201
|
Bui-Xuan EF, Li Q, Chen XZ, Boucher CA, Sandford R, Zhou J, Basora N. More than colocalizing with polycystin-1, polycystin-L is in the centrosome. Am J Physiol Renal Physiol 2006; 291:F395-406. [PMID: 16609150 DOI: 10.1152/ajprenal.00282.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycystin-1 and polycystin-2 are involved in autosomal dominant polycystic kidney disease by unknown mechanisms. These two proteins are located in primary cilia where they mediate mechanosensation, suggesting a link between cilia function and renal disease. In this study, we sought to characterize the subcellular localization of polycystin-L, a closely related member of polycystin-2, in epithelial renal cell lines. We have shown that endogenous polycystin-l subcellular distribution is different in proliferative and nonproliferative cultures. Polycystin-L is found mostly in the endoplasmic reticulum in subconfluent cell cultures, while in confluent cells it is redistributed to sites of cell-cell contact and to the primary cilium as is polycystin-1. Subcellular fractionation confirmed a common distribution of polycystin-L and polycystin-1 in the fractions corresponding to those containing the plasma membrane of postconfluent cells. Reciprocal coimmunoprecipitation experiments showed that polycystin-L was associated with polycystin-1 in a common complex in both subconfluent and confluent cell cultures. Interestingly, we also identified a novel site for a polycystin member (polycystin-L) in unciliated cells, the centrosome, which allowed us to reveal an involvement of polycystin-l in cell proliferation.
Collapse
Affiliation(s)
- Eva-Flore Bui-Xuan
- Département de Physiologie et Biophysique, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
202
|
Thivierge C, Kurbegovic A, Couillard M, Guillaume R, Coté O, Trudel M. Overexpression of PKD1 causes polycystic kidney disease. Mol Cell Biol 2006; 26:1538-48. [PMID: 16449663 PMCID: PMC1367205 DOI: 10.1128/mcb.26.4.1538-1548.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenetic mechanisms underlying autosomal dominant polycystic kidney disease (ADPKD) remain to be elucidated. While there is evidence that Pkd1 gene haploinsufficiency and loss of heterozygosity can cause cyst formation in mice, paradoxically high levels of Pkd1 expression have been detected in the kidneys of ADPKD patients. To determine whether Pkd1 gain of function can be a pathogenetic process, a Pkd1 bacterial artificial chromosome (Pkd1-BAC) was modified by homologous recombination to solely target a sustained Pkd1 expression preferentially to the adult kidney. Several transgenic lines were generated that specifically overexpressed the Pkd1 transgene in the kidneys 2- to 15-fold over Pkd1 endogenous levels. All transgenic mice reproducibly developed tubular and glomerular cysts and renal insufficiency and died of renal failure. This model demonstrates that overexpression of wild-type Pkd1 alone is sufficient to trigger cystogenesis resembling human ADPKD. Our results also uncovered a striking increased renal c-myc expression in mice from all transgenic lines, indicating that c-myc is a critical in vivo downstream effector of Pkd1 molecular pathways. This study not only produced an invaluable and first PKD model to evaluate molecular pathogenesis and therapies but also provides evidence that gain of function could be a pathogenetic mechanism in ADPKD.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes, Artificial, Bacterial/genetics
- DNA/genetics
- Disease Models, Animal
- Gene Expression
- Genes, myc
- Humans
- Kidney/abnormalities
- Kidney/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Organ Specificity
- Polycystic Kidney, Autosomal Dominant/etiology
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/metabolism
- Proteins/genetics
- Recombination, Genetic
- Signal Transduction
- TRPP Cation Channels
Collapse
Affiliation(s)
- Caroline Thivierge
- Institut de Recherches Cliniques de Montreal, Molecular Genetics and Development, 110 ave. des Pins ouest, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|
203
|
Jiang ST, Chiou YY, Wang E, Lin HK, Lin YT, Chi YC, Wang CKL, Tang MJ, Li H. Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:205-20. [PMID: 16400024 PMCID: PMC1592650 DOI: 10.2353/ajpath.2006.050342] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse models for autosomal-dominant polycystic kidney disease (ADPKD), derived from homozygous targeted disruption of Pkd1 gene, generally die in utero or perinatally because of systemic defects. We introduced a loxP site and a loxP-flanked mc1-neo cassette into introns 30 and 34, respectively, of the Pkd1 locus to generate a conditional, targeted mutation. Significantly, before excision of the floxed exons and mc1-neo from the targeted locus by Cre recombinase, mice homozygous for the targeted allele appeared normal at birth but developed polycystic kidney disease with a slower progression than that of Pkd-null mice. Further, the homozygotes continued to produce low levels of full-length Pkd1-encoded protein, suggesting that slight Pkd1 expression is sufficient for renal cyst formation in ADPKD. In this viable model, up-regulation of heparin-binding epidermal growth factor-like growth factor accompanied increased epidermal growth factor receptor signaling, which may be involved in abnormal proliferation of the cyst-lining epithelia. Increased apoptosis in cyst epithelia was only observed in the later period that correlated with the cyst regression. Abnormalities in Na(+)/K(+)-ATPase, aquaporin-2, and vasopressin V2 receptor expression were also identified. This mouse model may be suitable for further studies of progression and therapeutic interventions of ADPKD.
Collapse
Affiliation(s)
- Si-Tse Jiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Puri S, Rodova M, Islam MR, Magenheimer BS, Maser RL, Calvet JP. Ets factors regulate the polycystic kidney disease-1 promoter. Biochem Biophys Res Commun 2006; 342:1005-13. [PMID: 16510125 DOI: 10.1016/j.bbrc.2006.02.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/10/2006] [Indexed: 11/30/2022]
Abstract
The Ets family of transcription factors consists of a group of highly conserved sequence-specific DNA binding proteins that functionally cooperate with other transcription factors to regulate a number of diverse cellular processes including proliferation, differentiation, and apoptosis. We have analyzed a 3.3kb 5'-upstream region of the human PKD1 promoter, using transient transfection in HEK293T cells and Drosophila SL2 cells, to demonstrate that the PKD1 promoter is a target of Ets family transcription factors. Our studies showed that PKD1 promoter-luciferase reporter gene expression is downregulated by cotransfected Fli-1 and is upregulated by cotransfected Ets-1. Using deletion constructs, we demonstrated that the sequences responding to Fli-1 and Ets-1 lie within the -200 to +33bp proximal promoter. This region was found to contain two putative Ets response elements (EREs): an upstream (Ets-A) sequence 5'-CGGAA-3' (-181 to -185) and a downstream (Ets-B) sequence 5'-CGGAT-3' (-129 to -133). Site-directed mutagenesis indicated that both EREs are functional. A Fli-1 DNA binding domain mutant construct (W321R), which is incapable of binding DNA, was unable to inhibit basal promoter activity. In contrast, a Fli-1 DNA binding domain truncation mutant construct, which only contains the DNA binding domain and lacks the transactivation domain, was able to inhibit. These results suggest that the effect of Fli-1 is through direct binding to these EREs. Direct binding of Fli-1 and Ets-1 to the Ets-A and Ets-B sites was supported by electrophoretic mobility shift assays. Lastly, competition between Fli-1 and Ets-1 for the two EREs was demonstrated by showing that increasing amounts of Ets-1 could overcome Fli-1 repression of promoter activity. Taken together, these experiments define the proximal PKD1 promoter region as a potential target of Ets family transcription factors.
Collapse
Affiliation(s)
- Sanjeev Puri
- Department of Biochemistry and Molecular Biology, and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
205
|
Horie S. ADPKD: molecular characterization and quest for treatment. Clin Exp Nephrol 2006; 9:282-291. [PMID: 16362154 DOI: 10.1007/s10157-005-0367-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 05/13/2005] [Indexed: 12/15/2022]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common hereditary disease that features multiple cystogenesis in various organs and vascular defects. The genes responsible for ADPKD, PKD1, and PKD2 have been identified, and the pathological processes of the disease are becoming clearer. This review focuses on recent findings about the molecular and cellular biology of ADPKD, and especially on PKD1. PKD1 and its product, polycystin-1, play pivotal roles in cellular differentiation because they regulate the cell cycle and because polycystin-1 is a component of adherens junctions. A possible link between polycystin-1 and PPARgamma is discussed. The extraordinarily fast research progress in this area in the last decade has now reached a stage where the development of a remedy for ADPKD might become possible in the near future.
