2001
|
Boulay A, Lane HA. The mammalian target of rapamycin kinase and tumor growth inhibition. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 172:99-124. [PMID: 17607938 DOI: 10.1007/978-3-540-31209-3_7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Boulay
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
2002
|
Phung TL, Eyiah-Mensah G, O’Donnell RK, Bieniek R, Shechter S, Walsh K, Kuperwasser C, Benjamin LE. Endothelial Akt signaling is rate-limiting for rapamycin inhibition of mouse mammary tumor progression. Cancer Res 2007; 67:5070-5. [PMID: 17545582 PMCID: PMC2396346 DOI: 10.1158/0008-5472.can-06-3341] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic activation of Akt signaling in the endothelium recapitulates the salient features of a tumor vasculature and can be inhibited by rapamycin, an inhibitor of mammalian target of rapamycin. This led to the hypothesis that the antitumor efficacy of rapamycin may be partially dependent on its ability to inhibit endothelial Akt signaling, making rapamycin an antiangiogenic agent and endothelial Akt pathway inhibitor. Dose-response studies with rapamycin showed that primary human endothelial cells and fibroblasts had a bimodal Akt response with effective reductions in phosphorylated Akt (pAkt) achieved at 10 ng/mL. In contrast, rapamycin increased pAkt levels in tumor cell lines. When tumor-bearing mice were treated with rapamycin doses comparable to those used clinically in transplant patients, we observed strong inhibition of mammary tumor growth. To test whether Akt activation in the endothelium was rate-limiting for this antitumor response, we engineered mouse mammary tumor virus-polyoma virus middle T antigen mice with endothelial cell-specific expression of constitutively activated Akt. We observed that the antitumor efficacy of rapamycin was reduced in the presence of elevated endothelial Akt activation. Just as we observed in MCF7 cells in vitro, rapamycin doses that were antiangiogenic resulted in increased pAkt levels in total mouse mammary tumor virus-polyoma virus middle T antigen tumor lysates, suggesting that tumor cells had an opposite Akt response following mammalian target of rapamycin inhibition compared with tumor endothelial cells. Together, these data support the hypothesis that endothelial Akt signaling in the tumor vasculature is an important target of the novel anticancer drug rapamycin.
Collapse
Affiliation(s)
- Thuy L. Phung
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Godfred Eyiah-Mensah
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Rebekah K. O’Donnell
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Radoslaw Bieniek
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Sharon Shechter
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine
| | - Charlotte Kuperwasser
- Departments of Anatomy and Cellular Biology/Radiation Oncology, Tufts University School of Medicine/New England Medical Center, Boston, Massachusetts
| | - Laura E. Benjamin
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
2003
|
Li D, Shimamura T, Ji H, Chen L, Haringsma HJ, McNamara K, Liang MC, Perera SA, Zaghlul S, Borgman CL, Kubo S, Takahashi M, Sun Y, Chirieac LR, Padera RF, Lindeman NI, Jänne PA, Thomas RK, Meyerson ML, Eck MJ, Engelman JA, Shapiro GI, Wong KK. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 2007; 12:81-93. [PMID: 17613438 DOI: 10.1016/j.ccr.2007.06.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/03/2007] [Accepted: 06/05/2007] [Indexed: 02/05/2023]
Abstract
The EGFR T790M mutation has been identified in tumors from lung cancer patients that eventually develop resistance to erlotinib. In this study, we generated a mouse model with doxycycline-inducible expression of a mutant EGFR containing both L858R, an erlotinib-sensitizing mutation, and the T790M resistance mutation (EGFR TL). Expression of EGFR TL led to development of peripheral adenocarcinomas with bronchioloalveolar features in alveoli as well as papillary adenocarcinomas in bronchioles. Treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI), HKI-272, shrunk only peripheral tumors but not bronchial tumors. However, the combination of HKI-272 and rapamycin resulted in significant regression of both types of lung tumors. This combination therapy may potentially benefit lung cancer patients with the EGFR T790M mutation.
Collapse
Affiliation(s)
- Danan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2004
|
Ballou LM, Selinger ES, Choi JY, Drueckhammer DG, Lin RZ. Inhibition of mammalian target of rapamycin signaling by 2-(morpholin-1-yl)pyrimido[2,1-alpha]isoquinolin-4-one. J Biol Chem 2007; 282:24463-70. [PMID: 17562705 DOI: 10.1074/jbc.m704741200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Signaling through the mammalian target of rapamycin (mTOR) is hyperactivated in many human tumors, including hamartomas associated with tuberous sclerosis complex (TSC). Several small molecules such as LY294002 inhibit mTOR kinase activity, but they also inhibit phosphatidylinositol 3-kinase (PI3K) at similar concentrations. Compound 401 is a synthetic inhibitor of DNA-dependent protein kinase (DNA-PK) that also targets mTOR but not PI3K in vitro (Griffin, R. J., Fontana, G., Golding, B. T., Guiard, S., Hardcastle, I. R., Leahy, J. J., Martin, N., Richardson, C., Rigoreau, L., Stockley, M., and Smith, G. C. (2005) J. Med. Chem. 48, 569-585). We used 401 to test the cellular effect of mTOR inhibition without the complicating side effects on PI3K. Treatment of cells with 401 blocked the phosphorylation of sites modified by mTOR-Raptor and mTOR-Rictor complexes (ribosomal protein S6 kinase 1 Thr(389) and Akt Ser(473), respectively). By contrast, there was no direct inhibition of Akt Thr(308) phosphorylation, which is dependent on PI3K. Similar effects were also observed in cells that lack DNA-PK. The proliferation of TSC1-/- fibroblasts was inhibited in the presence of 401, but TSC1+/+ cells were resistant. In contrast to rapamycin, long-term treatment of TSC1-/- cells with 401 did not up-regulate phospho-Akt Ser(473). Because increased Akt activity promotes survival, this may explain why the level of apoptosis was increased in the presence of 401 but not rapamycin. These results suggest that mTOR kinase inhibitors might be more effective than rapamycins in controlling the growth of TSC hamartomas and other tumors that depend on elevated mTOR activity.
Collapse
Affiliation(s)
- Lisa M Ballou
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794, USA.
| | | | | | | | | |
Collapse
|
2005
|
Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett 2007; 251:105-13. [DOI: 10.1016/j.canlet.2006.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/03/2006] [Accepted: 11/07/2006] [Indexed: 01/02/2023]
|
2006
|
Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, Golub T, Mellinghoff IK, Davis RJ, Wu H, Sawyers CL. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 2007; 11:555-69. [PMID: 17560336 DOI: 10.1016/j.ccr.2007.04.021] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 02/14/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.
Collapse
Affiliation(s)
- Igor Vivanco
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2007
|
Marinov M, Fischer B, Arcaro A. Targeting mTOR signaling in lung cancer. Crit Rev Oncol Hematol 2007; 63:172-82. [PMID: 17540577 DOI: 10.1016/j.critrevonc.2007.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/07/2007] [Accepted: 04/18/2007] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world, with more than 1 million deaths per year. Over the past years, lung cancer treatment has been based on cytotoxic agents and an improvement in the outcome and quality of life for patients has been observed. However, it has become clear that additional therapeutic strategies are urgently required in order to provide an improved survival benefit for patients. Two major intracellular signaling pathways, the Ras/Raf/extracellular signal-regulated kinase (Erk) and the phosphoinositide 3-kinase (PI3K)/Akt pathways have been extensively studied in neoplasia, including lung cancer. Furthermore, the study of constitutively activated receptor tyrosine kinases (RTKs) and their downstream signaling mediators has opened a promising new field of investigation for lung cancer treatment. Since both the Ras/Raf/Erk and the PI3K/Akt pathways are downstream of a plethora of activated RTKs, they have been extensively studied for the development of novel anti-tumor agents. Moreover, the mammalian target of rapamycin (mTOR) has been identified as a downstream target of the PI3K/Akt pathway. Rapamycin and its derivatives are highly selective and very potent inhibitors of mTOR and initial pre-clinical and clinical studies have reported encouraging results for different tumor types. Nevertheless for lung cancer, this approach has not been successful yet. Here we will review the molecular basis of PI3K/Akt/mTOR signaling in lung cancer and further discuss the therapeutic potential of multi-targeted strategies involving mTOR inhibitors.
Collapse
Affiliation(s)
- Marin Marinov
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
2008
|
Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 2007; 1113:202-16. [PMID: 17513464 DOI: 10.1196/annals.1391.012] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular chaperone HSP90 has emerged as an exciting target for cancer treatment. We review the potential advantages of HSP90 inhibitors, particularly the simultaneous combinatorial depletion of multiple oncogenic "client" proteins, leading to blockade of many cancer-causing pathways and the antagonism of all of the hallmark pathological traits of malignancy. Cancer selectivity is achieved by exploiting cancer "dependencies," including oncogene addiction and the stressed state of malignant cells. The multiple downstream effects of HSP90 inhibitors should make the development of resistance more difficult than with agents having more restricted effects. We review the various classes of HSP90 inhibitor that have been developed, including the natural products geldanamycin and radicicol and also the purine scaffold and pyrazole/isoxazole class of synthetic small molecule inhibitors. A first-in-class HSP90 drug, the geldanamycin analog 17-AAG, has provided proof of concept for HSP90 inhibition in patients at well tolerated doses and therapeutic activity has been seen. Other inhibitors show promise in preclinical and clinical development. Opportunities and challenges for HSP90 inhibitors are discussed, including use in combination with other agents. Most of the current HSP90 inhibitors act by blocking the essential nucleotide binding and ATPase activity required for chaperone function. Potential new approaches are discussed, for example, interference with cochaperone binding and function in the superchaperone complex. Biomarkers for use with HSP90 inhibitors are described. We stress how basic and translational research has been mutually beneficial and indicate future directions to enhance our understanding of molecular chaperones and their exploitation in cancer and other diseases.
