152
|
Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: An approach to control HIV-1 infection. Int Rev Immunol 2016; 36:31-40. [PMID: 27739924 DOI: 10.1080/08830185.2016.1225301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although available antiretroviral therapy (ART) has changed human immunodeficiency virus (HIV)-1 infection to a non-fatal chronic disease, the economic burden of lifelong therapy, severe adverse ART effects, daily ART adherence, and emergence of ART-resistant HIV-1 mutants require prospecting for alternative therapeutic modalities. Indeed, a growing body of evidence suggests that broadly neutralizing anti-HIV-1 antibodies (BNAbs) may offer one such feasible alternative. To evaluate their therapeutic potential in established HIV-1 infection, we sought to address recent advances in pre-clinical and clinical investigations in this area of HIV-1 research. In addition, we addressed the obstacles that may impede the success of such immunotherapeutic approach, suggested strategic solutions, and briefly compared this approach with the currently used ART to open new insights for potential future passive immunotherapy for HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- a Department of Medical Laboratory Sciences , College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad Mahmoud Yaseen
- b Department of Public Health, College of Nursing , University of Benghazi , Benghazi , Libya
| | - Mohammad Ali Alqudah
- c Department of Clinical Pharmacy , College of Pharmacy, Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
153
|
Jones TD, Carter PJ, Plückthun A, Vásquez M, Holgate RGE, Hötzel I, Popplewell AG, Parren PWHI, Enzelberger M, Rademaker HJ, Clark MR, Lowe DC, Dahiyat BI, Smith V, Lambert JM, Wu H, Reilly M, Haurum JS, Dübel S, Huston JS, Schirrmann T, Janssen RAJ, Steegmaier M, Gross JA, Bradbury ARM, Burton DR, Dimitrov DS, Chester KA, Glennie MJ, Davies J, Walker A, Martin S, McCafferty J, Baker MP. The INNs and outs of antibody nonproprietary names. MAbs 2016; 8:1-9. [PMID: 26716992 PMCID: PMC4966553 DOI: 10.1080/19420862.2015.1114320] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies.
Collapse
Affiliation(s)
- Tim D Jones
- a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Paul J Carter
- b Genentech Inc., 1 DNA Way , South San Francisco , CA 94080 , USA
| | - Andreas Plückthun
- c Department of Biochemistry , University of Zurich , Zurich CH-8057 , Switzerland
| | - Max Vásquez
- d Adimab LLC., 7 Lucent Drive , Lebanon , NH 03766 , USA
| | - Robert G E Holgate
- a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Isidro Hötzel
- b Genentech Inc., 1 DNA Way , South San Francisco , CA 94080 , USA
| | | | - Paul W H I Parren
- f Genmab, PO Box 85199, 3508 AD , Utrecht , The Netherlands.,g Leiden University Medical Center, Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden , The Netherlands
| | - Markus Enzelberger
- h MorphoSys AG., Lena-Christ-Str. 48, 82152 Martinsried/Planegg , Germany
| | | | - Michael R Clark
- i Clark Antibodies Ltd., 11 Wellington Street , Cambridge CB1 1HW , UK
| | - David C Lowe
- j MedImmune Ltd., Milstein Building, Granta Park , Cambridge CB21 6GH , UK
| | | | | | - John M Lambert
- m ImmunoGen Inc., 830 Winter Street , Waltham , MA 02451-1477 , USA
| | - Herren Wu
- n MedImmune., One MedImmune Way , Gaithersburg , MD 20878 , USA
| | - Mary Reilly
- o Opsona Therapeutics Ltd., 2nd Floor, Ashford House , Tara Street , Dublin 2 , Ireland
| | - John S Haurum
- p F-Star Biotechnology Ltd., Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Stefan Dübel
- q Technische Universität Braunschweig., Institute of Biochemistry, Biotechnology and Bioinformatics Spielmannstr. 7 , 38106 Braunschweig , Germany
| | - James S Huston
- r The Antibody Society & Huston BioConsulting LLC. , 270 Pleasant Street #A206, Watertown , MA 02472 , USA
| | | | | | - Martin Steegmaier
- u Roche Pharmaceutical Research and Early Development,. Large Molecule Research, Roche Innovation Center Penzberg , 82377 Penzberg , Germany
| | - Jane A Gross
- v Emergent BioSolutions. , 2401 4th Avenue, Suite 1050, Seattle , WA 98121 , USA
| | - Andrew R M Bradbury
- w Biosciences Division., MS-M888, TA-43, HRL-1, Building 1, Los Alamos National Laboratory , Los Alamos , NM 87545 , USA
| | - Dennis R Burton
- x The Scripps Research Institute., 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Dimiter S Dimitrov
- y Protein Interactions Section., Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute , Frederick , MD 21702 , USA
| | - Kerry A Chester
- z UCL Cancer Institute., 72 Huntley Street , London WC1E 6BT , UK
| | - Martin J Glennie
- aa Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital , Southampton , Hampshire SO16 6YD , UK
| | - Julian Davies
- ab Lilly Biotechnology Center San Diego , CA 92121 , USA
| | - Adam Walker
- ac GSK., Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Hills Road , Cambridge , CB2 2GG , UK
| | - Steve Martin
- ad GSK, Medicines Research Centre, Gunnels Wood Road , Stevenage , Herts , SG1 2NY , UK
| | - John McCafferty
- ae Iontas Ltd., Babraham Research Campus , Cambridge CB22 3AT , UK
| | - Matthew P Baker
- a Antitope Ltd. (part of Abzena Plc.), Babraham Research Campus , Cambridge CB22 3AT , UK
| |
Collapse
|
154
|
van Haaren MM, van den Kerkhof TLGM, van Gils MJ. Natural infection as a blueprint for rational HIV vaccine design. Hum Vaccin Immunother 2016; 13:229-236. [PMID: 27649455 PMCID: PMC5287307 DOI: 10.1080/21645515.2016.1232785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
So far, the development of a human immunodeficiency virus (HIV) vaccine has been unsuccessful. However, recent progress in the field of broadly neutralizing antibodies (bNAbs) has reinvigorated the search for an HIV vaccine. bNAbs develop in a minority of HIV infected individuals and passive transfer of these bNAbs to non-human primates provides protection from HIV infection. Studies in a number of HIV infected individuals on bNAb maturation alongside viral evolution and escape have shed light on the features important for bNAb elicitation. Here we review the observations from these studies, and how they influence the rational design of HIV vaccines.