Collapse
Affiliation(s)
- Shigeo Horie
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
206
|
Boca M, Distefano G, Boletta A. Polycystin-1 induces resistance to apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway. J Am Soc Nephrol 2006; 17:637-47. [PMID: 16452497 PMCID: PMC1473029 DOI: 10.1681/asn.2005050534] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K beta activity in PC-1-expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Manila Boca
- Dulbecco Telethon Institute at Dibit, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Dulbecco Telethon Institute at Dibit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Boletta
- Dulbecco Telethon Institute at Dibit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
207
|
Abstract
The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
208
|
|
209
|
Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 2005; 7:1202-12. [PMID: 16311606 DOI: 10.1038/ncb1326] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/14/2005] [Indexed: 01/14/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by progressive cyst formation and ultimate loss of renal function. Increased cell proliferation is a key feature of the disease. Here, we show that the ADPKD protein polycystin-2 (PC2) regulates the cell cycle through direct interaction with Id2, a member of the helix-loop-helix (HLH) protein family that is known to regulate cell proliferation and differentiation. Id2 expression suppresses the induction of a cyclin-dependent kinase inhibitor, p21, by either polycystin-1 (PC1) or PC2. The PC2-Id2 interaction is regulated by PC1-dependent phosphorylation of PC2. Enhanced Id2 nuclear localization is seen in human and mouse cystic kidneys. Inhibition of Id2 expression by RNA interference corrects the hyperproliferative phenotype of PC1 mutant cells. We propose that Id2 has a crucial role in cell-cycle regulation that is mediated by PC1 and PC2.
Collapse
Affiliation(s)
- Xiaogang Li
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
210
|
Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wüthrich RP. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 2005; 21:598-604. [PMID: 16221708 DOI: 10.1093/ndt/gfi181] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by dysregulated tubular epithelial cell growth, resulting in the formation of multiple renal cysts and progressive renal failure. To date, there is no effective treatment for ADPKD. The mammalian target of rapamycin (mTOR) is an atypical protein kinase and a central controller of cell growth and proliferation. We examined the effect of the mTOR inhibitor sirolimus (rapamycin) on renal functional loss and cyst progression in the Han:SPRD rat model of ADPKD. METHODS Five-week-old male heterozygous cystic (Cy/+) and wild-type normal (+/+) rats were administered sirolimus (2 mg/kg/day) orally through the drinking water for 3 months. The renal function was monitored throughout the treatment phase, and rats were sacrificed thereafter. Kidneys were analysed histomorphometrically, and for the expression and phosphorylation of S6K, a well-characterized target of mTOR in the regulation of cell growth. RESULTS The steady increase in BUN and creatinine in Cy/+ rats was reduced by 39 and 34%, respectively with sirolimus after 3 months treatment. Kidney weight and 2-kidney/total body weight (2K/TBW) ratios were reduced by 34 and 26% in sirolimus-treated Cy/+ rats. Cyst volume density was also reduced by 18%. Of importance, Cy/+ rats displayed enhanced levels of total and phosphorylated S6K. Sirolimus effectively reduced total and phosphorylated levels of S6K. CONCLUSION We conclude that oral sirolimus markedly delays the loss of renal function and retards cyst development in Han:SPRD rats with ADPKD. Our data also suggest that activation of the S6K signalling pathway plays an important role in the pathogenesis of PKD. Sirolimus could be a useful drug to retard progressive renal failure in patients with ADPKD.
Collapse
Affiliation(s)
- Patricia R Wahl
- Physiological Institute, University Zürich-Irchel, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
211
|
Qian F, Wei W, Germino G, Oberhauser A. The nanomechanics of polycystin-1 extracellular region. J Biol Chem 2005; 280:40723-30. [PMID: 16219758 PMCID: PMC2703997 DOI: 10.1074/jbc.m509650200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approximately 3000 amino acids) with a multimodular structure. Proteins with a similar architecture have structural and mechanical roles. Based on the structural similarities between PC1 and other modular proteins that have elastic properties we hypothesized that PC1 functions mechanically by providing a flexible and elastic linkage between cells. Here we directly tested this hypothesis by analyzing the mechanical properties of the entire PC1 extracellular region by using single molecule force spectroscopy. We show that the PC1 extracellular region is highly extensible and that this extensibility is mainly caused by the unfolding of its Ig-like domains. Stretching the native PC1 extracellular region results in a sawtooth pattern with equally spaced force peaks that have a wide range of unfolding forces (50-200 pN). By combining single-molecule force spectroscopy and protein engineering techniques, we demonstrate that the sawtooth pattern in native PC1 extracellular region corresponds to the sequential unfolding of individual Ig-like domains. We found that Ig-like domains refold after mechanical unfolding. Hence, the PC1 extracellular region displays a dynamic extensibility whereby the resting length might be regulated through unfolding/refolding of its Ig-like domains. These force-driven reactions may be important for cell elasticity and the regulation of cell signaling events mediated by PC1.
Collapse
Affiliation(s)
- Feng Qian
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Wen Wei
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Gregory Germino
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Andres Oberhauser
- Department of Neuroscience and Cell Biology and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555
- To whom correspondence should be addressed: Dept. of Neuroscience and Cell Biology, and Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555-0437. Tel.: 409-772-1309; Fax: 409-772-1301; E-mail:
| |
Collapse
|
212
|
Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H. Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7. J Appl Microbiol 2005; 99:551-7. [PMID: 16108796 DOI: 10.1111/j.1365-2672.2005.02630.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of study was to clarify whether the polycystic kidney disease (PKD) domain of chitinase A (ChiA) participates in the hydrolysis of powdered chitin. METHODS AND RESULTS Site-directed mutagenesis of the conserved aromatic residues of PKD domain was performed by PCR. The aromatic residues, W30, Y48, W64 and W67, were replaced by alanine, and single- and double-mutant chitinases were produced in Escherichia coli XL10 and purified with HisTrap column. Single mutations were not quite effective on the hydrolysing activities against chitinous substrates when compared with wild-type ChiA. However, mutations of W30 and W67 decreased the activities against powdered chitin by 87.6%. Wild-type and mutant PKD domains were produced in E. coli TOP10 and purified with glutathione-Sepharose 4B column. Wild-type PKD domain showed significant binding activity to powdered chitin, whereas mutations of W30 and W67 reduced the binding activity to powdered chitin drastically. These results suggest that PKD domain of ChiA is essential for effective hydrolysis of powdered chitin through the interaction between two aromatic residues and chitin molecule. CONCLUSIONS PKD domain of ChiA participates in the effective hydrolysis of powdered chitin through the interaction between two aromatic residues (W30 and W67) and chitin molecule. SIGNIFICANCE AND IMPACT OF THE STUDY The findings of this study provide important information on chitin degradation by microbial chitinases.
Collapse
Affiliation(s)
- H Orikoshi
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | |
Collapse
|
213
|
Burtey S, Leclerc C, Nabais E, Munch P, Gohory C, Moreau M, Fontés M. Cloning and expression of the amphibian homologue of the human PKD1 gene. Gene 2005; 357:29-36. [PMID: 15996834 DOI: 10.1016/j.gene.2005.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 04/20/2005] [Accepted: 05/04/2005] [Indexed: 11/16/2022]
Abstract
PKD1 is the gene responsible for autosomal dominant polycystic kidney disease (ADPKD) type 1 in humans. The PKD1 gene product is likely to be a calcium channel regulator. In this paper, we describe the isolation and characterization of the Xenopus homologue of the human PKD1 gene. We isolated and cloned genomic fragments corresponding to the amphibian homologue of PKD1 from a BAC library, and after sequencing the clones, we designed primers for the amplification of the transcript and sequenced 10 kb of ORF. The sequence of the putative protein clearly demonstrated that this gene is the homologue of human PKD1. Analysis of the tissue expression patterns of xPKD1 demonstrated a high level of expression in the kidney. A similar analysis in developing embryos and in an in vitro nephrogenic system suggests that xPKD1 is associated with, and probably involved in, the development of the amphibian pronephros.
Collapse
Affiliation(s)
- S Burtey
- INSERM UMR491, IPHM, Faculté de Médecine de la Timone, 27 Bd. J. Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
214
|
Orikoshi H, Nakayama S, Miyamoto K, Hanato C, Yasuda M, Inamori Y, Tsujibo H. Roles of four chitinases (chia, chib, chic, and chid) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Appl Environ Microbiol 2005; 71:1811-5. [PMID: 15812005 PMCID: PMC1082530 DOI: 10.1128/aem.71.4.1811-1815.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alteromonas sp. strain O-7 secretes four chitinases (ChiA, ChiB, ChiC, and ChiD) in the presence of chitin. To elucidate why the strain produces multiple chitinases, we studied the expression levels of the four genes and proteins, their enzymatic properties, and their synergistic effects on chitin degradation. Among the four chitinases, ChiA was produced in the largest quantities, followed by ChiD, and the production of ChiB and ChiC changed at lower levels than those of ChiA and ChiD. The expression of the chiA, chiB, chiC, and chiD genes was investigated at the transcriptional level. The RNA transcript of chiA was most strongly induced in the presence of chitin, the expression of chiD followed, and the RNA transcripts of chiB and chiC changed at low levels. The hydrolyzing activities of the four chitinases against various substrates were examined. ChiA was the most active enzyme against powdered chitin, whereas ChiC was the most active against soluble chitin among the four chitinases. ChiD had activities closer to those of ChiA than to those of ChiB and ChiC. ChiB showed no distinctive feature against the chitinous substrates tested. When powdered chitin was treated with the proper combination of four chitinases, an approximately 2.0-fold increase in the hydrolytic activity was observed. These results, together with the results described above, indicate that ChiA plays a central role in chitin degradation for this strain.