Collapse
Affiliation(s)
- Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey. UK.
| | | | | | | |
Collapse
|
2009
|
Petricoin EF, Espina V, Araujo RP, Midura B, Yeung C, Wan X, Eichler GS, Johann DJ, Qualman S, Tsokos M, Krishnan K, Helman LJ, Liotta LA. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 2007; 67:3431-40. [PMID: 17409454 DOI: 10.1158/0008-5472.can-06-1344] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Despite advances in combination chemotherapy, the overall survival for childhood rhabdomyosarcoma remains approximately 60%. A critical goal is to identify functionally important protein signaling defects associated with treatment failure for the 40% nonresponder cohort. Here, we show, by phosphoproteomic network analysis of microdissected tumor cells, that interlinked components of the Akt/mammalian target of rapamycin (mTOR) pathway exhibited increased levels of phosphorylation for tumors of patients with short-term survival. Specimens (n = 59) were obtained from the Children's Oncology Group Intergroup Rhabdomyosarcoma Study (IRS) IV, D9502 and D9803, with 12-year follow-up. High phosphorylation levels were associated with poor overall and poor disease-free survival: Akt Ser(473) (overall survival P < 0.001, recurrence-free survival P < 0.0009), 4EBP1 Thr(37/46) (overall survival P < 0.0110, recurrence-free survival P < 0.0106), eIF4G Ser(1108) (overall survival P < 0.0017, recurrence-free survival P < 0.0072), and p70S6 Thr(389) (overall survival P < 0.0085, recurrence-free survival P < 0.0296). Moreover, the findings support an altered interrelationship between the insulin receptor substrate (IRS-1) and Akt/mTOR pathway proteins (P < 0.0027) for tumors from patients with poor survival. The functional significance of this pathway was tested using CCI-779 in a mouse xenograft model. CCI-779 suppressed phosphorylation of mTOR downstream proteins and greatly reduced the growth of two different rhabdomyosarcoma (RD embryonal P = 0.00008; Rh30 alveolar P = 0.0002) cell lines compared with controls. These results suggest that phosphoprotein mapping of the Akt/mTOR pathway should be studied further as a means to select patients to receive mTOR/IRS pathway inhibitors before administration of chemotherapy.
Collapse
Affiliation(s)
- Emanuel F Petricoin
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Cellular and Gene Therapy, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2010
|
Lackey J, Barnett J, Davidson L, Batty IH, Leslie NR, Downes CP. Loss of PTEN selectively desensitizes upstream IGF1 and insulin signaling. Oncogene 2007; 26:7132-42. [PMID: 17486056 PMCID: PMC2773499 DOI: 10.1038/sj.onc.1210520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many tumors have chronically elevated activity of PI 3-kinase-dependent signaling pathways, caused largely by oncogenic mutation of PI 3-kinase itself or loss of the opposing tumor suppressor lipid phosphatase, PTEN. Several PI 3-kinase-dependent feedback mechanisms have been identified that may affect the sensitivity of upstream receptor signaling, but the events required to initiate an inhibited state have not been addressed. We show that in a variety of cell types, loss of PTEN via experimental knockdown or in tumor cell lines correlates with a block in insulin-like growth factor 1 (IGF1)/insulin signaling, without affecting the sensitivity of platelet-derived growth factor or epidermal growth factor signaling. These effects on IGF/insulin signaling include a reduction of up to five- to tenfold in IGF-stimulated PI 3-kinase activation, a failure to activate the ERK kinases and, in some cells, reduced expression of insulin receptor substrate 1, and both IGF1 and insulin receptors. These data indicate that chronically elevated PI 3-kinase-dependent signaling to the degree seen in many tumors causes a selective loss of sensitivity in IGF1/insulin signaling that could significantly reduce the selective advantage of deregulated activation of IGF1/IGF1-R signaling in tumor development.
Collapse
Affiliation(s)
| | | | | | | | - Nick R. Leslie
- Author for correspondence, Nick Leslie, Tel: 44-1382-386263 Fax: 44-1382-385507
| | | |
Collapse
|
2011
|
Kurmasheva RT, Harwood FC, Houghton PJ. Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Mol Cancer Ther 2007; 6:1620-8. [PMID: 17483438 DOI: 10.1158/1535-7163.mct-06-0646] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Levels of vascular endothelial growth factor (VEGF) are regulated, in part, through activation of the phosphatidylinositol 3'-kinase/Akt pathway. Using pharmacologic inhibitors, we have examined the relative contributions of Akt and mammalian target of rapamycin (mTOR) signaling to VEGF production in neuroblastoma and rhabdomyosarcoma cells growing under normoxic (21% O(2)) or hypoxic (1% O(2)) conditions. Exogenous VEGF stimulated both Akt and extracellular signal-regulated kinase 1/2 phosphorylation in six of seven rhabdomyosarcoma cell lines but in only one of seven neuroblastoma cells, suggesting autocrine stimulation predominantly in rhabdomyosarcoma cell lines. In general, under normoxic conditions, neuroblastoma cells produced more VEGF (120-1,180 pg/10(6) cells/24 h) compared with rhabdomyosarcoma lines (0-200 pg/10(6) cells/24 h). Rapamycin, a selective inhibitor of mTOR, reduced VEGF production in rhabdomyosarcoma cells under normoxic conditions and partially suppressed hypoxia-driven increases in VEGF. However, it poorly inhibited VEGF production under either condition in the majority of neuroblastoma cell lines despite inhibition of mTOR signaling. Rapamycin failed to modulate levels of hypoxia-inducible factor 1alpha (HIF-1alpha) under normoxic conditions and modestly reduced hypoxia-driven increases in HIF-1alpha only in rhabdomyosarcoma cells. In contrast to rapamycin, inhibition of Akt by A-443654 completely blocked signaling to glycogen synthase kinase 3beta and had more dramatic effects on VEGF production. Notably, A-443654 significantly inhibited VEGF production in rapamycin-refractory neuroblastoma cell lines. Importantly, whereas combining A-443654 with rapamycin had variable effect on cell proliferation, the combination essentially blocked hypoxia-driven increases in VEGF in all cell lines examined, suggesting that dual blockade at different levels in the phosphatidylinositol 3'-kinase-initiated signaling pathway may be a reasonable strategy for preventing VEGF production in cancer cells derived from pediatric solid tumors. However, this will require formal testing in vivo using animal models of childhood cancer.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | | | | |
Collapse
|
2012
|
Tesseraud S, Métayer-Coustard S, Boussaid S, Crochet S, Audouin E, Derouet M, Seiliez I. Insulin and amino acid availability regulate atrogin-1 in avian QT6 cells. Biochem Biophys Res Commun 2007; 357:181-6. [PMID: 17418104 DOI: 10.1016/j.bbrc.2007.03.131] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/20/2007] [Indexed: 02/01/2023]
Abstract
New evidence has demonstrated that the expression of major genes, termed atrogenes, controls the ubiquitin-proteasome proteolytic pathway. The present work aimed to study the impact of insulin and amino acids on the expression of one of these atrogenes, the E3 ubiquitin ligase Muscle Atrophy F box (MAFbx, also called atrogin-1), in quail muscle (QT6) fibroblasts. First, we characterized atrogin-1 in QT6 cells and demonstrated the insulin sensitivity of these cells. Second, we showed that insulin reduced atrogin-1 mRNA via the phosphatidylinositol-3'kinase (PI3K)/protein kinase B (PKB or AKT)/target of rapamycin (TOR) pathway. Atrogin-1 expression also depended on the availability of an individual amino acid, i.e., methionine. Moreover, the amino acid-induced reduction of atrogin-1 was inhibited by rapamycin, indicating the involvement of the TOR pathway in such regulation. In conclusion, expression of the ubiquitin ligase atrogin-1 is regulated by both insulin and amino acids through the TOR pathway.
Collapse
|
2013
|
Sieghart W, Fuereder T, Schmid K, Cejka D, Werzowa J, Wrba F, Wang X, Gruber D, Rasoul-Rockenschaub S, Peck-Radosavljevic M, Wacheck V. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation 2007; 83:425-32. [PMID: 17318075 DOI: 10.1097/01.tp.0000252780.42104.95] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Because mammalian target of rapamycin (mTOR) inhibitors combine anticancer and immunosuppressive properties we investigated: 1) the activation status and prognostic significance of the mTOR pathway in hepatocellular carcinoma (HCC) tissues of patients undergoing orthotopic liver transplantation (OLT) for HCC, and 2) the single and combinatorial efficacy of RAD001 in HCC cells. METHODS PTEN, p-AKT, p-mTOR, p-p70S6K, and p-4EBP-1 were analyzed by immunohistochemistry in explanted HCCs of 166 patients undergoing OLT. Efficacy of RAD001 as mono- and combination therapy with doxorubicin was tested in Hep3B and SNU398 cells. RESULTS The mTOR pathway is activated in about 40% of patients undergoing OLT for HCC but no direct correlation between up- and downstream proteins was observed. We found no influence of mTOR pathway protein expression on disease free survival (DFS) or overall survival (OS). There was a marked single agent and chemo-sensitizing effect of RAD001 against HCC cells in vitro. CONCLUSION The mTOR pathway is active in 40% of patients with HCC undergoing OLT, but has no influence of DFS or OS. No direct correlation was observed between up- and downstream proteins limiting the use of upstream proteins to predict mTOR activity. Prospective clinical trials are needed to test whether the activation status of the mTOR pathway in HCCs predicts the antitumor effect of rapamycin derivative in the posttransplantation course.