Collapse
Affiliation(s)
- Marlies M van Haaren
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Tom L G M van den Kerkhof
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Marit J van Gils
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
155
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
156
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
157
|
Krauss IJ. Antibody recognition of HIV and dengue glycoproteins. Glycobiology 2016; 26:813-9. [PMID: 26941393 PMCID: PMC5018046 DOI: 10.1093/glycob/cww031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023] Open
Abstract
The last 6 years have witnessed an explosion of discoveries at the interface of glycobiology and immunology. Binding of clustered oligosaccharides has turned out to be a very frequent mode by which human antibodies have developed broadly neutralizing activity against HIV. This mini-review will cover many recent developments in the HIV antibody field, as well as emerging data about Dengue broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
158
|
Matei E, Basu R, Furey W, Shi J, Calnan C, Aiken C, Gronenborn AM. Structure and Glycan Binding of a New Cyanovirin-N Homolog. J Biol Chem 2016; 291:18967-76. [PMID: 27402833 DOI: 10.1074/jbc.m116.740415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoprotein gp120 is heavily glycosylated and bears numerous high mannose sugars. These sugars can serve as targets for HIV-inactivating compounds, such as antibodies and lectins, which bind to the glycans and interfere with viral entry into the target cell. We determined the 1.6 Å x-ray structure of Cyt-CVNH, a recently identified lectin from the cyanobacterium Cyanothece(7424), and elucidated its glycan specificity by NMR. The Cyt-CVNH structure and glycan recognition profile are similar to those of other CVNH proteins, with each domain specifically binding to Manα(1-2)Manα units on the D1 and D3 arms of high mannose glycans. However, in contrast to CV-N, no cross-linking and precipitation of the cross-linked species in solution was observed upon Man-9 binding, allowing, for the first time, investigation of the interaction of Man-9 with a member of the CVNH family by NMR. HIV assays showed that Cyt-CVNH is able to inhibit HIV-1 with ∼4-fold higher potency than CV-N(P51G), a stabilized version of wild type CV-N. Therefore, Cyt-CVNH may qualify as a valuable lectin for potential microbicidal use.
Collapse
Affiliation(s)
- Elena Matei
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Rohan Basu
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260, the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - William Furey
- the Department of Pharmacology & Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | - Jiong Shi
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, and
| | - Conor Calnan
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260, the Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Christopher Aiken
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, and
| | - Angela M Gronenborn
- From the Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
159
|
van den Kerkhof TLGM, de Taeye SW, Boeser-Nunnink BD, Burton DR, Kootstra NA, Schuitemaker H, Sanders RW, van Gils MJ. HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds. Retrovirology 2016; 13:48. [PMID: 27388013 PMCID: PMC4936165 DOI: 10.1186/s12977-016-0279-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current HIV-1 immunogens are unable to induce antibodies that can neutralize a broad range of HIV-1 (broadly neutralizing antibodies; bNAbs). However, such antibodies are elicited in 10-30 % of HIV-1 infected individuals, and the co-evolution of the virus and the humoral immune responses in these individuals has attracted attention, because they can provide clues for vaccine design. RESULTS Here we characterized the NAb responses and envelope glycoprotein evolution in an HIV-1 infected "elite neutralizer" of the Amsterdam Cohort Studies on HIV-1 infection and AIDS who developed an unusually potent bNAb response rapidly after infection. The NAb response was dependent on the N332-glycan and viral resistance against the N332-glycan dependent bNAb PGT135 developed over time but viral escape did not occur at or near this glycan. In contrast, the virus likely escaped by increasing V1 length, with up to 21 amino acids, accompanied by the introduction of 1-3 additional glycans, as well as 2-4 additional cysteine residues within V1. CONCLUSIONS In the individual studied here, HIV-1 escaped from N332-glycan directed NAb responses without changing the epitope itself, but by elongating a variable loop that shields this epitope.
Collapse
Affiliation(s)
- Tom L G M van den Kerkhof
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Brigitte D Boeser-Nunnink
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Dennis R Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Janssen Pharmaceuticals, 2333 CN, Leiden, The Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, NY, 10065, USA.
| | - Marit J van Gils
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
160
|
Stanfield RL, Wilson IA, Smider VV. Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Sci Immunol 2016; 1:aaf7962. [PMID: 27574710 PMCID: PMC5000368 DOI: 10.1126/sciimmunol.aaf7962] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A subset of bovine antibodies have an exceptionally long third heavy-chain complementarity determining region (CDR H3) that is highly variable in sequence and includes multiple cysteines. These long CDR H3s (up to 69 residues) fold into a long stalk atop which sits a knob domain that is located far from the antibody surface. Three new bovine Fab crystal structures have been determined to decipher the conserved and variable features of ultralong CDR H3s that lead to diversity in antigen recognition. Despite high sequence variability, the stalks adopt a conserved β-ribbon structure, while the knob regions share a conserved β-sheet that serves as a scaffold for two connecting loops of variable length and conformation, as well as one conserved disulfide. Variation in patterns and connectivity of the remaining disulfides contribute to the knob structural diversity. The unusual architecture of these ultralong bovine CDR H3s for generating diversity is unique in adaptive immune systems.
Collapse
Affiliation(s)
- Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The
Scripps Research Institute, La Jolla, California, 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The
Scripps Research Institute, La Jolla, California, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research
Institute, La Jolla, California, 92037, USA
| | - Vaughn V. Smider
- Department of Cell and Molecular Biology, The Scripps Research
Institute, La Jolla, California, 92037, USA
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121,
USA
| |
Collapse
|
161
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
162
|
Geissner A, Seeberger PH. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:223-47. [PMID: 27306309 DOI: 10.1146/annurev-anchem-071015-041641] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
163
|
Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity 2016; 43:1053-63. [PMID: 26682982 DOI: 10.1016/j.immuni.2015.11.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/29/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022]
Abstract
The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.
Collapse
|
164
|
Borggren M, Jensen SS, Heyndrickx L, Palm AA, Gerstoft J, Kronborg G, Hønge BL, Jespersen S, da Silva ZJ, Karlsson I, Fomsgaard A. Neutralizing Antibody Response and Antibody-Dependent Cellular Cytotoxicity in HIV-1-Infected Individuals from Guinea-Bissau and Denmark. AIDS Res Hum Retroviruses 2016; 32:434-42. [PMID: 26621287 DOI: 10.1089/aid.2015.0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of therapeutic and prophylactic HIV vaccines for African countries is urgently needed, but the question of what immunogens to use needs to be answered. One approach is to include HIV envelope immunogens derived from HIV-positive individuals from a geographically concentrated epidemic with more limited viral genetic diversity for a region-based vaccine. To address if there is a basis for a regional selected antibody vaccine, we have screened two regionally separate cohorts from Guinea-Bissau and Denmark for neutralizing antibody activity and antibody-dependent cellular cytotoxicity (ADCC) against local and nonlocal circulating HIV-1 strains. The neutralizing activity did not demonstrate higher potential against local circulating strains according to geography and subtype determination, but the plasma from Danish individuals demonstrated significantly higher inhibitory activity than that from Guinea-Bissau individuals against both local and nonlocal virus strains. Interestingly, an opposite pattern was observed with ADCC activity, where Guinea-Bissau individual plasma demonstrated higher activity than Danish plasma and was specifically against the local circulating subtype. Thus, on basis of samples from these two cohorts, no local-specific neutralizing activity was detected, but a local ADCC response was identified in the Guinea-Bissau samples, suggesting potential use of regional immunogens for an ADCC-inducing vaccine.
