151
|
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol 2021; 78:17-32. [PMID: 33231723 PMCID: PMC7815537 DOI: 10.1007/s00284-020-02284-w] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
The pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.
Collapse
Affiliation(s)
- Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | - Muralidhar Varma
- Dept of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576101 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Present Address: WHO Country Office, Kathmandu, Nepal
| |
Collapse
|
152
|
Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning. PLoS Negl Trop Dis 2020; 14:e0008960. [PMID: 33362244 PMCID: PMC7757819 DOI: 10.1371/journal.pntd.0008960] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dengue virus causes a wide spectrum of disease, which ranges from subclinical disease to severe dengue shock syndrome. However, estimating the risk of severe outcomes using clinical presentation or laboratory test results for rapid patient triage remains a challenge. Here, we aimed to develop prognostic models for severe dengue using machine learning, according to demographic information and clinical laboratory data of patients with dengue. METHODOLOGY/PRINCIPAL FINDINGS Out of 1,581 patients in the National Cheng Kung University Hospital with suspected dengue infections and subjected to NS1 antigen, IgM and IgG, and qRT-PCR tests, 798 patients including 138 severe cases were enrolled in the study. The primary target outcome was severe dengue. Machine learning models were trained and tested using the patient dataset that included demographic information and qualitative laboratory test results collected on day 1 when they sought medical advice. To develop prognostic models, we applied various machine learning methods, including logistic regression, random forest, gradient boosting machine, support vector classifier, and artificial neural network, and compared the performance of the methods. The artificial neural network showed the highest average discrimination area under the receiver operating characteristic curve (0.8324 ± 0.0268) and balance accuracy (0.7523 ± 0.0273). According to the model explainer that analyzed the contributions/co-contributions of the different factors, patient age and dengue NS1 antigenemia were the two most important risk factors associated with severe dengue. Additionally, co-existence of anti-dengue IgM and IgG in patients with dengue increased the probability of severe dengue. CONCLUSIONS/SIGNIFICANCE We developed prognostic models for the prediction of dengue severity in patients, using machine learning. The discriminative ability of the artificial neural network exhibited good performance for severe dengue prognosis. This model could help clinicians obtain a rapid prognosis during dengue outbreaks. However, the model requires further validation using external cohorts in future studies.
Collapse
|
153
|
Trung DT, Trieu HT, Wills BA. Microvascular Fluid Exchange: Implications of the Revised Starling Model for Resuscitation of Dengue Shock Syndrome. Front Med (Lausanne) 2020; 7:601520. [PMID: 33415117 PMCID: PMC7783323 DOI: 10.3389/fmed.2020.601520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023] Open
Abstract
Dengue is the most common mosquito-borne viral infection in the world. The most feared complication is a poorly understood vasculopathy that occurs in only a small minority of symptomatic individuals, especially children and young adults, but can result in potentially fatal dengue shock syndrome (DSS). Based mainly on expert opinion, WHO management guidelines for DSS recommend prompt infusion of a crystalloid fluid bolus followed by a tapering crystalloid fluid regimen, supplemented if necessary by boluses of synthetic colloid solutions. However, following publication of a number of major trials undertaken in other, primarily adult, critical care scenarios, use of both synthetic colloid solutions and of fluid boluses for volume expansion have become controversial. Synthetic colloids tend to be used for severe DSS cases in order to boost intravascular oncotic pressure, based on the classic Starling hypothesis in which opposing hydrostatic and oncotic forces determine fluid flow across the microvascular barrier. However, the revised Starling model emphasizes the critical contribution of the endothelial glycocalyx layer (EGL), indicating that it is the effective oncotic pressure gradient across the EGL not endothelial cells per se that opposes filtration. Based on several novel concepts that are integral to the revised Starling model, we review the clinical features of DSS and discuss a number of implications that are relevant for fluid management. We also highlight the need for context-specific clinical trials that address crucially important questions around the management of DSS.
Collapse
Affiliation(s)
- Dinh The Trung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Trung Trieu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Paediatric Intensive Care Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Bridget A Wills
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
154
|
Yamaoka-Tojo M. Vascular Endothelial Glycocalyx Damage in COVID-19. Int J Mol Sci 2020; 21:ijms21249712. [PMID: 33352699 PMCID: PMC7766512 DOI: 10.3390/ijms21249712] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
The new coronavirus disease-2019 (COVID-19), which is spreading around the world and threatening people, is easily infecting a large number of people through airborne droplets; moreover, patients with hypertension, diabetes, obesity, and cardiovascular disease are more likely to experience severe conditions. Vascular endothelial dysfunction has been suggested as a common feature of high-risk patients prone to severe COVID-19, and measurement of vascular endothelial function may be recommended for predicting severe conditions in high-risk patients with COVID-19. However, fragmented vascular endothelial glycocalyx (VEGLX) is elevated in COVID-19 patients, suggesting that it may be useful as a prognostic indicator. Although the relationship between VEGLX and severe acute respiratory syndrome coronavirus 2 infections has not been well studied, some investigations into COVID-19 have clarified the relationship between VEGLX and the mechanism that leads to severe conditions. Clarifying the usefulness of VEGLX assessment as a predictive indicator of the development of severe complications is important as a strategy for confronting pandemics caused by new viruses with a high affinity for the vascular endothelium that may recur in the future.
Collapse
Affiliation(s)
- Minako Yamaoka-Tojo
- Department of Rehabilitation/Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan; ; Tel.: +81-42-778-8111; Fax: +81-42-778-9696
- Department of Cardiovascular Medicine, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| |
Collapse
|
155
|
Vuong NL, Quyen NTH, Tien NTH, Tuan NM, Kien DTH, Lam PK, Tam DTH, Van Ngoc T, Yacoub S, Jaenisch T, Geskus RB, Simmons CP, Wills BA. Higher Plasma Viremia in the Febrile Phase Is Associated With Adverse Dengue Outcomes Irrespective of Infecting Serotype or Host Immune Status: An Analysis of 5642 Vietnamese Cases. Clin Infect Dis 2020; 72:e1074-e1083. [PMID: 33340040 PMCID: PMC8204785 DOI: 10.1093/cid/ciaa1840] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the generally accepted constructs of dengue pathogenesis is that clinical disease severity is at least partially dependent upon plasma viremia, yet data on plasma viremia in primary versus secondary infections and in relation to clinically relevant endpoints remain limited and contradictory. METHODS Using a large database comprising detailed clinical and laboratory characterization of Vietnamese participants enrolled in a series of research studies executed over a 15-year period, we explored relationships between plasma viremia measured by reverse transcription-polymerase chain reaction and 3 clinically relevant endpoints-severe dengue, plasma leakage, and hospitalization-in the dengue-confirmed cases. All 4 dengue serotypes and both primary and secondary infections were well represented. In our logistic regression models we allowed for a nonlinear effect of viremia and for associations between viremia and outcome to differ by age, serotype, host immune status, and illness day at study enrollment. RESULTS Among 5642 dengue-confirmed cases we identified 259 (4.6%) severe dengue cases, 701 (12.4%) patients with plasma leakage, and 1441 of 4008 (40.0%) patients recruited in outpatient settings who were subsequently hospitalized. From the early febrile phase onwards, higher viremia increased the risk of developing all 3 endpoints, but effect sizes were modest (ORs ranging from 1.12-1.27 per 1-log increase) compared with the effects of a secondary immune response (ORs, 1.67-7.76). The associations were consistent across age, serotype, and immune status groups, and in the various sensitivity and subgroup analyses we undertook. CONCLUSIONS Higher plasma viremia is associated with increased dengue severity, regardless of serotype or immune status.