Collapse
Affiliation(s)
- Wolfgang Sieghart
- Department of Clinical Pharmacology, Section of Experimental Oncology/Molecular Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2014
|
Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 2007; 67:2408-13. [PMID: 17363557 DOI: 10.1158/0008-5472.can-06-4490] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is thought to play a critical role in regulating cell growth, cell cycle progression, and tumorigenesis. Because the AKT-mTOR pathway is frequently hyperactivated in ovarian cancer, we hypothesized that the mTOR inhibitor RAD001 (Everolimus) would inhibit ovarian tumorigenesis in transgenic mice that spontaneously develop ovarian carcinomas. We used TgMISIIR-TAg transgenic mice, which develop bilateral ovarian serous adenocarcinomas accompanied by ascites and peritoneal dissemination. Fifty-eight female TgMISIIR-TAg mice were treated with 5 mg/kg RAD001 or placebo twice weekly from 5 to 20 weeks of age. To monitor tumor development, mice were examined biweekly using magnetic resonance microimaging. In vivo effects of RAD001 on Akt-mTOR signaling, tumor cell proliferation, and blood vessel area were analyzed by immunohistochemistry and Western blot analysis. RAD001 treatment markedly delayed tumor development. Tumor burden was reduced by approximately 84%. In addition, ascites formation, together with peritoneal dissemination, was detected in only 21% of RAD001-treated mice compared with 74% in placebo-treated animals. Approximately 30% of RAD001-treated mice developed early ovarian carcinoma confined within the ovary, whereas all placebo-treated mice developed advanced ovarian carcinoma. Treatment with RAD001 diminished the expression of vascular endothelial growth factor in tumor-derived cell lines and inhibited angiogenesis in vivo. RAD001 also attenuated the expression of matrix metalloproteinase-2 and inhibited the invasiveness of tumor-derived cells. Taken together, these preclinical findings suggest that mTOR inhibition, alone or in combination with other molecularly targeted drugs, could represent a promising chemopreventive strategy in women at high familial risk of ovarian cancer.
Collapse
Affiliation(s)
- Seiji Mabuchi
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2015
|
Hou G, Xue L, Lu Z, Fan T, Tian F, Xue Y. An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Lett 2007; 253:236-48. [PMID: 17360108 DOI: 10.1016/j.canlet.2007.01.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 12/27/2022]
Abstract
mTOR/p70S6K pathway is considered a central regulator in various malignant tumors, but its roles in esophageal squamous cell carcinoma (ESCC), which is a common cause of mortality in China, remain unknown. Here, we identify that the mTOR/p70S6K pathway is activated in ESCC; rapamycin and siRNA against mTOR rapidly inhibited expression of mTOR and the phosphorylation of its major downstream effectors, p70S6K and 4E-BP1, arrested cells in the G(0)/G(1) phase and induced apoptosis of ESCC cells. The findings may lay a foundation for making further investigations on the mTOR/p70S6K pathway as a potential target for ESCC therapy.
Collapse
Affiliation(s)
- Guiqin Hou
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan 450052, PR China
| | | | | | | | | | | |
Collapse
|
2016
|
Jimeno A, Kulesza P, Wheelhouse J, Chan A, Zhang X, Kincaid E, Chen R, Clark DP, Forastiere A, Hidalgo M. Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. Br J Cancer 2007; 96:952-9. [PMID: 17342092 PMCID: PMC2360107 DOI: 10.1038/sj.bjc.6603656] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a validated target in squamous cell carcinoma (SCC) of the head and neck. Most patients, however, do not respond or develop resistance to this agent. Mammalian target of rapamycin (mTOR) is involved in the pathogenesis of SCC of the head and neck (SCCHN). This study aimed to determine if targeting mTOR in combination with EGFR is effective in SCC, and to develop early pharmacodynamic markers of efficacy. Two SCC cell lines, one resistant (HEP2) and one of intermediate susceptibility (Detroit 562) to EGFR inhibitors, were xenografted in vivo and treated with an mTOR inhibitor (temsirolimus), an EGFR inhibitor (erlotinib) or a combination of both. Temsirolimus exerted superior growth arrest in both cell lines than erlotinib. The combined treatment resulted in synergistic antitumor effects in the Detroit 562 cell line. Immunohistochemical assessment of pharmacodynamic effects in fine-needle aspiration (FNA) biopsies early after treatment using phospho MAPK, Phospho-P70 and Ki67 as end points demonstrated pathway abrogation in the Detroit 562 tumours treated with the combination, the only group where regressions were seen. In conclusion, an mTOR inhibitor showed antitumor activity in EGFR-resistant SCC cell lines. Marked antitumor effects were associated with dual pathway inhibition, which were detected by early FNA biopsies.
Collapse
Affiliation(s)
- A Jimeno
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - P Kulesza
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - J Wheelhouse
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - A Chan
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - X Zhang
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - E Kincaid
- Department of Pathology, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - R Chen
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - D P Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - A Forastiere
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
| | - M Hidalgo
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 1M89, Baltimore, MD 21231-1000, USA
- E-mail:
| |
Collapse
|
2017
|
Han EKH, Leverson JD, McGonigal T, Shah OJ, Woods KW, Hunter T, Giranda VL, Luo Y. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 2007; 26:5655-61. [PMID: 17334390 DOI: 10.1038/sj.onc.1210343] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapamycin, a natural product inhibitor of the Raptor-mammalian target of rapamycin complex (mTORC1), is known to induce Protein kinase B (Akt/PKB) Ser-473 phosphorylation in a subset of human cancer cell lines through inactivation of S6K1, stabilization of insulin receptor substrate (IRS)-1, and increased signaling through the insulin/insulin-like growth factor-I/phosphatidylinositol 3-kinase (PI3K) axis. We report that A-443654, a potent small-molecule inhibitor of Akt serine/threonine kinases, induces Akt Ser-473 phosphorylation in all human cancer cell lines tested, including PTEN- and TSC2-deficient lines. This phenomenon is dose-dependent, manifests coincident with Akt inhibition and likely represents an alternative, rapid-feedback pathway that can be functionally dissociated from mTORC1 inhibition. Experiments performed in TSC2-/- cells indicate that TSC2 and IRS-1 cooperate with, but are dispensable for, A-443654-mediated Akt phosphorylation. This feedback event does require PI3K activity, however, as it can be inhibited by LY294002 or wortmannin. Small interfering RNA-mediated knockdown of mTOR or Rictor, components of the rapamycin-insensitive mTORC2 complex, but not the mTORC1 component Raptor, also inhibited Akt Ser-473 phosphorylation induced by A-443654. Our data thus indicate that Akt phosphorylation and activity are coupled in a manner not previously appreciated and provide a novel mode of Akt regulation that is distinct from the previously described rapamycin-induced IRS-1 stabilization mechanism.
Collapse
Affiliation(s)
- E K-H Han
- Abbott Laboratories, Global Pharmaceutical Research Division, Cancer Research, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2018
|
Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Mol Cell 2007; 25:917-31. [PMID: 17386267 DOI: 10.1016/j.molcel.2007.02.017] [Citation(s) in RCA: 461] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 08/30/2006] [Accepted: 02/20/2007] [Indexed: 11/24/2022]
Abstract
Akt/protein kinase B controls cell growth, proliferation, and survival. We recently discovered a novel phosphatase PHLPP, for PH domain leucine-rich repeat protein phosphatase, which terminates Akt signaling by directly dephosphorylating and inactivating Akt. Here we describe a second family member, PHLPP2, which also inactivates Akt, inhibits cell-cycle progression, and promotes apoptosis. These phosphatases control the amplitude of Akt signaling: depletion of either isoform increases the magnitude of agonist-evoked Akt phosphorylation by almost two orders of magnitude. Although PHLPP1 and PHLPP2 both dephosphorylate the same residue (hydrophobic phosphorylation motif) on Akt, they differentially terminate Akt signaling by regulating distinct Akt isoforms. Knockdown studies reveal that PHLPP1 specifically modulates the phosphorylation of HDM2 and GSK-3alpha through Akt2, whereas PHLPP2 specifically modulates the phosphorylation of p27 through Akt3. Our data unveil a mechanism to selectively terminate Akt-signaling pathways through the differential inactivation of specific Akt isoforms by specific PHLPP isoforms.
