201
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
202
|
Abstract
Alcohol-related liver disease (ALD) remains the most important cause of death due to alcohol. Infections, particularly bacterial infections, are one of the most frequent and severe complications of advanced ALDs, such as alcoholic cirrhosis and severe alcoholic hepatitis (sAH). The specific mechanisms responsible for this altered host defence are yet to be deciphered. The aim of the present study is to review the current knowledge of infectious complications in ALD and its pathophysiological mechanisms, distinguishing the role of alcohol consumption and the contribution of different forms of ALD. To date, corticosteroids are the only treatment with proven efficacy in sAH, but their impact on the occurrence of infections remains controversial. The combination of an altered host defence and corticosteroid treatment in sAH has been suggested as a cause of opportunistic fungal and viral infections. A high level of suspicion with systematic screening and prompt, adequate treatment are warranted to improve outcomes in these patients. Prophylactic or preemptive strategies in this high-risk population might be a preferable option, because of the high short-term mortality rate despite adequate therapies. However, these strategies should be assessed in well-designed trials before clinical implementation.
Collapse
|
203
|
Nakamoto N, Amiya T, Aoki R, Taniki N, Koda Y, Miyamoto K, Teratani T, Suzuki T, Chiba S, Chu PS, Hayashi A, Yamaguchi A, Shiba S, Miyake R, Katayama T, Suda W, Mikami Y, Kamada N, Ebinuma H, Saito H, Hattori M, Kanai T. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice. Cell Rep 2017; 21:1215-1226. [PMID: 29091761 DOI: 10.1016/j.celrep.2017.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/06/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs) is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance.
Collapse
Affiliation(s)
- Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan.
| | - Takeru Amiya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan; Research Unit/Frontier Therapeutic Sciences, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa 2270033, Japan
| | - Ryo Aoki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan; Institute of Health Science, Ezaki Glico Co., Ltd., Osaka 5558502, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan; Research Unit/Frontier Therapeutic Sciences, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa 2270033, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, Tokyo 1140016, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Sayako Chiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, Tokyo 1140016, Japan
| | - Akihiro Yamaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Shunsuke Shiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Rei Miyake
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Tadashi Katayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Wataru Suda
- Department of Microbiology, Keio University School of Medicine, Tokyo 1608582, Japan; Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 2778561, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Hidetsugu Saito
- Division of Pharmacotherapeutics, Keio University School of Pharmacy, Tokyo 1058512, Japan
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 2778561, Japan; Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 1698555, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 1608582, Japan.
| |
Collapse
|
204
|
Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun 2017; 8:837. [PMID: 29038503 PMCID: PMC5643518 DOI: 10.1038/s41467-017-00796-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease is rising in western countries and liver cirrhosis is the 12th leading cause of death worldwide. Simultaneously, use of gastric acid suppressive medications is increasing. Here, we show that proton pump inhibitors promote progression of alcoholic liver disease, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis in mice by increasing numbers of intestinal Enterococcus spp. Translocating enterococci lead to hepatic inflammation and hepatocyte death. Expansion of intestinal Enterococcus faecalis is sufficient to exacerbate ethanol-induced liver disease in mice. Proton pump inhibitor use increases the risk of developing alcoholic liver disease among alcohol-dependent patients. Reduction of gastric acid secretion therefore appears to promote overgrowth of intestinal Enterococcus, which promotes liver disease, based on data from mouse models and humans. Recent increases in the use of gastric acid-suppressive medications might contribute to the increasing incidence of chronic liver disease. Proton pump inhibitors (PPIs) reduce gastric acid secretion and modulate gut microbiota composition. Here Llorente et al. show that PPIs induce bacterial overgrowth of enterococci, which, in turn, exacerbate ethanol-induced liver disease both in mice and humans.
Collapse
|
205
|
Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood. Proc Natl Acad Sci U S A 2017; 114:E9318-E9327. [PMID: 29078267 DOI: 10.1073/pnas.1615715114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) mainly in young adults, and a breakage of immune tolerance to CNS self-antigens has been suggested to initiate CNS autoimmunity. Age and microbial infection are well-known factors involved in the development of autoimmune diseases, including MS. Recent studies have suggested that alterations in the gut microbiota, referred to as dysbiosis, are associated with MS. However, it is still largely unknown how gut dysbiosis affects the onset and progression of CNS autoimmunity. In this study, we investigated the effects of age and gut dysbiosis on the development of CNS autoimmunity in humanized transgenic mice expressing the MS-associated MHC class II (MHC-II) gene, HLA-DR2a, and T-cell receptor (TCR) genes specific for MBP87-99/DR2a that were derived from an MS patient. We show here that the induction of gut dysbiosis triggers the development of spontaneous experimental autoimmune encephalomyelitis (EAE) during adolescence and early young adulthood, while an increase in immunological tolerance with aging suppresses disease onset after late young adulthood in mice. Furthermore, gut dysbiosis induces the expression of complement C3 and production of the anaphylatoxin C3a, and down-regulates the expression of the Foxp3 gene and anergy-related E3 ubiquitin ligase genes. Consequently, gut dysbiosis was able to trigger the development of encephalitogenic T cells and promote the induction of EAE during the age window of young adulthood.
Collapse
|
206
|
Piotrowski D, Boroń-Kaczmarska A. Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment. Adv Med Sci 2017; 62:345-356. [PMID: 28514703 DOI: 10.1016/j.advms.2016.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/20/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Infections are common among patients with liver cirrhosis. They occur more often in cirrhotic patient groups than in the general population and result in higher mortality. One reason for this phenomenon is bacterial translocation from the intestinal lumen that occurs as a consequence of intestinal bacterial overgrowth, increased permeability and decreased motility. The most common infections in cirrhotic patients are spontaneous bacterial peritonitis and urinary tract infections, followed by pneumonia, skin and soft tissue infections. Intestinal bacterial overgrowth is also responsible for hyperammonemia, which leads to hepatic encephalopathy. All of these complications make this group of patients at high risk for mortality. The role of antibiotics in liver cirrhosis is to treat and in some cases to prevent the development of infectious complications. Based on our current knowledge, antibiotic prophylaxis should be administered to patients with gastrointestinal hemorrhage, low ascitic fluid protein concentration combined with liver or renal failure, and spontaneous bacterial peritonitis as a secondary prophylaxis, as well as after hepatic encephalopathy episodes (also as a secondary prophylaxis). In some cases, the use of non-antibiotic prophylaxis can also be considered. Current knowledge of the treatment of infections allows the choice of a preferred antibiotic for empiric therapy depending on the infection location and whether the source of the disease is nosocomial or community-acquired.
