201
|
Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 2005; 25:9080-95. [PMID: 16207867 PMCID: PMC6725747 DOI: 10.1523/jneurosci.2220-05.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe a computational model of the principal cell in the nucleus accumbens (NAcb), the medium spiny projection (MSP) neuron. The model neuron, constructed in NEURON, includes all of the known ionic currents in these cells and receives synaptic input from simulated spike trains via NMDA, AMPA, and GABAA receptors. After tuning the model by adjusting maximal current conductances in each compartment, the model cell closely matched whole-cell recordings from an adult rat NAcb slice preparation. Synaptic inputs in the range of 1000-1300 Hz are required to maintain an "up" state in the model. Cell firing in the model required concurrent depolarization of several dendritic branches, which responded independently to afferent input. Depolarization from action potentials traveled to the tips of the dendritic branches and increased Ca2+ influx through voltage-gated Ca2+ channels. As NMDA/AMPA current ratios were increased, the membrane showed an increase in hysteresis of "up" and "down" state dwell times, but intrinsic bistability was not observed. The number of oscillatory inputs required to entrain the model cell was determined to be approximately 20% of the "up" state inputs. Altering the NMDA/AMPA ratio had a profound effect on processing of afferent input, including the ability to entrain to oscillations in afferent input in the theta range (4-12 Hz). These results suggest that afferent information integration by the NAcb MSP cell may be compromised by pathology in which the NMDA current is altered or modulated, as has been proposed in both schizophrenia and addiction.
Collapse
Affiliation(s)
- John A Wolf
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
202
|
Campbell BM, Kreipke CW, Walker PD. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat. Neuroscience 2005; 137:505-17. [PMID: 16289829 DOI: 10.1016/j.neuroscience.2005.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/26/2005] [Accepted: 09/21/2005] [Indexed: 11/26/2022]
Abstract
N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.
Collapse
Affiliation(s)
- B M Campbell
- Cellular and Clinical Neurobiology Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
203
|
Raha-Chowdhury R, Andrews SR, Gruen JR. CAT 53: a protein phosphatase 1 nuclear targeting subunit encoded in the MHC Class I region strongly expressed in regions of the brain involved in memory, learning, and Alzheimer's disease. ACTA ACUST UNITED AC 2005; 138:70-83. [PMID: 15894402 DOI: 10.1016/j.molbrainres.2005.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 04/04/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
We identified CAT 53 by cDNA hybridization selection as an expressed sequence tag (EST), located in the vicinity of HLA-C and designated as CAT (for HLA-C associated transcript) 53. CAT 53 encodes a protein described by others and commonly known as phosphatase 1 nuclear targeting subunit (PNUTS). PNUTS is a potent inhibitor of nuclear serine/threonine protein phosphatase 1 (PP1). We present the genomic organization of CAT 53, localize specific sites of mRNA transcription in thin sections of mouse brain by in-situ hybridization, and perform a structural analysis of the peptide domains. We also characterize the protein expression pattern for PNUTS by Western blotting and immunohistochemistry with PNUTS antibody in Alzheimer's disease (AD) brains and age-matched control brains. In-situ hybridization and immunohistochemistry analysis of human and mouse brain show high CAT 53 expression in the olfactory cortex, piriform cortex, and hippocampus. Very high expression of CAT 53 was found mainly in the hippocampus, frontal, and entorhinal cortex of control brains and in the neurofibrillary tangles of AD brain. In the hippocampus, CAT 53 is expressed in CA1 and CA3 cell layers and in the dentate gyrus. The hippocampus is known to play a fundamental role in learning and episodic memories and has been implicated in a number of neurological and psychiatric disorders, including AD, epilepsy, and schizophrenia. Our findings suggest that PNUTS, encoded by CAT 53 on 6p21.3, may have a role in the progression of AD.