Collapse
Affiliation(s)
- John Brognard
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
2019
|
Arteaga CL. Will Single-Time Tumor Profiling and a “Guilt by Association” Approach Allow Us to Outsmart HER2-Positive Breast Cancer? Clin Cancer Res 2007; 13:1071-3. [PMID: 17317812 DOI: 10.1158/1078-0432.ccr-06-2717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2020
|
Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, Iwata KK, Gibson NW, Griffin G. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2007; 5:2676-84. [PMID: 17121914 DOI: 10.1158/1535-7163.mct-06-0166] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor for epidermal growth factor (EGFR) is overexpressed in many cancers. One important signaling pathway regulated by EGFR is the phosphatidylinositol 3'-kinase (PI3K)-phosphoinositide-dependent kinase 1-Akt pathway. Activation of Akt leads to the stimulation of antiapoptotic pathways, promoting cell survival. Akt also regulates the mammalian target of rapamycin (mTOR)-S6K-S6 pathway to control cell growth in response to growth factors and nutrients. Recent reports have shown that the sensitivity of non-small-cell lung cancer cell lines to EGFR inhibitors such as erlotinib (Tarceva, OSI Pharmaceuticals) is dependent on inhibition of the phosphatidylinositol 3'-kinase-phosphoinositide-dependent kinase 1-Akt-mTOR pathway. There can be multiple inputs to this pathway as activity can be regulated by other receptors or upstream mutations. Therefore, inhibiting EGFR alone may not be sufficient for substantial inhibition of all tumor cells, highlighting the need for multipoint intervention. Herein, we sought to determine if rapamycin, an inhibitor of mTOR, could enhance erlotinib sensitivity for cell lines derived from a variety of tissue types (non-small-cell lung, pancreatic, colon, and breast). Erlotinib could inhibit extracellular signal-regulated kinase, Akt, and S6 only in cell lines that were the most sensitive. Rapamycin could fully inhibit S6 in all cell lines, but this was accompanied by activation of Akt phosphorylation. However, combination with erlotinib could down-modulate rapamycin-stimulated Akt activity. Therefore, in select cell lines, inhibition of both S6 and Akt was achieved only with the combination of erlotinib and rapamycin. This produced a synergistic effect on cell growth inhibition, observations that extended in vivo using xenograft models. These results suggest that combining rapamycin with erlotinib might be clinically useful to enhance response to erlotinib.
Collapse
Affiliation(s)
- Elizabeth Buck
- OSI Pharmaceuticals, 1 Bioscience Park Drive, Farmingdale, NY 11787, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2021
|
Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007; 117:730-8. [PMID: 17290308 PMCID: PMC1784000 DOI: 10.1172/jci28984] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 12/12/2006] [Indexed: 11/17/2022] Open
Abstract
The receptor tyrosine kinase/PI3K/Akt/mammalian target of rapamycin (RTK/PI3K/Akt/mTOR) pathway is frequently altered in tumors. Inactivating mutations of either the TSC1 or the TSC2 tumor-suppressor genes cause tuberous sclerosis complex (TSC), a benign tumor syndrome in which there is both hyperactivation of mTOR and inhibition of RTK/PI3K/Akt signaling, partially due to reduced PDGFR expression. We report here that activation of PI3K or Akt, or deletion of phosphatase and tensin homolog (PTEN) in mouse embryonic fibroblasts (MEFs) also suppresses PDGFR expression. This was a direct effect of mTOR activation, since rapamycin restored PDGFR expression and PDGF-sensitive Akt activation in Tsc1-/- and Tsc2-/- cells. Akt activation in response to EGF in Tsc2-/- cells was also reduced. Furthermore, Akt activation in response to each of EGF, IGF, and PMA was reduced in cells lacking both PDGFRalpha and PDGFRbeta, implying a role for PDGFR in transmission of growth signals downstream of these stimuli. Consistent with the reduction in PI3K/Akt signaling, in a nude mouse model both Tsc1-/- and Tsc2-/- cells had reduced tumorigenic potential in comparison to control cells, which was enhanced by expression of either active Akt or PDGFRbeta. In conclusion, PDGFR is a major target of negative feedback regulation in cells with activated mTOR, which limits the growth potential of TSC tumors.
Collapse
Affiliation(s)
- Hongbing Zhang
- Department of Physiology, National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
2022
|
Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V. Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma. Clin Cancer Res 2007; 12:6781-90. [PMID: 17121899 DOI: 10.1158/1078-0432.ccr-06-0609] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To show the efficacy of targeting EWS/FLI-1 expression with a combination of specific antisense oligonucleotides and rapamycin for the control of Ewing's sarcoma (EWS) cell proliferation in vitro and the treatment of mouse tumor xenografts in vivo. EXPERIMENTAL DESIGN EWS cells were simultaneously exposed to EWS/FLI-1-specific antisense oligonucleotides and rapamycin for various time periods. After treatment, the following end points were monitored and evaluated: expression levels of the EWS/FLI-1 protein, cell proliferation, cell cycle distribution, apoptotic cell death, caspase activation, and tumor growth in EWS xenografts implanted in nude mice. RESULTS Simultaneous exposure of EWS cells in culture to an EWS/FLI-1-targeted suppression therapy using specific antisense oligonucleotides and rapamycin resulted in the activation of a caspase-dependent apoptotic process that involved the restoration of the transforming growth factor-beta-induced proapoptotic pathway. In vivo, individual administration of either antisense oligonucleotides or rapamycin significantly delayed tumor development, and the combined treatment with antisense oligonucleotides and rapamycin caused a considerably stronger inhibition of tumor growth. CONCLUSIONS Concurrent administration of EWS/FLI-1 antisense oligonucleotides and rapamycin efficiently induced the apoptotic death of EWS cells in culture through a process involving transforming growth factor-beta. In vivo experiments conclusively showed that the combined treatment with antisense oligonucleotides and rapamycin caused a significant inhibition of tumor growth in mice. These results provide proof of principle for further exploration of the potential of this combined therapeutic modality as a novel strategy for the treatment of tumors of the Ewing's sarcoma family.
Collapse
Affiliation(s)
- Silvia Mateo-Lozano
- Laboratory of Experimental Carcinogenesis, Department of Radiation Medicine, V.T. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057-1482, USA
| | | | | | | | | | | |
Collapse
|
2023
|
Chong ZZ, Li F, Maiese K. The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3beta and nuclear factor-kappaB to foster endogenous microglial cell protection. Int J Mol Med 2007; 19:263-72. [PMID: 17203200 PMCID: PMC1986680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Microglia of the central nervous system serve a variety of functions that may ultimately lead to the development or detriment of neighboring neuronal and vascular cells. These scavengers of the nervous system have been associated with a variety of neurodegenerative disorders, but the toxic potential of microglia is equally balanced by the protective nature of these cells to exclude foreign microorganisms and promote new tissue proliferation and reorganization. To this extent, our work outlines a series of endogenous microglial cellular pathways that can constitute protection for microglia against during oxygen-glucose deprivation (OGD). We demonstrate in both primary microglia and the microglial cell line EOC 2 that endogenous microglial protection against OGD relies upon the activation and expression of the phosphatidylinositol 3-kinase pathways of mammalian target of rapamycin (mTOR) and protein kinase B (Akt1), since pharmacological inhibition of mTOR or Akt1 as well as the gene silencing of Akt1 protein expression leads to significantly increased microglial apoptotic cell injury, DNA fragmentation, and membrane phosphatidylserine exposure. The mTOR pathway may offer endogenous protection through mechanisms that do not entirely rely upon inhibition of glycogen synthase kinase-3beta (GSK-3beta) activity while Akt1 appears to converge upon the necessary blockade of GSK-3beta. Closely aligned to these endogenous protective mechanisms is the subcellular presence and nuclear translocation of nuclear factor-kappaB p65 (NF-kappaB p65), since microglial cell injury is significantly increased during the gene silencing of NF-kappaB p65. Elucidating the underlying pathways that can afford endogenous protection and maintain functional integrity of microglia should offer new prospects for the treatment of a broad range of nervous system disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Neurology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
2024
|
Abstract
Rational and efficient development of new molecular cancer therapeutics requires discovery, validation, and implementation of informative biomarkers. Measurement of molecular target status, pharmacokinetic (PK) parameters of drug exposure, and pharmacodynamic (PD) endpoints of drug effects on target, pathway, and downstream biological processes are extremely important. These can be linked to therapeutic effects in what we term a "pharmacological audit trail." Using biomarkers in preclinical drug discovery and development facilitates optimization of PK, PD, and therapeutic properties so that the best agent is selected for clinical evaluation. Applying biomarkers in early clinical trials helps identify the most appropriate patients; provides proof of concept for target modulation; helps test the underlying hypothesis; informs the rational selection of dose and schedule; aids decision making, including key go/no go questions; and may explain or predict clinical outcomes. Despite many successes such as trastuzumab and imatinib, exemplifying the value of targeting specific cancer defects, only 5% of oncology drugs that enter the clinic make it to marketing approval. Use of biomarkers should reduce this high level of attrition and bring forward key decisions (e.g., "fail fast"), thereby reducing the spiraling costs of drug development and increasing the likelihood of getting innovative and active drugs to cancer patients. In this chapter, we focus primarily on PD endpoints that demonstrate target modulation, including both invasive molecular assays and functional imaging technology. We also discuss related clinical trial design issues. Implementation of biomarkers in trials remains disappointingly low and we emphasize the need for greater cooperation between various stakeholders to improve this.