Collapse
Affiliation(s)
- Damian Piotrowski
- Department of Infectious Diseases, Medical University of Silesia in Katowice, Bytom, Poland.
| | - Anna Boroń-Kaczmarska
- Department of Infectious Diseases, Medical University of Silesia in Katowice, Bytom, Poland
| |
Collapse
|
207
|
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of worldwide cancer mortality. HCC almost exclusively develops in patients with chronic liver disease, driven by a vicious cycle of liver injury, inflammation and regeneration that typically spans decades. Increasing evidence points towards a key role of the bacterial microbiome in promoting the progression of liver disease and the development of HCC. Here, we will review mechanisms by which the gut microbiota promotes hepatocarcinogenesis, focusing on the leaky gut, bacterial dysbiosis, microbe-associated molecular patterns and bacterial metabolites as key pathways that drive cancer-promoting liver inflammation, fibrosis and genotoxicity. On the basis of accumulating evidence from preclinical studies, we propose the intestinal-microbiota-liver axis as a promising target for the simultaneous prevention of chronic liver disease progression and HCC development in patients with advanced liver disease. We will review in detail therapeutic modalities and discuss clinical settings in which targeting the gut-microbiota-liver axis for the prevention of disease progression and HCC development seems promising.
Collapse
Affiliation(s)
- Le-Xing Yu
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
- Institute of Human Nutrition, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| |
Collapse
|
208
|
Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med 2017; 49:e370. [PMID: 28857085 PMCID: PMC5579512 DOI: 10.1038/emm.2017.122] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic high-salt diet-associated renal injury is a key risk factor for the development of hypertension. However, the mechanism by which salt triggers kidney damage is poorly understood. Our study investigated how high salt (HS) intake triggers early renal injury by considering the ‘gut-kidney axis’. We fed mice 2% NaCl in drinking water continuously for 8 weeks to induce early renal injury. We found that the ‘quantitative’ and ‘qualitative’ levels of the intestinal microflora were significantly altered after chronic HS feeding, which indicated the occurrence of enteric dysbiosis. In addition, intestinal immunological gene expression was impaired in mice with HS intake. Gut permeability elevation and enteric bacterial translocation into the kidney were detected after chronic HS feeding. Gut bacteria depletion by non-absorbable antibiotic administration restored HS loading-induced gut leakiness, renal injury and systolic blood pressure elevation. The fecal microbiota from mice fed chronic HS could independently cause gut leakiness and renal injury. Our current work provides a novel insight into the mechanism of HS-induced renal injury by investigating the role of the intestine with enteric bacteria and gut permeability and clearly illustrates that chronic HS loading elicited renal injury and dysfunction that was dependent on the intestine.
Collapse
|
209
|
Clària J, Arroyo V, Moreau R. The Acute-on-Chronic Liver Failure Syndrome, or When the Innate Immune System Goes Astray. THE JOURNAL OF IMMUNOLOGY 2017; 197:3755-3761. [PMID: 27815438 DOI: 10.4049/jimmunol.1600818] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
The acute-on-chronic liver failure (ACLF) syndrome is characterized by acute decompensation of cirrhosis, organ failure, and high 28-d mortality. ACLF displays key features of systemic inflammation and its poor outcome is closely associated with exacerbated systemic inflammatory responses. In this review, we describe the prevailing characteristics of systemic inflammation in patients with decompensated cirrhosis and ACLF, with special emphasis on the principal features of the cytokine storm the mechanisms underlying this intense systemic inflammatory response (i.e., presence of circulating pathogen- and damage-associated molecular patterns), and their implication in tissue and organ damage in this condition.
Collapse
Affiliation(s)
- Joan Clària
- Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona 08036, Spain; .,Department of Biomedical Sciences, University of Barcelona, Barcelona 08036, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure, Barcelona 08021, Spain; and
| | - Richard Moreau
- INSERM, Université Paris Diderot, Centre de Recherche sur l'Inflammation, Paris 75018, France
| |
Collapse
|
210
|
A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 2017; 122:148-160. [DOI: 10.1016/j.neuropharm.2017.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
211
|
Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 2017; 12:24-33. [PMID: 28550391 DOI: 10.1007/s12072-017-9798-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.,Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rosa M Martin-Mateos
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.
| |
Collapse
|
212
|
Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol 2017; 8:598. [PMID: 28588585 PMCID: PMC5440529 DOI: 10.3389/fimmu.2017.00598] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelial lining, together with factors secreted from it, forms a barrier that separates the host from the environment. In pathologic conditions, the permeability of the epithelial lining may be compromised allowing the passage of toxins, antigens, and bacteria in the lumen to enter the blood stream creating a “leaky gut.” In individuals with a genetic predisposition, a leaky gut may allow environmental factors to enter the body and trigger the initiation and development of autoimmune disease. Growing evidence shows that the gut microbiota is important in supporting the epithelial barrier and therefore plays a key role in the regulation of environmental factors that enter the body. Several recent reports have shown that probiotics can reverse the leaky gut by enhancing the production of tight junction proteins; however, additional and longer term studies are still required. Conversely, pathogenic bacteria that can facilitate a leaky gut and induce autoimmune symptoms can be ameliorated with the use of antibiotic treatment. Therefore, it is hypothesized that modulating the gut microbiota can serve as a potential method for regulating intestinal permeability and may help to alter the course of autoimmune diseases in susceptible individuals.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jay Kirby
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
213
|
Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen CS, Freese K, Hellerbrand C, Lee SM, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, Keshavarzian A, Brown GD, Ho SB, Bataller R, Stärkel P, Fouts DE, Schnabl B. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127:2829-2841. [PMID: 28530644 DOI: 10.1172/jci90562] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic liver disease with cirrhosis is the 12th leading cause of death in the United States, and alcoholic liver disease accounts for approximately half of all cirrhosis deaths. Chronic alcohol consumption is associated with intestinal bacterial dysbiosis, yet we understand little about the contribution of intestinal fungi, or mycobiota, to alcoholic liver disease. Here we have demonstrated that chronic alcohol administration increases mycobiota populations and translocation of fungal β-glucan into systemic circulation in mice. Treating mice with antifungal agents reduced intestinal fungal overgrowth, decreased β-glucan translocation, and ameliorated ethanol-induced liver disease. Using bone marrow chimeric mice, we found that β-glucan induces liver inflammation via the C-type lectin-like receptor CLEC7A on Kupffer cells and possibly other bone marrow-derived cells. Subsequent increases in IL-1β expression and secretion contributed to hepatocyte damage and promoted development of ethanol-induced liver disease. We observed that alcohol-dependent patients displayed reduced intestinal fungal diversity and Candida overgrowth. Compared with healthy individuals and patients with non-alcohol-related cirrhosis, alcoholic cirrhosis patients had increased systemic exposure and immune response to mycobiota. Moreover, the levels of extraintestinal exposure and immune response correlated with mortality. Thus, chronic alcohol consumption is associated with an altered mycobiota and translocation of fungal products. Manipulating the intestinal mycobiome might be an effective strategy for attenuating alcohol-related liver disease.
