201
|
Abstract
Several studies have shown that neurons in the central and peripheral nervous systems express a variety of chemokine receptors (CKRs). Activation of these receptors can influence neuronal signaling by regulating synaptic transmission and neuronal excitability. This article presents electrophysiological methods that are currently used to study the normal and pathophysiological role for CKRs in the nervous system. Conventional electrophysiological methods such as patch-clamp recording of isolated neurons, brain slices, and heterologous expression systems are described. In addition, single-cell reverse transcription-polymerase chain reaction is discussed as a technique that can be used in conjunction with patch-clamp recording to further investigate the molecular basis of neuronal CKR activation.
Collapse
Affiliation(s)
- Seog Bae Oh
- Department of Molecular Pharmacology and Biology Chemistry, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
202
|
Yu B, Liu J, Overstreet DH, Gallagher JP. Serotonin produces an enhanced outward current recorded at rat dorsal lateral septal neurons from the Flinders Sensitive Line of rats, a genetically-selected animal model of depression. Neurosci Lett 2003; 339:235-8. [PMID: 12633896 DOI: 10.1016/s0304-3940(03)00012-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Abnormalities in serotonin (5-HT), serotonin receptors, and serotonergic neurons have been reported in studies of brains from patients diagnosed clinically with depression. In this study, we examined a known cellular function of 5-HT(1A) receptor activation in dorsolateral septal nucleus (DLSN) neurons, namely, a concentration dependent 5-HT-induced outward current, and compared basic neuronal membrane properties and activities of DLSN neurons from two known genetic lines of rats. As compared to "control" rats (Flinders Resistant Line, FRL), DLSN neurons from Flinders Sensitive Line of rats (FSL) did not exhibit significant differences in resting membrane potential, membrane input resistance, or changes in typical spontaneous inhibitory or excitatory post-synaptic currents. FSL-rats exhibit a depressive phenotype and have been suggested to be rats with a genetic susceptibility to exhibit depressive behaviors. Exogenous application of 5-HT resulted in expected concentration-dependent outward currents; however, the amplitudes of these currents were enhanced significantly in 50% of DLSN neurons recorded from FSL rats compared to similar results recorded from FRL rats. Our results suggest that within a particular population of DLSN neurons from rats exhibiting a known phenotype of depression a post-synaptic 5-HT(1A) receptor is functionally hyper-responsive compared to controls.
Collapse
Affiliation(s)
- Baojian Yu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 300 University Boulevard, Galveston, TX 77555-1031, USA
| | | | | | | |
Collapse
|
203
|
Wang H, Cai H. Modulation of presynaptic nAChRs on postsynaptic GABA receptor in optic tectum of juvenileXenopus. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
204
|
Heyward PM, Shipley MT. A device for automated control of pipette internal pressure for patch-clamp recording. J Neurosci Methods 2003; 123:109-15. [PMID: 12581854 DOI: 10.1016/s0165-0270(02)00342-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Formation of a high-resistance seal between the tip of a glass recording pipette and the membrane of the recorded cell is the crucial step in patch clamping, or whole cell recording with patch pipettes. Formation of the seal, and subsequent rupture of the membrane for whole cell recording, requires a specific sequence of changes in pipette internal hydrostatic pressure. Generating this sequence of pressure changes adds to the complexity of setting up, gaining proficiency, and performing experiments. Automation of routine pipette pressure manipulations would simplify seal formation, and benefit productivity. Here we describe a device that automates control of patch pipette internal pressure. Solenoid valves sequentially operated by manual switching, or external electronic control, automatically provide the necessary sequence of connections to the pipette interior. This greatly simplifies the operations performed to obtain membrane seals and whole cell recordings and improves standardization and reproducibility in patch recording.
Collapse
Affiliation(s)
- Philip M Heyward
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 685 W Baltimore St, Baltimore, MD 21201, USA.
| | | |
Collapse
|
205
|
Pavlovsky L, Browne RO, Friedman A. Pyridostigmine enhances glutamatergic transmission in hippocampal CA1 neurons. Exp Neurol 2003; 179:181-7. [PMID: 12618125 DOI: 10.1016/s0014-4886(02)00016-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pyridostigmine, a carbamate acetylcholinesterase (AChE) inhibitor, is routinely employed in the treatment of the autoimmune disease myasthenia gravis. Due to its positively charged ammonium group, under normal conditions pyridostigmine cannot cross the blood-brain barrier (BBB) and penetrate the brain. However, several studies have suggested that under conditions in which the BBB is disrupted, pyridostigmine enters the brain, changes cortical excitability, and leads to long-lasting alterations in gene expression. The aim of this study was to characterize the mechanisms underlying pyridostigmine-induced changes in the excitability of central neurons. Using whole cell intracellular recordings in hippocampal neurons we show that pyridostigmine decreases repetitive firing adaptation and increases the appearance of excitatory postsynaptic potentials. In voltage clamp recordings, both pyridostigmine and acetylcholine (ACh) increased the frequency but not the amplitude of excitatory postsynaptic currents. These effects were reversible upon the administration of the muscarinic receptor antagonist, atropine, and were not blocked by tetrodotoxin. We conclude that pyridostigmine, by increasing free ACh levels, causes muscarinic-dependent enhancement of excitatory transmission. This mechanism may explain central side effects previously attributed to this drug as well as the potency of AChE inhibitors, including nerve-gas agents and organophosphate pesticides, in the initiation of cortical synchronization, epileptic discharge, and excitotoxic damage.
Collapse
Affiliation(s)
- Lev Pavlovsky
- Department of Physiology, Soroka University Medical Center, Ben-Gurion University and Zlotowski Center of Neuroscience, Beersheva, Israel
| | | | | |
Collapse
|
206
|
Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003. [PMID: 12514201 DOI: 10.1523/jneurosci.23-01-00052.2003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pain has a strong emotional-affective dimension, and the amygdala plays a key role in emotionality. Mechanisms of pain-related changes in the amygdala were studied at the cellular and molecular levels in a model of arthritis pain. The influence of the arthritic condition induced in vivo on synaptic transmission and group I metabotropic glutamate receptor (mGluR1 and mGluR5) function was examined in vitro using whole-cell voltage-clamp recordings of neurons in the central nucleus of the amygdala (CeA). G-protein-coupled mGluRs are implicated in various forms of neuroplasticity as well as in neurological and psychiatric disorders. Synaptic transmission was evoked by electrical stimulation of afferents from the basolateral amygdala (BLA) and the pontine parabrachial (PB) area in brain slices from control (untreated or saline-injected) rats and from arthritic rats. This study shows enhanced synaptic transmission of nociceptive-specific inputs (PB-->CeA synapse) and polymodal sensory inputs (BLA-->CeA synapse) in the arthritis model. CeA neurons from arthritic rats also developed increased excitability compared with control CeA neurons. Synaptic plasticity in the CeA was accompanied by increased presynaptic mGluR1 function and upregulation of mGluR1 and mGluR5. A selective mGluR1 antagonist reduced transmission in CeA neurons from arthritic animals but not in control neurons, and increased levels of mGluR1 and mGluR5 protein were measured in the CeA of arthritic rats compared with controls. Our results show that plastic changes in the amygdala in an arthritis model that produces prolonged pain involve a critical switch of presynaptic mGluR1 expression and function.
Collapse
|
207
|
Shin DSH, Buck LT. Effect of anoxia and pharmacological anoxia on whole-cell NMDA receptor currents in cortical neurons from the western painted turtle. Physiol Biochem Zool 2003; 76:41-51. [PMID: 12695985 DOI: 10.1086/374274] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2002] [Indexed: 11/04/2022]
Abstract
The mammalian brain undergoes rapid cell death during anoxia that is characterized by uncontrolled Ca(2+) entry via N-methyl-D-aspartate receptors (NMDARs). In contrast, the western painted turtle is extremely anoxia tolerant and maintains close-to-normal [Ca(2+)](i) during periods of anoxia lasting from days to months. A plausible mechanism of anoxic survival in turtle neurons is the regulation of NMDARs to prevent excitotoxic Ca(2+) injury. However, studies using metabolic inhibitors such as cyanide (NaCN) as a convenient method to induce anoxia may not represent a true anoxic stress. This study was undertaken to determine whether turtle cortical neuron whole-cell NMDAR currents respond similarly to true anoxia with N(2) and to NaCN-induced anoxia. Whole-cell NMDAR currents were measured during a control N(2)-induced anoxic transition and a control NaCN-induced transition. During anoxia with N(2) normalized, NMDAR currents decreased to 35.3%+/-10.8% of control values. Two different NMDAR current responses were observed during NaCN-induced anoxia: one resulted in a 172%+/-51% increase in NMDAR currents, and the other was a decrease to 48%+/-14% of control. When responses were correlated to the two major neuronal subtypes under study, we found that stellate neurons responded to NaCN treatment with a decrease in NMDAR current, while pyramidal neurons exhibited both increases and decreases. Our results show that whole-cell NMDAR currents respond differently to NaCN-induced anoxia than to the more physiologically relevant anoxia with N(2).
Collapse
Affiliation(s)
- Damian Seung-Ho Shin
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|
208
|
Shin DSH, Ghai H, Cain SW, Buck LT. Gap junctions do not underlie changes in whole-cell conductance in anoxic turtle brain. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:181-94. [PMID: 12507621 DOI: 10.1016/s1095-6433(02)00242-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An acute reduction in cell membrane permeability could provide an effective strategy to prolong anoxic survival. A previous study has shown that in the western painted turtle whole-cell neuronal conductance (G(w)) decreases during anoxia, which may be mediated by the activation of adenosine A(1) receptors and calcium. Reduction in G(w) is thought to be the result of ion channel closure, but closure of gap junctions could also be responsible for this phenomenon. In our study, antibody staining of connexin 32 and 43 (Cx32 and Cx43) suggested the presence of gap junctional components in the turtle cortex. To examine if gap junctions were involved in the previously measured anoxic decrease in G(w), neuronal connectivity was assessed through the measurement of whole-cell capacitance (C(w)). Turtle cortical sheets were perfused with normoxic (95%O(2)/5%CO(2)), anoxic (95%N(2)/5%CO(2)), high calcium (4 mM) and adenosine (200 microm) artificial cerebral spinal fluid (aCSF). No significant change in C(w) was observed under any of the above conditions. However, during hypo-osmotic aCSF perfusion C(w) decreased significantly, with the lowest value of 50+/-10.4 pF (P<0.05) occurring at 30 min. To visualize changes in gap junction permeability lucifer yellow was loaded into turtle neurons during normoxic, anoxic, 0 calcium, hypo-osmotic, cold shock, (+)-isoproterenol, nitric oxide donor S-nitoso-acetyl penicillamine, and 8-bromo-guanosine 3',5'-cyclic monophosphate aCSF perfusion. Dye propagation was only observed in 3 of 20 cold shock experiments (4 degrees C). We conclude that gap junctions are not involved in the acute reduction in G(w) previously observed during anoxia and that our results support the hypothesis that ion channel arrest is involved.