Collapse
Affiliation(s)
- Debashis Sarker
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK, Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey SM2 5NG, United Kingdom
| | | |
Collapse
|
2025
|
Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-Mediated Resistance to Epidermal Growth Factor Receptor Kinase Inhibitors. Clin Cancer Res 2007; 13:378-81. [PMID: 17255257 DOI: 10.1158/1078-0432.ccr-06-1992] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecularly targeted therapies are transforming the treatment of cancer. Elucidating the dynamic signaling networks that underlie sensitivity and resistance to these inhibitors is critical for successful clinical application. There is considerable evidence to suggest that constitutively activating mutations in kinases that regulate cellular growth may result in tumor cell "addiction" and favorable response to targeted inhibition. However, there is emerging evidence to suggest that clinical response may also be determined by other changes in the molecular circuitry of cancer cells, such as loss of key tumor-suppressor proteins. Here, we will discuss resistance to epidermal growth factor receptor tyrosine kinase inhibitors in glioblastoma patients that is mediated by loss of the PTEN tumor-suppressor protein.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Departments of Molecular and Medical Pharmacology, Neurology, and Pathology and Henry E. Singleton Brain Tumor Program, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
2026
|
Sathornsumetee S, Vredenburgh KA, Lattimore KP, Rich JN. Malignant glioma drug discovery – targeting protein kinases. Expert Opin Drug Discov 2007; 2:1-17. [DOI: 10.1517/17460441.2.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2027
|
Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res 2007; 66:11381-8. [PMID: 17145884 DOI: 10.1158/0008-5472.can-06-2316] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amplified in breast cancer 1 (AIB1), an estrogen receptor (ER) coactivator, is frequently amplified or overexpressed in human breast cancer. We previously developed a transgenic mouse model in which AIB1 can act as an oncogene, giving rise to a premalignant hyperplastic mammary phenotype as well as to a high incidence of mammary tumors that are primarily ER(+). In this model, the AIB1 transgene is responsible for continued activation of the insulin-like growth factor-I receptor, suggesting a role for the activation of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway in the premalignant phenotype and tumor development. Here we show that treatment of AIB1 transgenic mice with the mTOR inhibitor RAD001 reverts the premalignant phenotype. Furthermore, treatment of cell lines derived from AIB1-dependent mammary tumors with RAD001 in culture leads to a G(1) cell cycle arrest. Lastly, tumor growth after injection of ER(+) AIB1 tumor cell lines into wild-type animals is inhibited by RAD001 treatment. In this ER(+) model, inhibition of tumor growth by RAD001 was significantly better than inhibition by the antiestrogen 4-hydroxytamoxifen alone, whereas a combination of both RAD001 and 4-hydroxytamoxifen was most effective. Based on these results, we propose that the combination of mTOR inhibition and ER-targeted endocrine therapy may improve the outcome of the subset of ER(+) breast cancers overexpressing AIB1. These studies provide preclinical support for the clinical development of RAD001 and suggest that AIB1 may be a predictive factor of RAD001 response.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Survival/physiology
- Dose-Response Relationship, Drug
- Endometrial Hyperplasia/chemically induced
- Endometrial Hyperplasia/prevention & control
- Estrogen Receptor alpha/agonists
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Everolimus
- Female
- G1 Phase/drug effects
- G1 Phase/genetics
- G1 Phase/physiology
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/physiology
- Immunohistochemistry
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Transgenic
- Nuclear Receptor Coactivator 3
- Oncogenes/genetics
- Oncogenes/physiology
- Precancerous Conditions/genetics
- Precancerous Conditions/pathology
- Precancerous Conditions/prevention & control
- Protein Kinases/physiology
- Receptors, Estrogen/agonists
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- Sirolimus/therapeutic use
- TOR Serine-Threonine Kinases
- Tamoxifen/adverse effects
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Trans-Activators/genetics
- Trans-Activators/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maria I Torres-Arzayus
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
2028
|
Rojo F, Najera L, Lirola J, Jiménez J, Guzmán M, Sabadell MD, Baselga J, Ramon y Cajal S. 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 2007; 13:81-9. [PMID: 17200342 DOI: 10.1158/1078-0432.ccr-06-1560] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cell signaling pathways include a complex myriad of interconnected factors from the membrane to the nucleus, such as erbB family receptors and the phosphoinositide-3-kinase/Akt/mTOR and Ras-Raf-ERK cascades, which drive proliferative signals, promote survival, and regulate protein synthesis. EXPERIMENTAL DESIGN To find pivotal factors in these pathways, which provide prognostic information in malignancies, we studied 103 human breast tumors with an immunohistochemical profile, including total and phosphorylated (p) proteins: human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor, extracellular signal-regulated kinase 1/2, Akt, 4E-binding protein 1 (4EBP1), eukaryotic initiation factor 4E, phosphorylated ribosomal protein S6 kinase 1, phosphorylated ribosomal protein S6, and Ki67. Western blot and reverse lysate protein arrays were also done in a subset of tumors. RESULTS Significantly, activation of the phosphoinositide-3-kinase/Akt/mTOR cascade was detected in a high proportion of tumors (41.9%). Tumors with HER2 overexpression showed higher p-Akt as compared with negative tumors (P < 0.001). Levels of p-Akt correlated with the downstream molecules, p-4EBP1 (P = 0.001) and p-p70S6K (P = 0.05). Although 81.5% of tumors expressed p-4EBP1, in 16.3% of these tumors, concomitant activation of the upstream factors was not detected. Interestingly, p-4EBP1 was mainly expressed in poorly differentiated tumors (P < 0.001) and correlated with tumor size (P < 0.001), presence of lymph node metastasis (P = 0.002), and locoregional recurrences (P = 0.002). Coexpression of p-4EBP1 and p-eIF4G correlated with a high tumor proliferation rate (P = 0.012). CONCLUSION In this study, p-4EBP1 was the main factor in signaling pathways that associate with prognosis and grade of malignancy in breast tumors. Moreover, p-4EBP1 was detected in both HER2-positive and HER2-negative tumors. This factor seems to be a channeling point at which different upstream oncogenic alterations converge and transmit their proliferative signal, modulating protein translation.
Collapse
Affiliation(s)
- Federico Rojo
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
2029
|
Alvarez-Garcia O, Carbajo-Pérez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordoñez FA, Santos F. Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 2007; 22:954-61. [PMID: 17370095 PMCID: PMC7064183 DOI: 10.1007/s00467-007-0456-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 01/18/2023]
Abstract
Rapamycin is a potent immunosuppressant with antitumoral properties widely used in the field of renal transplantation. To test the hypothesis that the antiproliferative and antiangiogenic activity of rapamycin interferes with the normal structure and function of growth plate and impairs longitudinal growth, 4-week-old male rats (n = 10/group) receiving 2 mg/kg per day of intraperitoneal rapamycin (RAPA) or vehicle (C) for 14 days were compared. Rapamycin markedly decreased bone longitudinal growth rate (94 +/- 3 vs. 182 +/- 3 microm/day), body weight gain (60.2 +/- 1.4 vs. 113.6 +/- 1.9 g), food intake (227.8 +/- 2.6 vs. 287.5 +/- 3.4 g), and food efficiency (0.26 +/- 0.00 vs. 0.40 +/- 0.01 g/g). Signs of altered cartilage formation such as reduced chondrocyte proliferation (bromodeoxiuridine-labeled cells 32.9 +/- 1.4 vs. 45.2 +/- 1.1%), disturbed maturation and hypertrophy (height of terminal chondrocytes 26 +/- 0 vs. 29 +/- 0 microm), and decreased cartilage resorption (18.7 +/- 0.5 vs. 31.0 +/- 0.8 tartrate-resistant phosphatase alkaline reactive cells per 100 terminal chondrocytes), together with morphological evidence of altered vascular invasion, were seen in the growth plate of RAPA animals. This study indicates that rapamycin can severely impair body growth in fast-growing rats and distort growth-plate structure and dynamics. These undesirable effects must be kept in mind when rapamycin is administered to children.
Collapse
Affiliation(s)
- Oscar Alvarez-Garcia
- Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain
| | - Eduardo Carbajo-Pérez
- Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, c/Julian Claveria 6, 33006 Oviedo, Spain
| | - Enrique Garcia
- Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain
- Hospital Alvarez Buylla, Mieres, Spain
| | - Helena Gil
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ines Molinos
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Fernando Santos
- Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain
- Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
2030
|
Zitzmann K, De Toni EN, Brand S, Göke B, Meinecke J, Spöttl G, Meyer HHD, Auernhammer CJ. The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology 2007; 85:54-60. [PMID: 17310129 DOI: 10.1159/000100057] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/18/2007] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIM Tumors exhibiting constitutively activated PI(3)K/Akt/mTOR signaling are hypersensitive to mTOR inhibitors such as RAD001 (everolimus) which is presently being investigated in clinical phase II trials in various tumor entities, including neuroendocrine tumors (NETs). However, no preclinical data about the effects of RAD001 on NET cells have been published. In this study, we aimed to evaluate the effects of RAD001 on BON cells, a human pancreatic NET cell line that exhibits constitutively activated PI(3)K/Akt/mTOR signaling. METHODS BON cells were treated with different concentrations of RAD001 to analyze its effect on cell growth using proliferation assays. Apoptosis was examined by Western blot analysis of caspase-3/PARP cleavage and by FACS analysis of DNA fragmentation. RESULTS RAD001 potently inhibited BON cell growth in a dose-dependent manner which was dependent on the serum concentration in the medium. RAD001-induced growth inhibition involved G0/G1-phase arrest as well as induction of apoptosis. CONCLUSION In summary, our data demonstrate antiproliferative and apoptotic effects of RAD001 in NET cells in vitro supporting its clinical use in current phase II trials in NET patients.