Collapse
Affiliation(s)
- An-Ming Yang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Tatsuo Inamine
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Peng Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Lirui Wang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Cristina Llorente
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Sena Bluemel
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Jun Xu
- Department of Surgery, UCSD, La Jolla, California, USA
| | | | | | | | | | - Karen Beeri
- J. Craig Venter Institute, La Jolla, California, USA
| | - Chien-Sheng Chen
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan City, Taiwan
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Serene Ml Lee
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU Munich, Munich, Germany
| | - Hal M Hoffman
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Digestive Diseases, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Digestive Diseases, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ece A Mutlu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ali Keshavarzian
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gordon D Brown
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel B Ho
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ramon Bataller
- Liver Center, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Stärkel
- Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | | | - Bernd Schnabl
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
214
|
Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol 2017; 312:G413-G419. [PMID: 28232456 PMCID: PMC5451561 DOI: 10.1152/ajpgi.00361.2016] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/31/2023]
Abstract
Liver and intestine are tightly linked through the venous system of the portal circulation. Consequently, the liver is the primary recipient of gut-derived products, most prominently dietary nutrients and microbial components. It functions as a secondary "firewall" and protects the body from intestinal pathogens and other microbial products that have crossed the primary barrier of the intestinal tract. Disruption of the intestinal barrier enhances microbial exposure of the liver, which can have detrimental or beneficial effects in the organ depending on the specific circumstances. Conversely, the liver also exerts influence over intestinal microbial communities via secretion of bile acids and IgA antibodies. This mini-review highlights key findings and concepts in the area of host-microbial interactions as pertinent to the bilateral communication between liver and gut and highlights the concept of the gut-liver axis.
Collapse
Affiliation(s)
- Katharina Brandl
- 1Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; and
| | - Vipin Kumar
- 2Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
215
|
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is a liver disease with high prevalence in western countries. Progression from NAFLD to nonalcoholic steatohepatitis (NASH) occurs in 10-20%. NASH pathogenesis is multifactorial including genetic and environmental factors. The gut microbiota is involved in disease progression and its role is complex. RECENT FINDINGS NASH is associated with changes in the intestinal microbiota, although findings in recent studies are inconsistent. Dysbiosis can trigger intestinal inflammation and impair the gut barrier. Microbial products can now reach the liver, induce hepatic inflammation and contribute to NAFLD and NASH progression. As the gut microbiota is also involved in the regulation of metabolic pathways, metabolomic approaches identified unique metabolomic profiles in patients with NASH. Altered metabolite patterns can serve as biomarkers, whereas specific metabolites (such as ethanol) have been linked with disease progression. Modifying metabolic profiles might serve as new therapeutic microbiome-based approaches. SUMMARY In this review, we will highlight findings from the recent literature important to the gut-liver axis. We will predominantly focus on human studies with NASH.
Collapse
|
216
|
Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, Gaudin F, Noordine ML, Robert V, Berrebi D, Thomas M, Naveau S, Perlemuter G, Cassard AM. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66:806-815. [PMID: 27890791 DOI: 10.1016/j.jhep.2016.11.008] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.
Collapse
Affiliation(s)
- Gladys Ferrere
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Laura Wrzosek
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédéric Cailleux
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Williams Turpin
- Division of Gastroenterology, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Medicine, University of Toronto, ON M5S 1A8, Canada
| | - Virginie Puchois
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Madeleine Spatz
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dragos Ciocan
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dominique Rainteau
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France; Département PM2 Plateforme de Métabolomique, APHP, Hôpital Saint Antoine, Peptidomique et dosage de Médicaments, Paris, France
| | - Lydie Humbert
- Sorbonne Universités, UPMC Université Paris 6, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM-ERL 1157, Paris, France; UMR 7203 Laboratoire des Biomolécules, UPMC/CNRS/ENS, Paris, France
| | - Cindy Hugot
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Françoise Gaudin
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | - Dominique Berrebi
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; AP-HP, Anatomie et de Cytologie Pathologiques, Hôpital Robert Debré, Paris, France
| | - Muriel Thomas
- INRA, UMR 1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Sylvie Naveau
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Gabriel Perlemuter
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France; AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Anne-Marie Cassard
- INSERM U996, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France; Institut Paris-Sud d'Innovation Thérapeutique (IPSIT), IFR141, Faculté de Pharmacie, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
217
|
Chua LL, Rajasuriar R, Azanan MS, Abdullah NK, Tang MS, Lee SC, Woo YL, Lim YAL, Ariffin H, Loke P. Reduced microbial diversity in adult survivors of childhood acute lymphoblastic leukemia and microbial associations with increased immune activation. MICROBIOME 2017; 5:35. [PMID: 28320465 PMCID: PMC5359958 DOI: 10.1186/s40168-017-0250-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/02/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Adult survivors of childhood cancers such as acute lymphoblastic leukemia (ALL) have health problems that persist or develop years after cessation of therapy. These late effects include chronic inflammation-related comorbidities such as obesity and type 2 diabetes, but the underlying cause is poorly understood. RESULTS We compared the anal microbiota composition of adult survivors of childhood ALL (N = 73) with healthy control subjects (N = 61). We identified an altered community with reduced microbial diversity in cancer survivors, who also exhibit signs of immune dysregulation including increased T cell activation and chronic inflammation. The bacterial community among cancer survivors was enriched for Actinobacteria (e.g. genus Corynebacterium) and depleted of Faecalibacterium, correlating with plasma concentrations of IL-6 and CRP and HLA-DR+CD4+ and HLA-DR+CD8+ T cells, which are established markers of inflammation and immune activation. CONCLUSIONS We demonstrated a relationship between microbial dysbiosis and immune dysregulation in adult ALL survivors. These observations suggest that interventions that could restore microbial diversity may ameliorate chronic inflammation and, consequently, development of late effects of childhood cancer survivors.
Collapse
Affiliation(s)
- Ling Ling Chua
- University Malaya Cancer Research Institute, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERIA), University of Malaya, 50603 Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Mohamad Shafiq Azanan
- University Malaya Cancer Research Institute, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Pediatric, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Kamila Abdullah
- Centre of Excellence for Research in AIDS (CERIA), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mei San Tang
- Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Soo Ching Lee
- Centre of Excellence for Research in AIDS (CERIA), University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yin Ling Woo
- University Malaya Cancer Research Institute, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERIA), University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Centre of Excellence for Research in AIDS (CERIA), University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hany Ariffin
- University Malaya Cancer Research Institute, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Pediatric, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - P’ng Loke
- Departments of Microbiology and Medicine, New York University School of Medicine, New York, NY 10016 USA
| |
Collapse
|
218
|
Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 2017; 14:81-96. [PMID: 27780972 PMCID: PMC5725959 DOI: 10.1038/nrgastro.2016.160] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.