Collapse
Affiliation(s)
- Marie Borggren
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne Skov Jensen
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Leo Heyndrickx
- Biomedical Department, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Angelica A. Palm
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jan Gerstoft
- Department of Infectious Diseases and Rheumatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bo Langhoff Hønge
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Sanne Jespersen
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | | | - Ingrid Karlsson
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
165
|
de Taeye SW, Ozorowski G, Torrents de la Peña A, Guttman M, Julien JP, van den Kerkhof TLGM, Burger JA, Pritchard LK, Pugach P, Yasmeen A, Crampton J, Hu J, Bontjer I, Torres JL, Arendt H, DeStefano J, Koff WC, Schuitemaker H, Eggink D, Berkhout B, Dean H, LaBranche C, Crotty S, Crispin M, Montefiori DC, Klasse PJ, Lee KK, Moore JP, Wilson IA, Ward AB, Sanders RW. Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell 2016; 163:1702-15. [PMID: 26687358 DOI: 10.1016/j.cell.2015.11.056] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/29/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.
Collapse
Affiliation(s)
- Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom L G M van den Kerkhof
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jordan Crampton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, Center for HIV-1/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Joyce Hu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, Center for HIV-1/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Ilja Bontjer
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Heather Arendt
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | | | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Hansi Dean
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, Center for HIV-1/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
166
|
Wagh K, Bhattacharya T, Williamson C, Robles A, Bayne M, Garrity J, Rist M, Rademeyer C, Yoon H, Lapedes A, Gao H, Greene K, Louder MK, Kong R, Karim SA, Burton DR, Barouch DH, Nussenzweig MC, Mascola JR, Morris L, Montefiori DC, Korber B, Seaman MS. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathog 2016; 12:e1005520. [PMID: 27028935 PMCID: PMC4814126 DOI: 10.1371/journal.ppat.1005520] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/01/2016] [Indexed: 01/03/2023] Open
Abstract
The identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs) has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env) will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs), the V1/V2-glycan region, the V3-glycan region, and the gp41 membrane proximal external region (MPER), against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP). By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection. In recent years, a new generation of monoclonal antibodies has been isolated from HIV-1 infected individuals that exhibit broad and potent neutralizing activity when tested against diverse strains of virus. There is a high level of interest in the field in determining if these antibodies can be used to prevent or treat HIV-1 infection. Because HIV-1 is adept at escaping from immune recognition, it is generally thought that combinations of multiple antibodies targeting different sites will be required for efficacy, much the same as seen for conventional antiretroviral drugs. How many and which antibodies to include in such combinations is not known. In this study, a new mathematical model was developed and used to accurately predict various measures of neutralizing activity for all possible combinations having a total of 2, 3, or 4 of the most promising antibodies. Through a systematic and comprehensive comparison, we identified optimal combinations of antibodies that best complement one another for enhanced anti-viral activity, and therefore may be most effective for the prevention or treatment of HIV-1 infection. These results provide important parameters that inform the selection of antibodies to develop for clinical use.
Collapse
Affiliation(s)
- Kshitij Wagh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and NHLS, Cape Town, South Africa
| | - Alex Robles
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Madeleine Bayne
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jetta Garrity
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michael Rist
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Cecilia Rademeyer
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and NHLS, Cape Town, South Africa
| | - Hyejin Yoon
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan Lapedes
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark K. Louder
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Rui Kong
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Salim Abdool Karim
- University of KwaZulu-Natal, Durban Department of Immunology and Microbial Science, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Dennis R. Burton
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- National Institute for Communicable Diseases (NICD), NHLS, University of the Witwatersrand, Johannesburg, South Africa
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
167
|
Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nat Med 2016; 22:362-8. [PMID: 26998834 PMCID: PMC4983100 DOI: 10.1038/nm.4063] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Prevention of mother to child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested anti-HIV-1 human neutralizing monoclonal antibodies (NmAb) as post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with SHIVSF162P3. On days 1, 4, 7, and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h following administration. Replicating virus was found in multiple tissues by day 1 in animals without treatment. All NmAb-treated macaques were free of virus in blood and tissues at 6 months post-exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged following CD8+ T cell depletion. These results suggest early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs.
Collapse
|
168
|
Wang Z, Qin C, Hu J, Guo X, Yin J. Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virol Sin 2016; 31:110-7. [PMID: 26992403 DOI: 10.1007/s12250-015-3691-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special viruses have attracted much attention. Significant efforts in carbohydrate synthesis and immunogenicity research have resulted in the development of multiple carbohydrate-based HIV vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines design strategies and the applications of these vaccines in the prevention of HIV.
Collapse
Affiliation(s)
- Zhenyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqiang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
169
|
Abstract
Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.
Collapse
|
170
|
Computational Refinement and Validation Protocol for Proteins with Large Variable Regions Applied to Model HIV Env Spike in CD4 and 17b Bound State. Structure 2016; 23:1138-49. [PMID: 26039348 DOI: 10.1016/j.str.2015.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
Abstract
Envelope glycoprotein gp120 of HIV-1 possesses several variable regions; their precise structure has been difficult to establish. We report a new model of gp120, in complex with antibodies CD4 and 17b, complete with its variable regions. The model was produced by a computational protocol that uses cryo-electron microscopy (EM) maps, atomic-resolution structures of the core, and information on binding interactions. Our model has excellent fit with EMD: 5020, is stereochemically and energetically favorable, and has the expected binding interfaces. Comparison of the ternary arrangement of the loops in this model with those bound to PGT122 and PGV04 suggested a possible motion of the V1V2 away from the CCR5 binding site and toward CD4. Our study also revealed that the CD4-bound state of the V1V2 loop is not optimal for gp120 bound with several neutralizing antibodies.