Collapse
Affiliation(s)
- Kathrin Zitzmann
- Department of Internal Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2031
|
Davies M, Hennessy B, Mills GB. Point mutations of protein kinases and individualised cancer therapy. Expert Opin Pharmacother 2007; 7:2243-61. [PMID: 17059381 DOI: 10.1517/14656566.7.16.2243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of cancer is rapidly changing, with an increasing focus on converting our improved understanding of the molecular basis of disease into clinical benefit for patients. Protein kinases that are mutated in cancer represent attractive targets, as they may result in cellular dependency on the mutant kinase or its associated pathway for survival, a condition known as 'oncogene addiction'. Early clinical experiences have demonstrated dramatic clinical benefit of targeting oncogenic mutations in diseases that have been largely resistant to traditional cytotoxic chemotherapy. Further, mutational activation of kinases can indicate which patients are likely to respond to targeted therapeutics. However, these experiences have also illuminated a number of critical challenges that will have to be addressed in the development of effective drugs across different cancers, to fully realise the potential of individualised molecular therapy. This review utilises examples of genetic activation of kinases to illustrate many of the lessons learned, as well as those yet to be implemented.
Collapse
Affiliation(s)
- Michael Davies
- University of Texas--M D Anderson Cancer Center, Department of Medical Oncology, 1515 Holcombe Blvd, Unit 10, Houston, TX 77030, USA.
| | | | | |
Collapse
|
2032
|
Zeng Z, Sarbassov DD, Samudio IJ, Yee KWL, Munsell MF, Ellen Jackson C, Giles FJ, Sabatini DM, Andreeff M, Konopleva M. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2006; 109:3509-12. [PMID: 17179228 PMCID: PMC1852241 DOI: 10.1182/blood-2006-06-030833] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mTOR complex 2 (mTORC2) containing mTOR and rictor is thought to be rapamycin insensitive and was recently shown to regulate the prosurvival kinase AKT by phosphorylation on Ser473. We investigated the molecular effects of mTOR inhibition by the rapamycin derivatives (RDs) temsirolimus (CCI-779) and everolimus (RAD001) in acute myeloid leukemia (AML) cells. Unexpectedly, RDs not only inhibited the mTOR complex 1 (mTORC1) containing mTOR and raptor with decreased p70S6K, 4EPB1 phosphorylation, and GLUT1 mRNA, but also blocked AKT activation via inhibition of mTORC2 formation. This resulted in suppression of phosphorylation of the direct AKT substrate FKHR and decreased transcription of D-cyclins in AML cells. Similar observations were made in samples from patients with hematologic malignancies who received RDs in clinical studies. Our study provides the first evidence that rapamycin derivatives inhibit AKT signaling in primary AML cells both in vitro and in vivo, and supports the therapeutic potential of mTOR inhibition strategies in leukemias.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Carrier Proteins/metabolism
- Cyclin D
- Cyclins/metabolism
- Drug Screening Assays, Antitumor
- Enzyme Activation/drug effects
- Everolimus
- Gene Expression Regulation, Leukemic/drug effects
- Glucose Transporter Type 1/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinases/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Rapamycin-Insensitive Companion of mTOR Protein
- Regulatory-Associated Protein of mTOR
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Transcription, Genetic/drug effects
- U937 Cells
Collapse
Affiliation(s)
- Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2033
|
Affiliation(s)
- Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles 90048, USA.
| |
Collapse
|
2034
|
Costa LJ. Aspects of mTOR biology and the use of mTOR inhibitors in non-Hodgkin's lymphoma. Cancer Treat Rev 2006; 33:78-84. [PMID: 17161912 DOI: 10.1016/j.ctrv.2006.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/18/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a large and highly conserved kinase that integrates growth factor stimulation, energy and nutrient availability to modulate translation of proteins responsible for cellular growth and proliferation. Its importance in malignant cells provides strong rationale for the development of mTOR inhibitors (mTORi) in a broad variety of solid tumors and hematological malignancies. However several questions regarding mTOR biology and its interaction with pharmacological inhibitors remain unanswered and are relevant for further development of this novel family of cancer drugs. Nevertheless, mTORi have demonstrated activity in lymphoma cells either alone or in combination with cytotoxic agents. The most promising results have been seen in mantle cell lymphoma (MCL), likely because of its dependence on Cyclin D, the translation of which is largely regulated by mTOR activity. The currently knowledge of mTOR biology will here be reviewed along with the status of clinical development of mTORi in non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Luciano Jose Costa
- Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
2035
|
Stanford MM, Barrett JW, Nazarian SH, Werden S, McFadden G. Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells. J Virol 2006; 81:1251-60. [PMID: 17108021 PMCID: PMC1797522 DOI: 10.1128/jvi.01408-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus is a rabbit-specific poxvirus pathogen that also exhibits a unique tropism for human tumor cells and is dramatically oncolytic for human cancer xenografts. Most tumor cell lines tested are permissive for myxoma infection in a fashion intimately tied to the activation state of Akt kinase. A host range factor of myxoma virus, M-T5, directly interacts with Akt and mediates myxoma virus tumor cell tropism. mTOR is a regulator of cell growth and metabolism downstream of Akt and is specifically inhibited by rapamycin. We report that treatment of nonpermissive human tumor cell lines, which normally restrict myxoma virus replication, with rapamycin dramatically increased virus tropism and spread in vitro. This increased myxoma replication is concomitant with global effects on mTOR signaling, specifically, an increase in Akt kinase. In contrast to the effects on human cancer cells, rapamycin does not increase myxoma virus replication in rabbit cell lines or permissive human tumor cell lines with constitutively active Akt. This indicates that rapamycin increases the oncolytic capacity of myxoma virus for human cancer cells by reconfiguring the internal cell signaling environment to one that is optimal for productive virus replication and suggests the possibility of a potentially therapeutic synergism between kinase signaling inhibitors and oncolytic poxviruses for cancer treatment.
Collapse
Affiliation(s)
- Marianne M Stanford
- Biotherapeutics Research Group, Robarts Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | | | | | | | | |
Collapse
|
2036
|
Abstract
Proteins regulating the mammalian target of rapamycin (mTOR), as well as some of the targets of the mTOR kinase, are overexpressed or mutated in cancer. Rapamycin, the naturally occurring inhibitor of mTOR, along with a number of recently developed rapamycin analogs (rapalogs) consisting of synthetically derived compounds containing minor chemical modifications to the parent structure, inhibit the growth of cell lines derived from multiple tumor types in vitro, and tumor models in vivo. Results from clinical trials indicate that the rapalogs may be useful for the treatment of subsets of certain types of cancer. The sporadic responses from the initial clinical trials, based on the hypothesis of general translation inhibition of cancer cells are now beginning to be understood owing to a more complete understanding of the dynamics of mTOR regulation and the function of mTOR in the tumor microenvironment. This review will summarize the preclinical and clinical data and recent discoveries of the function of mTOR in cancer and growth regulation.
Collapse
Affiliation(s)
- J B Easton
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
2037
|
Witzig TE, Kaufmann SH. Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Curr Treat Options Oncol 2006; 7:285-94. [PMID: 16916489 DOI: 10.1007/s11864-006-0038-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3-K)/mammalian target of rapamycin (mTOR) signal transduction pathway integrates signals from multiple receptor tyrosine kinases to control cell proliferation and survival. Key components of the pathway are the lipid kinase PI3-K, the small guanosine triphosphate-binding protein Rheb, and the protein kinases Akt and mTOR. Important natural inhibitors of the pathway include the lipid phosphatase PTEN and the tuberous sclerosis complex. Several components of this pathway are targeted by investigational antineoplastic agents. Rapamycin (sirolimus), the prototypic mTOR inhibitor, exhibits activity in acute myeloid leukemia. Three rapamycin analogs, temsirolimus, everolimus, and AP23573, are in clinical trials for various hematologic malignancies. Temsirolimus has produced a 38% overall response rate in relapsed mantle cell lymphoma, and AP23573 has demonstrated activity in acute leukemia. Everolimus is undergoing clinical testing in lymphoma (Hodgkin and non-Hodgkin) and multiple myeloma. In addition, perifosine, an inhibitor of Akt activation that exhibits substantial antimyeloma activity in preclinical models, is being examined in relapsed multiple myeloma. Based on results obtained to date, it appears that inhibitors of the PI3-K/mTOR pathway hold promise as single agents and in combination for hematologic malignancies.
Collapse
Affiliation(s)
- Thomas E Witzig
- Mayo Clinic, Stabile 628, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
2038
|
Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 2006; 24:185-97. [PMID: 17052453 PMCID: PMC1880887 DOI: 10.1016/j.molcel.2006.09.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/31/2006] [Accepted: 09/29/2006] [Indexed: 02/07/2023]
Abstract
Feedback inhibition of the PI3K-Akt pathway by the mammalian target of rapamycin complex 1 (mTORC1) has emerged as an important signaling event in tumor syndromes, cancer, and insulin resistance. Cells lacking the tuberous sclerosis complex (TSC) gene products are a model for this feedback regulation. We find that, despite Akt attenuation, the Akt substrate GSK3 is constitutively phosphorylated in cells and tumors lacking TSC1 or TSC2. In these settings, GSK3 phosphorylation is sensitive to mTORC1 inhibition by rapamycin or amino acid withdrawal, and GSK3 becomes a direct target of S6K1. This aberrant phosphorylation leads to decreased GSK3 activity and phosphorylation of downstream substrates and contributes to the growth-factor-independent proliferation of TSC-deficient cells. We find that GSK3 can also be regulated downstream of mTORC1 in a HepG2 model of cellular insulin resistance. Therefore, we define conditions in which S6K1, rather than Akt, is the predominant GSK3 regulatory kinase.