Collapse
Affiliation(s)
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado
| | | | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado,Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, MS 8106, Aurora, Colorado 80045, USA
| |
Collapse
|
219
|
The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017; 7:e1048. [PMID: 28244981 PMCID: PMC5545644 DOI: 10.1038/tp.2017.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years, some new processes have been proposed to explain how alcohol may influence behavior, psychological symptoms and alcohol seeking in alcohol-dependent subjects. In addition to its important effect on brain and neurotransmitters equilibrium, alcohol abuse also affects peripheral organs including the gut. By yet incompletely understood mechanisms, chronic alcohol abuse increases intestinal permeability and alters the composition of the gut microbiota, allowing bacterial components from the gut lumen to reach the systemic circulation. These gut-derived bacterial products are recognized by immune cells circulating in the blood or residing in target organs, which consequently synthesize and release pro-inflammatory cytokines. Circulating cytokines are considered important mediators of the gut-brain communication, as they can reach the central nervous system and induce neuroinflammation that is associated with change in mood, cognition and drinking behavior. These observations support the possibility that targeting the gut microbiota, by the use of probiotics or prebiotics, could restore the gut barrier function, reduce systemic inflammation and may have beneficial effect in treating alcohol dependence and in reducing alcohol relapse.
Collapse
|
220
|
Galley JD, Parry NM, Ahmer BMM, Fox JG, Bailey MT. The commensal microbiota exacerbate infectious colitis in stressor-exposed mice. Brain Behav Immun 2017; 60:44-50. [PMID: 27633986 PMCID: PMC5214661 DOI: 10.1016/j.bbi.2016.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 12/12/2022] Open
Abstract
Exposure to a prolonged restraint stressor disrupts the colonic microbiota community composition, and is associated with an elevated inflammatory response to colonic pathogen challenge. Since the stability of the microbiota has been implicated in the development and modulation of mucosal immune responses, we hypothesized that the disruptive effect of the stressor upon the microbiota composition directly contributed to the stressor-induced exacerbation of pathogen-induced colitis. In order to establish a causative role for stressor-induced changes in the microbiota, conventional mice were exposed to prolonged restraint to change the microbiota. Germfree mice were then colonized by microbiota from either stressor-exposed or non-stressed control mice. One day after colonization, mice were infected with the colonic pathogen, Citrobacter rodentium. At six days post-infection, mice that received microbiota from stressor-exposed animals had significant increases in colonic pathology and pro-inflammatory cytokine (e.g. IL-1β) and chemokine (e.g. CCL2) levels after C. rodentium infection in comparison with mice that received microbiota from non-stressed mice. 16S rRNA gene sequencing revealed that microbial communities from stressed mice did not have any detectable Bifidobacterium present, a stark contrast with the microbial communities from non-stressed mice, suggesting that stressor-induced alterations in commensal, immunomodulatory Bifidobacterium levels may predispose to an increased inflammatory response to pathogen challenge. This study demonstrates that the commensal microbiota directly contribute to excessive inflammatory responses to C. rodentium during stressor exposure, and may help to explain why gastrointestinal disorders are worsened during stressful experiences.
Collapse
Affiliation(s)
- Jeffrey D. Galley
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nicola M. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Michael T. Bailey
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210,Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205,Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| |
Collapse
|
221
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
222
|
Wang L, Fouts DE, Stärkel P, Hartmann P, Chen P, Llorente C, DePew J, Moncera K, Ho SB, Brenner DA, Hooper LV, Schnabl B. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe 2016; 19:227-39. [PMID: 26867181 DOI: 10.1016/j.chom.2016.01.003] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Approximately half of all deaths from liver cirrhosis, the tenth leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease.
Collapse
Affiliation(s)
- Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | - Samuel B Ho
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lora V Hooper
- Howard Hughes Medical Institute; Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
223
|
Inamine T, Yang AM, Wang L, Lee KC, Llorente C, Schnabl B. Genetic Loss of Immunoglobulin A Does Not Influence Development of Alcoholic Steatohepatitis in Mice. Alcohol Clin Exp Res 2016; 40:2604-2613. [PMID: 27739086 DOI: 10.1111/acer.13239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic alcohol abuse is associated with intestinal dysbiosis and bacterial translocation. Translocated commensal bacteria contribute to alcoholic liver disease. Secretory immunoglobulin A (IgA) in the intestine binds bacteria and prevents bacterial translocation. METHODS To investigate the functional role of IgA in ethanol (EtOH)-induced liver disease in mice, we subjected wild type (WT) and IgA-deficient littermate mice to Lieber-DeCarli models of chronic EtOH administration and the model of chronic and binge EtOH feeding (the NIAAA model). RESULTS Chronic EtOH feeding increased systemic levels of IgA, while fecal IgA was reduced in C57BL/6 WT mice. WT and Iga-/- littermate mice showed similar liver injury, steatosis, and inflammation following 4 weeks of EtOH feeding or chronic and binge EtOH feeding. IgA deficiency did not affect intestinal absorption or hepatic metabolism of EtOH. Pretreatment with ampicillin elevated intestinal IgA in WT littermate mice. Despite increased intestinal IgA, WT littermate mice exhibited a similar degree of liver disease compared with Iga-/- mice after 7 weeks of EtOH feeding. Interestingly, bacterial translocation to mesenteric lymph nodes was increased in Iga-/- mice fed an isocaloric diet, but was the same after EtOH feeding relative to WT littermate mice. The absence of intestinal IgA was associated with increased intestinal and plasma IgM in Iga-/- mice after EtOH feeding. CONCLUSIONS Our findings indicate that absence of IgA does not affect the development of alcoholic liver disease in mice. Loss of intestinal IgA is compensated by increased levels of intestinal IgM, which likely limits bacterial translocation after chronic EtOH administration.
Collapse
Affiliation(s)
- Tatsuo Inamine
- Department of Medicine, University of California San Diego, La Jolla, California.,Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - An-Ming Yang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, California.,Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Kuei-Chuan Lee
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California.,Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California.,Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
224
|
Mandrekar P, Bataller R, Tsukamoto H, Gao B. Alcoholic hepatitis: Translational approaches to develop targeted therapies. Hepatology 2016; 64:1343-55. [PMID: 26940353 PMCID: PMC5010788 DOI: 10.1002/hep.28530] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Alcoholic liver disease is a leading cause of liver-related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with alcoholic liver disease. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of alcoholic liver disease. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20%-50% at 3 months). Available therapies are not effective in many patients, and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce the clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. CONCLUSION This review summarizes the unmet needs for translational studies on the pathogenesis of AH, preclinical translational tools, and emerging drug targets to benefit the AH patient. (Hepatology 2016;64:1343-1355).
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA.
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, University of Southern California, Greater Los Angeles Department of Veterans Affairs Healthcare System, Los Angeles, CA.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
225
|
Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:765-76. [PMID: 27012191 DOI: 10.1016/j.ajpath.2015.11.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD.