Collapse
Affiliation(s)
- Hideyuki Orikoshi
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
The transient receptor potential (TRP) superfamily comprises a large group of related cation channels that display surprising diversity in the specific modes of activation and cation selectivities. However, a unifying theme is that many TRP channels play important roles in sensory physiology. The superfamily includes 28 mammalian members, which are subdivided into multiple subfamilies. Each of these subfamilies is represented by at least one of the 13 members in Drosophila, suggesting common evolutionary relationships. In recent years it has become clear that TRP channels in flies and mammals participate in similar sensory modalities. These include, but are not limited to, hearing, thermosensation, and certain specialized types of vision. With the recent flurry of new studies, 9 out of the 13 TRPs have been addressed in various contexts. As a result, the repertoire of biological roles attributed to Drosophila TRPs has increased considerably and is likely to lead to many additional surprises over the next few years.
Collapse
Affiliation(s)
- Craig Montell
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
216
|
de Mattos AM, Olyaei AJ, Prather JC, Golconda MS, Barry JM, Norman DJ. Autosomal-dominant polycystic kidney disease as a risk factor for diabetes mellitus following renal transplantation. Kidney Int 2005; 67:714-20. [PMID: 15673321 DOI: 10.1111/j.1523-1755.2005.67132.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Posttransplant diabetes mellitus is an important complication of renal transplantation that is associated with a significant impact on quality of life and an increase in long-term morbidity and mortality. Autosomal-dominant polycystic kidney disease (ADPKD) is a hereditary disease that commonly leads to end-stage renal disease (ESRD) in adulthood. The association between ADPKD and posttransplant diabetes mellitus has not been previously studied in a large cohort of patients. METHODS To address this question, we studied a cohort of 135 patients with ADPKD who received a first renal-only transplant between January 1985 and December 1999. An age, race, and date of transplant-matched cohort of 135 non-ADPKD subjects were used as the control population. RESULTS The cohorts were similar at baseline for gender distribution, body mass index (BMI), proportion of obese subjects (BMI greater than 30 kg/m(2)), family history of diabetes mellitus, and type of donor (deceased or living). At 12 months, the incidence of posttransplant diabetes mellitus was significantly higher in patients with ADPKD when compared to the controls (17% vs. 7.4%) (P= 0.016), despite no significant differences in the BMI, percent increase in BMI, number of acute rejections, prednisone dose at 3 and 6 months, use of diuretics or beta blockers, delayed graft function, or serum creatinine levels. The proportion of subjects requiring insulin was significantly higher in the ADPKD group (11.1% vs. 3%) (P= 0.009). Variables significantly associated with posttransplant diabetes mellitus at 1 year by bivariate analyses were the diagnosis of ADPKD (P= 0.02), BMI at transplant (P= 0.04), obesity at 12 months (P= 0.01), and delayed graft function (P= 0.02). Gender of recipient (P= 0.9), family history of diabetes (P= 0.3), prednisone dose at 3 months (P= 0.9) and 6 months (P= 0.7), acute rejection (P= 0.9), use of beta blockers or tacrolimus (P= 0.8), deceased donor transplant (P= 0.2), and serum creatinine at 1 year (P= 0.5) were not associated with posttransplant diabetes mellitus. A trend toward increased incidence of posttransplant diabetes mellitus was found with the use of diuretics post transplant (P= 0.054). By multivariable analyses, in patients with ADPKD, the adjusted (by all the variables listed above) relative risk for development of posttransplant diabetes mellitus was 2.87 (95% CI = 1.24-6.65) (P= 0.014). Only the diagnosis of ADPKD (RR = 2.9) (P= 0.01), obesity at 1 year (RR 2.5) (P= 0.017), and delayed graft function (RR 2.4) (P= 0.03) contributed significantly to the fit of a stepwise logistic regression model. Patient survival was significantly worse in the cohort of patients who developed posttransplant diabetes mellitus (median survival 109.3 vs. 121 months) (P= 0.008). CONCLUSION In our study patients with ADPKD were at a threefold increased risk for development of posttransplant diabetes mellitus within the first year following renal transplantation. Development of posttransplant diabetes mellitus was associated with a significant detrimental impact on patient survival. Further studies are needed to provide insight into the mechanisms of the association between ADPKD and posttransplant diabetes mellitus.
Collapse
Affiliation(s)
- Angelo M de Mattos
- Renal Transplant Program, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | | | |
Collapse
|
217
|
Young AE, Biller DS, Herrgesell EJ, Roberts HR, Lyons LA. Feline polycystic kidney disease is linked to the PKD1 region. Mamm Genome 2005; 16:59-65. [PMID: 15674734 DOI: 10.1007/s00335-004-2412-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 08/24/2004] [Indexed: 10/25/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited disorder (1/1000) in humans characterized by fluid-filled cysts in the kidneys. Defects in the PKD genes, PKD1 and PKD2, cause 85% and 15% of human ADPKD cases, respectively. Mutations in the PKHD1 gene cause autosomal recessive PKD (ARPKD). Mutations in several genes, including Nek8, cause PKD in mice. Although PKD affects 38% of Persian cats worldwide, making it the most prominent inherited feline disease, a causative gene has not been identified. Feline PKD is an autosomal dominant disease with clinical presentations similar to human ADPKD. Forty-three microsatellites were chosen from the feline genetic maps based on known homology with human chromosomal regions containing the PKD1, PKD2, PKHD1, and Nek8 genes. Linkage analysis using seven Persian cat pedigrees segregating for PKD has shown significant linkage and no recombinants (Z=5.83, theta=0) between the PKD disease phenotype and marker FCA476, which is within 10 cR of the feline PKD1 gene on Chromosome E3. This suggests that the PKD1 gene or another gene within this region may cause feline PKD. Further investigation into the cause of PKD will be valuable for feline health and provide insights into human ADPKD.
Collapse
Affiliation(s)
- Amy E Young
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1114 Tupper Hall, Davis, California, 95616, USA,
| | | | | | | | | |
Collapse
|
218
|
Köttgen M, Walz G. Subcellular localization and trafficking of polycystins. Pflugers Arch 2005; 451:286-93. [PMID: 15895248 DOI: 10.1007/s00424-005-1417-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 03/19/2005] [Indexed: 01/05/2023]
Abstract
Polycystin-2 is a member of the transient receptor potential (TRP) family of ion channels that is mutated in autosomal dominant polycystic kidney disease. Although its function as a non-selective cation channel has been demonstrated in several model systems, the precise subcellular localization of polycystin-2 (TRPP2) in tubular epithelial cells has remained controversial. Recent evidence suggests that the subcellular localization of TRPP2 is regulated by multiple protein interactions. This review will summarize our current knowledge about polycystin trafficking and highlight the experimental data that supports a compartment-specific function of 'cystogenic' proteins.
Collapse
Affiliation(s)
- Michael Köttgen
- Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | | |
Collapse
|
219
|
Li Q, Montalbetti N, Shen PY, Dai XQ, Cheeseman CI, Karpinski E, Wu G, Cantiello HF, Chen XZ. Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 2005; 14:1587-603. [PMID: 15843396 DOI: 10.1093/hmg/ddi167] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Polycystin-2 (PC2) is the product of the PKD2 gene, which is mutated in 10-15% patients of autosomal dominant polycystic kidney disease (ADPKD). PC2 is an integral transmembrane protein and acts as a calcium-permeable cation channel. The functional modulation of this channel by other protein partners remains largely unknown. In the present study, using a yeast two-hybrid approach, we discovered that both intracellular N- and C-termini of PC2 associate with alpha-actinins, actin-binding and actin-bundling proteins important in cytoskeleton organization, cell adhesion, proliferation and migration. The PC2-alpha-actinin association was confirmed by in vitro glutathione S-transferase pull-down and dot blot overlay assays. In addition, the in vivo interaction between endogenous PC2 and alpha-actinins was demonstrated by co-immunoprecipitation in human embryonic kidney 293 and Madin-Darby canine kidney (MDCK) cells, rat kidney and heart tissues and human syncytiotrophoblast (hST) apical membrane vesicles. Immunofluorescence experiments showed that PC2 and alpha-actinin were partially co-localized in epithelial MDCK and inner medullary collecting duct cells, NIH 3T3 fibroblasts and hST vesicles. We studied the functional modulation of PC2 by alpha-actinin in a lipid bilayer electrophysiology system using in vitro translated PC2 and found that alpha-actinin substantially stimulated the channel activity of reconstituted PC2. A similar stimulatory effect of alpha-actinin on PC2 was also observed when hST vesicles were reconstituted in lipid bilayer. Thus, physical and functional interactions between PC2 and alpha-actinin may play an important role in abnormal cell adhesion, proliferation and migration observed in ADPKD.
Collapse
Affiliation(s)
- Qiang Li
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Hashem VI, Sinden RR. Duplications between direct repeats stabilized by DNA secondary structure occur preferentially in the leading strand during DNA replication. Mutat Res 2005; 570:215-26. [PMID: 15708580 DOI: 10.1016/j.mrfmmm.2004.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 11/01/2004] [Accepted: 11/19/2004] [Indexed: 01/01/2023]
Abstract
To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a -1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis.