Collapse
Affiliation(s)
- Hui H. Zhang
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA
| | - Alex I. Lipovsky
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA
| | - Christian C. Dibble
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA
| | - Mustafa Sahin
- Neurobiology Program, Department of Neurology, Children’s Hospital; Harvard Medical School, Boston, MA
| | - Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA
| |
Collapse
|
2039
|
Abstract
The TOR (target of rapamycin) pathway is an evolutionarily conserved signaling module regulating cell growth (accumulation of mass) in response to a variety of environmental cues such as nutrient availability, hypoxia, DNA damage and osmotic stress. Its pivotal role in cellular and organismal homeostasis is reflected in the fact that unrestrained signaling activity in mammals is associated with the occurrence of disease states including inflammation, cancer and diabetes. The existence of TOR homologs in unicellular organisms whose growth is affected by environmental factors, such as temperature, nutrients and osmolarity, suggests an ancient role for the TOR signaling network in the surveillance of stress conditions. Here, we will summarize recent advances in the TOR signaling field with special emphasis on how stress conditions impinge on insulin/insulin-like growth factor signaling/TOR signaling.
Collapse
Affiliation(s)
- J H Reiling
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142-1479, USA
| | | |
Collapse
|
2040
|
Duran I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, Le L, Oza A, Nicklee T, Ho J, Birle D, Pond GR, Arboine D, Dancey J, Aviel-Ronen S, Tsao MS, Hedley D, Siu LL. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 2006; 95:1148-54. [PMID: 17031397 PMCID: PMC2360568 DOI: 10.1038/sj.bjc.6603419] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Standard cytotoxic treatments for neuroendocrine tumours have been associated with limited activity and remarkable toxicity. A phase II study was designed to evaluate the efficacy, safety and pharmacodynamics of temsirolimus in patients with advanced neuroendocrine carcinoma (NEC). Thirty-seven patients with advanced progressive NEC received intravenous weekly doses of 25 mg of temsirolimus. Patients were evaluated for tumour response, time to progression (TTP), overall survival (OS) and adverse events (AE). Twenty-two archival specimens, as well as 13 paired tumour biopsies obtained pretreatment and after 2 weeks of temsirolimus were assessed for potential predictive and correlative markers. The intent-to-treat response rate was 5.6% (95% CI 0.6–18.7%), median TTP 6 months and 1-year OS rate 71.5%. The most frequent drug-related AE of all grades as percentage of patients were: fatigue (78%), hyperglycaemia (69%) and rash/desquamation (64%). Temsirolimus effectively inhibited the phosphorylation of S6 (P=0.02). Higher baseline levels of pmTOR (phosphorylated mammalian target of rapamycin) (P=0.01) predicted for a better response. Increases in pAKT (P=0.041) and decreases in pmTOR (P=0.048) after treatment were associated with an increased TTP. Temsirolimus appears to have little activity and does not warrant further single-agent evaluation in advanced NEC. Pharmacodynamic analysis revealed effective mTOR pathway downregulation.
Collapse
Affiliation(s)
- I Duran
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - J Kortmansky
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - D Singh
- University of Chicago, Chicago, USA
| | - H Hirte
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - W Kocha
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - G Goss
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - L Le
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - A Oza
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - T Nicklee
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - J Ho
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - D Birle
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - G R Pond
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - D Arboine
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - J Dancey
- National Cancer Institute, Bethesda, USA
| | - S Aviel-Ronen
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - M-S Tsao
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - D Hedley
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
| | - L L Siu
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Phase II Consortium, 610 University Avenue, Suite 5-718, Toronto, ON, Canada M5G 2M9
- E-mail:
| |
Collapse
|
2041
|
Abstract
AKT, a key regulator of cell proliferation and survival, is commonly dysregulated in human cancers. Activated AKT kinase is oncogenic and required for tumorigenesis in PTEN-deficient animals. However, the importance of AKT in mediating transformation by other oncogenes and which of its targets are necessary for this process are poorly understood. In this issue of Cancer Cell, Skeen et al. show that AKT is required for transformation by mutant H-Ras and for experimental skin carcinogenesis. Moreover, the effects of AKT are mediated predominantly or solely via mTORC1. This suggests that AKT or mTOR inhibitors will be useful treatments for many cancers.
Collapse
Affiliation(s)
- Neal Rosen
- Department of Medicine and Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
2042
|
Khan S, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 2006; 41:256-64. [PMID: 16769083 DOI: 10.1016/j.yjmcc.2006.04.014] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 12/22/2022]
Abstract
Rapamycin (sirolimus) is an antibiotic that inhibits protein synthesis through mammalian target of rapamycin (mTOR) signaling and is used as an immunosuppressant in the treatment of organ rejection in transplant recipients. Recently, the antigrowth properties of rapamycin have been utilized for cardiovascular benefit as stents impregnated with rapamycin effectively reduce coronary restenosis. We report here a novel role of this drug in protection against ischemia/reperfusion (I/R) injury. Adult male ICR mice were treated with rapamycin (0.25 mg/kg, IP) or volume-matched DMSO (solvent for rapamycin). The hearts were subjected to 20 min of global ischemia and 30 min of reperfusion in Langendorff mode. The blocker of mitochondrial KATP channel, 5-hydroxydecanoate (5-HD, 100 microM) was given 10 min before ischemia. Infarct size in the DMSO treated group was 28.2 +/- 1.3% and was reduced to 10.1 +/- 2.8% in the rapamycin-treated mice (64% decrease, P < 0.001). 5-HD blocked the protective effect (infarct area 32.2 +/- 1.8%, P < 0.001 vs. rapamycin). The infarct limiting effect of rapamycin was not associated with improved recovery of ventricular function. We further examined the effect of rapamycin in protection against necrosis and apoptosis in adult cardiomyocytes subjected to simulated ischemia and reoxygenation. Myocytes treated with rapamycin in doses from 25-100 nM demonstrated significantly lower trypan blue-positive necrotic cells and TUNEL-positive apoptotic nuclei, supporting the protective role of drug in the intact heart. These data suggest that rapamycin induces potent preconditioning-like effect against myocardial infarction through opening of mitochondrial KATP channels. We propose that rapamycin may be a novel therapeutic strategy to limit infarction, apoptosis, and remodeling following I/R injury in the heart.
Collapse
Affiliation(s)
- Shakil Khan
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University Medical Center, Richmond, 23298, USA
| | | | | | | | | | | |
Collapse
|
2043
|
Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y, Takeuchi T, Koeffler HP, Taguchi H. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res 2006; 31:673-82. [PMID: 17007924 DOI: 10.1016/j.leukres.2006.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/17/2006] [Accepted: 08/02/2006] [Indexed: 01/23/2023]
Abstract
This study found that phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling was activated in human T-cell lymphotropic virus type I (HTLV-1)-infected leukemia cells. Rapamycin (1-100 nM, 48h), the inhibitor of mTOR and its analog RAD001 (1-100 nM, 48 h)-induced growth inhibition and G0/G1 cell cycle arrest of these cells in association with de-phosphorylation of p70S6K and 4E-BP-1, although IC50 was not achieved. Paradoxically, rapamycin-stimulated phosphorylation of Akt at Ser473. Blockade of Akt signaling by the PI3K inhibitor LY294002 (1-20 microM, 48 h) also resulted in the growth inhibition and G0/G1 cell cycle arrest of HTLV-1-infected cells, with IC50 ranging from 5 to 20muM, and it caused de-phosphorylation of p70S6K and 4E-BP-1. Of note, when rapamycin was combined with LY294002, rapamycin-induced phosphorylation of Akt was blocked, and the ability of rapamycin to induce growth arrest of HTLV-1-infected T-cells and suppress the p-p70S6K and p-4E-BP-1 proteins was potentiated. Moreover, both LY294002 and rapamycin down-regulated the levels of c-Myc and cyclin D1 proteins in these cells, and their combination further decreased levels of these cell cycle-regulating proteins. Taken together, longitudinal inhibition of PI3K/Akt/mTOR signaling represents a promising treatment strategy for individuals with adult T-cell leukemia.
Collapse
Affiliation(s)
- Takayuki Ikezoe
- Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
2044
|
Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2006; 26:1932-40. [PMID: 17001314 DOI: 10.1038/sj.onc.1209990] [Citation(s) in RCA: 612] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapamycin and several analogs, such as CCI-779 and RAD001, are currently undergoing clinical evaluation as anticancer agents. In this study, we show that inhibition of mammalian target of rapamycin (mTOR) signaling by rapamycin leads to an increase of Akt phosphorylation in Rh30 and RD human rhabdomyosarcoma cell lines and xenografts, and insulin-like growth factor (IGF)-II-treated C2C12 mouse myoblasts and IGF-II-overexpressing Chinese hamster ovary cells. RNA interference-mediated knockdown of S6K1 also results in an increase of Akt phosphorylation. These data suggest that mTOR/S6K1 inhibition either by rapamycin or small interfering RNA (siRNA) triggers a negative feedback loop, resulting in the activation of Akt signaling. We next sought to investigate the mechanism of this negative feedback regulation from mTOR to Akt. Suppression of insulin receptor substrate (IRS)-1 and tuberous sclerosis complex-1 by siRNAs failed to abrogate rapamycin-induced upregulation of Akt phosphorylation in both Rh30 and RD cells. However, pretreatment with h7C10 antibody directed against insulin-like growth factor-1 receptor (IGF-1R) led to a blockade of rapamycin-induced Akt activation. Combined mTOR and IGF-1R inhibition with rapamycin and h7C10 antibody, respectively, resulted in additive inhibition of cell growth and survival. These data suggest that rapamycin mediates Akt activation through an IGF-1R-dependent mechanism. Thus, combining an mTOR inhibitor and an IGF-1R antibody/inhibitor may be an appropriate strategy to enhance mTOR-targeted anticancer therapy.