Collapse
|
171
|
de Taeye SW, Moore JP, Sanders RW. HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. Trends Immunol 2016; 37:221-232. [PMID: 26869204 DOI: 10.1016/j.it.2016.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
The identification of multiple broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer has facilitated its structural characterization and guided Env immunogen design. Several recent studies constitute progress in utilizing this knowledge for the development of an HIV-1 vaccine that induces bNAbs. Native-like Env trimers can induce autologous NAb responses against resistant (Tier-2) viruses in several animal models. Here we review recent studies aimed at addressing the challenge of driving the strong but narrowly focused NAb responses to Env trimers towards ones with much greater breadth. Among strategies that merit pursuing are using multiple trimers as sequential or simultaneous immunogens, targeting the germline precursors of bNAbs, delivering sequential lineages of trimers derived from infected individuals who developed bNAbs, and presenting trimers as particulate antigens.
Collapse
Affiliation(s)
- Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
172
|
Krumm SA, Mohammed H, Le KM, Crispin M, Wrin T, Poignard P, Burton DR, Doores KJ. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology 2016; 13:8. [PMID: 26837192 PMCID: PMC4736637 DOI: 10.1186/s12977-016-0241-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Background Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the 323IGDIR327 motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. Results Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. Conclusions These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie A Krumm
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Hajer Mohammed
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Terri Wrin
- Monogram Biosciences, Laboratory Corporation of America(R) Holdings, South San Francisco, CA, USA.
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA. .,Ragon Institute of MGH, MIT and Harvard, Cambridge, USA.
| | - Katie J Doores
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
173
|
Zhao C, Ao Z, Yao X. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines (Basel) 2016; 4:vaccines4010002. [PMID: 26805898 PMCID: PMC4810054 DOI: 10.3390/vaccines4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Chongbo Zhao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
174
|
Conformational Epitope-Specific Broadly Neutralizing Plasma Antibodies Obtained from an HIV-1 Clade C-Infected Elite Neutralizer Mediate Autologous Virus Escape through Mutations in the V1 Loop. J Virol 2016; 90:3446-57. [PMID: 26763999 DOI: 10.1128/jvi.03090-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Broadly neutralizing antibodies isolated from infected patients who are elite neutralizers have identified targets on HIV-1 envelope (Env) glycoprotein that are vulnerable to antibody neutralization; however, it is not known whether infection established by the majority of the circulating clade C strains in Indian patients elicit neutralizing antibody responses against any of the known targets. In the present study, we examined the specificity of a broad and potent cross-neutralizing plasma obtained from an Indian elite neutralizer infected with HIV-1 clade C. This plasma neutralized 53/57 (93%) HIV pseudoviruses prepared with Env from distinct HIV clades of different geographical origins. Mapping studies using gp120 core protein, single-residue knockout mutants, and chimeric viruses revealed that G37080 broadly cross-neutralizing (BCN) plasma lacks specificities to the CD4 binding site, gp41 membrane-proximal external region, N160 and N332 glycans, and R166 and K169 in the V1-V3 region and are known predominant targets for BCN antibodies. Depletion of G37080 plasma with soluble trimeric BG505-SOSIP.664 Env (but with neither monomeric gp120 nor clade C membrane-proximal external region peptides) resulted in significant reduction of virus neutralization, suggesting that G37080 BCN antibodies mainly target epitopes on cleaved trimeric Env. Further examination of autologous circulating Envs revealed the association of mutation of residues in the V1 loop that contributed to neutralization resistance. In summary, we report the identification of plasma antibodies from a clade C-infected elite neutralizer that mediate neutralization breadth via epitopes on trimeric gp120 not yet reported and confer autologous neutralization escape via mutation of residues in the V1 loop. IMPORTANCE A preventive vaccine to protect against HIV-1 is urgently needed. HIV-1 envelope glycoproteins are targets of neutralizing antibodies and represent a key component for immunogen design. The mapping of epitopes on viral envelopes vulnerable to immune evasion will aid in defining targets of vaccine immunogens. We identified novel conformational epitopes on the viral envelope targeted by broadly cross-neutralizing antibodies elicited in natural infection in an elite neutralizer infected with HIV-1 clade C. Our data extend our knowledge on neutralizing epitopes associated with virus escape and potentially contribute to immunogen design and antibody-based prophylactic therapy.
Collapse
|
175
|
Abstract
Recent biological, structural, and technical advances are converging within the HIV-1 vaccine field to harness the power of antibodies for prevention and therapy. Numerous monoclonal antibodies with broad neutralizing activity against diverse HIV-1 isolates have now been identified, revealing at least five sites of vulnerability on the envelope (Env) glycoproteins. While there are practical and technological barriers blocking a clear path from broadly neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end. Scientists are revisiting old approaches with new technology, cutting new trails through unexplored territory, and paving new roads in the hopes of preventing HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs are also being pursued, such as passive antibody immunotherapy and gene therapy approaches. Moreover, non-neutralizing antibodies have inhibitory activities that could have protective potential, alone or in combination with bNAbs. With a new generation of bNAbs, and a clinical trial that associated antibodies with reduced acquisition, the field is closer than ever to developing strategies to use antibodies against HIV-1.
Collapse
Affiliation(s)
- S Abigail Smith
- Yerkes National Primate Research Center, Atlanta, Georgia, 30322, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, 30322, USA; Yerkes National Primate Research Center, Atlanta, Georgia, 30322, USA
| |
Collapse
|
176
|
Scharf L, Wang H, Gao H, Chen S, McDowall AW, Bjorkman PJ. Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env. Cell 2015; 162:1379-90. [PMID: 26359989 DOI: 10.1016/j.cell.2015.08.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The HIV-1 envelope (Env) spike contains limited epitopes for broadly neutralizing antibodies (bNAbs); thus, most neutralizing antibodies are strain specific. The 8ANC195 epitope, defined by crystal and electron microscopy (EM) structures of bNAb 8ANC195 complexed with monomeric gp120 and trimeric Env, respectively, spans the gp120 and gp41 Env subunits. To investigate 8ANC195's gp41 epitope at higher resolution, we solved a 3.58 Å crystal structure of 8ANC195 complexed with fully glycosylated Env trimer, revealing 8ANC195 insertion into a glycan shield gap to contact gp120 and gp41 glycans and protein residues. To determine whether 8ANC195 recognizes the CD4-bound open Env conformation that leads to co-receptor binding and fusion, one of several known conformations of virion-associated Env, we solved EM structures of an Env/CD4/CD4-induced antibody/8ANC195 complex. 8ANC195 binding partially closed the CD4-bound trimer, confirming structural plasticity of Env by revealing a previously unseen conformation. 8ANC195's ability to bind different Env conformations suggests advantages for potential therapeutic applications.