Collapse
Affiliation(s)
- Damian Seung-ho Shin
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ont, Canada M5S 3G5
| | | | | | | |
Collapse
|
209
|
Chapman DE, Keefe KA, Wilcox KS. Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. J Neurophysiol 2003; 89:69-80. [PMID: 12522160 DOI: 10.1152/jn.00342.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are comprised of different subunits. NR2 subunits confer different pharmacological and biophysical properties to NMDARs. Although NR2B subunit expression is uniform throughout striatum, NR2A subunit expression is greater laterally. Pharmacologically isolated NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs) were elicited using minimal local stimulation and recorded in the whole cell configuration to test the hypothesis that biophysical and pharmacological properties of NMDAR-EPSCs of striatal neurons would vary as a function of their location in adult rat striatum. We observed that the decay-time kinetics of NMDAR-EPSCs are significantly slower in neurons of ventromedial versus dorsolateral striatum. Whereas ifenprodil did not differentially affect NMDAR-EPSCs in these regions, application of either glycine or D-serine increased the peak current of NMDAR-EPSCs selectively in dorsolateral striatum. These data provide evidence for functionally distinct NMDARs in the same neuron type in the same brain region of the adult rodent brain. These data thus suggest that the nature of synaptic processing of excitatory input is different in the ventromedial and dorsolateral striatum of the adult rodent brain, regions differentially involved in limbic versus sensorimotor processes, respectively.
Collapse
Affiliation(s)
- David E Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
210
|
Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci 2002. [PMID: 12451119 DOI: 10.1523/jneurosci.22-23-10182.2002] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous cannabinoids (endocannabinoids) are endogenous compounds that resemble the active ingredient of marijuana and activate the cannabinoid receptor in the brain. They mediate retrograde signaling from principal cells to both inhibitory ["depolarization-induced suppression of inhibition" (DSI)] and excitatory ("depolarization-induced suppression of excitation") afferent fibers. Transient endocannabinoid release is triggered by voltage-dependent Ca(2+) influx and is upregulated by group I metabotropic glutamate receptor activation. Here we show that muscarinic acetylcholine receptor (mAChR) activation also enhances transient endocannabinoid release (DSI) and induces persistent release. Inhibitory synapses in the rat hippocampal CA1 region of acute slices were studied using whole-cell patch-clamp techniques. We found that low concentrations (0.2-0.5 microm) of carbachol (CCh) enhanced DSI without affecting basal evoked IPSCs (eIPSCs) by activating mAChRs on postsynaptic cells. Higher concentrations of CCh (> or =1 microm) enhanced DSI and also persistently depressed basal eIPSCs, mainly by releasing endocannabinoids. Persistent CCh-induced endocannabinoid release did not require an increase in [Ca2+]i but was dependent on G-proteins. Although they were independent at the receptor level, muscarinic and glutamatergic mechanisms of endocannabinoid release shared intracellular machinery. Replication of the effects of CCh by blocking acetylcholinesterase with eserine suggests that mAChR-mediated endocannabinoid release is physiologically relevant. This study reveals a new role of the muscarinic cholinergic system in mammalian brain.
Collapse
|
211
|
Vaillend C, Mason SE, Cuttle MF, Alger BE. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region. J Neurophysiol 2002; 88:2963-78. [PMID: 12466422 DOI: 10.1152/jn.00244.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extra- and intracellular records were made from rat acute hippocampal slices to examine the effects of partial inhibition of Na(+)-K(+)-ATPases (Na(+)-K(+) pumps) on neuronal hyperexcitability. Bath application of the low-affinity cardiac glycoside, dihydroouabain (DHO), reversibly induced interictal-like epileptiform bursting activity in the CA1 region. Burst-firing was correlated with inhibition of the pumps, which was assayed by changes in [K(+)](o) uptake rates measured with K(+)-ion-sensitive microelectrodes. Large increases in resting [K(+)](o) did not occur. DHO induced a transient depolarization (5-6 mV) followed by a long-lasting hyperpolarization (approximately 6 mV) in CA1 pyramidal neurons, which was accompanied by a 30% decrease in resting input resistance. Block of an electrogenic pump current could explain the depolarization but not the hyperpolarization of the membrane. Increasing [K(+)](o) from 3 to 5.5 mM minimized these transient shifts in passive membrane properties without preventing DHO-induced hyperexcitability. DHO decreased synaptic transmission, but increased the coupling between excitatory postsynaptic potentials and spike firing (E-S coupling). Monosynaptic inhibitory postsynaptic potential (IPSP) amplitudes declined to approximately 25% of control at the peak of bursting activity; however, miniature TTX-resistant inhibitory postsynaptic current amplitudes were unaffected. DHO also reduced the initial slope of the intracellular excitatory postsynaptic potential (EPSP) to approximately 40% of control. The conductances of pharmacologically isolated IPSPs and EPSPs in high-Ca/high-Mg-containing saline were also reduced by DHO by approximately 50%. The extracellular fiber volley amplitude was reduced by 15-20%, suggesting that the decrease in neurotransmission was partly due to a reduction in presynaptic fiber excitability. DHO enhanced a late depolarizing potential that was superimposed on the EPSP and could obscure it. This potential was not blocked by antagonists of NMDA receptors, and blockade of NMDA, mGlu, or GABA(A) receptors did not affect burst firing. The late depolarizing component enabled the pyramidal cells to reach spike threshold without changing the actual voltage threshold for firing. We conclude that reduced GABAergic potentials and enhanced E-S coupling are the primary mechanisms underlying the hyperexcitability associated with impaired Na(+)-K(+) pump activity.
Collapse
Affiliation(s)
- Cyrille Vaillend
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
212
|
Kohn A, Metz C, Tommerdahl MA, Whitsel BL. Stimulus-evoked modulation of sensorimotor pyramidal neuron EPSPs. J Neurophysiol 2002; 88:3331-47. [PMID: 12466450 DOI: 10.1152/jn.01012.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory cortical neurons display substantial receptive field dynamics during and after persistent sensory drive. Because a cell's response properties are determined by the inputs it receives, receptive field dynamics are likely to involve changes in the relative efficacy of different inputs to the cell. To test this hypothesis, we have investigated if brief repetitive stimulus drive in vitro alters the efficacy of two types of corticocortical inputs to layer V pyramidal cells. Specifically, we have used whole cell recordings to measure the effect of repetitive electrical stimulation at the layer VI/white matter (WM) border on the synaptic response of layer V pyramidal cells to corticocortical input evoked by electrical stimulation of layer I or layer II/III and emulated by local application of glutamate. Repetitive stimulation (10 Hz for 3 s) at the layer VI/WM border transiently potentiated excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of layer II/III by 97 +/- 12% (mean +/- SE). The recovery of EPSP amplitude to its preconditioning value was well-described by a single-term decaying exponential with a time constant of 7.2 s. The same layer VI/WM conditioning train that evoked layer II/III EPSP potentiation frequently caused an attenuation of layer I EPSPs. Similarly, subthreshold postsynaptic responses to local glutamate application in layers II/III and I were potentiated and attenuated, respectively, by the conditioning stimulus. Potentiation and attenuation could be evoked in the same cell by repositioning the glutamate puffer pipette in the appropriate layer. The conditioning stimulus that led to the transient modification of upper layer EPSP efficacy also evoked a slow depolarization in glial cells. The membrane potential of glial cells recovered with a time course similar to the dissipation of the potentiation effect, suggesting that stimulus-evoked changes in extracellular potassium (ECK) play a role in layer II/III EPSP potentiation. Consistent with this proposal, increasing the bath concentration of ECK caused a substantial increase of layer II/III EPSP amplitude. EPSP potentiation was sensitive to postsynaptic membrane potential and, more importantly, was significantly weaker for synaptic currents than for synaptic potentials, suggesting that it involves the recruitment of a postsynaptic voltage-dependent mechanism. Two observations suggest that layer II/III EPSP potentiation may involve the recruitment of postsynaptic sodium channels: EPSP potentiation was strongly reduced by intracellular application of N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide (QX-314) and responses to local glutamate application were potentiated by high ECK in the presence of cadmium but not in the presence of tetrodotoxin. The results demonstrate a novel way in which brief periods of repetitive stimulus drive are accompanied by rapid, transient, and specific alterations in the functional connectivity and information processing characteristics of sensorimotor cortex.
Collapse
Affiliation(s)
- Adam Kohn
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
213
|
Zhang L, Warren RA. Muscarinic and nicotinic presynaptic modulation of EPSCs in the nucleus accumbens during postnatal development. J Neurophysiol 2002; 88:3315-30. [PMID: 12466449 DOI: 10.1152/jn.01025.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the modulatory effects of cholinergic agonists on excitatory postsynaptic currents (EPSCs) in nucleus accumbens (nAcb) neurons during postnatal development. Recordings were obtained in slices from postnatal day 1 (P1) to P27 rats using the whole cell patch-clamp technique. EPSCs were evoked by local electrical stimulation, and all experiments were conducted in the presence of bicuculline methchloride in the bathing medium and with QX-314 in the recording pipette. Under these conditions, postsynaptic currents consisted of glutamatergic EPSCs typically consisting of two components mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcholine (ACh) or carbachol (CCh) to the superfusing medium resulted in a decrease of 30-60% of both AMPA/KA- and NMDA-mediated EPSCs. In contrast, ACh produced an increase ( approximately 35%) in both AMPA/KA and NMDA receptor-mediated EPSCs when administered in the presence of the muscarinic antagonist atropine. These excitatory effects were mimicked by the nicotinic receptor agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic receptor antagonist mecamylamine, showing the presence of a cholinergic modulation mediated by nicotinic receptors in the nAcb. The antagonistic effects of atropine were mimicked by pirenzepine, suggesting that the muscarinic depression of the EPSCs was mediated by M(1)/M(4) receptors. In addition, the inhibitory effects of ACh on NMDA but not on AMPA/KA receptor-mediated EPSC significantly increased during the first two postnatal weeks. We found that, under our experimental conditions, cholinergic agonists produced no changes on membrane holding currents, on the decay time of the AMPA/KA EPSC, or on responses evoked by exogenous application of glutamate in the presence of tetrodotoxin, but they produced significant changes in paired pulse ratio, suggesting that their action was mediated by presynaptic mechanisms. In contrast, CCh produced consistent changes in the membrane and firing properties of medium spiny (MS) neurons when QX-314 was omitted from the recording pipette solution, suggesting that this substance actually blocked postsynaptic cholinergic modulation. Together, these results suggest that ACh can decrease or increase glutamatergic neurotransmission in the nAcb by, respectively, acting on muscarinic and nicotinic receptors located on excitatory terminals. The cholinergic modulation of AMPA/KA and NMDA receptor-mediated neurotransmission in the nAcb during postnatal development could play an important role in activity-dependent developmental processes in refining the excitatory drive on MS neurons by gating specific inputs.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de Recherche Fernand-Seguin, University of Montréal, Montreal, Quebec H1N 3V2, Canada
| | | |
Collapse
|
214
|
Pedarzani P, D'hoedt D, Doorty KB, Wadsworth JDF, Joseph JS, Jeyaseelan K, Kini RM, Gadre SV, Sapatnekar SM, Stocker M, Strong PN. Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J Biol Chem 2002; 277:46101-9. [PMID: 12239213 DOI: 10.1074/jbc.m206465200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biophysical properties of small conductance Ca(2+)-activated K(+) (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I(AHP) and the Ca(2+)-activated K(+) channels mediating the slow I(AHP) (sI(AHP)) in hippocampal neurons. Compared with related scorpion toxins, tamapin displayed a unique, remarkable selectivity for SK2 versus SK1 ( approximately 1750-fold) and SK3 ( approximately 70-fold) channels and is the most potent SK2 channel blocker characterized so far (IC(50) for SK2 channels = 24 pm). Tamapin will facilitate the characterization of the subunit composition of native SK channels and help determine their involvement in electrical and biochemical signaling.