Collapse
Affiliation(s)
- X Wan
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892-1928, USA.
| | | | | | | | | |
Collapse
|
2045
|
Shah OJ, Hunter T. Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 2006; 26:6425-34. [PMID: 16914728 PMCID: PMC1592824 DOI: 10.1128/mcb.01254-05] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The TSC1-TSC2/Rheb/Raptor-mTOR/S6K1 cell growth cassette has recently been shown to regulate cell autonomous insulin and insulin-like growth factor I (IGF-I) sensitivity by transducing a negative feedback signal that targets insulin receptor substrates 1 and 2 (IRS1 and -2). Using two cell culture models of the familial hamartoma syndrome, tuberous sclerosis, we show here that Raptor-mTOR and S6K1 are required for phosphorylation of IRS1 at a subset of serine residues frequently associated with insulin resistance, including S307, S312, S527, S616, and S636 (of human IRS1). Using loss- and gain-of-function S6K1 constructs, we demonstrate a requirement for the catalytic activity of S6K1 in both direct and indirect regulation of IRS1 serine phosphorylation. S6K1 phosphorylates IRS1 in vitro on multiple residues showing strong preference for RXRXXS/T over S/T,P sites. IRS1 is preferentially depleted from the high-speed pellet fraction in TSC1/2-deficient mouse embryo fibroblasts or in HEK293/293T cells overexpressing Rheb. These studies suggest that, through serine phosphorylation, Raptor-mTOR and S6K1 cell autonomously promote the depletion of IRS1 from specific intracellular pools in pathological states of insulin and IGF-I resistance and thus potentially in lesions associated with tuberous sclerosis.
Collapse
Affiliation(s)
- O Jameel Shah
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
2046
|
Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, Mills GB, Kondo S. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2006; 26:1840-51. [PMID: 17001313 DOI: 10.1038/sj.onc.1209992] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian target of rapamycin (mTOR) plays a central role in regulating the proliferation of malignant glioma cells, and mTOR-specific inhibitors such as rapamycin analogs are considered as promising therapy for malignant gliomas. However, the efficacy of mTOR inhibitors alone in the treatment of patients with malignant gliomas is only modest, potentially because these agents rather than acting as mTOR kinase inhibitors instead interfere with the function of only mTOR/raptor (regulatory-associated protein of mTOR) complex and thus do not perturb all mTOR functions. The purpose of this study was to determine whether global inhibition of the mTOR molecule enhances the antitumor effect of rapamycin on malignant glioma cells. We showed that rapamycin induced autophagy and that inhibition of autophagy by small interfering RNA (siRNA) directed against autophagy-related gene Beclin 1 attenuated the cytotoxicity of rapamycin in rapamycin-sensitive tumor cells, indicating that the autophagy was a primary mediator of rapamycin's antitumor effect rather than a protective response. Exogenous expression of an mTOR mutant interfering with its kinase activity markedly enhanced the incidence of rapamycin-induced autophagy. Moreover, silencing of mTOR with siRNA augmented the inhibitory effect of rapamycin on tumor cell viability by stimulating autophagy. Importantly, not only rapamycin-sensitive malignant glioma cells with PTEN mutations but also rapamycin-resistant malignant glioma cells with wild-type PTEN were sensitized to rapamycin by mTOR siRNA. These results indicate that rapamycin-induced autophagy is one of the agent's antitumor effects and that silencing or inhibiting mTOR kinase activity could enhance the effectiveness of rapamycin.
Collapse
Affiliation(s)
- A Iwamaru
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
2047
|
Smolewski P. Investigating mammalian target of rapamycin inhibitors for their anticancer properties. Expert Opin Investig Drugs 2006; 15:1201-27. [PMID: 16989597 DOI: 10.1517/13543784.15.10.1201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a key element of the PI3KAkt (protein kinase B) signalling pathway, responsible for the regulation of cell growth and proliferation. There are two main downstream messengers of the mTOR kinase, eukaryotic initiation factor 4E-binding protein-1 and the 40S ribosomal protein S6 kinase 1, that control translation and cell-cycle progression. Abnormal activation of the mTOR pathway occurs frequently in numerous human malignancies; therefore, mTOR represents an attractive target for anticancer drug development. Rapamycin and its analogues CCI-779, RAD-001 and AP-23573 are known specific inhibitors of the mTOR kinase. Several clinical Phase I/II trials showed their activity in solid tumours and haematological malignancies. Moreover, inhibitors of mTOR were found to synergise with some cytostatics or other biological agents, which seems to be a promising direction for future strategies of antitumour treatment.
Collapse
Affiliation(s)
- Piotr Smolewski
- Department of Hematology, Medical University of Lodz, Copernicus Memorial Hospital, Ciolkowskiego 2, 93-510 Lodz, Poland.
| |
Collapse
|
2048
|
Attard G, Sarker D, Reid A, Molife R, Parker C, de Bono JS. Improving the outcome of patients with castration-resistant prostate cancer through rational drug development. Br J Cancer 2006; 95:767-74. [PMID: 16983403 PMCID: PMC2360544 DOI: 10.1038/sj.bjc.6603223] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is now the second most common cause of male cancer-related mortality. Although docetaxel has recently been shown to extend the survival of patients with CRPC in two large randomised phase III studies, subsequent treatment options remain limited for these patients. A greater understanding of the molecular causes of castration resistance is allowing a more rational approach to the development of new drugs and many new agents are now in clinical development. Therapeutic targets include the adrenal steroid synthesis pathway, androgen receptor signalling, the epidermal growth factor receptor family, insulin growth factor-1 receptor, histone deacetylase, heat shock protein 90 and the tumour vasculature. Drugs against these targets are giving an insight into the molecular pathogenesis of this disease and promise to improve patient quality of life and survival. Finally, the recent discovery of chromosomal translocations resulting in the upregulation of one of at least 3 ETS genes (ERG, ETV1, ETV4) may lead to novel agents for the treatment of this disease.
Collapse
Affiliation(s)
- G Attard
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK
| | - D Sarker
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK
| | - A Reid
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK
| | - R Molife
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK
| | - C Parker
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK
| | - J S de Bono
- Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK
- E-mail:
| |
Collapse
|
2049
|
Kelloff GJ, Lippman SM, Dannenberg AJ, Sigman CC, Pearce HL, Reid BJ, Szabo E, Jordan VC, Spitz MR, Mills GB, Papadimitrakopoulou VA, Lotan R, Aggarwal BB, Bresalier RS, Kim J, Arun B, Lu KH, Thomas ME, Rhodes HE, Brewer MA, Follen M, Shin DM, Parnes HL, Siegfried JM, Evans AA, Blot WJ, Chow WH, Blount PL, Maley CC, Wang KK, Lam S, Lee JJ, Dubinett SM, Engstrom PF, Meyskens FL, O'Shaughnessy J, Hawk ET, Levin B, Nelson WG, Hong WK. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer--a plan to move forward. Clin Cancer Res 2006; 12:3661-97. [PMID: 16778094 DOI: 10.1158/1078-0432.ccr-06-1104] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reviews progress in chemopreventive drug development, especially data and concepts that are new since the 2002 AACR report on treatment and prevention of intraepithelial neoplasia. Molecular biomarker expressions involved in mechanisms of carcinogenesis and genetic progression models of intraepithelial neoplasia are discussed and analyzed for how they can inform mechanism-based, molecularly targeted drug development as well as risk stratification, cohort selection, and end-point selection for clinical trials. We outline the concept of augmenting the risk, mechanistic, and disease data from histopathologic intraepithelial neoplasia assessments with molecular biomarker data. Updates of work in 10 clinical target organ sites include new data on molecular progression, significant completed trials, new agents of interest, and promising directions for future clinical studies. This overview concludes with strategies for accelerating chemopreventive drug development, such as integrating the best science into chemopreventive strategies and regulatory policy, providing incentives for industry to accelerate preventive drugs, fostering multisector cooperation in sharing clinical samples and data, and creating public-private partnerships to foster new regulatory policies and public education.
Collapse
Affiliation(s)
- Gary J Kelloff
- National Cancer Institute, Bethesda, Maryland 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2050
|
Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7:606-19. [PMID: 16847462 DOI: 10.1038/nrg1879] [Citation(s) in RCA: 2533] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) evolved from a single enzyme that regulates vesicle trafficking in unicellular eukaryotes into a family of enzymes that regulate cellular metabolism and growth in multicellular organisms. In this review, we examine how the PI3K pathway has evolved to control these fundamental processes, and how this pathway is in turn regulated by intricate feedback and crosstalk mechanisms. In light of the recent advances in our understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, we discuss the exciting therapeutic opportunities for targeting this pathway to treat these diseases.
Collapse
Affiliation(s)
- Jeffrey A Engelman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|