Collapse
Affiliation(s)
- Ruma Raha-Chowdhury
- Cambridge Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | |
Collapse
|
204
|
Fillenz M. In vivo neurochemical monitoring and the study of behaviour. Neurosci Biobehav Rev 2005; 29:949-62. [PMID: 15963566 DOI: 10.1016/j.neubiorev.2005.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 12/31/2022]
Abstract
In vivo neurochemical monitoring techniques measure changes in the extracellular compartment of selected brain regions. These changes reflect the release of chemical messengers and intermediates of brain energy metabolism resulting from the activity of neuronal assemblies. The two principal techniques used in neurochemical monitoring are microdialysis and voltammetry. The presence of glutamate in the extracellular compartment and its pharmacological characteristics suggest that it is released from astrocytes and acts as neuromodulator rather than a neurotransmitter. The changes in extracellular noradrenaline and dopamine reflect their role in the control of behaviour. Changes in glucose and oxygen, the latter a measure of local cerebral blood flow, reflect synaptic processing in the underlying neuronal networks rather than a measure of efferent output from the brain region. In vivo neurochemical monitoring provides information about the intermediate processing that intervenes between the application of the stimulus and the resulting behaviour but does not reflect the final efferent output that leads to behaviour.
Collapse
Affiliation(s)
- Marianne Fillenz
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
205
|
Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I, Surmeier DJ. G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 2005; 25:1050-62. [PMID: 15689540 PMCID: PMC6725968 DOI: 10.1523/jneurosci.3327-04.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated L-type Ca2+ channels are key determinants of synaptic integration and plasticity, dendritic electrogenesis, and activity-dependent gene expression in neurons. Fulfilling these functions requires appropriate channel gating, perisynaptic targeting, and linkage to intracellular signaling cascades controlled by G-protein-coupled receptors (GPCRs). Surprisingly, little is known about how these requirements are met in neurons. The studies described here shed new light on how this is accomplished. We show that D2 dopaminergic and M1 muscarinic receptors selectively modulate a biophysically distinctive subtype of L-type Ca2+ channels (CaV1.3) in striatal medium spiny neurons. The splice variant of these channels expressed in medium spiny neurons contains cytoplasmic Src homology 3 and PDZ (postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1) domains that bind the synaptic scaffolding protein Shank. Medium spiny neurons coexpressed CaV1.3-interacting Shank isoforms that colocalized with PSD-95 and CaV1.3a channels in puncta resembling spines on which glutamatergic corticostriatal synapses are formed. The modulation of CaV1.3 channels by D2 and M1 receptors was disrupted by intracellular dialysis of a peptide designed to compete for the CaV1.3 PDZ domain but not with one targeting a related PDZ domain. The modulation also was disrupted by application of peptides targeting the Shank interaction with Homer. Upstate transitions in medium spiny neurons driven by activation of glutamatergic receptors were suppressed by genetic deletion of CaV1.3 channels or by activation of D2 dopaminergic receptors. Together, these results suggest that Shank promotes the assembly of a signaling complex at corticostriatal synapses that enables key GPCRs to regulate L-type Ca2+ channels and the integration of glutamatergic synaptic events.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Apomorphine/analogs & derivatives
- Apomorphine/pharmacology
- Binding Sites
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Calcium Signaling
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- Disks Large Homolog 4 Protein
- Dopamine Agonists/pharmacology
- Guanylate Kinases
- Homer Scaffolding Proteins
- Intracellular Signaling Peptides and Proteins
- Male
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins
- Molecular Sequence Data
- Muscarine/pharmacology
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Patch-Clamp Techniques
- Peptide Fragments/pharmacology
- Protein Binding
- Protein Interaction Mapping
- Protein Isoforms/physiology
- Protein Structure, Tertiary
- Receptor, Muscarinic M1/agonists
- Receptor, Muscarinic M1/physiology
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/physiology
- Signal Transduction/physiology
- Structure-Activity Relationship
- src Homology Domains
Collapse
Affiliation(s)
- Patricia A Olson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Anderson SM, Pierce RC. Cocaine-induced alterations in dopamine receptor signaling: Implications for reinforcement and reinstatement. Pharmacol Ther 2005; 106:389-403. [PMID: 15922019 DOI: 10.1016/j.pharmthera.2004.12.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2004] [Indexed: 11/24/2022]
Abstract
The transition from casual drug use to addiction, and the intense drug craving that accompanies it, has been postulated to result from neuroadaptations within the limbic system caused by repeated drug exposure. This review will examine the implications of cocaine-induced alterations in mesolimbic dopamine receptor signaling within the context of several widely used animal models of addiction. Extensive evidence indicates that dopaminergic mechanisms critically mediate behavioral sensitization to cocaine, cocaine-induced conditioned place preference, cocaine self-administration, and the drug prime-induced reinstatement of cocaine-seeking behavior. The propagation of the long-term neuronal changes associated with recurring cocaine use appears to occur at the level of postreceptor signal transduction. Repeated cocaine treatment causes an up-regulation of the 3',5'-cyclic adenosine monophosphate (cAMP)-signaling pathway within the nucleus accumbens, resulting in a dys-regulation of balanced D1/D2 dopamine-like receptor signaling. The intracellular events arising from enhanced D1-like postsynaptic signaling mediate both facilitatory and compensatory responses to the further reinforcing effects of cocaine.