Collapse
Affiliation(s)
- Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alasdair W McDowall
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
177
|
Gearhart PJ, Castiblanco DP, Russell Knode LM. Exceptional Antibodies Produced by Successive Immunizations. PLoS Biol 2015; 13:e1002321. [PMID: 26641938 PMCID: PMC4671562 DOI: 10.1371/journal.pbio.1002321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antibodies stand between us and pathogens. Viruses mutate quickly to avoid detection, and antibodies mutate at similar rates to hunt them down. This death spiral is fueled by specialized proteins and error-prone polymerases that change DNA sequences. Here, we explore how B lymphocytes stay in the race by expressing activation-induced deaminase, which unleashes a tsunami of mutations in the immunoglobulin loci. This produces random DNA substitutions, followed by selection for the highest affinity antibodies. We may be able to manipulate the process to produce better antibodies by expanding the repertoire of specific B cells through successive vaccinations. This Essay explores the possibility of manipulating somatic hypermutation in B lymphocytes by administering serial vaccinations with engineered antigens, with the aim of generating potent antibodies to destroy pathogens.
Collapse
Affiliation(s)
- Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Diana P. Castiblanco
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Lisa M. Russell Knode
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
178
|
Doores KJ. The HIV glycan shield as a target for broadly neutralizing antibodies. FEBS J 2015; 282:4679-91. [PMID: 26411545 PMCID: PMC4950053 DOI: 10.1111/febs.13530] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
Abstract
The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.
Collapse
Affiliation(s)
- Katie J Doores
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, UK
| |
Collapse
|
179
|
Magnus C, Reh L, Trkola A. HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution. Virus Res 2015; 218:57-70. [PMID: 26494166 DOI: 10.1016/j.virusres.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022]
Abstract
Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed. Here, we derive a mathematical framework to predict the concentration ranges for which antibody escape variants can outcompete their viral ancestors, referred to as mutant selection window (MSW). When determining the MSW, we focus on the differential efficacy of neutralizing antibodies against HIV-1 in two canonical infection routes, free-virus infection and cell-cell transmission. The latter has proven highly effective in vitro suggesting its importance for both in vivo spread as well as for escaping targeted intervention strategies. We observed a range of MSW patterns that highlight the potential of mutants to arise in both transmission pathways and over wide concentration ranges. Most importantly, we found that only when the arising mutant has both, residual sensitivity to the neutralizing antibody and reduced infectivity compared to the parental virus, antibody dosing outside of the MSW to restrict mutant selection is possible. Emergence of mutants that provide complete escape and have no considerable fitness loss cannot be prevented by adjusting antibody doses. The latter may in part explain the ubiquitous resistance to neutralizing antibodies observed in natural infection and antibody treatment. Based on our findings, combinations of antibodies targeting different epitopes should be favored for antibody-based interventions as this may render complete resistance less likely to occur and also increase chances that multiple escapes result in severe fitness loss of the virus making longer-term antibody treatment more feasible.
Collapse
Affiliation(s)
- Carsten Magnus
- Institute of Medical Virology, University of Zurich, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Lucia Reh
- Institute of Medical Virology, University of Zurich, Switzerland.
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Switzerland.
| |
Collapse
|
180
|
Habte HH, Banerjee S, Shi H, Qin Y, Cho MW. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology 2015; 486:187-97. [PMID: 26454663 DOI: 10.1016/j.virol.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 01/15/2023]
Abstract
The membrane-proximal external region (MPER) of HIV-1 gp41 is an attractive target for vaccine development. Thus, better understanding of its immunogenic properties in various structural contexts is important. We previously described the crystal structure of a trimeric protein complex named gp41-HR1-54Q, which consists of the heptad repeat regions 1 and 2 and the MPER. The protein was efficiently recognized by broadly neutralizing antibodies. Here, we describe its immunogenic properties in rabbits. The protein was highly immunogenic, especially the C-terminal end of the MPER containing 4E10 and 10E8 epitopes ((671)NWFDITNWLWYIK(683)). Although antibodies exhibited strong competition activity against 4E10 and 10E8, neutralizing activity was not detected. Detailed mapping analyses indicated that amino acid residues critical for recognition resided on faces of the alpha helix that are either opposite of or perpendicular to the epitopes recognized by 4E10 and 10E8. These results provide critical information for designing the next generation of MPER-based immunogens.
Collapse
Affiliation(s)
- Habtom H Habte
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Saikat Banerjee
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Heliang Shi
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Yali Qin
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA
| | - Michael W Cho
- College of Veterinary Medicine, Department of Biomedical Sciences, Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, 1600 S 16th Street, Ames, IA 50011-1250, USA.
| |
Collapse
|
181
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
182
|
Lee JH, Leaman DP, Kim AS, Torrents de la Peña A, Sliepen K, Yasmeen A, Derking R, Ramos A, de Taeye SW, Ozorowski G, Klein F, Burton DR, Nussenzweig MC, Poignard P, Moore JP, Klasse PJ, Sanders RW, Zwick MB, Wilson IA, Ward AB. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nat Commun 2015; 6:8167. [PMID: 26404402 PMCID: PMC4586043 DOI: 10.1038/ncomms9167] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/27/2015] [Indexed: 01/16/2023] Open
Abstract
The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120–gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120–gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes. The envelope glycoprotein (Env) trimer is the only antigenic target for broadly neutralizing antibodies on the surface of the HIV-1 virus. Here the authors show that two related monoclonal antibodies bind between gp41 protomers and neutralize HIV-1 by accelerating Env trimer decay.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Daniel P Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Arthur S Kim
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Alba Torrents de la Peña
- Department of Medicinal Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medicinal Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Anila Yasmeen
- Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Ronald Derking
- Department of Medicinal Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alejandra Ramos
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Steven W de Taeye
- Department of Medicinal Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Dennis R Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.,Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Pascal Poignard
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John P Moore
- Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Per Johan Klasse
- Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Rogier W Sanders
- Department of Medicinal Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.,Weill Medical College of Cornell University, New York, New York 10065, USA
| | - Michael B Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla California 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
183
|
Lee JH, de Val N, Lyumkis D, Ward AB. Model Building and Refinement of a Natively Glycosylated HIV-1 Env Protein by High-Resolution Cryoelectron Microscopy. Structure 2015; 23:1943-1951. [PMID: 26388028 DOI: 10.1016/j.str.2015.07.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Secretory and membrane proteins from mammalian cells undergo post-translational modifications, including N-linked glycosylation, which can result in a large number of possible glycoforms. This sample heterogeneity can be problematic for structural studies, particularly X-ray crystallography. Thus, crystal structures of heavily glycosylated proteins such as the HIV-1 Env viral spike protein have been determined by removing the majority of glycans. This step is most frequently carried out using Endoglycosidase H (EndoH) and requires that all expressed glycans be in the high-mannose form, which is often not the native glycoform. With significantly improved technologies in single-particle cryoelectron microscopy, we demonstrate that it is now possible to refine and build natively glycosylated HIV-1 Env structures in solution to 4.36 Å resolution. At this resolution we can now analyze the complete epitope of a broadly neutralizing antibody (bnAb), PGT128, in the context of the trimer expressed with native glycans.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