Collapse
|
226
|
Ju C, Liangpunsakul S. Role of hepatic macrophages in alcoholic liver disease. J Investig Med 2016; 64:1075-7. [PMID: 27382116 DOI: 10.1136/jim-2016-000210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Alcohol consumption can lead to the increase in gut permeability and cause the translocation of bacteria-derived lipopolysaccharides from the gut to the liver, which subsequently activates immune responses. In this process, macrophages play a critical role and involve in the pathogenesis of alcoholic liver disease (ALD). To define the mechanism underpinning the function of macrophages, it is important to conduct extensive studies to further explicate the phenotypic diversity of macrophages in the context of ALD. In this review, the role of hepatic macrophages in the pathogenesis of ALD is discussed.
Collapse
Affiliation(s)
- Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
227
|
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
228
|
Chen P, Miyamoto Y, Mazagova M, Lee KC, Eckmann L, Schnabl B. Microbiota and Alcoholic Liver Disease. Alcohol Clin Exp Res 2016; 40:1791-2. [PMID: 27364225 DOI: 10.1111/acer.13129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Peng Chen
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Magdalena Mazagova
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Kuei-Chuan Lee
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
229
|
Betrapally NS, Gillevet PM, Bajaj JS. Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects? Gastroenterology 2016; 150:1745-1755.e3. [PMID: 26948887 PMCID: PMC5026236 DOI: 10.1053/j.gastro.2016.02.073] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of fatty liver diseases is increasing rapidly worldwide; after treatment of hepatitis C virus infection becomes more widespread, fatty liver diseases are likely to become the most prevalent liver disorders. Although fatty liver diseases are associated with alcohol, obesity, and the metabolic syndrome, their mechanisms of pathogenesis are not clear. The development and progression of fatty liver, alcoholic, and nonalcoholic liver disease (NAFLD) all appear to be influenced by the composition of the microbiota. The intestinal microbiota have been shown to affect precirrhotic and cirrhotic stages of liver diseases, which could lead to new strategies for their diagnosis, treatment, and study. We review differences and similarities in the cirrhotic and precirrhotic stages of NAFLD and alcoholic liver disease. Differences have been observed in these stages of alcohol-associated disease in patients who continue to drink compared with those who stop, with respect to the composition and function of the intestinal microbiota and intestinal integrity. NAFLD and the intestinal microbiota also differ between patients with and without diabetes. We also discuss the potential of microbial therapy for patients with NAFLD and ALD.
Collapse
Affiliation(s)
- Naga S Betrapally
- Microbiome Analysis Center, George Mason University, Manassas, Virginia
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia.
| |
Collapse
|
230
|
Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res 2016; 39:763-75. [PMID: 25872593 DOI: 10.1111/acer.12704] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/18/2015] [Indexed: 01/18/2023]
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Alcoholic fatty liver disease can progress to steatohepatitis, alcoholic hepatitis, fibrosis, and cirrhosis. Patients with alcohol abuse show quantitative and qualitative changes in the composition of the intestinal microbiome. Furthermore, patients with ALD have increased intestinal permeability and elevated systemic levels of gut-derived microbial products. Maintaining eubiosis, stabilizing the mucosal gut barrier, or preventing cellular responses to microbial products protect from experimental ALD. Therefore, intestinal dysbiosis and pathological bacterial translocation appear fundamental for the pathogenesis of ALD. This review highlights causes for intestinal dysbiosis and pathological bacterial translocation, their relationship, and consequences for ALD. We also discuss how the liver affects the intestinal microbiota.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
231
|
Hartmann P, Seebauer CT, Mazagova M, Horvath A, Wang L, Llorente C, Varki NM, Brandl K, Ho SB, Schnabl B. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity. Am J Physiol Gastrointest Liver Physiol 2016; 310:G310-22. [PMID: 26702135 PMCID: PMC4773827 DOI: 10.1152/ajpgi.00094.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/01/2015] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and obesity are characterized by altered gut microbiota, inflammation, and gut barrier dysfunction. Here, we investigated the role of mucin-2 (Muc2) as the major component of the intestinal mucus layer in the development of fatty liver disease and obesity. We studied experimental fatty liver disease and obesity induced by feeding wild-type and Muc2-knockout mice a high-fat diet (HFD) for 16 wk. Muc2 deficiency protected mice from HFD-induced fatty liver disease and obesity. Compared with wild-type mice, after a 16-wk HFD, Muc2-knockout mice exhibited better glucose homeostasis, reduced inflammation, and upregulated expression of genes involved in lipolysis and fatty acid β-oxidation in white adipose tissue. Compared with wild-type mice that were fed the HFD as well, Muc2-knockout mice also displayed higher intestinal and plasma levels of IL-22 and higher intestinal levels of the IL-22 target genes Reg3b and Reg3g. Our findings indicate that absence of the intestinal mucus layer activates the mucosal immune system. Higher IL-22 levels protect mice from diet-induced features of the metabolic syndrome.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Caroline T Seebauer
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Magdalena Mazagova
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Angela Horvath
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Nissi M Varki
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Pathology, University of California San Diego, La Jolla, California; and
| | - Katharina Brandl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Samuel B Ho
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California;
| |
Collapse
|
232
|
Dong Q, Chu F, Wu C, Huo Q, Gan H, Li X, Liu H. Scutellaria baicalensis Georgi extract protects against alcohol‑induced acute liver injury in mice and affects the mechanism of ER stress. Mol Med Rep 2016; 13:3052-62. [PMID: 26936686 PMCID: PMC4805105 DOI: 10.3892/mmr.2016.4941] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
The aims of the present study were to examine the hepatoprotective effect of Scutellaria baicalensis Georgi extract (Scutellariae Radix extract; SRE) against acute alcohol-induced liver injury in mice, and investigate the mechanism of endoplasmic reticulum (ER) stress. High performance liquid chromatography was used for the phytochemical analysis of SRE. Animals were administered orally with 50% alcohol (12 ml/kg) 4 h following administration of doses of SRE every day for 14 days, with the exception of normal control group. The protective effect was investigated by measuring the levels of aspartate transaminase (AST), alanine transferase (ALT) and triglyceride (TG) in the serum, and the levels of glutathione (GSH) and malondialdehyde (MDA) in liver tissues. The levels of glucose-related protein 78 (GRP78) were detected using immunohistochemical localization and an enzyme-linked immunosorbent assay. Hepatocyte apoptosis was assessed using terminal-deoxynucleoitidyl transferase mediated nick end labeling. The SRE contained 31.2% baicalin. Pretreatment with SRE had a marked protective effect by reversing the levels of biochemical markers and levels of GRP78 in a dose-dependent manner. The results of the present study demonstrated that pretreatment with SRE exerted a marked hepatoprotective effect by downregulating the expression of GRP78, which is a marker of ER stress.