Collapse
Affiliation(s)
- Vera I Hashem
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Blvd., Houston, TX 77030-3303, USA
| | | |
Collapse
|
221
|
Tienari J, Lehtonen S, Lehtonen E. CD2-associated protein in human urogenital system and in adult kidney tumours. Virchows Arch 2005; 446:394-401. [PMID: 15785926 DOI: 10.1007/s00428-004-1166-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/26/2004] [Indexed: 11/25/2022]
Abstract
We studied expression of CD2-associated protein (CD2AP) in human urogenital system and in adult kidney tumours. In the cortex of normal kidney, CD2AP was expressed in all types of tubules and in the glomeruli. Labelling was more intense in cytokeratin 7- and in Tamm-Horsfall-positive tubules than in proximal tubules. In the medulla, expression was observed in the collecting ducts. Urothelium and the epithelium of prostatic acini, seminal vesicles, seminiferous tubules, epididymal ducts, Fallopian tube, endometrium and endocervix as well as granulosa cells showed moderate to strong CD2AP positivity. In syncytiotrophoblast, the expression was weaker than in cytotrophoblast. Endometrial stroma was negative, but decidualised stroma was weakly positive. Clear cell renal cell carcinoma (RCC) (n=63) showed a weak expression. Type-I papillary RCCs (n=4) and papillary adenomas (n=3) were negative. The epithelium lining the cysts in multilocular cystic RCCs (n=3) and in cystic nephroma (n=1) was strongly positive. Chromophobe RCCs (n=2), oncocytomas (n=3) and urothelial carcinomas (n=2) were moderately positive. The results show that CD2AP displays a specific expression pattern in human urogenital organs and that distinct expression is shown in several types of kidney tumours but not in type-I papillary RCCs or in papillary adenomas.
Collapse
Affiliation(s)
- Jukka Tienari
- Department of Pathology, Helsinki University Central Hospital/Peijas Hospital and HUSLAB, Sairaalakatu 1, 01400, Vantaa, Finland.
| | | | | |
Collapse
|
222
|
Abstract
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to Drosophila TRP. TRP channels play important roles in nonexcitable cells; however, an emerging theme is that many TRP-related proteins are expressed predominantly in the nervous system and function in sensory physiology. The TRP superfamily is divided into seven subfamilies, the first of which is composed of the "classical" TRPs" (TRPC subfamily). Some TRPCs may be store-operated channels, whereas others appear to be activated by production of diacylglycerol or regulated through an exocytotic mechanism. Many members of a second subfamily (TRPV) function in sensory physiology and respond to heat, changes in osmolarity, odorants, and mechanical stimuli. Two members of the TRPM family function in sensory perception and three TRPM proteins are chanzymes, which contain C-terminal enzyme domains. The fourth and fifth subfamilies, TRPN and TRPA, include proteins with many ankyrin repeats. TRPN proteins function in mechanotransduction, whereas TRPA1 is activated by noxious cold and is also required for the auditory response. In addition to these five closely related TRP subfamilies, which comprise the Group 1 TRPs, members of the two Group 2 TRP subfamilies, TRPP and TRPML, are distantly related to the group 1 TRPs. Mutations in the founding members of these latter subfamilies are responsible for human diseases. Each of the TRP subfamilies are represented by members in worms and flies, providing the potential for using genetic approaches to characterize the normal functions and activation mechanisms of these channels.
Collapse
|
223
|
Silberberg M, Charron AJ, Bacallao R, Wandinger-Ness A. Mispolarization of desmosomal proteins and altered intercellular adhesion in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2005; 288:F1153-63. [PMID: 15701820 PMCID: PMC3432402 DOI: 10.1152/ajprenal.00008.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polycystin-1, the product of the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), has been shown to associate with multiple epithelial cell junctions. Our hypothesis is that polycystin-1 is an important protein for the initial establishment of cell-cell junctions and maturation of the cell and that polycystin-1 localization is dependent on the degree of cell polarization. Using laser-scanning confocal microscopy and two models of cell polarization, polycystin-1 and desmosomes were found to colocalize during the initial establishment of cell-cell contact when junctions were forming. However, colocalization was lost in confluent monolayers. Parallel morphological and biochemical evaluations revealed a profound mispolarization of desmosomal components to both the apical and basolateral domains in primary ADPKD cells and tissue. Studies of the intermediate filament network associated with desmosomes showed that there is a decrease in cytokeratin levels and an abnormal expression of the mesenchymal protein vimentin in the disease. Moreover, we show for the first time that the structural alterations seen in adherens and desmosomal junctions have a functional impact, leaving the ADPKD cells with weakened cell-cell adhesion. In conclusion, in this paper we show that polycystin-1 transiently colocalizes with desmosomes and that desmosomal proteins are mislocalized as a consequence of polycystin-1 mutation.
Collapse
Affiliation(s)
- Melina Silberberg
- Dept of Pathology, University of New Mexico, 2325 Camino de Salud NE, Albuquerque, New Mexico 87131-5301
| | | | - Robert Bacallao
- Dept of Nephrology, University of Indianapolis, Indianapolis, IN 46202
| | - Angela Wandinger-Ness
- Dept of Pathology, University of New Mexico, 2325 Camino de Salud NE, Albuquerque, New Mexico 87131-5301
- To whom correspondence should be addressed: Dept. of Pathology MSC08-4640, 2325 Camino de Salud CRF 225, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-5301, 505-272-1459 (phone), 505-272-4193 (FAX),
| |
Collapse
|
224
|
Sharma M, Brantley JG, Alcalay NI, Zhou J, Heystek E, Maser RL, Vanden Heuvel GB. Differential expression of Cux-1 and p21 in polycystic kidneys from Pkd1 null and cpk mice. Kidney Int 2005; 67:432-42. [PMID: 15673290 DOI: 10.1111/j.1523-1755.2005.67099.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cux-1 is a murine homeodomain protein that functions as a cell cycle-dependent transcriptional repressor in proliferating cells. Targets of Cux-1 repression include the cyclin kinase inhibitors p21 and p27. In the kidney, Cux-1 is spatially and temporally regulated, and ectopic expression of Cux-1 in transgenic mice results in renal hyperplasia. Previously, we observed that Cux-1 is deregulated in cystic kidneys from cpk mice. Recent studies have suggested a role for the cyclin kinase inhibitor p21 in the development of polycystic kidney disease (PKD) in mice lacking PKD1. METHODS Since p21 is a target of transcriptional repression by Cux-1, we compared the expression of Cux-1 and p21 in kidneys from Pkd1 null and cpk mice by immunohistochemistry and Western blotting. We also evaluated apoptosis and the expression of the cyclin kinase inhibitor p27 in Pkd1 null and cpk mice by terminal deoxynucleotidal transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) staining, immunohistochemistry, and Western blotting. RESULTS In both early and late embryonic kidneys from Pkd1 null mice, Cux-1 was highly and ectopically expressed in normal-appearing tubule epithelium, interstitial cells, and in the epithelial cells lining the cysts, where it colocalized with proliferating cell nuclear antigen (PCNA). Increased Cux-1 expression in Pkd1 null kidneys was also associated with a decrease in p27 expression at late stages of cystogenesis. In cpk kidneys, Cux-1 was not up-regulated until late stages of cyst development. Moreover, in contrast to Pkd1 null kidneys, p21 and p27 were highly expressed in cpk kidneys. In late stages of cystogenesis, Cux-1 and p21 colocalized in cyst lining cells, which also showed a high incidence of apoptosis. CONCLUSION These results suggest that cyst development in Pkd1 null mice and cpk mice proceeds through different mechanisms. In Pkd1 null mice, ectopic expression of Cux-1 is associated with increased cell proliferation. In contrast, in cpk mice, ectopic expression of Cux-1 is associated with apoptosis.
Collapse
Affiliation(s)
- Madhulika Sharma
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
There have been remarkable advances in research on polycystic liver and kidney diseases recently, covering cloning of new genes, refining disease classifications, and advances in understanding more about the molecular pathology of these diseases. Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary disease affecting kidneys. It affects 1/400 to 1/1000 live births and accounts for 5% of the end stage renal disease in the United States and Europe, and is caused by gene defects in the PKD1 or PKD2 genes. Compared to ADPKD, polycystic liver disease (PCLD) is a milder disease and does not lower life expectancy. Both diseases are usually adult-onset diseases. Defects in genes, which code the hepatocystin and SEC63 proteins, have just recently been found to cause PCLD. It now seems that ADPKD is caused by malfunction of the primary cilia, a cell organ sensing fluid movement, and that PCLD is a sequel from defects in protein processing. Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes. All ARPKD patients have a gene defect in a gene called PKHD1, the protein product of which localizes to primary cilia. We summarize the present clinical and molecular knowledge of these diseases in this review.