Collapse
Affiliation(s)
- S M Anderson
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
207
|
Young CE, Yang CR. Dopamine D1-like receptor modulates layer- and frequency-specific short-term synaptic plasticity in rat prefrontal cortical neurons. Eur J Neurosci 2005; 21:3310-20. [PMID: 16026469 DOI: 10.1111/j.1460-9568.2005.04161.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mesocortical dopamine (DA) input to the prefrontal cortex (PFC) is crucial for processing short-term working memory (STWM) to guide forthcoming behavior. Short-term plasticity-like post-tetanic potentiation (PTP, < 3 min) and short-term potentiation (STP, < 10 min) may underlie STWM. Using whole-cell voltage-clamp recordings, mixed glutamatergic excitatory postsynaptic currents (EPSCs) evoked by layer III or layer V stimulation (0.5 or 0.067 Hz) were recorded from layer V pyramidal neurons. With 0.5 Hz basal stimulation of layer III, brief tetani (2 x 50 Hz) induced a homosynaptic PTP (decayed: approximately 1 min). The D1-like antagonist SCH23390 (1 microm) increased the PTP amplitude and decay time without inducing changes to the tetanic response. The tetani may evoke endogenous DA release, which activates a presynaptic D1-like receptor to inhibit glutamate release to modulate PTP. With a slower (0.067 Hz) basal stimulation, the same tetani induced STP (lasting approximately 4 min, but only at 2x intensity only) that was insignificantly suppressed by SCH23390. With stimulation of layer-V-->V inputs at 0.5 Hz, layer V tetani yielded inconsisitent responses. However, at 0.067 Hz, tetani at double the intensity resulted in an STP (lasting approximately 6 min), but a long-term depression after SCH23390 application. Endogenous DA released by tetanic stimulation can interact with a D1-like receptor to induce STP in layer V-->V synapses that receive slower (0.067 Hz) frequency inputs, but suppresses PTP at layer III-->V synapses that receive higher (0.5 Hz) frequency inputs. This D1-like modulation of layer- and frequency-specific synaptic responses in the PFC may contribute to STWM processing.
Collapse
Affiliation(s)
- Clint E Young
- Drug Discovery, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC, Canada V5G 4W8
| | | |
Collapse
|
208
|
Boulware MI, Weick JP, Becklund BR, Kuo SP, Groth RD, Mermelstein PG. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein. J Neurosci 2005; 25:5066-78. [PMID: 15901789 PMCID: PMC6724851 DOI: 10.1523/jneurosci.1427-05.2005] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 04/13/2005] [Accepted: 04/16/2005] [Indexed: 12/12/2022] Open
Abstract
In addition to mediating sexual maturation and reproduction through stimulation of classical intracellular receptors that bind DNA and regulate gene expression, estradiol is also thought to influence various brain functions by acting on receptors localized to the neuronal membrane surface. Many intracellular signaling pathways and modulatory proteins are affected by estradiol via this unconventional route, including regulation of the transcription factor cAMP response element-binding protein (CREB). However, the mechanisms by which estradiol acts at the membrane surface are poorly understood. Because both estradiol and CREB have been implicated in regulating learning and memory, we characterized the effects of estradiol on this transcription factor in cultured rat hippocampal neurons. Within minutes of administration, estradiol triggered mitogen-activated protein kinase (MAPK)-dependent CREB phosphorylation in unstimulated neurons. Furthermore, after brief depolarization, estradiol attenuated L-type calcium channel-mediated CREB phosphorylation. Thus, estradiol exhibited both positive and negative influences on CREB activity. These effects of estradiol were sex specific and traced to membrane-localized estrogen receptors that stimulated group I and II metabotropic glutamate receptor (mGluR) signaling. Activation of estrogen receptor alpha (ERalpha) led to mGluR1a signaling, triggering CREB phosphorylation through phospholipase C regulation of MAPK. In addition, estradiol stimulation of ERalpha or ERbeta triggered mGluR2/3 signaling, decreasing L-type calcium channel-mediated CREB phosphorylation. These results not only characterize estradiol regulation of CREB but also provide two putative signaling mechanisms that may account for many of the unexplained observations regarding the influence of estradiol on nervous system function.