Collapse
Affiliation(s)
- Nguyen Lam Vuong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam,Correspondence: N. L. Vuong, Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam ()
| | - Nguyen Than Ha Quyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Hanh Tien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Duong Thi Hue Kien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Phung Khanh Lam
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Dong Thi Hoai Tam
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Tran Van Ngoc
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Jaenisch
- Section of Clinical Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ronald B Geskus
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Institute for Vector-Borne Disease, Monash University, Clayton, Australia
| | - Bridget A Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
156
|
Paniz-Mondolfi AE, van den Akker T, Márquez-Colmenarez MC, Delgado-Noguera LA, Valderrama O, Sordillo EM. Kawasaki disease seasonality in Venezuela supports an arbovirus infection trigger. J Med Virol 2020; 92:2903-2910. [PMID: 32740967 DOI: 10.1002/jmv.26381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease primarily affecting infants and young children, whose etiology remains uncertain. Observational studies of the overlap between KD outbreaks and seasonal peaks of arboviral infections, suggest the possible role of these pathogens as triggers of KD. In Venezuela, regions with the highest reported arboviral infections simultaneously have the highest incidence of KD. One proposed explanation for this association involves the role of proinflammatory mediators, interleukin-1 (IL-1), IL-6, tumor necrosis factor, and vascular endothelial growth factor as mediators of coronary endothelial damage. The promotion of inflammation and tissue destruction by these cytokines is thought to contribute to the coronary endothelial damage experienced in KD. The utilization of overlapping KD and arboviral infection trends contribute to the comprehension of KD etiology, with improvements in diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Alberto E Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Academia Nacional de Medicina de Venezuela, Caracas, Venezuela
| | - Tayler van den Akker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marilianna C Márquez-Colmenarez
- Division of Infectious Diseases, Instituto de Investigaciones Biomedicas IDB, Emerging Pathogens Network-Incubadora Venezolana de la Ciencia, Cabudare, Venezuela
| | - Lourdes A Delgado-Noguera
- Division of Infectious Diseases, Instituto de Investigaciones Biomedicas IDB, Emerging Pathogens Network-Incubadora Venezolana de la Ciencia, Cabudare, Venezuela
| | - Omar Valderrama
- Division of Infectious Diseases, Instituto de Investigaciones Biomedicas IDB, Emerging Pathogens Network-Incubadora Venezolana de la Ciencia, Cabudare, Venezuela
| | - Emilia M Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
157
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
158
|
Li Z, Wu N, Wang J, Zhang Q. Roles of Endovascular Calyx Related Enzymes in Endothelial Dysfunction and Diabetic Vascular Complications. Front Pharmacol 2020; 11:590614. [PMID: 33328998 PMCID: PMC7734331 DOI: 10.3389/fphar.2020.590614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
In recent years, the number of diabetic patients has rapidly increased. Diabetic vascular complications seriously affect people’s quality of life. Studies found that endothelial dysfunction precedes the vascular complications of diabetes. Endothelial dysfunction is related to glycocalyx degradation on the surface of blood vessels. Heparanase (HPSE), matrix metalloproteinase (MMP), hyaluronidase (HYAL), hyaluronic acid synthase (HAS), and neuraminidase (NEU) are related to glycocalyx degradation. Therefore, we reviewed the relationship between endothelial dysfunction and the vascular complications of diabetes from the perspective of enzymes.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
159
|
McBride A, Chanh HQ, Fraser JF, Yacoub S, Obonyo NG. Microvascular dysfunction in septic and dengue shock: Pathophysiology and implications for clinical management. Glob Cardiol Sci Pract 2020; 2020:e202029. [PMID: 33447608 PMCID: PMC7773436 DOI: 10.21542/gcsp.2020.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The microcirculation comprising of arterioles, capillaries and post-capillary venules is the terminal vascular network of the systemic circulation. Microvascular homeostasis, comprising of a balance between vasoconstriction, vasodilation and endothelial permeability in healthy states, regulates tissue perfusion. In severe infections, systemic inflammation occurs irrespective of the infecting microorganism(s), resulting in microcirculatory dysregulation and dysfunction, which impairs tissue perfusion and often precedes end-organ failure. The common hallmarks of microvascular dysfunction in both septic shock and dengue shock, are endothelial cell activation, glycocalyx degradation and plasma leak through a disrupted endothelial barrier. Microvascular tone is also impaired by a reduced bioavailability of nitric oxide. In vitro and in vivo studies have however demonstrated that the nature and extent of microvascular dysfunction as well as responses to volume expansion resuscitation differ in these two clinical syndromes. This review compares and contrasts the pathophysiology of microcirculatory dysfunction in septic versus dengue shock and the attendant effects of fluid administration during resuscitation.
Collapse
Affiliation(s)
- Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,Brighton and Sussex Medical School, United Kingdom
| | - Ho Q Chanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - John F Fraser
- Critical Care Research Group, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nchafatso G Obonyo
- Critical Care Research Group, Brisbane, Australia.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Initiative to Develop African Research Leaders, Kilifi, Kenya
| |
Collapse
|
160
|
Sharma M, Glasner DR, Watkins H, Puerta-Guardo H, Kassa Y, Egan MA, Dean H, Harris E. Magnitude and Functionality of the NS1-Specific Antibody Response Elicited by a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis 2020; 221:867-877. [PMID: 30783676 DOI: 10.1093/infdis/jiz081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) can cause life-threatening disease characterized by endothelial dysfunction and vascular leakage. DENV nonstructural protein 1 (NS1) induces human endothelial hyperpermeability and vascular leak in mice, and NS1 vaccination confers antibody-mediated protective immunity. We evaluated the magnitude, cross-reactivity, and functionality of NS1-specific IgG antibody responses in sera from a phase 2 clinical trial of Takeda's live-attenuated tetravalent dengue vaccine candidate (TAK-003). METHODS We developed an enzyme-linked immunosorbent assay to measure anti-DENV NS1 IgG in sera from DENV-naive or preimmune subjects pre- and postvaccination with TAK-003 and evaluated the functionality of this response using in vitro models of endothelial permeability. RESULTS TAK-003 significantly increased DENV-2 NS1-specific IgG in naive individuals, which cross-reacted with DENV-1, -3, and -4 NS1 to varying extents. NS1-induced endothelial hyperpermeability was unaffected by prevaccination serum from naive subjects but was variably inhibited by serum from preimmune subjects. After TAK-003 vaccination, all samples from naive and preimmune vaccinees completely abrogated DENV-2 NS1-induced hyperpermeability and cross-inhibited hyperpermeability induced by DENV-1, -3, and -4 NS1. Inhibition of NS1-induced hyperpermeability correlated with NS1-specific IgG concentrations. Postvaccination sera also prevented NS1-induced degradation of endothelial glycocalyx components. CONCLUSION We provide evidence for functional NS1-specific IgG responses elicited by a candidate dengue vaccine. CLINICAL TRIALS REGISTRATION NCT01511250.
Collapse
Affiliation(s)
- Mayuri Sharma
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Heather Watkins
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Yoseph Kassa
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Michael A Egan
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Hansi Dean
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| |
Collapse
|
161
|
Halstead SB, Russell PK, Brandt WE. NS1, Dengue's Dagger. J Infect Dis 2020; 221:857-860. [PMID: 30783665 DOI: 10.1093/infdis/jiz083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Philip K Russell
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Walter E Brandt
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
162
|
Malavige GN, Jeewandara C, Ogg GS. Dysfunctional Innate Immune Responses and Severe Dengue. Front Cell Infect Microbiol 2020; 10:590004. [PMID: 33194836 PMCID: PMC7644808 DOI: 10.3389/fcimb.2020.590004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Although infection with the dengue virus (DENV) causes severe dengue, it causes a mild self-limiting illness in the majority of individuals. There is emerging evidence that an aberrant immune response in the initial stages of infection lead to severe disease. Many inflammatory cytokines, chemokines, and lipid mediators are significantly higher in patients with severe dengue compared to those who develop mild infection, during febrile phase of illness. Monocytes, mast cells, and many other cells of the immune system, when infected with the DENV, especially in the presence of poorly neutralizing antibodies, leads to production of pro-inflammatory cytokines and inhibition of interferon signaling pathways. In addition, production of immunosuppressive cytokines such as IL-10 further leads to inhibition of cellular antiviral responses. This dysregulated and aberrant immune response leads to reduced clearance of the virus, and severe dengue by inducing a vascular leak and excessive inflammation due to high levels of inflammatory cytokines. Individuals with comorbid illnesses could be prone to more severe dengue due to low grade endotoxemia, gut microbial dysbiosis and an altered phenotype of innate immune cells. The immunosuppressive and inflammatory lipid mediators and altered phenotype of monocytes are likely to further act on T cells and B cells leading to an impaired adaptive immune response to the virus. Therefore, in order to identify therapeutic targets for treatment of dengue, it would be important to further characterize these mechanisms in order for early intervention. In this review, we discuss the differences in the innate immune responses in those who progress to develop severe dengue, compared to those with milder disease in order to understand the mechanisms that lead to severe dengue.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Chandima Jeewandara
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
163
|
Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect Microbiol 2020; 10:572681. [PMID: 33194810 PMCID: PMC7642463 DOI: 10.3389/fcimb.2020.572681] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
In 2019, the United States Food and Drug Administration accorded restricted approval to Sanofi Pasteur's Dengvaxia, a live attenuated vaccine (LAV) for dengue fever, a mosquito-borne viral disease, caused by four antigenically distinct dengue virus serotypes (DENV 1-4). The reason for this limited approval is the concern that this vaccine sensitized some of the dengue-naïve recipients to severe dengue fever. Recent knowledge about the nature of the immune response elicited by DENV viruses suggests that all LAVs have inherent capacity to predominantly elicit antibodies (Abs) against the pre-membrane (prM) and fusion loop epitope (FLE) of DENV. These antibodies are generally cross-reactive among DENV serotypes carrying a higher risk of promoting Antibody-Dependent Enhancement (ADE). ADE is a phenomenon in which suboptimal neutralizing or non-neutralizing cross-reactive antibodies bind to virus and facilitate Fcγ receptor mediated enhanced entry into host cells, followed by its replication, and thus increasing the cellular viral load. On the other hand, antibody responses directed against the host-cell receptor binding domain of DENV envelope domain-III (EDIII), exhibit a higher degree of type-specificity with lower potential of ADE. The challenges associated with whole DENV-based vaccine strategies necessitate re-focusing our attention toward the designed dengue vaccine candidates, capable of inducing predominantly type-specific immune responses. If the designed vaccines elicited predominantly EDIII-directed serotype specific antibodies in the absence of prM and FLE antibodies, this could avoid the ADE phenomenon largely associated with the prM and FLE antibodies. The generation of type-specific antibodies to each of the four DENV serotypes by the designed vaccines could avoid the immune evasion mechanisms of DENVs. For the enhanced vaccine safety, all dengue vaccine candidates should be assessed for the extent of type-specific (minimal ADE) vs. cross-reactive (ADE promoting) neutralizing antibodies. The type-specific EDIII antibodies may be more directly related to protection from disease in the absence of ADE promoted by the cross-reactive antibodies.