Collapse
Affiliation(s)
- Esa Tahvanainen
- University of Helsinki, Department of Medical Genetics, Raisiontie 11A3, 00280 Helsinki, Finland.
| | | | | | | |
Collapse
|
226
|
Boucher C, Sandford R. Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2). Eur J Hum Genet 2004; 12:347-54. [PMID: 14872199 DOI: 10.1038/sj.ejhg.5201162] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited nephropathy affecting over 1:1000 of the worldwide population. It is a systemic condition with frequent hepatic and cardiovascular manifestations in addition to the progressive development of renal cysts that eventually result in loss of renal function in the majority of affected individuals. The diagnosis of ADPKD is typically made using renal imaging despite the identification of mutations in PKD1 and PKD2 that account for virtually all cases. Mutations in PKD1 are associated with more severe clinical disease and earlier onset of renal failure. Most PKD gene mutations are loss of function and a 'two-hit' mechanism has been demonstrated underlying focal cyst formation. The protein products of the PKD genes, the polycystins, form a calcium-permeable ion channel complex that regulates the cell cycle and the function of the renal primary cilium. Abnormal cilial function is now thought to be the primary defect in several types of PKD including autosomal recessive polycystic kidney disease and represents a novel and exciting mechanism underlying a range of human diseases.
Collapse
Affiliation(s)
- Catherine Boucher
- Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
227
|
Cowley BD. Recent advances in understanding the pathogenesis of polycystic kidney disease: therapeutic implications. Drugs 2004; 64:1285-94. [PMID: 15200344 DOI: 10.2165/00003495-200464120-00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hereditary polycystic kidney disease (PKD) is a common cause of renal failure. Increasing knowledge is available regarding mechanisms of cyst development and progression, and renal functional deterioration in PKD. On the basis of this information and theories regarding the pathophysiology of these processes, studies to alter progression and potentially treat PKD have been reported. Cyst development and progression requires epithelial cell proliferation, transepithelial fluid secretion and extracellular matrix remodelling. Several interventions designed to inhibit cell proliferation or alter fluid secretion modify the progression of PKD in selected animal models. Renal functional deterioration appears to involve interstitial inflammation and fibrosis, and tubular apoptosis. Glucocorticoids with anti-inflammatory and antifibrotic properties slow the progression of cystic disease and renal functional deterioration in animal models of PKD. Other interventions, such as dietary modification and angiotensin antagonism, shown to be of benefit in non-PKD models of slowly progressive renal disease, are also of benefit in animal models of PKD. Caution should be used in extrapolating interventional studies in one animal model to another model and certainly to human disease, since examples exist in which treatments in one model of PKD have different effects in another model. Nonetheless, early attempts to determine whether potential treatments are tolerated and of potential benefit in patients with PKD are beginning to appear. Ultimately, treatment of PKD may involve efforts to identify patients at greatest risk for disease progression, thus allowing targeted therapy, use of surrogate markers for disease progression to assist assessment of therapeutic efficacy, and combination therapy to retard disease progression and renal functional deterioration in this common hereditary cause of chronic renal failure.
Collapse
Affiliation(s)
- Benjamin D Cowley
- Nephrology/WP2250, University of Oklahoma Health Sciences Center, 920 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|
228
|
Abstract
Autosomal dominant polycystic disease is genetically heterogeneous with mutations in two distinct genes predisposing to the combination of renal and liver cysts (AD-PKD1 and AD-PKD2) and mutations in a third gene yielding isolated liver cysts (the polycystic liver disease gene). Transcription and translation of the PKD1 gene produces polycystin-1, an integral membrane protein that may serve as an extracellular receptor. Mutations occur throughout the PKD1 gene, but more severe disease is associated with N-terminal mutations. The PKD2 gene product, polycystin-2, is an integral membrane protein with molecular characteristics of a calcium-permeant cation channel. Mutations occur throughout the PKD2 gene, and severity of disease may vary with site of mutation in PKD2 and the functional consequence on the resultant polycystin-2 protein. Polycystic liver disease is genetically linked to protein kinase C substrate 80K-H (PRKCSH). The PRKCSH gene encodes hepatocystin, a protein that moderates glycosylation and fibroblast growth factor receptor signaling. More prominent in women, hepatic cysts emerge after the onset of puberty and dramatically increase in number and size through the child-bearing years of early and middle adult life. Although liver failure or complications of advanced liver disease are rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Interventional and surgical options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology & Hepatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
229
|
Abstract
Autosomal dominant polycystic disease is genetically heterogeneous with mutations in two distinct genes predisposing to the combination of renal and liver cysts (AD-PKD1 and AD-PKD2) and mutations in a third gene yielding isolated liver cysts (the polycystic liver disease gene). Transcription and translation of the PKD1 gene produces polycystin-1, an integral membrane protein that may serve as an extracellular receptor. Mutations occur throughout the PKD1 gene, but more severe disease is associated with N-terminal mutations. The PKD2 gene product, polycystin-2, is an integral membrane protein with molecular characteristics of a calcium-permeant cation channel. Mutations occur throughout the PKD2 gene, and severity of disease may vary with site of mutation in PKD2 and the functional consequence on the resultant polycystin-2 protein. Polycystic liver disease is genetically linked to protein kinase C substrate 80K-H (PRKCSH). The PRKCSH gene encodes hepatocystin, a protein that moderates glycosylation and fibroblast growth factor receptor signaling. More prominent in women, hepatic cysts emerge after the onset of puberty and dramatically increase in number and size through the child-bearing years of early and middle adult life. Although liver failure or complications of advanced liver disease are rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Interventional and surgical options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology & Hepatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
230
|
Abstract
The external surfaces of the human body, as well as its internal organs, constantly experience different kinds of mechanical stimulations. For example, tubular epithelial cells of the kidney are continuously exposed to a variety of mechanical forces, such as fluid flow shear stress within the lumen of th nephron. The majority of epithelial cells along the nephron, except intercalated cells, possess a primary cilium, an organelle projecting from the cell's apical surface into the luminal space. Despite its discovery over 100 years ago, the primary cilium's function continued to elude researchers for many decades. However, recent studies indicate that renal cilia have a sensory function. Studies on polycystic kidney disease (PKD) have identified many of the molecular players, which should help solve the mystery of how the renal cilium senses fluid flow. In this review, we will summarize the recent breakthroughs in PKD research and discuss the role(s) of the polycystin signaling complex in mediating mechanosensory function by the primary cilium of renal epithelium as well as of the embryonic node.
Collapse
Affiliation(s)
- Surya M Nauli
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
231
|
Yuasa T, Takakura A, Denker BM, Venugopal B, Zhou J. Polycystin-1L2 is a novel G-protein-binding protein. Genomics 2004; 84:126-38. [PMID: 15203210 DOI: 10.1016/j.ygeno.2004.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
Mutations in genes encoding polycystin-1 (PC1) and polycystin-2 cause autosomal dominant polycystic kidney disease. The polycystin protein family is composed of Ca2+-permeable pore-forming subunits and receptor-like integral membrane proteins. Here we describe a novel member of the polycystin-1-like subfamily, polycystin-1L2 (PC1L2), encoded by PKD1L2, which has various alternative splicing forms with two translation initiation sites. PC1L2 short form starts in exon 12 of the long form. The longest open reading frame of PKD1L2 short form, determined from human testis cDNA, encodes a 1775-amino-acid protein and 32 exons, whereas the long form is predicted to encode a 2460-residue protein. Both forms have a small receptor for egg jelly domain, a G-protein-coupled receptor proteolytic site, an LH2/PLAT, and 11 putative transmembrane domains, as well as a number of rhodopsin-like G-protein-coupled receptor signatures. RT-PCR analysis shows that the short form, but not the long form, of human PKD1L2 is expressed in the developing and adult heart and kidney. Furthermore, by GST pull-down assay we observed that PC1L2 and polycystin-1L1 are able to bind to specific G-protein subunits. We also show that PC1 C-terminal cytosolic domain binds to Galpha12, Galphas, and Galphai1, while it weakly interacts with Galphai2. Our results indicate that both PC1-like molecules may act as G-protein-coupled receptors.
Collapse
Affiliation(s)
- Takeshi Yuasa
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
232
|
Boda B, Mas C, Giudicelli C, Nepote V, Guimiot F, Levacher B, Zvara A, Santha M, LeGall I, Simonneau M. Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. Eur J Hum Genet 2004; 12:729-37. [PMID: 15162126 DOI: 10.1038/sj.ejhg.5201217] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive disorder involving the loss of motor neurons from the spinal cord. Homozygous absence of the survival of motor neuron 1 gene (SMN1) is the main cause of SMA, but disease severity depends primarily on the number of SMN2 gene copies. SMN protein levels are high in normal spinal cord and much lower in the spinal cord of SMA patients, suggesting neuron-specific regulation for this ubiquitously expressed gene. We isolated genomic DNA from individuals with SMN1 or SMN2 deletions and sequenced 4.6 kb of the 5' upstream regions of the these. We found that these upstream regions, one of which is telomeric and the other centromeric, were identical. We investigated the early regulation of SMN expression by transiently transfecting mouse embryonic spinal cord and fibroblast primary cultures with three transgenes containing 1.8, 3.2 and 4.6, respectively, of the SMN promoter driving beta-galactosidase gene expression. The 4.6 kb construct gave reporter gene expression levels five times higher in neurons than in fibroblasts, due to the combined effects of a general enhancer and a non-neuronal cell silencer. The differential expression observed in neurons and fibroblasts suggests that the SMN genes play a neuron-specific role during development. An understanding of the mechanisms regulating SMN promoter activity may provide new avenues for the treatment of SMA.