Collapse
Affiliation(s)
- Qingqing Dong
- Department of Pharmaceutical Preparation, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fei Chu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chengzhu Wu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiang Huo
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Huaiyong Gan
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaoming Li
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
233
|
Abstract
Despite extensive research, alcohol remains one of the most common causes of liver disease in the United States. Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders, including steatosis, steatohepatitis, and cirrhosis. Although many agents and approaches have been tested in patients with ALD and in animals with experimental ALD in the past, there is still no FDA (Food and Drug Administration) approved therapy for any stage of ALD. With the increasing recognition of the importance of gut microbiota in the onset and development of a variety of diseases, the potential use of probiotics in ALD is receiving increasing investigative and clinical attention. In this review, we summarize recent studies on probiotic intervention in the prevention and treatment of ALD in experimental animal models and patients. Potential mechanisms underlying the probiotic function are also discussed.
Collapse
|
234
|
Abstract
The gut microbiome is composed of a vast number of microbes in the gastrointestinal tract, which benefit host metabolism, aid in digestion, and contribute to normal immune function. Alterations in microbial composition can result in intestinal dysbiosis, which has been implicated in several diseases including obesity, inflammatory bowel disease, and liver diseases. Over the past several years, significant interactions between the intestinal microbiota and liver have been discovered, with possible mechanisms for the development as well as progression of liver disease and promising therapeutic targets to either prevent or halt the progression of liver disease. In this review the authors examine mechanisms of dysbiosis-induced liver disease; highlight current knowledge regarding the role of dysbiosis in nonalcoholic liver disease, alcoholic liver disease, and cirrhosis; and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Gobind Anand
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, California,NAFLD Translational Research Unit, Department of Medicine, University of California at San Diego, La Jolla, California
| |
Collapse
|
235
|
Nakamoto N, Schnabl B. Does the Intestinal Microbiota Explain Differences in the Epidemiology of Liver Disease between East and West? Inflamm Intest Dis 2016; 1:3-8. [PMID: 27243019 DOI: 10.1159/000443196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Changes in bacterial communities are associated with the pathogenesis of many diseases including inflammatory bowel disease and liver disease. Dysbiosis can induce intestinal inflammation resulting in increased intestinal permeability and bacterial translocation. The majority of chronic liver diseases are associated with bacterial translocation resulting in or enhancing an inflammatory response in the liver. Intestinal inflammation and a dysfunctional intestinal barrier are not sufficient to cause liver disease in the absence of an additional liver insult. In this article, the authors summarize differences in intestinal microbiota composition between Eastern and Western countries. The authors specifically discuss whether differences in microbiota composition could explain the epidemiological differences in liver disease found in Asia and Europe/the USA.
Collapse
Affiliation(s)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, Calif., USA; Department of Medicine, VA San Diego Healthcare System, San Diego, Calif., USA
| |
Collapse
|
236
|
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22:50-71. [PMID: 26755860 PMCID: PMC4698508 DOI: 10.3748/wjg.v22.i1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis, steatohepatitis, hepatic fibrosis and cirrhosis. Subsequently, these initial pathological events are sustained and ushered into a more complex and progressive liver disease, increasing the risk of fibro-hepatocarcinogenesis. These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-generated reactive oxygen species, alcohol-induced gut-derived lipopolysaccharide, AA/MDA protein and DNA adducts. The metabolic derivatives of alcohol together with other comorbidity factors, including hepatitis B and C viral infections, dysregulated iron metabolism, abuse of antibiotics, schistosomiasis, toxic drug metabolites, autoimmune disease and other non-specific factors, have been shown to underlie liver diseases. In view of the multiple etiology of liver diseases, attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible. In the case of alcoholic liver disease (ALD), it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities. In spite of all these hurdles, researchers and experts in hepatology have strived to expand knowledge and scientific discourse, particularly on ALD and its associated complications through the medium of scientific research, reviews and commentaries. Nonetheless, the molecular mechanisms underpinning ALD, particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibro-hepatocarcinogenesis, are still incompletely elucidated. In this review, we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis. We also brought to sharp focus, the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptor-mediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis. Looking into the future, it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
Collapse
|
237
|
Alcoholic Liver Disease: Update on the Role of Dietary Fat. Biomolecules 2016; 6:1. [PMID: 26751488 PMCID: PMC4808795 DOI: 10.3390/biom6010001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/23/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) spans a spectrum of liver pathology, including fatty liver, alcoholic steatohepatitis, and cirrhosis. Accumulating evidence suggests that dietary factors, including dietary fat, as well as alcohol, play critical roles in the pathogenesis of ALD. The protective effects of dietary saturated fat (SF) and deleterious effects of dietary unsaturated fat (USF) on alcohol-induced liver pathology are well recognized and documented in experimental animal models of ALD. Moreover, it has been demonstrated in an epidemiological study of alcoholic cirrhosis that dietary intake of SF was associated with a lower mortality rates, whereas dietary intake of USF was associated with a higher mortality. In addition, oxidized lipids (dietary and in vivo generated) may play a role in liver pathology. The understanding of how dietary fat contributes to the ALD pathogenesis will enhance our knowledge regarding the molecular mechanisms of ALD development and progression, and may result in the development of novel diet-based therapeutic strategies for ALD management. This review explores the relevant scientific literature and provides a current understanding of recent advances regarding the role of dietary lipids in ALD pathogenesis.
Collapse
|
238
|
Li F, Duan K, Wang C, McClain C, Feng W. Probiotics and Alcoholic Liver Disease: Treatment and Potential Mechanisms. Gastroenterol Res Pract 2015; 2016:5491465. [PMID: 26839540 PMCID: PMC4709639 DOI: 10.1155/2016/5491465] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research, alcohol remains one of the most common causes of liver disease in the United States. Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders, including steatosis, steatohepatitis, and cirrhosis. Although many agents and approaches have been tested in patients with ALD and in animals with experimental ALD in the past, there is still no FDA (Food and Drug Administration) approved therapy for any stage of ALD. With the increasing recognition of the importance of gut microbiota in the onset and development of a variety of diseases, the potential use of probiotics in ALD is receiving increasing investigative and clinical attention. In this review, we summarize recent studies on probiotic intervention in the prevention and treatment of ALD in experimental animal models and patients. Potential mechanisms underlying the probiotic function are also discussed.
Collapse
Affiliation(s)
- Fengyuan Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Departments of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kangmin Duan
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuiling Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Craig McClain
- Departments of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40202, USA
| | - Wenke Feng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Departments of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
239
|
Carotti S, Guarino MPL, Vespasiani-Gentilucci U, Morini S. Starring role of toll-like receptor-4 activation in the gut-liver axis. World J Gastrointest Pathophysiol 2015; 6:99-109. [PMID: 26600967 PMCID: PMC4644892 DOI: 10.4291/wjgp.v6.i4.99] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types.