184
|
Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans. Vaccine 2015; 33:5140-7. [PMID: 26277072 DOI: 10.1016/j.vaccine.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/23/2015] [Accepted: 08/02/2015] [Indexed: 11/23/2022]
Abstract
The glycan shield on the human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein has drawn attention as a target for HIV-1 vaccine design given that an increasing number of potent and broadly neutralizing antibodies (bNAbs) recognize epitopes entirely or partially comprised of high mannose type N-linked glycans. In an attempt to generate immunogens that target the glycan shield of HIV-1, we previously engineered a triple mutant (TM) strain of Saccharomyces cerevisiae that results in exclusive presentation of high mannose type N-glycans, and identified five TM yeast glycoproteins that support strong binding of 2G12, a bNAb that targets a cluster of high mannose glycans on the gp120 subunit of Env. Here, we further analyzed the antigenicity and immunogenicity of these proteins in inducing anti-HIV responses. Our study demonstrated that the 2G12-reactive TM yeast glycoproteins efficiently bound to recently identified bNAbs including PGT125-130 and PGT135 that recognize high mannose glycan-dependent epitopes. Immunization of rabbits with a single TM yeast glycoprotein (Gp38 or Pst1), when conjugated to a promiscuous T-cell epitope peptide and coadministered with a Toll-like receptor 2 agonist, induced glycan-specific HIV-1 Env cross-reactive antibodies. The immune sera bound to both synthetic mannose oligosaccharides and gp120 proteins from a broad range of HIV-1 strains. The purified antibodies recognized and captured virions that contain both complex- and high mannose-type of N-glycans, and potently neutralized virions from different HIV-1 clades but only when the virions were enforced to retain high mannose N-glycans. This study provides insights into the elicitation of anti-carbohydrate, HIV-1 Env-cross reactive antibodies with a heterologous glycoprotein and may have applications in the design and administration of immunogens that target the viral glycan shield for development of an effective HIV-1 vaccine.
Collapse
|
185
|
Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol 2015; 16:571-6. [PMID: 25988889 DOI: 10.1038/ni.3158] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
Antibody responses to the HIV-1 envelope glycoproteins can be classified into three groups. Binding but non-neutralizing responses are directed to epitopes that are expressed on isolated envelope glycoproteins but not on the native envelope trimer found on the surface of virions and responsible for mediating the entry of virus into target cells. Strain-specific responses and broadly neutralizing responses, in contrast, target epitopes that are expressed on the native trimer, as revealed by recently resolved structures. The past few years have seen the isolation of many broadly neutralizing antibodies of remarkable potency that have shown prophylactic and therapeutic activities in animal models. These antibodies are helping to guide rational vaccine design and therapeutic strategies for HIV-1.
Collapse
Affiliation(s)
- Dennis R Burton
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA. [2] International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA. [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA. [4] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
186
|
Vijayan A, García-Arriaza J, Raman SC, Conesa JJ, Chichón FJ, Santiago C, Sorzano CÓS, Carrascosa JL, Esteban M. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen. PLoS One 2015. [PMID: 26208356 PMCID: PMC4514760 DOI: 10.1371/journal.pone.0133595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Suresh C Raman
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José Javier Conesa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco Javier Chichón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - César Santiago
- X-ray Crystallization Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
187
|
The Patterns of Coevolution in Clade B HIV Envelope's N-Glycosylation Sites. PLoS One 2015; 10:e0128664. [PMID: 26110648 PMCID: PMC4482261 DOI: 10.1371/journal.pone.0128664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The co-evolution of the potential N-glycosylation sites of HIV Clade B gp120 was mapped onto the coevolution network of the protein structure using mean field direct coupling analysis (mfDCA). This was possible for 327 positions with suitable entropy and gap content. Indications of pressure to preserve the evolving glycan shield are seen as well as strong dependencies between the majority of the potential N-glycosylation sites and the rest of the structure. These findings indicate that although mainly an adaptation against antibody neutralization, the evolving glycan shield is structurally related to the core polypeptide, which, thus, is also under pressure to reflect the changes in the N-glycosylation. The map we propose fills the gap in previous attempts to tease out sequon evolution by providing a more general molecular context. Thus, it will help design strategies guiding HIV gp120 evolution in a rational way.
Collapse
|
188
|
Pritchard LK, Spencer DIR, Royle L, Bonomelli C, Seabright GE, Behrens AJ, Kulp DW, Menis S, Krumm SA, Dunlop DC, Crispin DJ, Bowden TA, Scanlan CN, Ward AB, Schief WR, Doores KJ, Crispin M. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat Commun 2015; 6:7479. [PMID: 26105115 PMCID: PMC4500839 DOI: 10.1038/ncomms8479] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Louise Royle
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel W Kulp
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sergey Menis
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Stefanie A Krumm
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - D Cameron Dunlop
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel J Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - William R Schief
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
189
|
AlSalmi W, Mahalingam M, Ananthaswamy N, Hamlin C, Flores D, Gao G, Rao VB. A New Approach to Produce HIV-1 Envelope Trimers: BOTH CLEAVAGE AND PROPER GLYCOSYLATION ARE ESSENTIAL TO GENERATE AUTHENTIC TRIMERS. J Biol Chem 2015; 290:19780-95. [PMID: 26088135 PMCID: PMC4528139 DOI: 10.1074/jbc.m115.656611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 12/22/2022] Open
Abstract
The trimeric envelope spike of HIV-1 mediates virus entry into human cells. The exposed part of the trimer, gp140, consists of two noncovalently associated subunits, gp120 and gp41 ectodomain. A recombinant vaccine that mimics the native trimer might elicit entry-blocking antibodies and prevent virus infection. However, preparation of authentic HIV-1 trimers has been challenging. Recently, an affinity column containing the broadly neutralizing antibody 2G12 has been used to capture recombinant gp140 and prepare trimers from clade A BG505 that naturally produces stable trimers. However, this antibody-based approach may not be as effective for the diverse HIV-1 strains with different epitope signatures. Here, we report a new and simple approach to produce HIV-1 envelope trimers. The C terminus of gp140 was attached to Strep-tag II with a long linker separating the tag from the massive trimer base and glycan shield. This allowed capture of nearly homogeneous gp140 directly from the culture medium. Cleaved, uncleaved, and fully or partially glycosylated trimers from different clade viruses were produced. Extensive biochemical characterizations showed that cleavage of gp140 was not essential for trimerization, but it triggered a conformational change that channels trimers into correct glycosylation pathways, generating compact three-blade propeller-shaped trimers. Uncleaved trimers entered aberrant pathways, resulting in hyperglycosylation, nonspecific cross-linking, and conformational heterogeneity. Even the cleaved trimers showed microheterogeneity in gp41 glycosylation. These studies established a broadly applicable HIV-1 trimer production system as well as generating new insights into their assembly and maturation that collectively bear on the HIV-1 vaccine design.