Collapse
Affiliation(s)
- Rahul Shukla
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rajgokul K Shanmugam
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Richa Ahuja
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Navin Khanna
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
164
|
Puerta-Guardo H, Tabata T, Petitt M, Dimitrova M, Glasner DR, Pereira L, Harris E. Zika Virus Nonstructural Protein 1 Disrupts Glycosaminoglycans and Causes Permeability in Developing Human Placentas. J Infect Dis 2020; 221:313-324. [PMID: 31250000 DOI: 10.1093/infdis/jiz331] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND During pregnancy, the Zika flavivirus (ZIKV) infects human placentas, inducing defects in the developing fetus. The flavivirus nonstructural protein 1 (NS1) alters glycosaminoglycans on the endothelium, causing hyperpermeability in vitro and vascular leakage in vivo in a tissue-dependent manner. The contribution of ZIKV NS1 to placental dysfunction during ZIKV infection remains unknown. METHODS We examined the effect of ZIKV NS1 on expression and release of heparan sulfate (HS), hyaluronic acid (HA), and sialic acid on human trophoblast cell lines and anchoring villous explants from first-trimester placentas infected with ZIKV ex vivo. We measured changes in permeability in trophoblasts and stromal cores using a dextran-based fluorescence assay and changes in HA receptor expression using immunofluorescent microscopy. RESULTS ZIKV NS1 in the presence and absence of ZIKV increased the permeability of anchoring villous explants. ZIKV NS1 induced shedding of HA and HS and altered expression of CD44 and lymphatic endothelial cell HA receptor-1, HA receptors on stromal fibroblasts and Hofbauer macrophages in villous cores. Hyaluronidase was also stimulated in NS1-treated trophoblasts. CONCLUSIONS These findings suggest that ZIKV NS1 contributes to placental dysfunction via modulation of glycosaminoglycans on trophoblasts and chorionic villi, resulting in increased permeability of human placentas.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Milena Dimitrova
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| |
Collapse
|
165
|
Kuo L, Jaeger AS, Banker EM, Bialosuknia SM, Mathias N, Payne AF, Kramer LD, Aliota MT, Ciota AT. Reversion to ancestral Zika virus NS1 residues increases competence of Aedes albopictus. PLoS Pathog 2020; 16:e1008951. [PMID: 33052957 PMCID: PMC7588074 DOI: 10.1371/journal.ppat.1008951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.
Collapse
Affiliation(s)
- Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Elyse M. Banker
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Nicholas Mathias
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Anne F. Payne
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
| | - Laura D. Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, United States of America
| |
Collapse
|
166
|
Cheng L, Liu WL, Li HH, Su MP, Wu SC, Chen HW, Pan CY, Tsai JJ, Chen CH. Releasing Intracellular NS1 from Mosquito Cells for the Detection of Dengue Virus-Infected Mosquitoes. Viruses 2020; 12:v12101105. [PMID: 33003584 PMCID: PMC7599882 DOI: 10.3390/v12101105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV), the pathogen that causes dengue fever, is mainly transmitted by Aedes aegypti. Surveillance of infected mosquitoes is a major component of integrated mosquito control methods for reducing the risk of vector-born disease outbreaks. However, a specialized rapid test for DENV detection in mosquitoes is not currently available. Utilizing immunoblotting, we found that the secretion of NS1 from both a DENV-infected mosquito cell line and mosquito bodies was below the detection threshold. However, when Triton X-100 was used to lyse infected mosquitoes, intracellular NS1 was released, and could then be effectively detected by the NS1 rapid test. The distribution of DENV NS1 in intrathoracically infected mosquitoes was different from that of orally infected mosquitoes. Next, we performed sensitivity tests by bisecting mosquitoes longitudinally; one half of each mosquito was subjected to the NS1 rapid test while the other half was used for qPCR confirmation. This modified test had a sensitivity of nearly 90% from five days post-infection onwards, while DENV had escaped from the midgut barrier. This adapted test offers a valuable, easy-to-use tool for mosquito surveillance, which is a crucial component of DENV disease control.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
| | - Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Institution of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Matthew P. Su
- Department of Biological Science, Nagoya University, Nagoya 464-8601, Japan;
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110001, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung 800852, Taiwan;
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (J.-J.T.); (C.-H.C.)
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; (L.C.); (H.-H.L.); (H.-W.C.)
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan; (W.-L.L.); (S.-C.W.)
- Correspondence: (J.-J.T.); (C.-H.C.)
| |
Collapse
|
167
|
O'Donnell KL, Espinosa DA, Puerta-Guardo H, Biering SB, Warnes CM, Schiltz J, Nilles ML, Li J, Harris E, Bradley DS. Avian anti-NS1 IgY antibodies neutralize dengue virus infection and protect against lethal dengue virus challenge. Antiviral Res 2020; 183:104923. [PMID: 32979401 DOI: 10.1016/j.antiviral.2020.104923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023]
Abstract
Dengue is the most prevalent arboviral disease in humans and a continually increasing global public health burden. To date, there are no approved antiviral therapies against dengue virus (DENV) and the only licensed vaccine, Dengvaxia, is exclusively indicated for individuals with prior DENV infection. Endothelial hyperpermeability and vascular leak, pathogenic hallmarks of severe dengue disease, can be directly triggered by DENV non-structural protein 1 (NS1). As such, anti-NS1 antibodies can prevent NS1-triggered endothelial dysfunction in vitro and pathogenesis in vivo. Recently, goose-derived anti-DENV immunoglobulin Y (IgY) antibodies were shown to neutralize DENV and Zika virus (ZIKV) infection without adverse effects, such as antibody-dependent enhancement (ADE). In this study, we used egg yolks from DENV-immunized geese to purify IgY antibodies specific to DENV NS1 epitopes. We determined that 2 anti-NS1 IgY antibodies, NS1-1 and NS1-8, were capable of neutralizing DENV infection in vitro. In addition, these antibodies did not cross-react with the DENV Envelope (E) protein nor enhance DENV or ZIKV infection in vitro. Intriguingly, NS1-8, but not NS1-1, partially blocked NS1-induced endothelial dysfunction in vitro while neither antibody blocked binding of soluble NS1 to cells. Finally, prophylactic treatment of mice with NS1-8 conferred significant protection against lethal DENV challenge. Although further research is needed to define the mechanism of action of these antibodies, our findings highlight the potential of anti-NS1 IgY as a promising prophylactic approach against DENV infection.