Collapse
Affiliation(s)
- Paola Pedarzani
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Ishida Y, Nakahara D, Hashiguchi H, Nakamura M, Ebihara K, Takeda R, Nishimori T, Niki H. Fos expression in GABAergic cells and cells immunopositive for NMDA receptors in the inferior and superior colliculi following audiogenic seizures in rats. Synapse 2002; 46:100-7. [PMID: 12211088 DOI: 10.1002/syn.10129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Given the evidence that the inferior colliculus (IC) and superior colliculus (SC) seem to play key roles in connecting auditory pathways and seizure output pathways in the neuronal network for audiogenic seizures (AS) in rats, we examined Fos activation in GABAergic cells and cells immunopositive for glutamate N-methyl-D-aspartate (NMDA) receptors in the IC and SC following AS using the double-labeling procedure. Generalized tonic-clonic seizures (GTCS), which developed as an advanced form of AS in some of the susceptible rats, induced an increase in Fos expression in three IC substructures-the dorsal cortex of IC (DCIC), central nucleus of IC (CIC), and external cortex of IC (ECIC)-and in one SC substructure, the deep gray layer of SC (DpG). Compared with the rats showing GTCS, rats exhibiting wild running (WR) without proceeding to GTCS showed a different pattern of AS-induced Fos expression. The DpG in the WR animals showed no significant increase in the levels of Fos-like immunoreactivity. The degrees of Fos activation that occurred in GABAergic cells and cells immunopositive for NMDA receptors were similar in the DCIC, CIC, ECIC, and DpG following AS. These results suggest that Fos activation in the DpG is involved in the development from WR to GTCS in AS-susceptible rats. They also provide some evidence that some GABAergic neurons in the IC and SC and glutamatergic afferents (via NMDA receptors) to these structures are activated by AS.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Miyazaki Medical College, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Luo M, Perkel DJ. Intrinsic and synaptic properties of neurons in an avian thalamic nucleus during song learning. J Neurophysiol 2002; 88:1903-14. [PMID: 12364516 DOI: 10.1152/jn.2002.88.4.1903] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior forebrain pathway (AFP) of the avian song system is a circuit essential for song learning but not for song production. This pathway consists of a loop serially connecting area X in the basal ganglia, the medial portion of the dorsolateral nucleus of thalamus (DLM), and the pallial lateral magnocellular nucleus of the anterior neostriatum (lMAN). The majority of DLM neurons in adult male zebra finches closely resemble mammalian thalamocortical neurons in both their intrinsic properties and the strong GABAergic inhibitory input they receive from the basal ganglia. These observations support the hypothesis that the AFP and the mammalian basal ganglia-thalamocortical pathway use similar information-processing mechanisms during sensorimotor learning. Our goal was to determine whether the cellular properties of DLM neurons are already established in juvenile birds in the sensorimotor phase of song learning when the AFP is essential. Current- and voltage-clamp recording in DLM of juvenile male zebra finches showed that juvenile DLM has two distinct cell types with intrinsic properties largely similar to those of their respective adult counterparts. Immunostaining for glutamic acid decarboxylase (GAD) in juvenile zebra finches revealed that, as in adults, most area X somata are large and strongly GAD+ and that their terminals in DLM form dense GAD+ baskets around somata. GAD immunoreactivity in DLM was depleted by lesions of area X, indicating that a strong GABAergic projection from area X to DLM is already established in juveniles. Some of the DLM neurons exhibited large, spontaneous GABAergic synaptic events. Stimulation of the afferent pathway evoked an inhibitory postsynaptic potential or current that was blocked by the GABA(A) receptor antagonist bicuculline methiodide. The decay of the GABA(A) receptor-mediated currents was slower in juvenile neurons than in adults. In addition, the reversal potential for these currents in juveniles was significantly more depolarized both than that in adults and than the Cl(-) equilibrium potential; yet the reversal potential was still well below the firing threshold and thus inhibitory in the slice preparation. Our findings suggest that the signal-processing role of DLM during sensorimotor learning is generally similar to that in adulthood but that quantitative changes in synaptic transmission accompany the development of stereotyped song.
Collapse
Affiliation(s)
- Minmin Luo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
217
|
Hallworth R, Cato M, Colbert C, Rea MA. Presynaptic adenosine A1 receptors regulate retinohypothalamic neurotransmission in the hamster suprachiasmatic nucleus. JOURNAL OF NEUROBIOLOGY 2002; 52:230-40. [PMID: 12210106 PMCID: PMC2104795 DOI: 10.1002/neu.10080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine has been implicated as a modulator of retinohypothalamic neurotransmission in the suprachiasmatic nucleus (SCN), the seat of the light-entrainable circadian clock in mammals. Intracellular recordings were made from SCN neurons in slices of hamster hypothalamus using the in situ whole-cell patch clamp method. A monosynaptic, glutamatergic, excitatory postsynaptic current (EPSC) was evoked by stimulation of the optic nerve. The EPSC was blocked by bath application of the adenosine A(1) receptor agonist cyclohexyladenosine (CHA) in a dose-dependent manner with a half-maximal concentration of 1.7 microM. The block of EPSC amplitude by CHA was antagonized by concurrent application of the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist CGS21680 was ineffective in attenuating the EPSC at concentrations up to 50 microM. Trains of four consecutive stimuli at 25 ms intervals usually depressed the EPSC amplitude. However, after application of CHA, consecutive responses displayed facilitation of EPSC amplitude. The induction of facilitation by CHA suggested a presynaptic mechanism of action. After application of CHA, the frequency of spontaneous EPSCs declined substantially, while their amplitude distribution was unchanged or slightly reduced, again suggesting a mainly presynaptic site of action for CHA. Application of glutamate by brief pressure ejection evoked a long-lasting inward current that was unaffected by CHA at concentrations sufficient to reduce the evoked EPSC amplitude substantially (1 to 5 microM), suggesting that postsynaptic glutamate receptor-gated currents were unaffected by the drug. Taken together, these observations indicate that CHA inhibits optic nerve-evoked EPSCs in SCN neurons by a predominantly presynaptic mechanism.
Collapse
Affiliation(s)
- Richard Hallworth
- Department of Otolaryngology - Head and Neck Surgery, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | |
Collapse
|
218
|
Age-related enhancement of the slow outward calcium-activated potassium current in hippocampal CA1 pyramidal neurons in vitro. J Neurosci 2002. [PMID: 12177218 DOI: 10.1523/jneurosci.22-16-07234.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging is associated with learning deficits and a decrease in neuronal excitability, reflected by an enhanced post-burst afterhyperpolarization (AHP), in CA1 hippocampal pyramidal neurons. To identify the current(s) underlying the AHP altered in aging neurons, whole-cell voltage-clamp recording experiments were performed in hippocampal slices from young and aging rabbits. Similar to previous reports, aging neurons were found to rest at more hyperpolarized potentials and have larger AHPs than young neurons. Given that compounds that reduce the slow outward calcium-activated potassium current (sI(AHP)), a major constituent of the AHP, also facilitate learning in aging animals, the sI(AHP) was pharmacologically isolated and characterized. Aging neurons were found to have an enhanced sI(AHP,) the amplitude of which was significantly correlated to the amplitude of the AHP (r = 0.63; p < 0.001). Thus, an enhanced sI(AHP) contributes to the enhanced AHP in aging. No differences were found in the membrane resistance, capacitance, or kinetic and voltage-dependent properties of the sI(AHP). Because enhanced AHP in aging neurons has been hypothesized to be secondary to an enhanced Ca2+ influx via the voltage-gated L-type Ca2+ channels, we further examined the sI(AHP) in the presence of an L-type Ca2+ channel blocker, nimodipine (10 microm). Nimodipine caused quantitatively greater reductions in the sI(AHP) in aging neurons than in young neurons; however, the residual sI(AHP) was still significantly larger in aging neurons than in young neurons. Our data, in conjunction with previous studies showing a correlation between the AHP and learning, suggest that the enhancement of the sI(AHP) in aging is a mechanism that contributes to age-related learning deficits.
Collapse
|
219
|
Abstract
The traditional view holds that the anterior pituitary is an endocrine gland with a complex and heterogeneous distribution of cells throughout the parenchyma. Thus, a long-distance mode of intraorgan communication is not usually taken into account in our understanding of pituitary functioning. However, recent in situ pituitary studies have begun to unveil a hitherto unknown route of large-scale information transfer within the pituitary. Agranular folliculostellate cells - the sixth type of pituitary cell initially discovered almost half a century ago - are the functional units of a dynamically active cell network wiring the whole gland. Because folliculostellate cells communicate with their endocrine neighbors, this opens the door to considering the pituitary as a cellular puzzle more ordered than was first thought. Hence, cell networking within the pituitary gland could have a privileged role in coordinating the activities of distant cells in both physiological and pathological conditions.