Collapse
Affiliation(s)
- Wadad AlSalmi
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Marthandan Mahalingam
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Neeti Ananthaswamy
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Christopher Hamlin
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Dalia Flores
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Guofen Gao
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Venigalla B Rao
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| |
Collapse
|
190
|
Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope. J Virol 2015; 89:8932-44. [PMID: 26085151 DOI: 10.1128/jvi.01190-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gp120/gp41 HIV-1 envelope glycoprotein (Env) is highly glycosylated, with up to 50% of its mass consisting of N-linked glycans. This dense carbohydrate coat has emerged as a promising vaccine target, with its glycans acting as epitopes for a number of potent and broadly neutralizing antibodies (bnAbs). Characterizing the glycan structures present on native HIV-1 Env is thus a critical goal for the design of Env immunogens. In this study, we used a complementary, multistep approach involving ion mobility mass spectrometry and high-performance liquid chromatography to comprehensively characterize the glycan structures present on HIV-1 gp120 produced in peripheral blood mononuclear cells (PBMCs). The capacity of different expression systems, including pseudoviral particles and recombinant cell surface trimers, to reproduce native-like glycosylation was then assessed. A population of oligomannose glycans on gp120 was reproduced across all expression systems, supporting this as an intrinsic property of Env that can be targeted for vaccine design. In contrast, Env produced in HEK 293T cells failed to accurately reproduce the highly processed complex-type glycan structures observed on PBMC-derived gp120, and in particular the precise linkage of sialic acid residues that cap these glycans. Finally, we show that unlike for gp120, the glycans decorating gp41 are mostly complex-type sugars, consistent with the glycan specificity of bnAbs that target this region. These findings provide insights into the glycosylation of native and recombinant HIV-1 Env and can be used to inform strategies for immunogen design and preparation. IMPORTANCE Development of an HIV vaccine is desperately needed to control new infections, and elicitation of HIV bnAbs will likely be an important component of an effective vaccine. Increasingly, HIV bnAbs are being identified that bind to the N-linked glycans coating the HIV envelope glycoproteins gp120 and gp41, highlighting them as important targets for vaccine design. It is therefore important to characterize the glycan structures present on native, virion-associated gp120 and gp41 for development of vaccines that accurately mimic native-Env glycosylation. In this study, we used a number of analytical techniques to precisely study the structures of both the oligomannose and complex-type glycans present on native Env to provide a reference for determining the ability of potential HIV immunogens to accurately replicate the glycosylation pattern on these native structures.
Collapse
|
191
|
Abstract
In vitro selection of nucleic acid aptamers, coined SELEX, has led to the discovery of novel therapeutics and aided in the structural and mechanistic understanding of many ligand-biomolecule interactions. A related method, selection with modified aptamers (SELMA), enables selection of DNA aptamers containing bases with a large modification that cannot undergo PCR. A key application of this method is the evolution of aptamers containing carbohydrate modifications. Carbohydrate-binding proteins normally require several copies of the carbohydrate moiety for strong recognition. Whereas it may be difficult to rationally design synthetic scaffolds that cluster glycans in the optimal spacing and orientation for target recognition, SELMA furnishes glycoaptamers with highly optimized glycan clustering, achieving low-nanomolar recognition. Although numerous applications can be envisioned, the protocols and discussions in this article describe procedures involved in applying SELMA to the discovery glycoDNAs that bind to the HIV broadly neutralizing antibody 2G12.
Collapse
Affiliation(s)
- J Sebastian Temme
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
192
|
Lewis GK. Honing a harder-hitting hammerhead improves broadly neutralizing antibody breadth and potency. J Clin Invest 2015; 125:2271-4. [PMID: 25985269 DOI: 10.1172/jci82057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
While current HIV-1 therapies have greatly improved the quality and duration of life for infected individuals, a vaccine to prevent transmission of the virus is lacking. Broadly neutralizing monoclonal antibodies (bnmAbs) with the capacity to neutralize multiple HIV-1 variants have been isolated from HIV-1-infected individuals, and there has been a great effort to investigate how these bnmAbs arise, due their potential for HIV-1 vaccination. In this issue of the JCI, Willis and colleagues apply a computational approach to design variants of the bnmAb PG9 in an attempt to enhance potency and neutralization breadth. One of these variants was able to target multiple PG9-resistant strains, as the result of stabilization of the long heavy chain complementarity determining region 3 (HCDR3). The results of this study provide important insight and a unique approach to optimizing HIV-1 bnmABs.
Collapse
|
193
|
Garces F, Sok D, Kong L, McBride R, Kim HJ, Saye-Francisco KF, Julien JP, Hua Y, Cupo A, Moore JP, Paulson JC, Ward AB, Burton DR, Wilson IA. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 2015; 159:69-79. [PMID: 25259921 DOI: 10.1016/j.cell.2014.09.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/19/2014] [Accepted: 09/04/2014] [Indexed: 01/13/2023]
Abstract
The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans.
Collapse
Affiliation(s)
- Fernando Garces
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Helen J Kim
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen F Saye-Francisco
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - James C Paulson
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
194
|
Glycan Microheterogeneity at the PGT135 Antibody Recognition Site on HIV-1 gp120 Reveals a Molecular Mechanism for Neutralization Resistance. J Virol 2015; 89:6952-9. [PMID: 25878100 DOI: 10.1128/jvi.00230-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022] Open
Abstract
Broadly neutralizing antibodies have been isolated that bind the glycan shield of the HIV-1 envelope spike. One such antibody, PGT135, contacts the intrinsic mannose patch of gp120 at the Asn332, Asn392, and Asn386 glycosylation sites. Here, site-specific glycosylation analysis of recombinant gp120 revealed glycan microheterogeneity sufficient to explain the existence of a minor population of virions resistant to PGT135 neutralization. Target microheterogeneity and antibody glycan specificity are therefore important parameters in HIV-1 vaccine design.
Collapse
|
195
|
Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1) membrane envelope glycoprotein trimer. PLoS One 2015; 10:e0122111. [PMID: 25849367 PMCID: PMC4388519 DOI: 10.1371/journal.pone.0122111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P Envs.