Collapse
Affiliation(s)
- Kyle L O'Donnell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Matthew L Nilles
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - David S Bradley
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
168
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
169
|
Benatti MN, Fabro AT, Miranda CH. Endothelial glycocalyx shedding in the acute respiratory distress syndrome after flu syndrome. J Intensive Care 2020; 8:72. [PMID: 32974033 PMCID: PMC7503444 DOI: 10.1186/s40560-020-00488-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scientific evidence indicates that endothelial glycocalyx (EG) shedding contributes to the pathophysiological installation of acute respiratory distress syndrome (ARDS) after bacterial sepsis. The aim was to evaluate the EG shedding in ARDS installation after flu syndrome. METHODS This cross-sectional study included patients with flu syndrome during the influenza outbreak divided into two groups: patients with and without ARDS. Healthy subjects without flu syndrome were included in a control group. We measured EG damage biomarkers (hyaluronan, syndecan-1) and endothelial cell injury biomarker (soluble thrombomodulin) during the first medical evaluation. Histological assessment of the perimeter of the hyaline membrane and the number of neutrophils infiltrated in the alveolar septum was performed in patients who died. RESULTS ARDS group had 30 patients (44 ± 16 years old, 57% men), the non-ARDS group had 36 patients (39 ± 17 years old, 42% men), and the control group had 35 individuals (44 ± 9 years old, 51% men). Hyaluronan levels were significantly higher in the ARDS group than the two groups [31 ng/ml (interquartile range-IQR 12-56) vs. 5 ng/ml (IQR 3-10) vs. 5 ng/ml (IQR 2-8); p < 0.0001]. Hyaluronan levels above 19 ng/ml in patients with flu syndrome were associated with a significant increase in 28-day mortality rate: relative risk (RR): 6.95; (95% confidence interval 1.88-25.67); p = 0.0017. A positive correlation was observed between hyaline membrane perimeter and soluble thrombomodulin levels (r = 0.89; p = 0.05) as well as between the number of neutrophils in the alveolar septum and hyaluronan levels (r = 0.89; p = 0.05). CONCLUSIONS Evidence of EG shedding was found in ARDS established after flu syndrome.
Collapse
Affiliation(s)
- Maira Nilson Benatti
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Rua Bernardino de Campos, 1000, Ribeirão Preto, São Paulo, 14020-670 Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Miranda
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Rua Bernardino de Campos, 1000, Ribeirão Preto, São Paulo, 14020-670 Brazil
| |
Collapse
|
170
|
Shrivastava G, Valenzuela Leon PC, Calvo E. Inflammasome Fuels Dengue Severity. Front Cell Infect Microbiol 2020; 10:489. [PMID: 33014899 PMCID: PMC7511630 DOI: 10.3389/fcimb.2020.00489] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Dengue is an acute febrile disease triggered by dengue virus. Dengue is the widespread and rapidly transmitted mosquito-borne viral disease of humans. Diverse symptoms and diseases due to Dengue virus (DENV) infection ranges from dengue fever, dengue hemorrhagic fever (life-threatening) and dengue shock syndrome characterized by shock, endothelial dysfunction and vascular leakage. Several studies have linked the severity of dengue with the induction of inflammasome. DENV activates the NLRP3-specific inflammasome in DENV infected human patients, mice; specifically, mouse bone marrow derived macrophages (BMDMs), dendritic cells, endothelial cells, human peripheral blood mononuclear cells (PBMCs), keratinocytes, monocyte-differentiated macrophages (THP-1), and platelets. Dengue virus mediated inflammasome initiates the maturation of IL-1β and IL-18, which are critical for dengue pathology and inflammatory response. Several studies have reported the molecular mechanism through which (host and viral factors) dengue induces inflammasome, unravels the possible mechanisms of DENV pathogenesis and sets up the stage for the advancement of DENV therapeutics. In this perspective article, we discuss the potential implications and our understanding of inflammasome mechanisms of dengue virus and highlight research areas that have potential to inhibit the pathogenesis of viral diseases, specifically for dengue.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
171
|
Buijsers B, Yanginlar C, Maciej-Hulme ML, de Mast Q, van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine 2020; 59:102969. [PMID: 32853989 PMCID: PMC7445140 DOI: 10.1016/j.ebiom.2020.102969] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is associated with severe inflammation in mainly the lung, and kidney. Reports suggest a beneficial effect of the use of heparin/low molecular weight heparin (LMWH) on mortality in COVID-19. In part, this beneficial effect could be explained by the anticoagulant properties of heparin/LMWH. Here, we summarise potential beneficial, non-anticoagulant mechanisms underlying treatment of COVID-19 patients with heparin/LMWH, which include: (i) Inhibition of heparanase activity, responsible for endothelial leakage; (ii) Neutralisation of chemokines, and cytokines; (iii) Interference with leukocyte trafficking; (iv) Reducing viral cellular entry, and (v) Neutralisation of extracellular cytotoxic histones. Considering the multiple inflammatory and pathogenic mechanisms targeted by heparin/LMWH, it is warranted to conduct clinical studies that evaluate therapeutic doses of heparin/LMWH in COVID-19 patients. In addition, identification of specific heparin-derived sequences that are functional in targeting non-anticoagulant mechanisms may have even higher therapeutic potential for COVID-19 patients, and patients suffering from other inflammatory diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
172
|
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, Limthongkul J, Midoeng P, Warit S, Ubol S. Nanodelivery system enhances the immunogenicity of dengue-2 nonstructural protein 1, DENV-2 NS1. Vaccine 2020; 38:6814-6825. [PMID: 32829977 DOI: 10.1016/j.vaccine.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Nonstructural protein 1 (NS1) of dengue virus (DENV) is currently recognized as a dengue vaccine candidate. Unfortunately, most of non-replicating immunogens typically stimulate unsatisfactory immune responses, thus, the additional adjuvant is required. In this study, C-terminal truncated DENV-2 NS1 loaded in N,N,N, trimethyl chitosan nanoparticles (NS11-279TMC NPs) was prepared through the ionic gelation method. The immunogenicity of NS11-279TMC NPs was investigated using human ex vivo as well as the murine model. Through a human ex vivo model, it was demonstrated in this study that not only can TMC particles effectively deliver NS11-279 protein into monocyte-derived dendritic cells (MoDCs), but also potently stimulate those cells, resulting in increased expression of maturation marker (CD83), costimulating molecules (CD80, CD86 and HLA-DR) and markedly secreted various types of innate immune cytokines/chemokines. Moreover, mice administered with NS11-279TMC NPs strongly elicited both antibody and T cell responses, produced higher levels of IgG, IgG1, IgG2a and potently activated CD8+ T cells, as compared to mice administered with soluble NS11-279. Importantly, we further demonstrated that anti-NS11-279 antibody induced by this platform of NS11-279 effectively eliminated DENV-2 infected cells through antibody dependent complement-mediated cytotoxicity. Significantly, anti-DENV2 NS11-279 antibody exerted cross-antiviral activity against DENV-1 and -4 but not against DENV-3 infected cells. These findings demonstrate that TMC exerts a desirable adjuvant for enhancing delivery and antigenicity of NS1 based dengue vaccine.
Collapse
Affiliation(s)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand.
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand..
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
173
|
Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLoS One 2020; 15:e0237141. [PMID: 32764789 PMCID: PMC7413495 DOI: 10.1371/journal.pone.0237141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
Collapse
|
174
|
Cheung YP, Mastrullo V, Maselli D, Butsabong T, Madeddu P, Maringer K, Campagnolo P. A Critical Role for Perivascular Cells in Amplifying Vascular Leakage Induced by Dengue Virus Nonstructural Protein 1. mSphere 2020; 5:e00258-20. [PMID: 32759331 PMCID: PMC8534312 DOI: 10.1128/msphere.00258-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/25/2020] [Indexed: 01/13/2023] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease affecting humans, with severe dengue typified by potentially fatal microvascular leakage and hypovolemic shock. Blood vessels of the microvasculature are composed of a tubular structure of endothelial cells ensheathed by perivascular cells (pericytes). Pericytes support endothelial cell barrier formation and maintenance through paracrine and contact-mediated signaling and are critical to microvascular integrity. Pericyte dysfunction has been linked to vascular leakage in noncommunicable pathologies such as diabetic retinopathy but has never been linked to infection-related vascular leakage. Dengue vascular leakage has been shown to result in part from the direct action of the secreted dengue virus (DENV) nonstructural protein NS1 on endothelial cells. Using primary human vascular cells, we show here that NS1 also causes pericyte dysfunction and that NS1-induced endothelial hyperpermeability is more pronounced in the presence of pericytes. Notably, NS1 specifically disrupted the ability of pericytes to support endothelial cell function in a three-dimensional (3D) microvascular assay, with no effect on pericyte viability or physiology. These effects are mediated at least in part through contact-independent paracrine signals involved in endothelial barrier maintenance by pericytes. We therefore identify a role for pericytes in amplifying NS1-induced microvascular hyperpermeability in severe dengue and thus show that pericytes can play a critical role in the etiology of an infectious vascular leakage syndrome. These findings open new avenues of research for the development of drugs and diagnostic assays for combating infection-induced vascular leakage, such as severe dengue.IMPORTANCE The World Health Organization considers dengue one of the top 10 global public health problems. There is no specific antiviral therapy to treat dengue virus and no way of predicting which patients will develop potentially fatal severe dengue, typified by vascular leakage and circulatory shock. We show here that perivascular cells (pericytes) amplify the vascular leakage-inducing effects of the dengue viral protein NS1 through contact-independent signaling to endothelial cells. While pericytes are known to contribute to noncommunicable vascular leakage, this is the first time these cells have been implicated in the vascular effects of an infectious disease. Our findings could pave the way for new therapies and diagnostics to combat dengue and potentially other infectious vascular leakage syndromes.