Collapse
|
220
|
Abstract
Peripheral denervation has been shown to cause reorganization of the deafferented somatotopic region in primary somatosensory cortex (S1). However, the basic mechanisms that underlie reorganization are not well understood. In the experiments described in this paper, a novel in vivo/in vitro preparation of adult rat S1 was used to determine changes in local circuit properties associated with the denervation-induced plasticity of the cortical representation in rat S1. In the present studies, deafferentation of rat S1 was induced by cutting the radial and median nerves in the forelimb of adult rats, resulting in a rapid shift of the location of the forepaw/lower jaw border; the amount of the shift increased over the times assayed, through 28 days after denervation. The locations of both borders (i.e., original and reorganized) were marked with vital dyes, and slices from the marked region were used for whole-cell recording. Responses were evoked using electrical stimulation of supragranular S1 and recorded in supragranular neurons close to either the original or reorganized border. For each neuron, postsynaptic potentials (PSPs) were evoked by stimulation of fibers that crossed the border site (CB stim) and by equivalent stimulation that did not cross (NCB stim). Monosynaptic inhibitory postsynaptic potentials (IPSPs) were also examined after blocking excitatory transmission with 15 microM CNQX plus 100 microM DL-APV. The amplitudes of PSPs and IPSPs were compared between CB and NCB stimulation to quantify effects of the border sites on excitation and inhibition. Previous results using this preparation in the normal (i.e., without induced plasticity) rat S1 demonstrated that at a normal border both PSPs and IPSPs were smaller when evoked with CB stimulation than with NCB stimulation. For most durations of denervation, a similar bias (i.e., smaller responses with CB stimulation) for PSPs and IPSPs was observed at the site of the novel reorganized border, while no such bias was observed at the suppressed original border site. Thus changes in local circuit properties (excitation and inhibition) can reflect larger-scale changes in cortical organization. However, specific dissociations between these local circuit properties and the presence of the novel border at certain durations of denervation were also observed, suggesting that there are several intracortical processes contributing to cortical reorganization over time and that excitation and inhibition may contribute differentially to them.
Collapse
Affiliation(s)
- Peter W Hickmott
- Department of Psychology, University of California, Riverside 92521, USA.
| | | |
Collapse
|
221
|
Varma N, Brager D, Morishita W, Lenz RA, London B, Alger B. Presynaptic factors in the regulation of DSI expression in hippocampus. Neuropharmacology 2002; 43:550-62. [PMID: 12367601 DOI: 10.1016/s0028-3908(02)00168-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied the mechanisms by which GABA release is reduced in the retrograde signaling process called depolarization-induced suppression of inhibition (DSI). DSI is mediated by endocannabinoids in acute and cultured organotypic hippocampal slices. We examined a variety of K(+) channel antagonists to determine the nature of the K(+) channel that, when blocked, reduces DSI. Among 4-AP, TEA, dendrotoxin, Cs, margatoxin, and charybdotoxin, only 4-AP was highly effective in blocking DSI, suggesting that a K(+) channel composed in part of K(V1.4,) K(V1.5) or K(V1.7) subunits can readily regulate DSI. The inhibition of DSI by 4-AP is largely overcome by reducing [Ca(2+)](o), however, suggesting that DSI expression can be prevented by saturation of the release process when a K(V1.X) channel is inhibited. DSI of agatoxin- and TTX-insensitive mIPSCs was unaffected by 4-AP, but was largely occluded by omega-conotoxin GVIA, indicating that block of presynaptic N-type Ca(2+) channels is probably a major mechanism of DSI expression. Significant DSI of mIPSCs remained in omega-conotoxin, hence we infer that block of N-channels does not fully explain hippocampal DSI expression.
Collapse
Affiliation(s)
- Namita Varma
- University of Maryland School of Medicine, Department of Physiology, 655 W. Baltimore St., 21201, USA
| | | | | | | | | | | |
Collapse
|
222
|
Benardete EA, Kriegstein AR. Increased excitability and decreased sensitivity to GABA in an animal model of dysplastic cortex. Epilepsia 2002; 43:970-82. [PMID: 12199722 DOI: 10.1046/j.1528-1157.2002.40901.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Cortical dysplasia (CD) is associated with epilepsy in both the pediatric and adult populations. The mechanism underlying seizures with cortical malformations is still poorly understood. To study the physiology of dysplastic cortex, we developed an experimental model of CD. METHODS Pregnant rats were given intraperitoneal injections of carmustine (1-3-bis-chloroethyl-nitrosourea; BCNU) on embryonic day 15 (E15). Cortical histology was examined in the resulting pups at P0, P28, and P60. In addition, evoked and spontaneous field potential recordings were obtained in cortical slices from adult control and BCNU-exposed rats. Finally, we used whole-cell recordings to compare physiologic properties of pyramidal neurons and gamma-aminobutyric acid (GABA) responses in control and BCNU-treated animals. RESULTS Features characteristic of CD were found in the offspring, including laminar disorganization, cytomegalic neurons, and neuronal heterotopias. Dysplastic cortex also contained abnormal clusters of Cajal-Retzius (CR) cells and disruption of radial glial fibers, as demonstrated with immunohistochemistry. Under conditions of partial GABAA-receptor blockade with 10 microM bicuculline methiodide (BMI), slices of dysplastic cortex demonstrated a significant increase in the number of spontaneous and evoked epileptiform discharges. Individual pyramidal neurons in dysplastic cortex were less sensitive to application of GABA compared with controls. CONCLUSIONS BCNU exposure in utero produces histologic alterations suggestive of CD in rat offspring. Dysplastic cortex from this model demonstrates features of hyperexcitability and decreased neuronal sensitivity to GABA. Such physiologic alterations may underlie the increased epileptogenicity of dysplastic cortex.
Collapse
Affiliation(s)
- Ethan A Benardete
- Department of Neurology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons; and Department of Neurosurgery, NYU Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
223
|
Brecht M, Sakmann B. Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 2002; 543:49-70. [PMID: 12181281 PMCID: PMC2290465 DOI: 10.1113/jphysiol.2002.018465] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Accepted: 05/24/2002] [Indexed: 11/08/2022] Open
Abstract
Whole-cell voltage recordings were made in vivo from excitatory neurons (n = 23) in layer 4 of the barrel cortex in urethane-anaesthetised rats. Their receptive fields (RFs) for a brief whisker deflection were mapped, the position of the cell soma relative to barrel borders was determined for 15 cells and dendritic and axonal arbors were reconstructed for all cells. Three classes of neurons were identified: spiny stellate cells and pyramidal cells located in barrels and pyramidal cells located in septa. Dendritic and, with some exceptions, axonal arborisations of barrel cells were mostly restricted to the borders of a column with a cross sectional area of a barrel, defining a cytoarchitectonic barrel-column. Dendrites and axons of septum cells, in contrast, mostly extended across barrel borders. The subthreshold RFs measured by evoked postsynaptic potentials (PSPs) comprised a principal whisker (PW) and several surround whiskers (SuWs) indicating that deflection of a single whisker is represented in multiple barrels and septa. Barrel cells responded with larger depolarisation to stimulation of the PW (13.7 +/- 4.6 mV (mean +/- S.D.), n = 10) than septum cells (5.7 +/- 2.4 mV, n = 5), the gradient between peak responses to PW and SuW deflection was steeper and the latency of depolarisation onset was shorter (8 +/- 1.4 ms vs. 11 +/- 2 ms). In barrel cells the response onset and the peak to SuW deflection was delayed depending on the distance to the PW thus indicating that the spatial representation of a single whisker deflection in the barrel map is dynamic and varies on the scale of milliseconds to tens of milliseconds. Septum cells responded later and with comparable latencies to PW and SuW stimulation. Spontaneous (0.053 +/- 0.12 action potentials (APs) s(-1)) and evoked APs (0.14 +/- 0.29 APs per principal whisker (PW) stimulus) were sparse. We conclude that PSPs in ensembles of barrel cells represent dynamically the deflection of a single whisker with high temporal and spatial acuity, initially by the excitation in a single PW-barrel followed by multi-barrel excitation. This presumably reflects the divergence of thalamocortical projections to different barrels. Septum cell PSPs preferably represent multiple whisker deflections, but less dynamically and with less spatial acuity.
Collapse
Affiliation(s)
- Michael Brecht
- Abteilung Zellphysiologie, Max-Planck Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
224
|
Lo FS, Erzurumlu RS. L-type calcium channel-mediated plateau potentials in barrelette cells during structural plasticity. J Neurophysiol 2002; 88:794-801. [PMID: 12163531 PMCID: PMC3686508 DOI: 10.1152/jn.2002.88.2.794] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development and maintenance of whisker-specific patterns along the rodent trigeminal pathway depends on an intact sensory periphery during the sensitive/critical period in development. Barrelette cells of the brain stem trigeminal nuclei are the first set of neurons to develop whisker-specific patterns. Those in the principal sensory nucleus (PrV) relay these patterns to the ventrobasal thalamus, and consequently, to the somatosensory cortex. Thus PrV barrelette cells are among the first group of central neurons susceptible to the effects of peripheral damage. Previously we showed that membrane properties of barrelette cells are distinct as early as postnatal day 1 (PND 1) and remain unchanged following peripheral denervation in newborn rat pups (Lo and Erzurumlu 2001). In the present study, we investigated the changes in synaptic transmission. In barrelette cells of normal PND 1 rats, weak stimulation of the trigeminal tract (TrV) that was subthreshold for inducing Na(+) spikes evoked an excitatory postsynaptic potential-inhibitory postsynaptic potential (EPSP-IPSP) sequence that was similar to the responses seen in older rats (Lo et al. 1999). Infraorbital nerve transection at birth did not alter excitatory and inhibitory synaptic connections of the barrelette cells. These observations suggested that local neuronal circuits are already established in PrV at birth and remain intact after deafferentation. Strong stimulation of the TrV induced a sustained depolarization (plateau potential) in denervated but not in normal barrelette neurons. The plateau potential was distinct from the EPSP-IPSP sequence by 1) a sustained (>80 ms) depolarization above -40 mV; 2) a slow decline slope (<0.1 mV/ms); 3) partially or totally inactivated Na(+) spikes on the plateau; and 4) a termination by a steep decay (>1 mV/ms) to a hyperpolarizing membrane level. The plateau potential was mediated by L-type Ca(2+) channels and triggered by a N-methyl-D-aspartate (NMDA) receptor-mediated EPSP. gamma-aminobutyric acid-A (GABA(A)) receptor-mediated IPSP dynamically regulated the latency and duration of the plateau potential. These results indicate that after neonatal peripheral damage, central trigeminal inputs cause a large and long-lasting Ca(2+) influx through L-type Ca(2+) channels in barrelette neurons. Increased Ca(2+) entry may play a key role in injury-induced structural remodeling, and/or transsynaptic cell death.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| | | |
Collapse
|
225
|
Abstract
The neural substrate of vocal learning in songbirds is an accessible system for studying motor learning and motor control in vertebrates. In the so-called song system, the anterior forebrain pathway (AFP), which is essential for song learning, resembles the mammalian basal ganglia-thalamocortical loop in its macroscopic organization, neuronal intrinsic properties, and microcircuitry. Area X, the first station in the AFP, and the surrounding lobus parolfactorius (LPO), are both parts of the avian basal ganglia. Like their mammalian counterparts, they receive dense dopaminergic innervation from the midbrain, but the physiological functions of this projection remain unclear. In this study, we investigated the effect of dopamine (DA) on excitability of spiny neurons in area X and LPO. We recorded from neurons in brain slices of adult zebra finches and Bengalese finches, using whole-cell and perforated-patch recording techniques in current-clamp configuration. We found that DA modulates excitability in spiny neurons; activation of D1- and D2-like DA receptors enhances and reduces excitability, respectively. These effects are similar to those observed in the mammalian neostriatum, with the main difference being that D1-like DA receptor activation enhances excitability in avian spiny neurons at hyperpolarized states. Our findings also indicate that some spiny neurons express both receptor types and suggest that receptor colocalization in the entire population can account for the spectrum of DA actions. The diversity of DA actions enables the DA system to fine-tune the dynamics of the song system and allows flexible control over song learning and production.