Collapse
|
240
|
Chen P, Miyamoto Y, Mazagova M, Lee KC, Eckmann L, Schnabl B. Microbiota Protects Mice Against Acute Alcohol-Induced Liver Injury. Alcohol Clin Exp Res 2015; 39:2313-23. [PMID: 26556636 DOI: 10.1111/acer.12900] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Our aim is to investigate the physiological relevance of the intestinal microbiota in alcohol-induced liver injury. Chronic alcohol abuse is associated with intestinal bacterial overgrowth, increased intestinal permeability, and translocation of microbial products from the intestine to the portal circulation and liver. Translocated microbial products contribute to experimental alcoholic liver disease. METHODS We subjected germ-free and conventional C57BL/6 mice to a model of acute alcohol exposure that mimics binge drinking. RESULTS Germ-free mice showed significantly greater liver injury and inflammation after oral gavage of ethanol (EtOH) compared with conventional mice. In parallel, germ-free mice exhibited increased hepatic steatosis and up-regulated expression of genes involved in fatty acid and triglyceride synthesis compared with conventional mice after acute EtOH administration. The absence of microbiota was also associated with increased hepatic expression of EtOH-metabolizing enzymes, which led to faster EtOH elimination from the blood and lower plasma EtOH concentrations. Intestinal levels of EtOH-metabolizing genes showed regional expression differences and were overall higher in germ-free mice relative to conventional mice. CONCLUSIONS Our findings indicate that absence of the intestinal microbiota increases hepatic EtOH metabolism and the susceptibility to binge-like alcohol drinking.
Collapse
Affiliation(s)
- Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, California.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Magdalena Mazagova
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Kuei-Chuan Lee
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California.,Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
241
|
Torok NJ. Update on Alcoholic Hepatitis. Biomolecules 2015; 5:2978-86. [PMID: 26540078 PMCID: PMC4693265 DOI: 10.3390/biom5042978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease is one of the most prevalent liver diseases worldwide, and a major cause of morbidity and mortality. Alcoholic hepatitis is a severe form of liver injury in patients with alcohol abuse, can present as an acute on chronic liver failure associated with a rapid decline in liver synthetic function, and consequent increase in mortality. Despite therapy, about 30%-50% of patients with severe alcoholic hepatitis eventually die. The pathogenic pathways that lead to the development of alcoholic hepatitis are complex and involve oxidative stress, gut dysbiosis, and dysregulation of the innate and adaptive immune system with injury to the parenchymal cells and activation of hepatic stellate cells. As accepted treatment approaches are currently limited, a better understanding of the pathophysiology would be required to generate new approaches that improve outcomes. This review focuses on recent advances in the diagnosis, pathogenesis of alcoholic hepatitis and novel treatment strategies.
Collapse
Affiliation(s)
- Natalie J Torok
- Department of Internal Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA.
- Department of Internal Medicine, Northern California VA System, Mather, CA 95655, USA.
| |
Collapse
|
242
|
Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J Hepatol 2015; 63:1272-84. [PMID: 26192220 DOI: 10.1016/j.jhep.2015.07.004] [Citation(s) in RCA: 430] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 02/06/2023]
Abstract
The peripheral arterial vasodilation hypothesis has been most influential in the field of cirrhosis and its complications. It has given rise to hundreds of pathophysiological studies in experimental and human cirrhosis and is the theoretical basis of life-saving treatments. It is undisputed that splanchnic arterial vasodilation contributes to portal hypertension and is the basis for manifestations such as ascites and hepatorenal syndrome, but the body of research generated by the hypothesis has revealed gaps in the original pathophysiological interpretation of these complications. The expansion of our knowledge on the mechanisms regulating vascular tone, inflammation and the host-microbiota interaction require a broader approach to advanced cirrhosis encompassing the whole spectrum of its manifestations. Indeed, multiorgan dysfunction and failure likely result from a complex interplay where the systemic spread of bacterial products represents the primary event. The consequent activation of the host innate immune response triggers endothelial molecular mechanisms responsible for arterial vasodilation, and also jeopardizes organ integrity with a storm of pro-inflammatory cytokines and reactive oxygen and nitrogen species. Thus, the picture of advanced cirrhosis could be seen as the result of an inflammatory syndrome in contradiction with a simple hemodynamic disturbance.
Collapse
Affiliation(s)
- Mauro Bernardi
- Department of Medical and Surgical Sciences - Alma Mater Studiorum, University of Bologna, Italy; Semeiotica Medica, Policlinico S. Orsola-Malpighi, Bologna, Italy.
| | - Richard Moreau
- Inserm, U(1149), Centre de Recherche sur l'Inflammation (CRI), Paris, France; UMR_S(1149), Université Paris Diderot, Faculté de Médecine, Paris, France; Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Paolo Angeli
- Unit of Hepatic Emergencies and Liver Transplantation, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, United States; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, United States
| | - Vicente Arroyo
- Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomediques Agust Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
243
|
Alcohol and the Intestine. Biomolecules 2015; 5:2573-88. [PMID: 26501334 PMCID: PMC4693248 DOI: 10.3390/biom5042573] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches.
Collapse
|
244
|
Neuman MG, Maor Y, Nanau RM, Melzer E, Mell H, Opris M, Cohen L, Malnick S. Alcoholic Liver Disease: Role of Cytokines. Biomolecules 2015; 5:2023-2034. [PMID: 26343741 PMCID: PMC4598786 DOI: 10.3390/biom5032023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical and translational research. It focuses on the role of the immune system and the signaling pathways of cytokines in the pathogenesis of ALD. An additional factor that contributes to the pathogenesis of ALD is lipopolysaccharide (LPS), which plays a central role in the induction of steatosis, inflammation, and fibrosis in the liver. LPS derived from the intestinal microbiota enters the portal circulation, and is recognized by macrophages (Kupffer cells) and hepatocytes. In individuals with ALD, excessive levels of LPS in the liver affect immune, parenchymal, and non-immune cells, which in turn release various inflammatory cytokines and recruit neutrophils and other inflammatory cells. In this review, we elucidate the mechanisms by which alcohol contributes to the activation of Kupffer cells and the inflammatory cascade. The role of the stellate cells in fibrogenesis is also discussed.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON M5G 0A3, Canada.
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 0A3, Canada.
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot 76100, Israel.
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON M5G 0A3, Canada.
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot 76100, Israel.
| | - Haim Mell
- Israel Anti-Drug Authority, Jerusalem 91039, Israel.
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON M5G 0A3, Canada.
- Casa de Ajutor Reciproc, Bucharest 031621, Romania.
| | - Lawrence Cohen
- Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, ON M5G 0A3, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
245
|
Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 2015; 421:44-53. [PMID: 25595554 PMCID: PMC4451427 DOI: 10.1016/j.jim.2014.12.015] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 02/08/2023]
Abstract
Liver disease is often times associated with increased intestinal permeability. A disruption of the gut barrier allows microbial products and viable bacteria to translocate from the intestinal lumen to extraintestinal organs. The majority of the venous blood from the intestinal tract is drained into the portal circulation, which is part of the dual hepatic blood supply. The liver is therefore the first organ in the body to encounter not only absorbed nutrients, but also gut-derived bacteria and pathogen associated molecular patterns (PAMPs). Chronic exposure to increased levels of PAMPs has been linked to disease progression during early stages and to infectious complications during late stages of liver disease (cirrhosis). It is therefore important to assess and monitor gut barrier dysfunction during hepatic disease. We review methods to assess intestinal barrier disruption and discuss advantages and disadvantages. We will in particular focus on methods that we have used to measure increased intestinal permeability and bacterial translocation in experimental liver disease models.