Collapse
Affiliation(s)
- Yin P Cheung
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Valeria Mastrullo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Davide Maselli
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Teemapron Butsabong
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine Division, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Kevin Maringer
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Paola Campagnolo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
175
|
Wilder-Smith A. Dengue vaccine development by the year 2020: challenges and prospects. Curr Opin Virol 2020; 43:71-78. [PMID: 33086187 PMCID: PMC7568693 DOI: 10.1016/j.coviro.2020.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
The first licensed dengue vaccine led to considerable controversy, and to date, no dengue vaccine is in widespread use. All three leading dengue vaccine candidates are live attenuated vaccines, with the main difference between them being the type of backbone and the extent of chimerization. While CYD-TDV (the first licensed dengue vaccine) does not include non-structural proteins of dengue, TAK-003 contains the dengue virus serotype 2 backbone, and the Butantan/Merck vaccine contains three full-genomes of the four dengue virus serotypes. While dengue-primed individuals can already benefit from vaccination against all four serotypes with the first licensed dengue vaccine CYD-TDV, the need for dengue-naive population has not yet been met. To improve tetravalent protection, sequential vaccination should be considered in addition to a heterologous prime-boost approach.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- London School of Hygiene and Tropical Medicine, UK; Heidelberg Institute of Global Health, University of Heidelberg, Germany.
| |
Collapse
|
176
|
Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Sci Rep 2020; 10:12933. [PMID: 32737386 PMCID: PMC7395749 DOI: 10.1038/s41598-020-69515-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses manipulate the life cycle in host cells via the use of viral properties and host machineries. Development of antiviral peptides against dengue virus (DENV) infection has previously been concentrated on blocking the actions of viral structural proteins and enzymes in virus entry and viral RNA processing in host cells. In this study, we proposed DENV NS1, which is a multifunctional non-structural protein indispensable for virus production, as a new target for inhibition of DENV infection by specific peptides. We performed biopanning assays using a phage-displayed peptide library and identified 11 different sequences of 12-mer peptides binding to DENV NS1. In silico analyses of peptide-protein interactions revealed 4 peptides most likely to bind to DENV NS1 at specific positions and their association was analysed by surface plasmon resonance. Treatment of Huh7 cells with these 4 peptides conjugated with N-terminal fluorescent tag and C-terminal cell penetrating tag at varying time-of-addition post-DENV infection could inhibit the production of DENV-2 in a time- and dose-dependent manner. The inhibitory effects of the peptides were also observed in other virus serotypes (DENV-1 and DENV-4), but not in DENV-3. These findings indicate the potential application of peptides targeting DENV NS1 as antiviral agents against DENV infection.
Collapse
|
177
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
178
|
Espinosa DA, Beatty PR, Puerta-Guardo H, Islam MN, Belisle JT, Perera R, Harris E. Increased serum sialic acid is associated with morbidity and mortality in a murine model of dengue disease. J Gen Virol 2020; 100:1515-1522. [PMID: 31526452 DOI: 10.1099/jgv.0.001319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) causes the most prevalent arboviral infection of humans, resulting in a spectrum of outcomes, ranging from asymptomatic infection to dengue fever to severe dengue characterized by vascular leakage and shock. Previously, we determined that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability, disrupts the endothelial glycocalyx layer (EGL) in vitro and triggers shedding of structural components, including sialic acid (Sia) and heparan sulfate. Here, using a murine model of dengue disease disease, we found high levels of Sia and NS1 circulating in mice with DENV-induced morbidity and lethal DENV infection. Further, we developed a liquid chromatography/mass spectrometry-based method for quantifying free Sia in serum and determined that the levels of free N-glycolylneuraminic acid were significantly higher in DENV-infected mice than in uninfected controls. These data provide additional evidence that DENV infection disrupts EGL components in vivo and warrant further research assessing Sia as a biomarker of severe dengue disease.
Collapse
Affiliation(s)
- Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - M Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
179
|
Gallagher P, Chan KR, Rivino L, Yacoub S. The association of obesity and severe dengue: possible pathophysiological mechanisms. J Infect 2020; 81:10-16. [PMID: 32413364 DOI: 10.1016/j.jinf.2020.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) is a medically important flavivirus and the aetiological agent of Dengue, a normally self-resolving febrile illness that, in some individuals, can progress into Severe Dengue (SD), a life-threatening disorder that manifests as organ impairment, bleeding and shock. Many different risk factors have been associated with the development of SD, one of which is obesity. In many countries where DENV is endemic, obesity is becoming more prevalent, therefore SD is becoming an increased public health concern. However, there is a paucity of research on the mechanistic links between obesity and SD. This is a narrative review based on original research and reviews sourced from PubMed and Google Scholar. Four key areas could possibly explain how obesity can promote viral pathogenesis. Firstly, obesity downregulates AMP-Protein Kinase (AMPK), which leads to an accumulation of lipids in the endoplasmic reticulum (ER) that facilitates viral replication. Secondly, the long-term production of pro-inflammatory adipokines found in obese individuals can cause endothelial and platelet dysfunction and can facilitate SD. Thirdly, obesity could also cause endothelial dysfunction in addition to chronic inflammation, through the production of reactive oxygen species (ROS) and possible damage to the glycocalyx found in the endothelium. Finally, obesity has several effects on immunomodulation that reduces NK cell function, B and T cell response and increased pre-disposition to stronger pro-inflammatory cytokine responses after viral infection. Together, these effects can lead to greater viral proliferation and greater tissue damage both of which could contribute to SD. The four mechanisms outlined in this review can be taken as reference starting points for investigating the link between obesity and SD, and to discover potential therapeutic strategies that can potentially reduce disease severity.
Collapse
Affiliation(s)
- Peter Gallagher
- University of Warwick, Coventry, UK; Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | | | - Laura Rivino
- Duke-NUS Medical School, Singapore; School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Oxford University, UK.
| |
Collapse
|
180
|
Waggoner JJ, Katzelnick LC, Burger-Calderon R, Gallini J, Moore RH, Kuan G, Balmaseda A, Pinsky BA, Harris E. Antibody-Dependent Enhancement of Severe Disease Is Mediated by Serum Viral Load in Pediatric Dengue Virus Infections. J Infect Dis 2020; 221:1846-1854. [PMID: 32236481 PMCID: PMC7213574 DOI: 10.1093/infdis/jiz618] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Low preexisting anti-dengue virus (DENV) antibody levels are associated with elevated disease severity. While antibody-dependent enhancement of dengue is thought to be driven by viral load, this has not been conclusively shown. We evaluated the association between preinfection anti-DENV antibody titers, viral load, and disease severity among 133 dengue cases in a Nicaraguan pediatric cohort study. METHODS Viral load was quantified in acute-phase serum by real-time reverse transcription polymerase chain reaction and analyzed in relation to preinfection antibody titer (measured by inhibition enzyme-linked immunosorbent assay) and dengue severity, categorized using 3 definitions. RESULTS Higher viral load was significantly associated with dengue severity; for each increase of 1.0 log10 copies/mL, the odds of severe dengue increased approximately 50%, regardless of severity definition. Viral load at presentation and the odds of severe disease were highest among patients with low to intermediate preinfection antibody titers and lowest among those with the highest antibody titers. We showed the effect of preinfection antibody titer on disease severity was mediated by viral load for each of 3 dengue severity outcomes. CONCLUSIONS This study demonstrates the association between preinfection anti-DENV antibody titer, serum viral load, and disease severity, and provides evidence for the mechanism of antibody-dependent enhancement in dengue cases.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | | | - Julia Gallini
- Biostatistics Collaboration Core, Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Renee H Moore
- Biostatistics Collaboration Core, Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
181
|
Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Citation(s) in RCA: 627] [Impact Index Per Article: 125.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge.
Collapse
Affiliation(s)
- Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA.