Collapse
|
196
|
Derking R, Ozorowski G, Sliepen K, Yasmeen A, Cupo A, Torres JL, Julien JP, Lee JH, van Montfort T, de Taeye SW, Connors M, Burton DR, Wilson IA, Klasse PJ, Ward AB, Moore JP, Sanders RW. Comprehensive antigenic map of a cleaved soluble HIV-1 envelope trimer. PLoS Pathog 2015; 11:e1004767. [PMID: 25807248 PMCID: PMC4373910 DOI: 10.1371/journal.ppat.1004767] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/26/2015] [Indexed: 11/23/2022] Open
Abstract
The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers. Using these tools, we generated an antigenic map of the trimer by antibody cross-competition. Our analysis delineates three well-defined epitope clusters (CD4 binding site, quaternary V1V2 and Asn332-centered oligomannose patch) and new epitopes at the gp120-gp41 interface. It also identifies the relationships among these clusters. In addition to epitope overlap, we defined three more ways in which antibodies can cross-compete: steric competition from binding to proximal but non-overlapping epitopes (e.g., PGT151 inhibition of 8ANC195 binding); allosteric inhibition (e.g., PGT145 inhibition of 1NC9, 8ANC195, PGT151 and CD4 binding); and competition by reorientation of glycans (e.g., PGT135 inhibition of CD4bs bNAbs, and CD4bs bNAb inhibition of 8ANC195). We further demonstrate that bNAb binding can be complex, often affecting several other areas of the trimer surface beyond the epitope. This extensive analysis of the antigenic structure and the epitope interrelationships of the Env trimer should aid in design of both bNAb-based therapies and vaccines intended to induce bNAbs. The discovery of new broadly neutralizing antibodies against various epitopes on the HIV-1 envelope glycoprotein trimer and increased knowledge of its structure are guiding vaccine design. To increase our understanding of the interrelationships among the different epitopes, we generated a detailed antigenic map of the trimer using a variety of techniques. We have uncovered various mechanisms whereby antibodies can influence each other’s binding. The resulting antigenic map should further aid in design of HIV-1 vaccines to induce broadly neutralizing antibodies and in devising cocktails of such antibodies for therapeutic use.
Collapse
Affiliation(s)
- Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis R. Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Per-Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
197
|
Carrillo J, Molinos-Albert LM, de la Concepción MLR, Marfil S, García E, Derking R, Sanders RW, Clotet B, Blanco J. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals. PLoS One 2015; 10:e0120648. [PMID: 25803681 PMCID: PMC4372395 DOI: 10.1371/journal.pone.0120648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/25/2015] [Indexed: 11/24/2022] Open
Abstract
Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- Jorge Carrillo
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- * E-mail:
| | - Luis Manuel Molinos-Albert
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | - Silvia Marfil
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
| | - Elisabet García
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Bonaventura Clotet
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- Universitat de Vic-Central de Catalunya, UVIC-UCC, Vic, Barcelona, Spain
- Fundació Lluita contra la SIDA, Badalona, Barcelona, Spain
| | - Julià Blanco
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- Universitat de Vic-Central de Catalunya, UVIC-UCC, Vic, Barcelona, Spain
| |
Collapse
|
198
|
Guttman M, Cupo A, Julien JP, Sanders RW, Wilson IA, Moore JP, Lee KK. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nat Commun 2015; 6:6144. [PMID: 25652336 PMCID: PMC4338595 DOI: 10.1038/ncomms7144] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
HIV’s envelope glycoprotein (Env) is the sole target for neutralizing antibodies. The structures of many broadly neutralizing antibodies (bNAbs) in complex with truncated Env subunits or components have been reported. However, their interaction with the intact Env trimer, and the structural determinants that underlie neutralization resistance in this more native context are less well understood. Here we use hydrogen/deuterium-exchange to examine the interactions between a panel of bNAbs and native-like Env trimers (SOSIP.664 trimers). Highly potent bNAbs cause only localized effects at their binding interface, while the binding of less potent antibodies is associated with elaborate changes throughout the trimer. In conjunction with binding kinetics, our results suggest that poorly neutralizing antibodies can only bind when the trimer transiently samples an open state. We propose that the kinetics of such opening motions varies among isolates, with Env from neutralization-sensitive viruses opening more frequently than Env from resistant viruses.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, Washington 98195, USA
| | - Albert Cupo
- Weill Cornell Medical College, New York, New York 10021, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rogier W Sanders
- 1] Weill Cornell Medical College, New York, New York 10021, USA [2] Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John P Moore
- Weill Cornell Medical College, New York, New York 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, Washington 98195, USA
| |
Collapse
|
199
|
Abstract
UNLABELLED Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates. Here, we report on the production and in vitro properties of a new SOSIP.664 trimer derived from a subtype B env gene, B41, including how to make this protein in low-serum media without proteolytic damage (clipping) to the V3 region. We also show that nonclipped trimers can be purified successfully via a positive-selection affinity column using the bNAb PGT145, which recognizes a quaternary structure-dependent epitope at the trimer apex. Negative-stain electron microscopy imaging shows that the purified, nonclipped, native-like B41 SOSIP.664 trimers contain two subpopulations, which we propose represent an equilibrium between the fully closed and a more open conformation. The latter is different from the fully open, CD4 receptor-bound conformation and may represent an intermediate state of the trimer. This new subtype B trimer adds to the repertoire of native-like Env proteins that are suitable for immunogenicity and structural studies. IMPORTANCE The cleaved, trimeric envelope protein complex is the only neutralizing antibody target on the HIV-1 surface. Many vaccine strategies are based on inducing neutralizing antibodies. For HIV-1, one approach involves using recombinant, soluble protein mimics of the native trimer. At present, the only reliable way to make native-like, soluble trimers in practical amounts is via the introduction of specific sequence changes that confer stability on the cleaved form of Env. The resulting proteins are known as SOSIP.664 gp140 trimers, and the current paradigm is based on the BG505 subtype A env gene. Here, we describe the production and characterization of a SOSIP.664 protein derived from a subtype B gene (B41), together with a simple, one-step method to purify native-like trimers by affinity chromatography with a trimer-specific bNAb, PGT145. The resulting trimers will be useful for structural and immunogenicity experiments aimed at devising ways to make an effective HIV-1 vaccine.
Collapse
|
200
|
Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW, Julien JP, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA, Poignard P, Burton DR. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 2014; 6:236ra63. [PMID: 24828077 DOI: 10.1126/scitranslmed.3008104] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.
Collapse
Affiliation(s)
- Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katie J Doores
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK.
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Daniel W Kulp
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Jean-Philippe Julien
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Lalinda Wickramasinghe
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | | | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA.
| |
Collapse
|