Collapse
Affiliation(s)
- Marissa I Boulware
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
209
|
Hu XT, Ford K, White FJ. Repeated cocaine administration decreases calcineurin (PP2B) but enhances DARPP-32 modulation of sodium currents in rat nucleus accumbens neurons. Neuropsychopharmacology 2005; 30:916-26. [PMID: 15726118 DOI: 10.1038/sj.npp.1300654] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous studies have demonstrated that repeated cocaine (COC) administration reduces voltage-sensitive sodium and calcium currents (I(Na) or VSSCs and I(Ca) or VSCCs, respectively) in medium spiny nucleus accumbens (NAc) neurons of rats. The present findings further indicate that chronic COC-induced I(Na) reduction in NAc neurons is regulated by decreased dephosphorylation and enhanced phosphorylation of Na(+) channels. Whole-cell voltage-clamp recordings revealed that dephosphorylation of Na(+) channels by calcineurin (CaN) enhanced I(Na), while inhibition of protein phosphatase 1 (PP1) by phosphorylated dopamine- and cAMP-regulated phosphoprotein (M(r)=32 kDa) (DARPP-32) at the site of threonine 34 (p-Thr.34-DARPP-32) suppressed I(Na), in freshly dissociated NAc neurons of saline-pretreated rats. However, the effects of CaN on enhancing I(Na) were significantly attenuated, and the action of p-Thr.34-DARPP-32 to decrease I(Na) was mimicked, although not potentiated, by repeated COC pretreatment. Dephosphorylation of Na(+) channels by PP1 also enhanced I(Na), but this effect of PP1 on I(Na) was not apparently affected by repeated COC administration. Western blot analysis indicates that the protein levels of CaN and DARPP-32 were significantly decreased and increased, respectively, while the PP1 levels were unchanged, in the COC-withdrawn NAc as compared to saline-pretreated controls. Combined with previous findings, our results indicate that both CaN and PP1 modulate the increase in I(Na) via enhancing dephosphorylation, while p-Thr.34-DARPP-32 reduces I(Na) by inhibiting PP1-induced dephosphorylation, thereby stabilizing the phosphorylation state, of Na(+) channels in NAc neurons. They also suggest that chronic COC-induced I(Na) reduction may be attributed to a reduction in Ca(2+) signaling, which disrupts the physiological balance of phosphorylation and dephosphorylation of Na(+) channels.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | | | |
Collapse
|
210
|
Ouimet CC, Katona I, Allen P, Freund TF, Greengard P. Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in dendritic spines. J Comp Neurol 2005; 479:374-88. [PMID: 15514983 DOI: 10.1002/cne.20313] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinophilin is an actin binding protein that positions protein phosphatase 1 next to its substrates in dendritic spines. It contains a single PDZ domain and has the biochemical characteristics of a cytoskeletal scaffolding protein. Previous studies suggest that spinophilin is present in most spines, but the concentration of spinophilin varies from brain region to region in a manner that does not simply reflect differences in spine density. Here, we show that spinophilin is enriched in the great majority of dendritic spines in cerebral cortex, caudatoputamen, hippocampal formation, and cerebellum, irrespective of regional differences in spinophilin concentration. In addition, spinophilin is present postsynaptic to asymmetrical contacts on interneuronal dendritic shafts. We further show that, in hippocampus and ventral pallidum, spinophilin is occasionally present in dendritic shafts adjacent to gamma-aminobutyric acid-containing contacts. Thus, the functional role of spinophilin may not be exclusively restricted to excitatory synapses and may be significant at a small fraction of inhibitory contacts. These data also suggest that the concentration of spinophilin per spine is variable and is likely regulated by local physiological factors and/or regional influences.