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
182
|
Puerta-Guardo H, Glasner DR, Espinosa DA, Biering SB, Patana M, Ratnasiri K, Wang C, Beatty PR, Harris E. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep 2020; 26:1598-1613.e8. [PMID: 30726741 PMCID: PMC6934102 DOI: 10.1016/j.celrep.2019.01.036] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/27/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023] Open
Abstract
Flaviviruses cause systemic or neurotropic-encephalitic pathology in humans. The flavivirus nonstructural protein 1 (NS1) is a secreted glycoprotein involved in viral replication, immune evasion, and vascular leakage during dengue virus infection. However, the contribution of secreted NS1 from related flaviviruses to viral pathogenesis remains unknown. Here, we demonstrate that NS1 from dengue, Zika, West Nile, Japanese encephalitis, and yellow fever viruses selectively binds to and alters permeability of human endothelial cells from lung, dermis, umbilical vein, brain, and liver in vitro and causes tissue-specific vascular leakage in mice, reflecting the pathophysiology of each flavivirus. Mechanistically, each flavivirus NS1 leads to differential disruption of endothelial glycocalyx components, resulting in endothelial hyperpermeability. Our findings reveal the capacity of a secreted viral protein to modulate endothelial barrier function in a tissue-specific manner both in vitro and in vivo, potentially influencing virus dissemination and pathogenesis and providing targets for antiviral therapies and vaccine development. Puerta-Guardo et al. discover that five flavivirus NS1 proteins trigger hyperpermeability and vascular dysfunction in human endothelial cells and mice in a manner reflecting disease tropism. This tissue-specific tropism is partially determined by the capacity of NS1 to bind endothelial cells and is characterized by disruption of endothelial glycocalyx components.
Collapse
Affiliation(s)
- Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Mark Patana
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kalani Ratnasiri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
183
|
Barbachano-Guerrero A, Endy TP, King CA. Dengue virus non-structural protein 1 activates the p38 MAPK pathway to decrease barrier integrity in primary human endothelial cells. J Gen Virol 2020; 101:484-496. [PMID: 32141809 DOI: 10.1099/jgv.0.001401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) causes an estimated 390 million infections worldwide annually, with severe forms of disease marked by vascular leakage. Endothelial cells (EC) are directly responsible for vascular homeostasis and are highly responsive to circulating mediators but are not commonly infected. DENV encodes seven non-structural (NS) proteins; with only one of those, NS1, secreted from infected cells and accumulating in the blood of patients. NS1 has been implicated in the pathogenesis of vascular permeability, but the mechanism is not completely understood. Here we used primary endothelial cells and an array of in vitro approaches to study the effect of NS1 in disease-relevant human ECs. Confocal microscopy demonstrated rapid NS1 internalization by ECs into endosomes with accumulation over time. Transcriptomic and pathway analysis showed significant changes in functions associated with EC homeostasis and vascular permeability. Functional significance of this activation was assessed by trans-endothelial electrical resistance and showed that NS1 induced rapid and transient loss in EC barrier function within 3 h post-treatment. To understand the molecular mechanism by which NS1 induced EC activation, we evaluated the stress-sensing p38 MAPK pathway known to be directly involved in EC permeability and inflammation. WB analysis of NS1-stimulated ECs showed clear activation of p38 MAPK and downstream effectors MAPKAPK-2 and HSP27 with chemical inhibition of the p38 MAP kinase pathway restoring barrier function. Our results suggest that DENV NS1 may be involved in the pathogenesis of severe dengue by activating the p38 MAPK in ECs, promoting increased permeability that characterizes severe disease.
Collapse
Affiliation(s)
| | - Timothy P Endy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
184
|
Carr JM, Cabezas-Falcon S, Dubowsky JG, Hulme-Jones J, Gordon DL. Dengue virus and the complement alternative pathway. FEBS Lett 2020; 594:2543-2555. [PMID: 31943152 DOI: 10.1002/1873-3468.13730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023]
Abstract
Dengue disease is an inflammatory-driven pathology, and complement overactivation is linked to disease severity and vascular leakage. Additionally, dysregulation of complement alternative pathway (AP) components has been described, such as upregulation of complement factor D and downregulation of complement factor H (FH), which activate and inhibit the AP, respectively. Thus, the pathology of severe dengue could in part result from AP dysfunction, even though complement and AP activation usually provide protection against viral infections. In dengue virus-infected macrophages and endothelial cells (ECs), the site of replication and target for vascular pathology, respectively, the AP is activated. The AP activation, reduced FH and vascular leakage seen in dengue disease in part parallels other complement AP pathologies associated with FH deficiency, such as atypical haemolytic uraemic syndrome (aHUS). aHUS can be therapeutically targeted with inhibitors of complement terminal activity, raising the idea that strategies such as inhibition of complement or delivery of FH or other complement regulatory components to EC may be beneficial to combat the vascular leakage seen in severe dengue.
Collapse
Affiliation(s)
- Jillian M Carr
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sheila Cabezas-Falcon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,TGR Biosciences, Adelaide, SA, Australia
| | - Joshua G Dubowsky
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jarrod Hulme-Jones
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David L Gordon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
185
|
Agelidis A, Shukla D. Heparanase, Heparan Sulfate and Viral Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:759-770. [PMID: 32274736 DOI: 10.1007/978-3-030-34521-1_32] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The story of heparanase (HPSE) in viral infection has roots in the longstanding connection between heparan sulfate (HS) and a large number of viruses. As a major viral attachment and entry receptor present on the cell surface, HS serves as the first point of contact between a virus particle and its target host cell. Likewise, direct regulation of HS levels on the cell surface by HPSE enzymatic activity dictates the extent of virus release after replication has occurred. Additionally, virus-induced HPSE activation and nuclear translocation results in higher expression of pro-inflammatory factors and delayed wound healing leading to worsened disease. In this chapter, using herpes simplex virus (HSV) as a prototype virus we provide a brief synopsis of important stages in viral infection, describe how these processes are governed by HS and HPSE, and discuss the recent discoveries that designate HPSE as a major host virulence factor and driver of pathogenesis for several different viruses.
Collapse
Affiliation(s)
- Alex Agelidis
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
186
|
Nasar S, Rashid N, Iftikhar S. Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J Med Virol 2019; 92:941-955. [PMID: 31784997 DOI: 10.1002/jmv.25646] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Dengue virus is an arbovirus belonging to class Flaviviridae Its clinical manifestation ranges from asymptomatic to extreme conditions (dengue hemorrhagic fever/dengue shock syndrome). A lot of research has been done on this ailment, yet there is no effective treatment available for the disease. This review provides the systematic understanding of all dengue proteins, role of its structural proteins (C-protein, E-protein, prM) in virus entry, assembly, and secretion in host cell, and nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5) in viral assembly, replication, and immune evasion during dengue progression and pathogenesis. Furthermore, the review has highlighted the controversies related to the only commercially available dengue vaccine, that is, Dengvaxia, and the risk associated with it. Lastly, it provides an insight regarding various approaches for developing an effective anti-dengue treatment.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
187
|
Rodriguez AK, Muñoz AL, Segura NA, Rangel HR, Bello F. Molecular characteristics and replication mechanism of dengue, zika and chikungunya arboviruses, and their treatments with natural extracts from plants: An updated review. EXCLI JOURNAL 2019; 18:988-1006. [PMID: 31762724 PMCID: PMC6868920 DOI: 10.17179/excli2019-1825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Viruses transmitted by arthropods (arboviruses) are the etiological agents of several human diseases with worldwide distribution; including dengue (DENV), zika (ZIKV), yellow fever (YFV), and chikungunya (CHIKV) viruses. These viruses are especially important in tropical and subtropical regions; where, ZIKV and CHIKV are involved in epidemics worldwide, while the DENV remains as the biggest problem in public health. Factors, such as, environmental conditions promote the distribution of vectors, deficiencies in health services, and lack of effective vaccines, guarantee the presence of these vector-borne diseases. Treatment against these viral diseases is only palliative since available therapies formulated lack to demonstrate specific antiviral activity and vaccine candidates fail to demonstrate enough effectiveness. The use of natural products, as therapeutic tools, is an ancestral practice in different cultures. According to WHO 80 % of the population of some countries from Africa and Asia depend on the use of traditional medicines to deal with some diseases. Molecular characteristics of these viruses are important in determining its cellular pathogenesis, emergence, and dispersion mechanisms, as well as for the development of new antivirals and vaccines to control strategies. In this review, we summarize the current knowledge of the molecular structure and replication mechanisms of selected arboviruses, as well as their mechanism of entry into host cells, and a brief overview about the potential targets accessed to inhibit these viruses in vitro and a summary about their treatment with natural extracts from plants.