Collapse
|
226
|
Min MY, Appenteng K, Yang HW. Role of GABA(B) receptor in the regulation of excitatory synaptic transmission in trigeminal motoneurons. J Biomed Sci 2002; 9:348-58. [PMID: 12145533 DOI: 10.1007/bf02256591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The aim of the present study was to determine if excitatory synaptic transmission onto trigeminal motoneurons is subject to a presynaptic modulation by gamma-aminobutyric acid (GABA) via GABA(B) receptor in this system. Whole cell recordings were made from trigeminal motoneurons in longitudinal brain stem slices taken from 8-day-old rats. Monosynaptic excitatory postsynaptic potential (EPSP) activity was evoked by placing bipolar stainless steel electrodes dorsal-caudal to the trigeminal motor nucleus. Bath application of the GABA(B) receptor agonist, baclofen, produced a marked reduction in the mean amplitude and variance of evoked EPSPs and also increased the portion of transmission failures. It also produced a decrease in the frequency, but not in the mean amplitude, of spontaneous miniature EPSPs. Bath application of GABA(B) receptor antagonists 6-hydroxy-saclofen and CGP35348 increased both the amplitude and frequency of miniature EPSP activity. Taken together the above results suggest that the excitatory synaptic inputs onto trigeminal motoneurons are controlled by tonic presynaptic modulation by GABA(B) receptor.
Collapse
Affiliation(s)
- Ming-Yuan Min
- Department of Physiology, Chinese Medical College, Taichung, Taiwan, ROC.
| | | | | |
Collapse
|
227
|
Affiliation(s)
- B Antkowiak
- Department of Anaesthesiology, University of Tübingen, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
228
|
Staiger JF, Schubert D, Zuschratter W, Kötter R, Luhmann HJ, Zilles K. Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur J Neurosci 2002; 16:11-20. [PMID: 12153527 DOI: 10.1046/j.1460-9568.2002.02048.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical columns contain specific neuronal populations with characteristic sets of connections. This wiring forms the structural basis of dynamic information processing. However, at the single-cell level little is known about specific connectivity patterns. We performed experiments in infragranular layers (V and VI) of rat somatosensory cortex, to clarify further the input patterns of inhibitory interneurons immunoreactive (ir) for vasoactive intestinal polypeptide (VIP). Neurons in acute slices were electrophysiologically characterized using whole-cell recordings and filled with biocytin. This allowed us to determine their firing pattern as regular-spiking, intrinsically bursting and fast-spiking, respectively. Biocytin was revealed histochemically and VIP immunohistochemically. Sections were examined for contacts between the axons of the filled neurons and the VIP-ir targets. Twenty pyramidal cells and five nonpyramidal (inter)neurons were recovered and sufficiently stained for further analysis. Regular-spiking pyramidal cells displayed no axonal boutons in contact with VIP-ir targets. In contrast, intrinsically bursting layer V pyramidal cells showed four putative single contacts with a proximal dendrite of VIP neurons. Fast-spiking interneurons formed contacts with two to six VIP neurons, preferentially at their somata. Single as well as multiple contacts on individual target cells were found. Electron microscopic examinations showed that light-microscopically determined contacts represent sites of synaptic interactions. Our results suggest that, within infragranular local cortical circuits, (i) fast-spiking interneurons are more likely to influence VIP cells than are pyramidal cells and (ii) pyramidal cell input probably needs to be highly convergent to fire VIP target cells.
Collapse
Affiliation(s)
- Jochen F Staiger
- C. and O. Vogt-Institute for Brain Research, University Düsseldorf, POB 101007, D-40001 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
229
|
Goaillard JM, Vincent P. Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5-HT(7) receptors. J Physiol 2002; 541:453-65. [PMID: 12042351 PMCID: PMC2290335 DOI: 10.1113/jphysiol.2001.013896] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
While the highest expression level of 5-HT(7) receptors in the brain is observed in intralaminar and midline thalamic neurones, the physiological role of these receptors in this structure is unknown. In vivo recordings have shown that stimulation of the serotonergic raphe nuclei can alter the response of these neurones to a nociceptive stimulus, suggesting that serotonin modulates their firing properties. Using the patch-clamp technique in rat thalamic brain slices, we demonstrate that activation of 5-HT(7) receptors can strongly modulate the excitability of intralaminar and midline thalamic neurones by inhibiting the calcium-activated potassium conductance that is responsible for the slow afterhyperpolarization (sAHP) following a spike discharge. This sAHP was inhibited after activation of the cAMP pathway, either by bath application of forskolin or intracellular perfusion with 8-bromo-cAMP. The inhibitory effect of 5-HT(7) receptors on sAHPs was blocked by the protein kinase A antagonist R(P)-cAMPS. Calcium-imaging experiments showed no change in intracellular calcium levels during the 5-HT(7) response, indicating that in these neurones, a global calcium signal was not necessary to activate the cAMP cascade. Finally, bath application of serotonin produced a strong increase in cytosolic cAMP concentration, as measured using the fluorescent probe FlCRhR, and an inhibition of the sAHP. Taken together, these results suggest that 5-HT(7) receptors are implicated in the effect of 5-HT on sAHP in intralaminar and midline thalamic neurones, an effect that is mediated by the cAMP second-messenger cascade.
Collapse
Affiliation(s)
- Jean-Marc Goaillard
- Equipe Neurobiologie Cellulaire, Neurobiologie des Processus Adaptatifs UMR 7102, CNRS Université Paris VI, F-75005 Paris, France
| | | |
Collapse
|
230
|
Vara H, Martínez B, Santos A, Colino A. Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience 2002; 110:19-28. [PMID: 11882369 DOI: 10.1016/s0306-4522(01)00541-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thyroid hormone is essential for the normal maturation and function of the mammalian CNS. Thyroid hormone deficiency during a critical period of development profoundly affects cognitive functions such as learning and memory. However, the possible electrophysiological alterations that could underlie these learning deficits in hypothyroid animals remain largely unexplored. In this work, we have studied the possible effect of thyroid hormone on short-term synaptic plasticity, which is hypothesized to be a neural substrate of short-term memory. We compared short-term modification of the excitatory postsynaptic potential in hippocampal slices between control and hypothyroid rats. Electrophysiological studies reveal that paired-pulse facilitation is strongly altered in the hypothyroid rats. In addition, hypothyroid rats exhibit an increase in the Ca(2+)-dependent neurotransmitter release. These alterations are basically reversible when thyroid hormone is administered. In order to examine the possible molecular mechanisms underlying these synaptic changes, we compared the expression of synapsin I, synaptotagmin I, syntaxin, and alpha-Ca(2+)/calmodulin kinase II between control and hypothyroid hippocampus. Our results show that the levels of synapsin I and synaptotagmin I are increased in the hypothyroid rats, which suggests that the genes encoding these proteins are implicated in the action of thyroid hormone on neurotransmitter release. Taken together, the results from this study suggest that thyroid hormone may modulate the probability of neurotransmitter release.
Collapse
Affiliation(s)
- H Vara
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
231
|
A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 2002. [PMID: 11978853 DOI: 10.1523/jneurosci.22-09-03776.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The song system of oscine birds has frequently been presented as a model system for motor learning in vertebrates. This practice has been bolstered by the growing recognition that one part of the song system that is essential for song learning, area X, is a component of the avian striatum. The mammalian striatum, the input structure of the basal ganglia, has been implicated in a number of motor-related functions, including motor learning, suggesting that song learning in birds and motor learning in mammals may use similar physiological mechanisms. We studied the intrinsic physiological properties of area X neurons in brain slices to see how closely they match properties identified in mammalian striatal neurons and to collect data that are necessary to understand how area X processes information. We found that area X contains all four physiological cell types present in the mammalian striatum and that each is very similar to its mammalian counterpart. We also found a fifth cell type in area X that has not been reported in mammalian striatum; instead, this cell type resembles neurons that have been recorded in the mammalian globus pallidus. This pallidum-like cell type morphologically resembles the projection neurons of area X. We suggest that area X contains a pathway equivalent to the "direct" striatopallidothalamic pathway through the mammalian basal ganglia, with the striatal and pallidal components intermingled in one nucleus.