Collapse
Affiliation(s)
- Bernadett Boda
- Neurogénétique/INSERM E9935, Hôpital Robert Debré, 48 Boulevard Sérurier, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Le NH, van der Bent P, Huls G, van de Wetering M, Loghman-Adham M, Ong ACM, Calvet JP, Clevers H, Breuning MH, van Dam H, Peters DJM. Aberrant polycystin-1 expression results in modification of activator protein-1 activity, whereas Wnt signaling remains unaffected. J Biol Chem 2004; 279:27472-81. [PMID: 15087466 DOI: 10.1074/jbc.m312183200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polycystin-1, the polycystic kidney disease 1 gene product, has been implicated in several signaling complexes that are known to regulate essential cellular functions. We investigated the role of polycystin-1 in Wnt signaling and activator protein-1 (AP-1) activation. To this aim, a membrane-targeted construct encoding the conserved C-terminal region of mouse polycystin-1 reported to mediate signal transduction activity was expressed in human embryonic and renal epithelial cells. To ensure specificity and minimal cotransfection effects, we focused our study on the endogenous proteins that actually transduce the signals, beta-catenin and T-cell factor/lymphoid-enhancing factor for Wnt signaling and (phosphorylated) c-Jun, ATF2, and c-Fos for AP-1. Our data indicate that the C-terminal region of polycystin-1 activates AP-1 by inducing phosphorylation and expression of at least c-Jun and ATF2, whereas c-Fos was not affected. Under our experimental conditions, polycystin-1 did not modulate Wnt signaling. AP-1 activity was aberrant in human autosomal dominant polycystic kidney disease (ADPKD) renal cystic epithelial cells and in renal epithelial cells expressing transgenic full-length polycystin-1, resulting in decreased Jun-ATF and increased Jun-Fos activity, whereas Wnt signaling remained unaffected. Since our data indicate that aberrant polycystin-1 expression results in altered AP-1 activity, polycystin-1 may be required for adequate AP-1 activity.
Collapse
Affiliation(s)
- Ngoc Hang Le
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 AL, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Brüggemann H, Gottschalk G. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 2004; 10:53-68. [PMID: 16701501 DOI: 10.1016/j.anaerobe.2003.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 08/21/2003] [Indexed: 01/01/2023]
Abstract
The decryption of prokaryotic genome sequences progresses rapidly and provides the scientific community with an enormous amount of information. Clostridial genome sequencing projects have been finished only recently, starting with the genome of the solvent-producing Clostridium acetobutylicum in 2001. A lot of attention has been devoted to the genomes of pathogenic clostridia. In 2002, the genome sequence of C. perfringens, the causative agent of gas gangrene, has been released. Currently in the finishing stage and prior to publication are the genomes of the foodborne botulism-causing C. botulinum and of C. difficile, the causative agent of a wide spectrum of clinical manifestations such as antibiotic-associated diarrhea. Our team sequenced the genome of neuropathogenic C. tetani, a Gram-positive spore-forming bacterium predominantly found in the soil. In deep wound infections it occasionally causes spastic paralysis in humans and vertebrate animals, known as tetanus disease, by the secretion of potent neurotoxin, designated tetanus toxin. The toxin blocks the release of neurotransmitters from presynaptic membranes of interneurons of the spinal cord and the brainstem, thus preventing muscle relaxation. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid, a formaldehyde-treated tetanus toxin, but nevertheless, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The World Health Organization has stated that neonatal tetanus is the second leading cause of death from vaccine preventable diseases among children worldwide. This minireview focuses on an analysis of the genome sequence of C. tetani E88, a vaccine production strain, which is a toxigenic non-sporulating variant of strain Massachusetts. The genome consists of a 2,799,250 bp chromosome encoding 2618 open reading frames. The tetanus toxin is encoded on a 74,082 kb plasmid, containing 61 genes. Additional virulence-related factors as well as an insight into the metabolic strategy of C. tetani with regard to its pathogenic phenotype will be presented. The information from other clostridial genomes by means of comparative analysis will also be explored.
Collapse
Affiliation(s)
- Holger Brüggemann
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
235
|
Scheffers MS, van der Bent P, van de Wal A, van Eendenburg J, Breuning MH, de Heer E, Peters DJM. Altered distribution and co-localization of polycystin-2 with polycystin-1 in MDCK cells after wounding stress. Exp Cell Res 2004; 292:219-30. [PMID: 14720521 DOI: 10.1016/j.yexcr.2003.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycystin-1 and -2 are integral membrane glycoproteins defective in autosomal dominant polycystic kidney disease (ADPKD). Recent studies showed a coupled polycystin-1 and -2 action in cell signaling and channel activation suggesting an important biological role for the two proteins at the plasma membrane. To gain a better understanding about the (co)-distribution and dynamics of the polycystin-1 and -2 complex under stress conditions, we used a wound-healing model of Madine Darby canine kidney (MDCK) renal epithelial cells. In this model, cells near the wound edge undergo a process of reorganization to active migration, while cells further from the edge are unaffected and remain confluent. For the first time, endogenous polycystin-1 and -2 were found to partly co-localize in the plasma membrane of confluent monolayers, and both proteins co-localized in the primary cilium. Upon wound healing, the association of polycystin-2 to the membrane was greatly reduced at the wound edge and the submarginal cells. Polycystin-1 remained incorporated to the membrane at the edge of the cell sheet at all time points, although strongly reduced in lamellipodia-forming cells. Adherens junctions and desmosomes, and respective connected actin and keratin cytoskeleton were also disturbed in lamellipodia-forming cells. We propose that altered subcellular localization of polycystin-1 and -2 as a result of stress will affect signaling and other cellular processes mediated by these proteins.
Collapse
Affiliation(s)
- Martijn S Scheffers
- Department of Human Genetics, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
236
|
Neill AT, Moy GW, Vacquier VD. Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Mol Reprod Dev 2004; 67:472-7. [PMID: 14991739 DOI: 10.1002/mrd.20033] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polycystin-2, the protein mutated in type 2 autosomal dominant polycystic kidney disease, is an integral transmembrane protein with nonselective cation channel activity. Here we report on the sea urchin sperm homolog of polycystin-2 (suPC2). Like other polycystin-2 family members, suPC2 is a six-pass transmembrane protein containing C-terminal cytoplasmic EF hand and coiled-coil domains. The protein localizes exclusively to the plasma membrane over the sperm acrosomal vesicle. This localization coincides with the previously reported localization of the sea urchin PC1 homolog, suREJ3. Co-immunoprecipitation shows that suPC2 and suREJ3 are associated in the membrane. The location of suPC2 suggests that it may function as a cation channel mediating the sperm acrosome reaction. The low cation selectivity of PC2 channels would explain data indicating that Na(+) and Ca(2+) may enter sea urchin sperm through the same channel during the acrosome reaction.
Collapse
Affiliation(s)
- Anna T Neill
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
237
|
Thongnoppakhun W, Limwongse C, Vareesangthip K, Sirinavin C, Bunditworapoom D, Rungroj N, Yenchitsomanus PT. Novel and de novo PKD1 mutations identified by multiple restriction fragment-single strand conformation polymorphism (MRF-SSCP). BMC MEDICAL GENETICS 2004; 5:2. [PMID: 15018634 PMCID: PMC356914 DOI: 10.1186/1471-2350-5-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 02/03/2004] [Indexed: 11/25/2022]
Abstract
Background We have previously developed a long RT-PCR method for selective amplification of full-length PKD1 transcripts (13.6 kb) and a long-range PCR for amplification in the reiterated region (18 kb) covering exons 14 and 34 of the PKD1 gene. These have provided us with an opportunity to study PKD1 mutations especially in its reiterated region which is difficult to examine. In this report, we have further developed the method of multiple restriction fragment-single strand conformation polymorphism (MRF-SSCP) for analysis of PKD1 mutations in the patients with autosomal dominant polycystic kidney disease (ADPKD). Novel and de novo PKD1 mutations are identified and reported. Methods Full-length PKD1 cDNA isolated from the patients with ADPKD was fractionated into nine overlapping segments by nested-PCR. Each segment was digested with sets of combined restriction endonucleases before the SSCP analysis. The fragments with aberrant migration were mapped, isolated, and sequenced. The presence of mutation was confirmed by the long-range genomic DNA amplification in the PKD1 region, sequencing, direct mutation detection, and segregation analysis in the affected family. Results Five PKD1 mutations identified are two frameshift mutations caused by two di-nucleotide (c. 5225_5226delAG and c.9451_9452delAT) deletions, a nonsense (Q1828X, c.5693C>T) mutation, a splicing defect attributable to 31 nucleotide deletion (g.33184_33214del31), and an in-frame deletion (L3287del, c.10070_10072delCTC). All mutations occurred within the reiterated region of the gene involving exons 15, 26, 15, 19 and 29, respectively. Three mutations (one frameshift, splicing defect, and in-frame deletion) are novel and two (one frameshift and nonsense) known. In addition, two mutations (nonsense and splicing defect) are possibly de novo. Conclusion The MRF-SSCP method has been developed to analyze PCR products generated by the long RT-PCR and nested-PCR technique for screening PKD1 mutations in the full-length cDNA. Five mutations identified were all in the reiterated region of this gene, three of which were novel. The presence of de novo PKD1 mutations indicates that this gene is prone to mutations.