Collapse
Affiliation(s)
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá, 110231, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Héctor Rafael Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas, 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá, 110131, Colombia
| |
Collapse
|
188
|
Sanaki T, Wakabayashi M, Yoshioka T, Yoshida R, Shishido T, Hall WW, Sawa H, Sato A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro. FASEB J 2019; 33:13866-13881. [PMID: 31638831 DOI: 10.1096/fj.201901095rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dengue fever is an acute febrile infectious disease caused by dengue virus (DENV). Despite the significant public health concerns posed by DENV, there are currently no effective anti-DENV therapeutic agents. To develop such drugs, a better understanding of the detailed mechanisms of DENV infection is needed. Both lipid metabolism and lipid synthesis are activated in DENV-infected cells, so we used lipid screening to identify potential antiviral lipid molecules. We identified 1-stearoyl-2-arachidonoyl-phosphatidylinositol (SAPI), which is the most abundant endogenous phosphatidylinositol (PI) molecular species, as an anti-DENV lipid molecule. SAPI suppressed the cytopathic effects induced by DENV2 infection as well as the replication of all DENV serotypes without inhibiting the entry of DENV2 into host cells. However, no other PI molecular species or PI metabolites, including lysophosphatidylinositols and phosphoinositides, displayed anti-DENV2 activity. Furthermore, SAPI suppressed the production of DENV2 infection-induced cytokines and chemokines, including C-C motif chemokine ligand (CCL)5, CCL20, C-X-C chemokine ligand 8, IL-6, and IFN-β. SAPI also suppressed the TNF-α production induced by LPS stimulation in macrophage cells differentiated from THP-1 cells. Our results demonstrated that SAPI is an endogenous inhibitor of DENV and modulated inflammatory responses in DENV2-infected cells, at least in part via TLR 4.-Sanaki, T., Wakabayashi, M., Yoshioka, T., Yoshida, R., Shishido, T., Hall, W. W., Sawa, H., Sato, A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro.
Collapse
Affiliation(s)
- Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| | - Masato Wakabayashi
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Takeshi Yoshioka
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - Takao Shishido
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Center for Research in Infectious Diseases, University College of Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| |
Collapse
|
189
|
Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, Heldin P. High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine 2019; 48:425-441. [PMID: 31526718 PMCID: PMC6838418 DOI: 10.1016/j.ebiom.2019.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. METHODS A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Serum hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. FINDINGS Elevated serum hyaluronan levels (≥70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. INTERPRETATION Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection. FUND: This work was supported in part by grants from the Swedish Cancer Society (2018/337; 2016/445), the Swedish Research Council (2015-02757), the Ludwig Institute for Cancer Research, Uppsala University, the Ministry of Science and Technology, Taiwan (106-2314-B-037-088- and 106-2915-I-037-501-), Kaohsiung Medical University Hospital (KMUH103-3 T05) and Academy of Finland. The funders played no role in the design, interpretation or writing of the manuscript.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden; Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Deparent of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
190
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
191
|
Travelling arboviruses: A historical perspective. Travel Med Infect Dis 2019; 31:101471. [DOI: 10.1016/j.tmaid.2019.101471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 11/24/2022]
|
192
|
Halstead SB, Dans LF. Dengue infection and advances in dengue vaccines for children. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:734-741. [PMID: 31378686 DOI: 10.1016/s2352-4642(19)30205-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Abstract
Dengue viruses are endemic in most tropical and subtropical countries where they produce disease ranging from a mild fever to a severe, potentially fatal vascular permeability syndrome. We reviewed the status of development and testing in children of three vaccines designed to protect against the four dengue viruses. The first dengue virus vaccine, Dengvaxia, now licensed in 20 endemic countries, the EU and the USA, provides protection against severe dengue in seropositive individuals but increases the risk for naive recipients to develop severe dengue and to be hospitalised. We discuss mechanisms and implications of shortcomings of the licensed vaccine and describe the structure and attributes of two other dengue virus vaccines. Based upon human dengue challenge studies, one of these vaccines promises to deliver solid, long-lasting immunity after a single dose. Because dengue virus infections are ubiquitous in residents and visitors to tropical countries, in the absence of a protective vaccine paediatricians should recognise the early signs and clinical presentation of severe dengue, understand its pathophysiology and appropriate management.
Collapse
Affiliation(s)
- Scott B Halstead
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Leonila F Dans
- Departments of Pediatrics and Clinical Epidemiology, College of Medicine, University of the Philippines, Manila, Philippines
| |
Collapse
|
193
|
Abstract
This is a selective review of recent publications on dengue clinical features, epidemiology, pathogenesis, and vaccine development placed in a context of observations made over the past half century. Four dengue viruses (DENVs) are transmitted by urban cycle mosquitoes causing diseases whose nature and severity are influenced by interacting factors such as virus, age, immune status of the host, and human genetic variability. A phenomenon that controls the kinetics of DENV infection, antibody-dependent enhancement, best explains the correlation of the vascular permeability syndrome with second heterotypic DENV infections and infection in the presence of passively acquired antibodies. Based on growing evidence in vivo and in vitro, the tissue-damaging DENV non-structural protein 1 (NS1) is responsible for most of the pathophysiological features of severe dengue. This review considers the contribution of hemophagocytic histiocytosis syndrome to cases of severe dengue, the role of movement of humans in dengue epidemiology, and modeling and planning control programs and describes a country-wide survey for dengue infections in Bangladesh and efforts to learn what controls the clinical outcome of dengue infections. Progress and problems with three tetravalent live-attenuated vaccines are reviewed. Several research mysteries remain: why is the risk of severe disease during second heterotypic DENV infection so low, why is the onset of vascular permeability correlated with defervescence, and what are the crucial components of protective immunity?
Collapse
Affiliation(s)
- Scott Halstead
- Emeritus Professor, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
194
|
Wang C, Puerta-Guardo H, Biering SB, Glasner DR, Tran EB, Patana M, Gomberg TA, Malvar C, Lo NTN, Espinosa DA, Harris E. Endocytosis of flavivirus NS1 is required for NS1-mediated endothelial hyperpermeability and is abolished by a single N-glycosylation site mutation. PLoS Pathog 2019; 15:e1007938. [PMID: 31356638 PMCID: PMC6687192 DOI: 10.1371/journal.ppat.1007938] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/08/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Arthropod-borne flaviviruses cause life-threatening diseases associated with endothelial hyperpermeability and vascular leak. We recently found that vascular leak can be triggered by dengue virus (DENV) non-structural protein 1 (NS1) via the disruption of the endothelial glycocalyx-like layer (EGL). However, the molecular determinants of NS1 required to trigger EGL disruption and the cellular pathway(s) involved remain unknown. Here we report that mutation of a single glycosylated residue of NS1 (N207Q) abolishes the ability of NS1 to trigger EGL disruption and induce endothelial hyperpermeability. Intriguingly, while this mutant bound to the surface of endothelial cells comparably to wild-type NS1, it was no longer internalized, suggesting that NS1 binding and internalization are distinct steps. Using endocytic pathway inhibitors and gene-specific siRNAs, we determined that NS1 was endocytosed into endothelial cells in a dynamin- and clathrin-dependent manner, which was required to trigger endothelial dysfunction in vitro and vascular leak in vivo. Finally, we found that the N207 glycosylation site is highly conserved among flaviviruses and is also essential for West Nile and Zika virus NS1 to trigger endothelial hyperpermeability via clathrin-mediated endocytosis. These data provide critical mechanistic insight into flavivirus NS1-induced pathogenesis, presenting novel therapeutic and vaccine targets for flaviviral diseases. Vascular leak is a hallmark of severe dengue disease. Recently, our group revealed a critical role for NS1 in induction of endothelial hyperpermeability and vascular leakage in an endothelial cell-intrinsic manner. However, the upstream pathway triggered by NS1, as well as the molecular determinants of NS1 required for this phenomenon, remain obscure. Gaining insight into this endothelial cell-intrinsic pathway is critical for understanding dengue pathogenesis, developing novel antiviral therapies, and developing NS1-based vaccine approaches that pose a minimal risk of antibody-dependent enhancement. Our current study expands our knowledge of this novel pathway not only by identifying the requirement of internalization of secreted NS1 via clathrin-mediated endocytosis, but also by pinpointing the NS1 molecular determinant (N207) required to trigger vascular leak. Further, our work identifies N207 as a residue conserved among multiple flaviviruses (Zika virus and West Nile virus, in addition to DENV), which is critical for NS1-mediated vascular leak in biologically relevant human endothelial cells modeling interstitial compartments in the lung or the blood-brain barrier. Thus, our study identifies endocytosis and a single amino acid (N207) of the NS1 viral toxin as critical for pan-flavivirus pathogenesis, representing a novel target for anti-flaviviral therapy and vaccine development.