Collapse
|
232
|
Miles GB, Parkis MA, Lipski J, Funk GD. Modulation of phrenic motoneuron excitability by ATP: consequences for respiratory-related output in vitro. J Appl Physiol (1985) 2002; 92:1899-910. [PMID: 11960940 DOI: 10.1152/japplphysiol.00475.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
On the basis of the high level of P2X receptor expression found in phrenic motoneurons (MN) in rats (Kanjhan et al., J Comp Neurol 407: 11-32, 1999) and potentiation of hypoglossal MN inspiratory activity by ATP (Funk et al., J Neurosci 17: 6325-6337, 1997), we tested the hypothesis that ATP receptor activation also modulates phrenic MN activity. This question was examined in rhythmically active brain stem-spinal cord preparations from neonatal rats by monitoring effects of ATP on the activity of spinal C4 nerve roots and phrenic MNs. ATP produced a rapid-onset, dose-dependent, suramin- and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium-sensitive increase in C4 root tonic discharge and a 22 +/- 7% potentiation of inspiratory burst amplitude. This was followed by a slower, 10 +/- 5% reduction in burst amplitude. ATPgammaS, the hydrolysis-resistant analog, evoked only the excitatory response. ATP induced inward currents (57 +/- 39 pA) and increased repetitive firing of phrenic MNs. These data, combined with persistence of ATP currents in TTX and immunolabeling for P2X2 receptors in Fluoro-Gold-labeled C4 MNs, implicate postsynaptic P2 receptors in the excitation. Inspiratory synaptic currents, however, were inhibited by ATP. This inhibition differed from that seen in root recordings; it did not follow an excitation, had a faster onset, and was induced by ATPgammaS. Thus ATP inhibited activity through at least two mechanisms: 1) a rapid P2 receptor-mediated inhibition and 2) a delayed P1 receptor-mediated inhibition associated with hydrolysis of ATP to adenosine. The complex effects of ATP on phrenic MNs highlight the importance of ATP as a modulator of central motor outflows.
Collapse
Affiliation(s)
- Gareth B Miles
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
233
|
Gebhardt C, Körner R, Heinemann U. Delayed anoxic depolarizations in hippocampal neurons of mice lacking the excitatory amino acid carrier 1. J Cereb Blood Flow Metab 2002; 22:569-75. [PMID: 11973429 DOI: 10.1097/00004647-200205000-00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia leads to a rapid increase in vesicular release of glutamate. In addition, hypoxic glutamate release might be caused by reversed operation of neuronal glutamate transporters. An increase in extracellular glutamate concentration might be an important factor in generating anoxic depolarizations (AD) and subsequent neuronal damage. To study the AD and the vesicular release in hippocampal slices from CD1 wild-type mice and mice in which the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) had been knocked out, the authors performed recordings of field potentials and patch clamp recordings of CA1 pyramidal cells. Latency to anoxic depolarizations was enhanced in EAAC1-/- mice, whereas the hypoxia-induced increase in miniature excitatory postsynaptic current frequency occurred with similarly short latencies and to a similar extent in control and mutated animals. Additional block of glial glutamate uptake with TBOA (dl-threo-beta-benzyloxyaspartate), a nontransportable and potent inhibitor, dramatically reduced the latency to onset of AD and abolished the difference between wild-type mice and EAAC1-/- mice. The authors conclude that the neuronal glutamate transporter greatly influences the latency to generation of AD. Because ADs are not prevented in EAAC1-deficient mice, vesicular release mechanisms also seem to be involved. They become prominent when glial glutamate transport is blocked.
Collapse
Affiliation(s)
- Christine Gebhardt
- Johannes-Mueller-Institute of Physiology, Charité Humboldt-University, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | |
Collapse
|
234
|
Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 2002. [PMID: 11943818 DOI: 10.1523/jneurosci.22-08-03161.2002] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The embryonic ventricular zone (VZ) of the cerebral cortex contains migrating neurons, radial glial cells, and a large population of cycling progenitor cells that generate newborn neurons. The latter two cell classes have been assumed for some time to be distinct in both function and anatomy, but the cellular anatomy of the progenitor cell type has remained poorly defined. Several recent reports have raised doubts about the distinction between radial glial and precursor cells by demonstrating that radial glial cells are themselves neuronal progenitor cells (Malatesta et al., 2000; Hartfuss et al., 2001; Miyata et al., 2001; Noctor et al., 2001). This discovery raises the possibility that radial glia and the population of VZ progenitor cells may be one anatomical and functional cell class. Such a hypothesis predicts that throughout neurogenesis almost all mitotically active VZ cells and a substantial percentage of VZ cells overall are radial glia. We have therefore used various anatomical, immunohistochemical, and electrophysiological techniques to test these predictions. Our data demonstrate that the majority of VZ cells, and nearly all mitotically active VZ cells during neurogenesis, both have radial glial morphology and express radial glial markers. In addition, intracellular dye filling of electrophysiologically characterized progenitor cells in the VZ demonstrates that these cells have the morphology of radial glia. Because the vast majority cycling cells in the cortical VZ have characteristics of radial glia, the radial glial precursor cell may be responsible for both the production of newborn neurons and the guidance of daughter neurons to their destinations in the developing cortex.
Collapse
|
235
|
Hirsch JA, Martinez LM, Alonso JM, Desai K, Pillai C, Pierre C. Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J Physiol 2002; 540:335-50. [PMID: 11927691 PMCID: PMC2290233 DOI: 10.1113/jphysiol.2001.012777] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2001] [Accepted: 12/20/2001] [Indexed: 12/14/2022] Open
Abstract
Each stage of the striate cortical circuit extracts novel information about the visual environment. We asked if this analytic process reflected laminar variations in synaptic physiology by making whole-cell recording with dye-filled electrodes from the cat's visual cortex and thalamus; the stimuli were flashed spots. Thalamic afferents terminate in layer 4, which contains two types of cell, simple and complex, distinguished by the spatial structure of the receptive field. Previously, we had found that the postsynaptic and spike responses of simple cells reliably followed the time course of flash-evoked thalamic activity. Here we report that complex cells in layer 4 (or cells intermediate between simple and complex) similarly reprised thalamic activity (response/trial, 99 +/- 1.9 %; response duration 159 +/- 57 ms; latency 25 +/- 4 ms; average +/- standard deviation; n = 7). Thus, all cells in layer 4 share a common synaptic physiology that allows secure integration of thalamic input. By contrast, at the second cortical stage (layer 2+3), where layer 4 directs its output, postsynaptic responses did not track simple patterns of antecedent activity. Typical responses to the static stimulus were intermittent and brief (response/trial, 31 +/- 40 %; response duration 72 +/- 60 ms, latency 39 +/- 7 ms; n = 11). Only richer stimuli like those including motion evoked reliable responses. All told, the second level of cortical processing differs markedly from the first. At that later stage, ascending information seems strongly gated by connections between cortical neurons. Inputs must be combined in newly specified patterns to influence intracortical stages of processing.
Collapse
Affiliation(s)
- Judith A Hirsch
- Laboratory of Neurobiology, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
236
|
Pelkey KA, Askalan R, Paul S, Kalia LV, Nguyen TH, Pitcher GM, Salter MW, Lombroso PJ. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 2002; 34:127-38. [PMID: 11931747 DOI: 10.1016/s0896-6273(02)00633-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The functional roles of protein tyrosine phosphatases (PTPs) in the developed CNS have been enigmatic. Here we show that striatal enriched tyrosine phosphatase (STEP) is a component of the N-methyl-D-aspartate receptor (NMDAR) complex. Functionally, exogenous STEP depressed NMDAR single-channel activity in excised membrane patches. STEP also depressed NMDAR-mediated synaptic currents whereas inhibiting endogenous STEP enhanced these currents. In hippocampal slices, administering STEP into CA1 neurons did not affect basal glutamatergic transmission evoked by Schaffer collateral stimulation but prevented tetanus-induced long-term potentiation (LTP). Conversely, inhibiting STEP in CA1 neurons enhanced transmission and occluded LTP induction through an NMDAR-, Src-, and Ca(2+)-dependent mechanism. Thus, STEP acts as a tonic brake on synaptic transmission by opposing Src-dependent upregulation of NMDARs.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Department of Physiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Ishimatsu M, Kidani Y, Tsuda A, Akasu T. Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus. J Neurophysiol 2002; 87:1206-12. [PMID: 11877494 DOI: 10.1152/jn.00463.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of methylphenidate (MPH), a therapeutic agent used in children presenting the attention deficit hyperactivity disorder (ADHD), on the membrane potential and current in neurons of the rat locus coeruleus (LC) were examined using intracellular and whole cell patch-clamp recording techniques. Application of MPH (30 microM) to artificial cerebrospinal fluid (ACSF) produced a hyperpolarizing response with amplitude of 12 +/- 1 mV (n = 29). Spontaneous firing of LC neurons was blocked during the MPH-induced hyperpolarization. Superfusion of LC neurons with ACSF containing 0 mM Ca(2+) and 11 mM Mg(2+) (Ca(2+)-free ACSF) produced a depolarizing response associated with an increase in spontaneous firing of the action potential. The MPH-induced hyperpolarization was blocked in Ca(2+)-free ACSF. Yohimbine (1 microM) and prazosin (10 microM), antagonists for alpha(2) and alpha(2B/2C) receptors, respectively, blocked the MPH-induced hyperpolarization in LC neurons. Tetrodotoxin (TTX, 1 microM) produced a partial depression of the MPH-induced hyperpolarization in LC neurons. Under the whole cell patch-clamp condition, MPH (30-300 microM) produced an outward current (I(MPH)) with amplitude of 110 +/- 6 pA (n = 17) in LC neurons. The I(MPH) was blocked by Co(2+) (1 mM). During prolonged application of MPH (300 microM for 45 min), the hyperpolarization gradually decreased in the amplitude and eventually disappeared, possibly because of depression of norepinephrine (NE) release from noradrenergic nerve terminals. At a low concentration (1 microM), MPH produced no outward current but consistently enhanced the outward current induced by NE. These results suggest that the MPH-induced response is mediated by NE via alpha(2B/2C)-adrenoceptors in LC neurons. I(MPH) was associated with an increase in the membrane conductance of LC neurons. The I(MPH) reversed its polarity at -102 +/- 6 mV (n = 8) in the ACSF. The reversal potential of I(MPH) was changed by 54 mV per decade change in the external K(+) concentration. Current-voltage relationship showed that the I(MPH) exhibited inward rectification. Ba(2+) (100 microM) suppressed the amplitude and the inward rectification of the I(MPH.) These results suggest that the I(MPH) is produced by activation of inward rectifier K(+) channels in LC neurons.