Collapse
Affiliation(s)
- Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Limwongse
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kriengsak Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chintana Sirinavin
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Duangkamon Bunditworapoom
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nanyawan Rungroj
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
238
|
Galindo BE, Moy GW, Vacquier VD. A third sea urchin sperm receptor for egg jelly module protein, suREJ2, concentrates in the plasma membrane over the sperm mitochondrion. Dev Growth Differ 2004; 46:53-60. [PMID: 15008854 DOI: 10.1111/j.1440-169x.2004.00729.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.
Collapse
Affiliation(s)
- Blanca E Galindo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
239
|
Roitbak T, Ward CJ, Harris PC, Bacallao R, Ness SA, Wandinger-Ness A. A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell 2004; 15:1334-46. [PMID: 14718571 PMCID: PMC363138 DOI: 10.1091/mbc.e03-05-0296] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is typified by the accumulation of fluid-filled cysts and abnormalities in renal epithelial cell function. The disease is principally caused by mutations in the gene encoding polycystin-1, a large basolateral plasma membrane protein expressed in kidney epithelial cells. Our studies reveal that, in normal kidney cells, polycystin-1 forms a complex with the adherens junction protein E-cadherin and its associated catenins, suggesting a role in cell adhesion or polarity. In primary cells from ADPKD patients, the polycystin-1/polycystin-2/E-cadherin/beta-catenin complex was disrupted and both polycystin-1 and E-cadherin were depleted from the plasma membrane as a result of the increased phosphorylation of polycystin-1. The loss of E-cadherin was compensated by the transcriptional upregulation of the normally mesenchymal N-cadherin. Increased cell surface N-cadherin in the disease cells in turn stabilized the continued plasma membrane localization of beta-catenin in the absence of E-cadherin. The results suggest that enhanced phosphorylation of polycystin-1 in ADPKD cells precipitates changes in its localization and its ability to form protein complexes that are critical for the stabilization of adherens junctions and the maintenance of a fully differentiated polarized renal epithelium.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Pathology, University of New Mexico, Health Science Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
240
|
Affiliation(s)
- Patricia D Wilson
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
241
|
Wildman SS, Hooper KM, Turner CM, Sham JSK, Lakatta EG, King BF, Unwin RJ, Sutters M. The isolated polycystin-1 cytoplasmic COOH terminus prolongs ATP-stimulated Cl- conductance through increased Ca2+ entry. Am J Physiol Renal Physiol 2003; 285:F1168-78. [PMID: 12888616 DOI: 10.1152/ajprenal.00171.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise steps leading from mutation of the polycystic kidney disease (PKD1) gene to the autosomal dominant polycystic kidney disease (ADPKD) phenotype remain to be established. Fluid accumulation is a requirement for cyst expansion in ADPKD, suggesting that abnormal fluid secretion into the cyst lumen might play a role in disease. In this study, we sought to establish a link between polycystin-1 (the PKD1 gene product) and ATP-stimulated Cl- secretion in renal tubule cells. To do this, we performed a whole cell patch-clamp analysis of the effects of expression of the isolated cytoplasmic COOH-terminus of polycystin-1 in stably transfected mouse cortical collecting duct cells. The truncated polycystin-1 fusion protein prolonged the duration of ATP-stimulated Cl- conductance and intracellular Ca2+ responses. Both effects were dependent on extracellular Ca2+. It was determined that expression of the truncated polycystin-1 fusion protein introduced, or activated, an ATP-induced Ca2+ entry pathway that was undetectable in transfection control cell lines. Our findings are concordant with increasing evidence for a role of polycystin-1 in cell Ca2+ homeostasis and indicate that dysregulated Ca2+ entry might promote Cl- secretion and cyst expansion in ADPKD.
Collapse
Affiliation(s)
- Scott S Wildman
- Laboratory of Cardiological Sciences, Gerontology Research Center, Division of Renal Medicine, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Guay-Woodford LM. Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 2003; 285:F1034-49. [PMID: 14600027 DOI: 10.1152/ajprenal.00195.2003] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous murine (mouse and rat) models of polycystic kidney disease (PKD) have been described in which the mutant phenotype results from a spontaneous mutation or engineering via chemical mutagenesis, transgenic technologies, or gene-specific targeting in mouse orthologs of human PKD genes. These murine phenotypes closely resemble human PKD, with common abnormalities observed in tubular epithelia, the interstitial compartment, and the extracellular matrix of cystic kidneys. In both human and murine PKD, genetic background appears to modulate the renal cystic phenotype. In murine models, these putative modifying effects have been dissected into discrete factors called quantitative trait loci and genetically mapped. Several lines of experimental evidence support the hypothesis that PKD genes and their modifiers may define pathways involved in cystogenesis and PKD progression. Among the various pathway abnormalities described in murine PKD, recent provocative data indicate that structural and/or functional defects in the primary apical cilia of tubular epithelia may play a key role in PKD pathogenesis. This review describes the most widely studied murine models; highlights the data regarding specific gene defects and genetic modifiers; summarizes the data from these models that have advanced our understanding of PKD pathogenesis; and examines the effect of various therapeutic interventions in murine PKD.
Collapse
Affiliation(s)
- Lisa M Guay-Woodford
- Division of Genetic and Translational Medicine, Department of Medicine, University of Alabama at Birmingham, Kaul 740, 1530 3rd Ave. South 19th St., Birmingham, AL 35294, USA.
| |
Collapse
|
243
|
Sweeney WE, Hamahira K, Sweeney J, Garcia-Gatrell M, Frost P, Avner ED. Combination treatment of PKD utilizing dual inhibition of EGF-receptor activity and ligand bioavailability. Kidney Int 2003; 64:1310-9. [PMID: 12969149 DOI: 10.1046/j.1523-1755.2003.00232.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have previously demonstrated an essential role for increased epidermal growth factor receptor (EGFR) activity in mediating renal cyst formation and biliary ductal ectasia (BDE) in murine models of autosomal-recessive polycystic kidney disease (ARPKD) such as the BPK mouse. The current study was designed to determine (1). if treatment with a second-generation inhibitor of EGFR tyrosine kinase activity, EKB-569, was effective in treatment of ARPKD; (2). if tyrosine kinase inhibitor therapy used in combination with pharmacologic reduction of the availability of transforming growth factor-alpha (TGF-alpha), using WTACE2, could provide improved therapeutic efficacy and/or decrease potential toxicity; and (3). if effectiveness of treatment could be monitored noninvasively in murine ARPKD models by use of serial ultrasonography. METHODS BPK litters were treated with EKB-569 by intraperitoneal injection from postnatal day 7 to postnatal day 21. EKB-569's effectiveness alone or in combination with WTACE2 was measured by reduction in kidney weight/body weight ratios, morphometric renal cystic index, and evaluation of renal function. Renal ultrasound was performed on normal and cystic animals, under different therapeutic regimens, utilizing a 15 mHz linear array transducer, and ultrasound data were compared with histology and renal functional data. RESULTS Treatment of BPK mice with EKB-569 alone resulted in a marked reduction of kidney weight/body weight ratios, dramatically reduced collecting tubule cystic index, as well as BDE, and improved renal function. The combined treatment with EKB-569 and WTACE2 permitted a 67% reduction in EKB-569 dosage necessary to achieve results equivalent to those produced with EKB-569 alone. Untreated cystic animals died of renal failure, on average, at postnatal day 24 with a collecting tubule cystic index of 4.8, significant BDE, and maximal urine osmolarity of 361 mOsm. Cystic animals treated with EKB-569 and WTACE2 to postnatal day 21 were alive and well with normal renal function, a reduced collecting tubule cystic index of 1.7 (P < 0.02), improvement in BDE, and a threefold increase in maximum urinary concentrating ability (P < 0.01). Renal ultrasound could reliably detect cystic kidneys as early as postnatal day 7 and the natural history as well as effects of therapeutic intervention were clearly delineated by ultrasound evaluation. CONCLUSION This study demonstrates that in murine ARPKD (1). EKB-569 is as effective as first-generation EGFR tyrosine kinase inhibitors in reducing cyst formation and preserving renal function; (2). combination therapy with EKB-569 and WTACE2 provides maximum efficacy in improving renal and biliary abnormalities, at lower doses, thereby minimizing potential toxicity; and (3). renal ultrasound provides a simple, reliable, noninvasive method of following natural history and effect of treatment regimens.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6003, USA
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Diseases of the bile ducts encompass a wide range of disorders. These include those disorders primarily affecting extra and intrahepatic bile ducts and those that may be classified as panbiliary. The major heritable bile duct disorders are those affecting the intrahepatic ducts, namely syndromic bile duct paucity, or Alagille syndrome, and the fibrocystic cholangiopathies autosomal recessive polycystic kidney disease/congenital hepatic fibrosis, and autosomal dominant polycystic kidney disease. This discussion focuses on heritable disorders of the bile ducts.