Collapse
Affiliation(s)
- Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, United States; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, United States
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, United States; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, United States
| | - Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - An-Ming Yang
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, United States; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, United States.
| |
Collapse
|
246
|
de Punder K, Pruimboom L. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol 2015; 6:223. [PMID: 26029209 PMCID: PMC4432792 DOI: 10.3389/fimmu.2015.00223] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Chronic non-communicable diseases (NCDs) are the leading causes of work absence, disability, and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here, we hypothesize that stresses (defined as homeostatic disturbances) can induce low-grade inflammation by increasing the availability of water, sodium, and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.
Collapse
Affiliation(s)
- Karin de Punder
- Institute of Medical Psychology, Charité University Medicine , Berlin , Germany ; Natura Foundation , Numansdorp , Netherlands
| | | |
Collapse
|
247
|
Abstract
The leaky gut hypothesis links translocating microbial products with the onset and progression of liver disease, and for a long time was considered one of its major contributors. However, a more detailed picture of the intestinal microbiota contributing to liver disease started to evolve. The gut is colonized by trillions of microbes that aid in digestion, modulate immune response, and generate a variety of products that result from microbial metabolic activities. These products together with host-bacteria interactions influence both normal physiology and disease susceptibility. A disruption of the symbiosis between microbiota and host is known as dysbiosis and can have profound effects on health. Qualitative changes such as increased proportions of harmful bacteria and reduced levels of beneficial bacteria, and also quantitative changes in the total amount of bacteria (overgrowth) have been associated with liver disease. Understanding the link between the pathophysiology of liver diseases and compositional and functional changes of the microbiota will help in the design of innovative therapies. In this review, we focus on factors resulting in dysbiosis, and discuss how dysbiosis can disrupt intestinal homeostasis and contribute to liver disease.
Collapse
Key Words
- dysbiosis
- leaky gut
- alcoholic liver disease
- nash
- nafld
- cirrhosis
- microbiome
- pamps
- ald, alcoholic liver disease
- amp, antimicrobial peptides and proteins
- fiaf, fasting-induced adipocyte factor
- hfd, high-fat diet
- ibd, inflammatory bowel disease
- il, interleukin
- lcfa, long-chain fatty acid
- lps, lipopolysaccharide
- nafld, nonalcoholic fatty liver disease
- nash, nonalcoholic steatohepatitis
- nlrp, nucleotide-binding domain and leucine rich repeat-containing protein
- nod2, nucleotide-binding oligomerization domain 2
- pamps, pathogen-associated molecular patterns
- reg3, regenerating islet-derived 3
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tumor necrosis factor receptor
Collapse
Affiliation(s)
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
248
|
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide spectrum of hepatic lesions, from steatosis to cirrhosis. Cell injury, inflammation, oxidative stress, regeneration and bacterial translocation are key drivers of alcohol-induced liver injury. Alcoholic hepatitis is the most severe form of all the alcohol-induced liver lesions. Animal models of ALD mainly involve mild liver damage (that is, steatosis and moderate inflammation), whereas severe alcoholic hepatitis in humans occurs in the setting of cirrhosis and is associated with severe liver failure. For this reason, translational studies using humans and human samples are crucial for the development of new therapeutic strategies. Although multiple attempts have been made to improve patient outcome, the treatment of alcoholic hepatitis is still based on abstinence from alcohol and brief exposure to corticosteroids. However, nearly 40% of patients with the most severe forms of alcoholic hepatitis will not benefit from treatment. We suggest that future clinical trials need to focus on end points other than mortality. This Review discusses the main pathways associated with the progression of liver disease, as well as potential therapeutic strategies targeting these pathways.
Collapse
|
249
|
Barve S, Kirpich IA, McClain CJ. Tumor necrosis factor alpha-induced receptor 1 signaling in alcoholic liver disease: A gut reaction? Hepatology 2015; 61:754-6. [PMID: 25482079 PMCID: PMC6445372 DOI: 10.1002/hep.27640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Shirish Barve
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY
| | | | | |
Collapse
|
250
|
Luther J, Garber JJ, Khalili H, Dave M, Bale SS, Jindal R, Motola DL, Luther S, Bohr S, Jeoung SW, Deshpande V, Singh G, Turner JR, Yarmush ML, Chung RT, Patel SJ. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability. Cell Mol Gastroenterol Hepatol 2015; 1:222-232. [PMID: 26405687 PMCID: PMC4578658 DOI: 10.1016/j.jcmgh.2015.01.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/09/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Emerging data suggest that changes in intestinal permeability and increased gut microbial translocation contribute to the inflammatory pathway involved in nonalcoholic steatohepatitis (NASH) development. Numerous studies have investigated the association between increased intestinal permeability and NASH. Our meta-analysis of this association investigates the underlying mechanism. METHODS A meta-analysis was performed to compare the rates of increased intestinal permeability in patients with NASH and healthy controls. To further address the underlying mechanism of action, we studied changes in intestinal permeability in a diet-induced (methionine-and-choline-deficient; MCD) murine model of NASH. In vitro studies were also performed to investigate the effect of MCD culture medium at the cellular level on hepatocytes, Kupffer cells, and intestinal epithelial cells. RESULTS Nonalcoholic fatty liver disease (NAFLD) patients, and in particular those with NASH, are more likely to have increased intestinal permeability compared with healthy controls. We correlate this clinical observation with in vivo data showing mice fed an MCD diet develop intestinal permeability changes after an initial phase of liver injury and tumor necrosis factor-α (TNFα) induction. In vitro studies reveal that MCD medium induces hepatic injury and TNFα production yet has no direct effect on intestinal epithelial cells. Although these data suggest a role for hepatic TNFα in altering intestinal permeability, we found that mice genetically resistant to TNFα-myosin light chain kinase (MLCK)-induced intestinal permeability changes fed an MCD diet still develop increased permeability and liver injury. CONCLUSIONS Our clinical and experimental results strengthen the association between intestinal permeability increases and NASH and also suggest that an early phase of hepatic injury and inflammation contributes to altered intestinal permeability in a fashion independent of TNFα and MLCK.
Collapse
Affiliation(s)
- Jay Luther
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John J. Garber
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hamed Khalili
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maneesh Dave
- Division of Gastroenterology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shyam Sundhar Bale
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Rohit Jindal
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Daniel L. Motola
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sanjana Luther
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan Bohr
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Soung Won Jeoung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | - Martin L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Suraj J. Patel
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| |
Collapse
|