Collapse
Affiliation(s)
- Masaru Ishimatsu
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | |
Collapse
|
238
|
Abstract
We studied developmental changes in respiratory-like C4 activity and respiratory-related neurons in the ventrolateral medulla (VLM) of brainstem-spinal cord preparations from rat fetuses after embryonic day 16 (E16). In addition to respiratory nerve activity, non-respiratory activity was recorded from the C4 ventral root of preparations before E19. The burst duration of respiratory nerve discharge increased markedly at E19/20. Subtypes of neurons similar to newborn respiratory neurons were found in preparations with prolonged burst duration (more than 400 ms) after E20. These subtypes were not evident in preparations with short burst duration (less than 300 ms) before E19. About 60% of the inspiratory neurons in E17-19 preparations produced voltage-dependent burst activity, which was preserved in low Ca(2+)/high Mg(2+) synaptic blockade solution. In about 11% of the inspiratory neurons of E18-19 preparations, activation of one neuron induced activation of the inspiratory neuron network and generation of a full C4 inspiratory burst. The present findings suggest that respiratory neuron networks mature functionally to the level of the neonatal respiratory neuron networks during gestation period E19/20. Potentiation of synaptic interaction between respiratory neurons, causing developmental changes in the burst pattern, might be involved in the maturation process during late fetal stages.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | |
Collapse
|
239
|
Perkins KL. GABA application to hippocampal CA3 or CA1 stratum lacunosum-moleculare excites an interneuron network. J Neurophysiol 2002; 87:1404-14. [PMID: 11877515 DOI: 10.1152/jn.00430.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell voltage-clamp recording and focal application of the neurotransmitter gamma-aminobutyric acid (GABA) were used to investigate the ability of exogenous GABA applied to different locations within the guinea pig hippocampal slice to trigger a giant GABA-mediated postsynaptic current (GPSC) in pyramidal cells. A GPSC reflects the synchronous release of GABA from a group of interneurons. Recordings were done in the presence of 4-aminopyridine (4-AP) and blockers of ionotropic glutamatergic synaptic transmission. Spontaneous GPSCs occurred rhythmically in pyramidal cells under these conditions. Brief focal pressure application of GABA (500 microM; 30-200 ms) to CA3 stratum lacunosum-moleculare (SLM) or to the border between CA3 s. radiatum (SR) and SLM triggered an "all-or-none" GPSC in CA3 and CA1 pyramidal cells that looked like the spontaneous GPSCs. During the refractory period following a spontaneous GPSC, application of GABA could not trigger a GPSC. Both spontaneous GPSCs and GPSCs triggered by exogenous GABA were blocked by suppressing synaptic transmission with high Mg(2+)/low Ca(2+) bath solution. On the other hand, focal application of GABA to CA3 s. oriens (SO) or to proximal SR did not trigger a GPSC in the CA3 pyramidal cell; instead it produced a graded response. Focal application of GABA to regions other than CA3 was also tested. Focal application of GABA to CA1 SLM always triggered a GPSC in the CA3 pyramidal cell. Focal application of GABA within the outer two-thirds of the dentate molecular layer often elicited a GPSC in the CA3 pyramidal cell. In contrast, focal application of GABA to CA1 SO, to CA1 SR, or to the hilus elicited no current response in the CA3 pyramidal cell. These data indicate that the GPSC recorded in pyramidal cells that was triggered by focal GABA application resulted from the synchronous synaptic release of GABA from activated interneurons rather than from the binding of exogenous GABA to receptors on the pyramidal cell. Furthermore, the "all-or-none" nature of the response to SLM GABA applications of different durations indicates that the exogenous GABA was exciting (directly or indirectly) some members of a network of interneurons, which in turn recruited the rest of the network, rather than individually activating each interneuron that contributed to the GPSC. Interestingly, the effective sites of GABA application--CA3 SLM, CA1 SLM, and the outer two-thirds of the dentate molecular layer--are also the sites which receive direct innervation from the entorhinal cortex in an intact animal.
Collapse
Affiliation(s)
- Katherine L Perkins
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
240
|
Zinebi F, McKernan M, Shinnick-Gallagher P. Expression of fear-conditioning is accompanied by increased paired-pulse depression within the amygdala. Pharmacol Biochem Behav 2002; 71:393-400. [PMID: 11830173 DOI: 10.1016/s0091-3057(01)00684-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fear-conditioning is a model of fear learning and anxiety. The lateral nucleus of the amygdala (LA) provides a critical link for relaying thalamic and cortical auditory information to the rest of the amygdala during the fear conditioning process. Alterations in excitatory synaptic transmission in the thalamic to LA pyramidal cells was studied using whole-cell patch clamp recordings in brain slices from fear-conditioned animals. Following paired stimulation of the thalamic afferents, paired-pulse depression (PPD) could be recorded at 200-ms to 2-s intervals. Increasing transmitter release by decreasing the Mg2+/Ca2+ ratio enhanced PPD suggesting that PPD is reflective of changes in release probability. Analysis of the pairs of composite, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs) showed that there was no correlation between EPSC pairs suggesting that PPD may be mediated through a release-independent mechanism of presynaptic origin. However, AMPA and NMDA receptor mediated PPD had a different time course and magnitude suggesting postsynaptic factors may be involved in PPD. After fear-conditioning PPD of the composite and AMPA receptor-mediated EPSCs was enhanced suggesting that neurotransmitter release may be increased in learned fear. The NMDA receptor-mediated PPD was however not altered in fear-conditioned animals. The differences in response of AMPA and NMDA receptor-mediated PPD suggest that postsynaptic mechanisms may also be involved in the expression of fear conditioning.
Collapse
Affiliation(s)
- Fatiha Zinebi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | | | | |
Collapse
|
241
|
Lo FS, Ziburkus J, Guido W. Synaptic mechanisms regulating the activation of a Ca(2+)-mediated plateau potential in developing relay cells of the LGN. J Neurophysiol 2002; 87:1175-85. [PMID: 11877491 DOI: 10.1152/jn.00715.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using intracellular recordings in an isolated (in vitro) rat brain stem preparation, we examined the synaptic responses of developing relay neurons in the dorsal lateral geniculate nucleus (LGN). In newborn rats, strong stimulation of the optic tract (OT) evoked excitatory postsynaptic potentials (EPSPs) that gave rise to a sustained (300-1,300 ms), slow-decaying (<0.01 mV/s), depolarization (25-40 mV). Riding atop this response was a train of spikes of variable amplitude. We refer to this synaptically evoked event as a plateau potential. Pharmacology experiments indicate the plateau potential was mediated by the activation of high-threshold L-type Ca(2+) channels. Synaptic activation of the plateau potential relied on N-methyl-D-aspartate (NMDA) receptor-mediated activity and the spatial and/or temporal summation of retinally evoked EPSPs. Inhibitory postsynaptic responses (IPSPs) did not prevent the expression of the plateau potential. However, GABA(A) receptor activity modulated the intensity of optic tract stimulation needed to evoke the plateau potential, while GABA(B) receptor activity affected its duration. Expression of the plateau potential was developmentally regulated, showing a much higher incidence at P1-2 (90%) than at P19-20 (1%). This was in part due to the fact that developing relay cells show a greater degree of spatial summation than their mature counterparts, receiving input from as many as 7-12 retinal ganglion cells. Early spontaneous retinal activity is also likely to trigger the plateau potential. Repetitive stimulation of optic tract in a manner that approximated the high-frequency discharge of retinal ganglion cells led to a massive temporal summation of EPSPs and the activation of a sustained depolarization (>1 min) that was blocked by L-type Ca(2+) channel antagonists. These age-related changes in Ca(2+) signaling may contribute to the activity-dependent refinement of retinogeniculate connections.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Cell Biology and Anatomy, Neuroscience Center of Excellence, Louisiana State Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
242
|
Functional specificity of G alpha q and G alpha 11 in the cholinergic and glutamatergic modulation of potassium currents and excitability in hippocampal neurons. J Neurosci 2002. [PMID: 11826096 DOI: 10.1523/jneurosci.22-03-00666.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In hippocampal and other cortical neurons, action potentials are followed by a slow afterhyperpolarization (sAHP) generated by the activation of small-conductance Ca(2+)-activated K(+) channels and controlling spike frequency adaptation. The corresponding current, the apamin-insensitive sI(AHP), is a well known target of modulation by different neurotransmitters, including acetylcholine (via M(3) receptors) and glutamate (via metabotropic glutamate receptor 5, mGluR(5)), in CA1 pyramidal neurons. The actions of muscarinic and mGluR agonists on sI(AHP) involve the activation of pertussis toxin-insensitive G-proteins. However, the pharmacological tools available so far did not permit the identification of the specific G-protein subtypes transducing the effects of M(3) and mGluR(5) on sI(AHP). In the present study, we used mice deficient in the Galpha(q) and Galpha(11) genes to investigate the specific role of these G-protein alpha subunits in the cholinergic and glutamatergic modulation of sI(AHP) in CA1 neurons. In mice lacking Galpha(q), the effects of muscarinic and glutamatergic agonists on sI(AHP) were nearly abolished, whereas beta-adrenergic agonists acting via Galpha(s) were still fully effective. Modulation of sI(AHP) by any of these agonists was instead unchanged in mice lacking Galpha(11). The additional depolarizing effects of muscarinic and glutamatergic agonists on CA1 neurons were preserved in mice lacking Galpha(q) or Galpha(11). Thus, Galpha(q), but not Galpha(11), mediates specifically the action of cholinergic and glutamatergic agonists on sI(AHP), without affecting the modulation of other currents. These results provide to our knowledge one of the first examples of the functional specificity of Galpha(q) and Galpha(11) in central neurons.
Collapse
|
243
|
Wei JY, Jin X, Cohen ED, Daw NW, Barnstable CJ. cGMP-induced presynaptic depression and postsynaptic facilitation at glutamatergic synapses in visual cortex. Brain Res 2002; 927:42-54. [PMID: 11814431 DOI: 10.1016/s0006-8993(01)03323-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms by which the intracellular messenger cGMP can modulate synaptic efficacy remain poorly understood. Here we report that cGMP, acting through cGMP-dependent protein kinase (PKG), has multiple rapid and reversible effects on synaptic transmission in slices and cultures of rodent visual cortex. Extracellular application of the membrane permeable cGMP analog 8-bromoguanosine-3',5'-cyclic monophosphate (8-Br-cGMP) and the PKG specific activator beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate sp-isomer (Sp-8-Br-PET-cGMPS) reduced stimulus-evoked EPSPs in slices. In cortical cultures, both analogs reduced the frequency of spontaneous EPSCs, but not their amplitude. In both slices and cultures, intracellular perfusion of the postsynaptic neurons with a pseudosubstrate inhibitory peptide specific for PKG had no effect on the reduction in EPSPs and EPSCs, indicating that the inhibition occurred at presynaptic sites. Whole-cell calcium currents in cultured cortical neurons were also reduced by both analogs, which may account for the effect on synaptic release. To determine whether cGMP was also acting at postsynaptic sites, we applied exogenous kainate/AMPA and NMDA to the recorded cells directly. cGMP and its analogs showed little effect on the postsynaptic kainate/AMPA responses but produced a dramatic enhancement of NMDA responses. cGMP-induced NMDA potentiation was prevented by the specific PKG inhibitory peptide infused into the postsynaptic cell. In summary, cGMP, acting through PKG, had depressive presynaptic and facilitatory postsynaptic actions at excitatory synapses in the visual cortex. We suggest that these opposing actions may be useful for altering the balance of synaptic inputs to cortical neurons in ways that enhance signals important for synaptic facilitation and neuronal plasticity.