Collapse
Affiliation(s)
- Binita M Kamath
- Division of Gastroenterology and Nutrition, University of Pennsylvania School of Medicine, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
245
|
Loghman-Adham M, Nauli SM, Soto CE, Kariuki B, Zhou J. Immortalized epithelial cells from human autosomal dominant polycystic kidney cysts. Am J Physiol Renal Physiol 2003; 285:F397-412. [PMID: 12734101 DOI: 10.1152/ajprenal.00310.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the result of mutations in one allele of the PKD1 or PKD2 genes, followed by "second hit" somatic mutations of the other allele in renal tubule cells. Continued proliferation of clonal cells originating from different nephron segments leads to cyst formation. In vitro studies of the mechanisms of cyst formation have been hampered by the scarcity of nephrectomy specimens and the limited life span of cyst-derived cells in primary culture. We describe the development of a series of immortalized epithelial cell lines from over 30 individual renal cysts obtained from 11 patients with ADPKD. The cells were immortalized with either wild-type (WT) or temperature-sensitive (TS) recombinant adeno-simian virus (SV)40 viruses. SV40 DNA integration into the cell genome was verified by PCR analysis. The cells have been passaged over 50 times with no apparent phenotypic change. By light microscopy, the cells appear pleomorphic but mostly polygonal and resemble the primary cultures. Transmission electron microscopy shows polarized epithelia with tight junctions. The SV40 large T antigen was detected by immunocytochemistry and by Western blot analysis at 37 degrees C in the WT cell lines and at 33 degrees C in the TS cell lines. It disappeared in TS cells 72 h following transfer to 39 degrees C. The majority (29) of the cell lines show binding of Dolichos biflorus lectin, suggesting distal tubule origin. Three cell lines show binding of Lotus tetragonolobus lectin or express aminopeptidase N, suggesting proximal tubule origin. Three cell lines were derived from a mixture of cysts and express features of both tubules. The PKD1 and PKD2 mRNA and protein were detected in all cells by RT-PCR and by immunocytochemistry. The majority of the cells tested also express the epidermal growth factor receptor, cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and renin. These new series of cyst-derived cell lines represent useful and readily available in vitro models for studying the cellular and molecular biology of ADPKD.
Collapse
Affiliation(s)
- Mahmoud Loghman-Adham
- Department of Pediatrics and Pediatric Research Institute, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | |
Collapse
|
246
|
Orellana SA, Quinoñes AM, Mandapat ML. Ezrin distribution is abnormal in principal cells from a murine model of autosomal recessive polycystic kidney disease. Pediatr Res 2003; 54:406-12. [PMID: 12840161 DOI: 10.1203/01.pdr.0000077480.82519.e1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abnormalities in cell proliferation and intracellular signaling are features of inherited human and murine polycystic kidney diseases (PKD), regardless of the primary genetic defects. Loss of protein kinase A regulation of cell proliferation has been reported in the murine C57BL/6JCys1cpk-/- (cpk) model of autosomal recessive PKD. Qualitative differences in protein kinase A subunit distribution were observed between filter-grown cultures of noncystic- (C57BL/6J mice) and cystic cpk-derived principal cells. It was hypothesized that protein kinase A subunit distribution differences were mediated by differences in A-kinase anchoring protein (AKAP) expression, so expression of four AKAPs was examined in filter-grown cultures of primary murine cystic- and noncystic-derived principal cells. AKAP-KL expression was ambiguous, but mAKAP, AKAP95, and ezrin were expressed at expected molecular sizes and cellular locations in noncystic-derived cells. Perinuclear mAKAP and nuclear AKAP95 were distributed normally in cpk-derived cells. Expression of AKAP95 in cystic epithelium was diminished relative to controls, and ezrin expression was modestly decreased and abnormally distributed within a region near the apical surface. Qualitative differences were observed in ezrin location in response to medium change or stimulation with epidermal growth factor which suggested cell-specific differences may result from the cpk mutation or the abnormal epidermal growth factor receptor phenotype that characterizes PKD. Ezrin has been implicated in tubulogenesis, so altered ezrin expression or function could be disruptive. If PKD mutations that contribute to PKD pathogenesis are postulated to disrupt normal tubular development, perhaps the mechanism includes altered ezrin function and abnormal protein kinase A targeting.
Collapse
Affiliation(s)
- Stephanie A Orellana
- Department of Pediatrics, Case Western Reserve University School of Medicine and the Rainbow Center for Childhood PKD, Rainbow Babies and Children's Hospital, University Hospitals of Cleveland, Research Institute, OH 44106-6003, USA.
| | | | | |
Collapse
|
247
|
Abstract
Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, 421 Curie Boulevard, 847 BRB II/III, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
248
|
Lumiaho A, Pihlajamäki J, Hartikainen J, Ikäheimo R, Miettinen R, Niemitukia L, Lampainen E, Laakso M. Insulin resistance is related to left ventricular hypertrophy in patients with polycystic kidney disease type 1. Am J Kidney Dis 2003; 41:1219-24. [PMID: 12776274 DOI: 10.1016/s0272-6386(03)00354-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is common in patients with autosomal dominant polycystic kidney disease (ADPKD). Although insulin resistance contributes to cardiac hypertrophy, the relationship between insulin resistance and LVH in patients with ADPKD has not been previously studied. METHODS We performed M-mode and color Doppler echocardiography on 176 family members (106 patients and 70 healthy relatives) from 16 families with polycystic kidney disease type 1 (PKD1). Left ventricular mass index (LVMI) was calculated using the Penn equation and corrected for body surface area. Fasting insulin and glucose concentrations were measured and insulin resistance was evaluated by means of the homeostasis model assessment. RESULTS In multivariate regression analysis, insulin resistance was significantly associated with LVMI in healthy relatives (P < 0.01) and patients with PKD1 (P < 0.05) independent of age, weight, systolic blood pressure, and albuminuria. CONCLUSION Insulin resistance is associated with LVMI in patients with PKD1 independently of other factors known to increase LVMI.
Collapse
MESH Headings
- Adult
- Albuminuria/etiology
- Blood Glucose/analysis
- Blood Pressure
- Echocardiography
- Echocardiography, Doppler, Color
- Family Health
- Female
- Humans
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Insulin Resistance/genetics
- Male
- Polycystic Kidney, Autosomal Dominant/complications
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
Collapse
Affiliation(s)
- Anne Lumiaho
- Department of Medicine, Kuopio University Hospital; Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Junker K. [Molecular diagnostics of renal diseases with underlying genetic predisposition]. Urologe A 2003; 42:624-33. [PMID: 12750797 DOI: 10.1007/s00120-003-0348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The genetic basis for dysplasia and tumors of the kidney has increasingly become the subject of cytogenetic and molecular genetic investigations over the last decade. For that reason, it is now possible to define the risk of disease recurrence more precisely in families with kidney diseases caused by genetic alterations. The relevant genes and the mutations have been identified for most of these diseases and genetic diagnostics are possible. However, it is necessary to evaluate in each individual case whether genetic diagnostics are reasonable. This will be discussed for polycystic renal diseases, agenesis and dysplasia of the kidney, and hereditary kidney tumors.
Collapse
Affiliation(s)
- K Junker
- Molekularbiologisches Labor, Klinik für Urologie, FSU, Jena.
| |
Collapse
|
250
|
Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J. Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 2003; 23:2600-7. [PMID: 12640140 PMCID: PMC150742 DOI: 10.1128/mcb.23.7.2600-2607.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in polycystin 2 (PC2), a Ca(2+)-permeable cation channel, cause autosomal dominant polycystic kidney disease. Whether PC2 functions in the endoplasmic reticulum (ER) or in the plasma membrane has been controversial. Here we generated and characterized a polyclonal antibody against PC2, determined the subcellular localization of both endogenous and transfected PC2 by immunohistochemistry and biotinylation of cell surface proteins, and assessed PC2 channel properties with electrophysiology. Endogenous PC2 was found in the plasma membrane and the primary cilium of mouse inner medullar collecting duct (IMCD) cells and Madin-Darby canine kidney (MDCK) cells, whereas heterologously expressed PC2 showed a predominant ER localization. Patch-clamping of IMCD cells expressing endogenous or heterologous PC2 confirmed the presence of the channel on the plasma membrane. Treatment with chaperone-like factors facilitated the translocation of the PC2 channel to the plasma membrane from intracellular pools. The unitary conductances, channel kinetics, and other characteristics of both endogenously and heterologously expressed PC2 were similar to those described in our previous study in Xenopus laevis oocytes. These results show that PC2 functions as a plasma membrane channel in renal epithelia and suggest that PC2 contributes to Ca(2+) entry and transport of other cations in defined nephron segments in vivo.
Collapse
Affiliation(s)
- Ying Luo
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|