Collapse
Affiliation(s)
- Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Edwina B. Tran
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Mark Patana
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Trent A. Gomberg
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Carmel Malvar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. N. Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
195
|
Reyes-Sandoval A, Ludert JE. The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol 2019; 10:1651. [PMID: 31379848 PMCID: PMC6657369 DOI: 10.3389/fimmu.2019.01651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
196
|
Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Harris E, Pereira L. Zika Virus Replicates in Proliferating Cells in Explants From First-Trimester Human Placentas, Potential Sites for Dissemination of Infection. J Infect Dis 2019; 217:1202-1213. [PMID: 29106643 DOI: 10.1093/infdis/jix552] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023] Open
Abstract
Background Maternal Zika virus (ZIKV) infection with prolonged viremia leads to fetal infection and congenital Zika syndrome. Previously, we reported that ZIKV infects primary cells from human placentas and fetal membranes. Here, we studied viral replication in numerous explants of anchoring villi and basal decidua from first-trimester human placentas and midgestation amniotic epithelial cells (AmEpCs). Methods Explants and AmEpCs were infected with American and African ZIKV strains at low multiplicities, and ZIKV proteins were visualized by immunofluorescence. Titers of infectious progeny, cell proliferation, and invasiveness were quantified. Results In anchoring villus, ZIKV replicated reproducibly in proliferating cytotrophoblasts in proximal cell columns, dividing Hofbauer cells in villus cores, and invasive cytotrophoblasts, but frequencies differed. Cytotrophoblasts in explants infected by Nicaraguan strains were invasive, whereas those infected by prototype MR766 largely remained in cell columns, and titers varied by donor and strain. In basal decidua, ZIKV replicated in glandular epithelium, decidual cells, and immune cells. ZIKV-infected AmEpCs frequently occurred in pairs and expressed Ki67 and phosphohistone H3, indicating replication in dividing cells. Conclusions ZIKV infection in early pregnancy could target proliferating cell column cytotrophoblasts and Hofbauer cells, amplifying infection in basal decidua and chorionic villi and enabling transplacental transmission.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| | - Henry Puerta-Guardo
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California Berkeley
| | - Daniela Michlmayr
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California Berkeley
| | - Eva Harris
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California Berkeley
| | - Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco
| |
Collapse
|
197
|
Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, Dominguez F, Vallejo-Ruiz V, Sanchez-Burgos GG, Pando-Robles V, Santos-Lopez G, Reyes-Leyva J. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 2019; 12:1833-1852. [PMID: 31303775 PMCID: PMC6611719 DOI: 10.2147/idr.s210890] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/26/2019] [Indexed: 12/30/2022] Open
Abstract
Background: There is a lack of specific antiviral therapy against dengue virus (DENV) in current use. Therefore, a great proportion of dengue cases progress to severe clinical forms due to a complex interplay between virus and host immune response. It has been hypothesized that heterotypic non-neutralizing antibodies enhance DENV infection in phagocytic cells, and this induces an inflammatory response that is involved in the pathogenesis of severe dengue. Purpose: To identify the antiviral and immunomodulatory effects of polyphenols on dengue virus infection. Methods: Human U937-DC-SIGN macrophages were infected with DENV serotypes 2 or 3 in the presence or not of enhancing antibody 4G2. Viral titers and the secretion of tumor necrosis factor-alpha, IL-6, IL-10 and interferon-alpha were analyzed timely. Results: DENV infection alone induced high production of IL-6 and TNF-α, but in the presence of 4G2 antibody, viral titers and TNF-α secretion were potentiated. Based on anti-inflammatory antecedents, the polyphenols curcumin, fisetin, resveratrol, apigenin, quercetin and rutin were tested for antiviral and immunomodulatory properties. Only quercetin and fisetin inhibited DENV-2 and DENV-3 infection in the absence or presence of enhancing antibody (>90%, p<0.001); they also inhibited TNF-α and IL-6 secretion (p<0.001). Conclusion: Quercetin and fisetin down-regulate the production of proinflammatory cytokines induced by DENV infection enhanced by antibodies a mechanism involved in severe dengue.
Collapse
Affiliation(s)
- Carolina Jasso-Miranda
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México.,Laboratory of Biochemistry and Molecular Biology, Center of Chemistry, Institute of Sciences, Meritorious Autonomous University of Puebla, CP 72570 San Manuel, Puebla, Mexico
| | - Irma Herrera-Camacho
- Laboratory of Biochemistry and Molecular Biology, Center of Chemistry, Institute of Sciences, Meritorious Autonomous University of Puebla, CP 72570 San Manuel, Puebla, Mexico
| | - Lilian Karem Flores-Mendoza
- Department of Chemical, Biologic and Agricultural Sciences, Science and Enginery Division, University of Sonora, CP 85880 Navojoa, Sonora, Mexico
| | - Fabiola Dominguez
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | - Veronica Vallejo-Ruiz
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | | | - Victoria Pando-Robles
- Infectious Disease Research Center, National Institute of Public Health, CP 62100 Cuernavaca, Morelos, Mexico
| | - Gerardo Santos-Lopez
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| | - Julio Reyes-Leyva
- Laboratory of Immunology and Virology, East Biomedical Research Center, Mexican Institute of Social Security (IMSS), CP 74360 Metepec, Puebla, México
| |
Collapse
|
198
|
Hsu AY, Ho TC, Lai ML, Tan SS, Chen TY, Lee M, Chien YW, Chen YP, Perng GC. Identification and characterization of permissive cells to dengue virus infection in human hematopoietic stem and progenitor cells. Transfusion 2019; 59:2938-2951. [PMID: 31251408 DOI: 10.1111/trf.15416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Dengue virus (DENV) is a significant threat to public health in tropical and subtropical regions, where the frequency of human migration is increasing. Transmission of DENV from donors to recipients after hematopoietic stem cell transplantation has been steadily described. However, the underlying mechanisms remain unclear. STUDY DESIGN AND METHODS Freshly isolated bone marrow (BM) was subjected to DENV infection, followed by multicolor fluorescence-activated cell sorting (FACS) analysis. Virus in supernatants was collected and analyzed by plaque assay. RESULTS DENV-1 to DENV-4 could effectively infect freshly obtained BM and produced infectious virus. DENV infection did not change the quantitative population of hematopoietic stem and progenitor cells (HSPCs), megakaryocytic progenitor cells (MkPs) and megakaryocytes. Additionally, DENV antigen, nonstructural protein 1, was enriched in HSPCs and MkPs of DENV infected marrow cells. CD34+, CD133+, or CD61+ cells sorted out from BM were not only the major contributing targets facilitating the DENV infection directly but also facilitated the spread of DENV into other cells when cocultured. CONCLUSION Results suggest that DENV can efficiently infect HSPCs, which might jeopardize the recipients if DENV-infected cells were subsequently used. We therefore raise the need for DENV screening for both the donors and recipients of hematopoietic stem cell transplantation, especially for donors exposed to endemic areas, to mitigate DENV infection in immunocompromised recipients.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Tzu-Chuan Ho
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ling Lai
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Sia Seng Tan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meed Lee
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chien
- Departement of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ping Chen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
199
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
200
|
Cipitelli MDC, Amâncio Paiva I, Badolato-Corrêa J, de-Oliveira-Pinto LM. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett 2019; 212:88-97. [PMID: 31181280 DOI: 10.1016/j.imlet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
Abstract
During a pathogenic infection, an inflammatory process is triggered in which several inflammatory mediators, such as cytokines, chemokines, growth factors, complement system components, nitric oxide, and others induce integrity alteration on the endothelial barrier. Chemokines are responsible for regulating leukocyte trafficking under homeostatic conditions as well as activating immune system cells under inflammatory conditions. They are crucial molecules in the early stages of infection, leading to the recruitment of immune cells, namely neutrophils, monocytes, natural killer (NK) cells, natural killer T cells (NKT), dendritic cells (DC), T lymphocytes and all cells expressing chemokine receptors for inflammatory sites. Other functions, such as collagen production, tissue repair, a proliferation of hematopoietic precursors and angiogenesis, are also performed by these molecules. Chemokines, amongst inflammatory mediators, play a key role in dengue immunopathogenesis. Dengue fever is a disease caused by the dengue virus (DENV). It is characterized by a broad spectrum of clinical manifestations ranging from asymptomatic cases to mild and severe symptomatic ones. As for the latter, the appearance of hemorrhagic manifestations and changes in vascular permeability may lead the patient to develop cavitary effusions, organ involvement, and even death. As chemokines exert an influence on various homeostatic and inflammatory processes, acting vigorously on vascular endothelial activation and cell migration, the main purpose of this chapter is to discuss the influence of chemokines on the alteration of endothelial permeability and migration of T lymphocytes in DENV infection.
Collapse
Affiliation(s)
- Márcio da Costa Cipitelli
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Iury Amâncio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | | |
Collapse
|