Collapse
Affiliation(s)
- Ji Ye Wei
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, P.O. Box 208061, New Haven, CT 06520-8061, USA
| | | | | | | | | |
Collapse
|
244
|
Bao S, Chen L, Kim JJ, Thompson RF. Cerebellar cortical inhibition and classical eyeblink conditioning. Proc Natl Acad Sci U S A 2002; 99:1592-7. [PMID: 11805298 PMCID: PMC122235 DOI: 10.1073/pnas.032655399] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.
Collapse
Affiliation(s)
- Shaowen Bao
- Neuroscience Program, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | |
Collapse
|
245
|
van den Top M, Buijs RM, Ruijter JM, Delagrange P, Spanswick D, Hermes ML. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm. Neuroscience 2002; 107:99-108. [PMID: 11744250 DOI: 10.1016/s0306-4522(01)00346-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the membrane mechanisms underlying the inhibitory influence of melatonin on suprachiasmatic nucleus (SCN) neurones in a hypothalamic slice preparation. Perforated-patch recordings were performed to prevent the rapid rundown of spontaneous firing rate as observed during whole cell recordings and to preserve circadian rhythmicity in SCN neurones. In current-clamp mode melatonin (1 microM or 1 nM) application, in the presence of agents that block action potential generation and fast synaptic transmission, resulted in a membrane hyperpolarisation accompanied with a decrease in input resistance in the majority of SCN neurones (71-86%). The amplitude of the hyperpolarisation was not found to be significantly different between circadian time 5-12 and 14-21. In voltage-clamp mode melatonin (1 microM or 1 nM) induced an outward current accompanied with an increase in membrane conductance. The current was found to be mainly potassium driven with voltage kinetics resembling those of an open rectifying potassium conductance. Investigations into the signal transduction mechanism revealed melatonin-induced inhibition of SCN neurones to be sensitive to pertussis toxin but independent of intracellular cAMP levels and phospholipase C activity. The present study shows that melatonin, at night-time physiological concentrations, reduces the neuronal excitability of the majority of SCN neurones independent of the time of application in the circadian cycle. Thus in vivo melatonin may be important for circadian time-keeping by amplifying the circadian rhythm in SCN neurones, by lowering their sensitivity to phase-shifting stimuli occurring at night.
Collapse
Affiliation(s)
- M van den Top
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
246
|
Chiou LC, Fan SH, Guerrini R, Caló G. [Nphe(1)]N/OFQ-(1-13)-NH(2) is a competitive and selective antagonist at nociceptin/orphanin FQ receptors mediating K(+) channel activation in rat periaqueductal gray slices. Neuropharmacology 2002; 42:246-52. [PMID: 11804621 DOI: 10.1016/s0028-3908(01)00159-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel member of the opioid related receptor family, the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor was identified and demonstrated to be involved in many physiological functions including pain regulation. [Nphe(1)]N/OFQ-(1-13)-NH(2) (Nphe) is a novel peptide antagonist of NOP receptors, developed using peripheral preparations. We have quantitatively investigated the interaction of Nphe with N/OFQ, the endogenous ligand of NOP receptors, in the midbrain ventrolateral periaqueductal gray (PAG), a crucial brain region for N/OFQ-induced reversal of opioid analgesia, using the patch-clamp recording technique in brain slices. N/OFQ concentration-dependently activated an inwardly rectifying K(+) current in response to hyperpolarization ramps from -60 to -140 mV. Nphe concentration-dependently attenuated the K(+) current activated by N/OFQ without changing its reversal potential. The presence of Nphe right-shifted the concentration-response curve to N/OFQ in a parallel manner. The Schild plot analysis yielded a slope of 1.16 and a pA(2) value of 6.64 that is similar to those obtained in peripheral preparations. At concentrations up to 3 microM, Nphe affected neither the membrane current per se, nor the inwardly rectifying K(+) current activated by [D-Ala(2), N-Me-Phe(4),Gly-ol(5)]-enkephalin or baclofen, a mu-opioid and GABA(B) receptor agonist, respectively. It is concluded that Nphe acts as a pure, selective and competitive antagonist at native NOP receptors of ventrolateral PAG neurons.
Collapse
Affiliation(s)
- Lih-Chu Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei 100, Taiwan.
| | | | | | | |
Collapse
|
247
|
Pronchuk N, Beck-Sickinger AG, Colmers WF. Multiple NPY receptors Inhibit GABA(A) synaptic responses of rat medial parvocellular effector neurons in the hypothalamic paraventricular nucleus. Endocrinology 2002; 143:535-43. [PMID: 11796508 DOI: 10.1210/endo.143.2.8655] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that NPY and alpha-melanocyte-stimulating hormone, which potently induce or inhibit feeding, respectively, have opposing modulatory actions on GABAergic synapses in the medial parvocellular region of the paraventricular hypothalamic nucleus (mpPVN). Because this action might underlie the effects of NPY on feeding, we have examined the pharmacology of NPY responses using electrophysiological recordings. Focal electrical stimulation within the PVN elicited a GABA(A) synaptic response in some mpPVN neurons, which was reversibly inhibited by NPY in a concentration-dependent manner (EC(50) = 28 nM). NPY did not alter the response to the GABA(A) agonist, muscimol. Agonist responses to NPY analogs were not consistent with a single NPY receptor subtype; the most subtype selective agonists were less effective than the more broadly selective ones. Antagonist blockade of individual receptor subtypes partly inhibited NPY action, while fully blocking effects of selective agonists. Combining Y1 and Y5 antagonists blocked actions of NPY entirely, but the Y2 antagonist also completely blocked actions of NPY in some neurons. NPY inhibits GABA(A) synaptic transmission onto mpPVN neurons, but this can be mediated by three different NPY receptors. Controversy regarding the receptor or receptor subtypes involved in NPY-mediated feeding may arise from the multiple NPY receptors present.
Collapse
Affiliation(s)
- Nina Pronchuk
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
248
|
Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 2002; 415:526-30. [PMID: 11793011 DOI: 10.1038/nature711] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurofibromatosis type I (NF1) is one of the most common single-gene disorders that causes learning deficits in humans. Mice carrying a heterozygous null mutation of the Nfl gene (Nfl(+/-) show important features of the learning deficits associated with NF1 (ref. 2). Although neurofibromin has several known properties and functions, including Ras GTPase-activating protein activity, adenylyl cyclase modulation and microtubule binding, it is unclear which of these are essential for learning in mice and humans. Here we show that the learning deficits of Nf1(+/-) mice can be rescued by genetic and pharmacological manipulations that decrease Ras function. We also show that the Nf1(+/-) mice have increased GABA (gamma-amino butyric acid)-mediated inhibition and specific deficits in long-term potentiation, both of which can be reversed by decreasing Ras function. Our results indicate that the learning deficits associated with NF1 may be caused by excessive Ras activity, which leads to impairments in long-term potentiation caused by increased GABA-mediated inhibition. Our findings have implications for the development of treatments for learning deficits associated with NF1.
Collapse
Affiliation(s)
- Rui M Costa
- Departments of Neurobiology, Psychiatry and Psychology, BRI, University of California at Los Angeles, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J Neurosci 2002. [PMID: 11739583 DOI: 10.1523/jneurosci.21-24-09744.2001] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Considerable evidence supports a Ca(2+) dysregulation hypothesis of brain aging and Alzheimer's disease. However, it is still not known whether (1) intracellular [Ca(2+)](i) is altered in aged brain neurons during synaptically activated neuronal activity; (2) altered [Ca(2+)](i) is directly correlated with impaired neuronal plasticity; or (3) the previously observed age-related increase in L-type voltage-sensitive Ca(2+) channel (L-VSCC) density in hippocampal neurons is sufficient to impair synaptic plasticity. Here, we used confocal microscopy to image [Ca(2+)](i) in single CA1 neurons in hippocampal slices of young-adult and aged rats during repetitive synaptic activation. Simultaneously, we recorded intracellular EPSP frequency facilitation (FF), a form of short-term synaptic plasticity that is impaired with aging and inversely correlated with cognitive function. Resting [Ca(2+)](i) did not differ clearly with age. Greater elevation of somatic [Ca(2+)](i) and greater depression of FF developed in aged neurons during 20 sec trains of 7 Hz synaptic activation, but only if the activation triggered repetitive action potentials for several seconds. Elevated [Ca(2+)](i) and FF also were negatively correlated in individual aged neurons. In addition, the selective L-VSCC agonist Bay K8644 increased the afterhyperpolarization and mimicked the depressive effects of aging on FF in young-adult neurons. Thus, during physiologically relevant firing patterns in aging neurons, postsynaptic Ca(2+) elevation is closely associated with altered neuronal plasticity. Moreover, selectively increasing postsynaptic L-VSCC activity, as occurs in aging, negatively regulated a form of short-term plasticity that enhances synaptic throughput. Together, the results elucidate novel processes that may contribute to impaired cognitive function in aging.
Collapse
|
250
|
Abstract
We studied paired-pulse depression (PPD) of GABA(A)ergic IPSCs under conditions of reduced transmitter release (caused by Cd(2+), baclofen, or reduced stimulus intensity) with whole-cell voltage clamp in CA1 pyramidal cells in vitro. The use-dependent model of paired-pulse responsiveness holds that a decrease in the probability of neurotransmitter release during the first stimulus will cause predictable changes in the paired-pulse ratio (PPR, the amplitude of the second IPSC divided by that of the first). However, the applicability of the use-dependent model to inhibitory synapses is controversial. Our results are inconsistent with this model, but are consistent with the hypothesis that random fluctuations in response size significantly influence PPR. PPR was sensitive to the extracellular stimulus intensity in all conditions. Changes in PPR were not correlated with changes in the first IPSC, but were correlated with changes in variability of the PPRs of individual traces. We show that spurious paired-pulse facilitation (PPF) can result from averaging randomly fluctuating PPRs because the method of calculating PPR as the mean of individual PPRs is biased in favor of high values of PPR. Spurious PPF can mask the intrinsic paired-pulse property of the synapses. Calculating PPR as the mean of the second response divided by the mean of the first avoids the error. We discuss a simple model that shows that spurious PPF depends on both the number of synapses recruited for release and the probability of release at each release site. The random factor can reconcile some conflicting published conclusions.
Collapse
|