Collapse
Affiliation(s)
- Charles C Ouimet
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32303, USA.
| | | | | | | | | |
Collapse
|
211
|
Wörgötter F, Porr B. Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 2005; 17:245-319. [PMID: 15720770 DOI: 10.1162/0899766053011555] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and correlation-based (Hebbian) learning related? and How do the different models correspond to possibly underlying biological mechanisms of synaptic plasticity? We first compare the different models in an open-loop condition, where behavioral feedback does not alter the learning. Here we observe that reward-based and correlation-based learning are indeed very similar. Machine control is then used to introduce the problem of closed-loop control (e.g., actor-critic architectures). Here the problem of evaluative (rewards) versus nonevaluative (correlations) feedback from the environment will be discussed, showing that both learning approaches are fundamentally different in the closed-loop condition. In trying to answer the second question, we compare neuronal versions of the different learning architectures to the anatomy of the involved brain structures (basal-ganglia, thalamus, and cortex) and the molecular biophysics of glutamatergic and dopaminergic synapses. Finally, we discuss the different algorithms used to model STDP and compare them to reward-based learning rules. Certain similarities are found in spite of the strongly different timescales. Here we focus on the biophysics of the different calcium-release mechanisms known to be involved in STDP.
Collapse
Affiliation(s)
- Florentin Wörgötter
- Department of Psychology, University of Stirling, Stirling FK9 4LA, Scotland.
| | | |
Collapse
|
212
|
Bordelon JR, Smith Y, Nairn AC, Colbran RJ, Greengard P, Muly EC. Differential localization of protein phosphatase-1alpha, beta and gamma1 isoforms in primate prefrontal cortex. ACTA ACUST UNITED AC 2005; 15:1928-37. [PMID: 15758197 PMCID: PMC2586106 DOI: 10.1093/cercor/bhi070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prefrontal cortical functioning depends on D1 family receptors and their complex signal transduction cascade, including protein phosphatase-1 (PP1). Three PP1 isoforms are prominent in the brain: PP1alpha, PP1beta and PP1gamma1. PP1 localization by a variety of scaffolding proteins is critical for dopamine-mediated modulation of glutamatergic neurotransmission. We have quantified the subcellular distribution of each isoform in primate prefrontal cortex using immunoelectron microscopy. All three are found in spines, dendrites, axon terminals, axons and glia. However, PP1alpha and PP1gamma1 labeling is enriched in spines, whereas PP1beta label is enriched in dendrites. Using post-embedding immunogold labeling, we further examined the distribution of PP1alpha and PP1gamma1 within spines. PP1gamma1 is highly and specifically concentrated in the postsynaptic density (PSD) of these spines, while PP1alpha is enriched in the PSD but also found subjacent to the PSD in moderate amounts. Thus, PP1 isoforms are heterogeneously distributed in the cortical neuropil and within spines. These results suggest that each PP1 isoform has access to a different set of substrates and, furthermore, they demonstrate that the composition of signal transduction proteins varies in different parts of the neuron and even in different regions of a dendritic spine in the primate PFC.
Collapse
Affiliation(s)
- Jill R. Bordelon
- Division of Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Yoland Smith
- Division of Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY, USA
| | - Roger J. Colbran
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Ave, New York, NY, USA
| | - E. Chris Muly
- Division of Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
213
|
Rajadhyaksha A, Husson I, Satpute SS, Küppenbender KD, Ren JQ, Guerriero RM, Standaert DG, Kosofsky BE. L-type Ca2+ channels mediate adaptation of extracellular signal-regulated kinase 1/2 phosphorylation in the ventral tegmental area after chronic amphetamine treatment. J Neurosci 2005; 24:7464-76. [PMID: 15329393 PMCID: PMC1201527 DOI: 10.1523/jneurosci.0612-04.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
L-type Ca2+ channels (LTCCs) play an important role in chronic psychostimulant-induced behaviors. However, the Ca2+ second messenger pathways activated by LTCCs after acute and recurrent psychostimulant administration that contribute to drug-induced molecular adaptations are poorly understood. Using a chronic amphetamine treatment paradigm in rats, we have examined the role of LTCCs in activating the mitogen-activated protein (MAP) kinase pathway in the ventral tegmental area (VTA), a primary target for the reinforcing properties of psychostimulants. Using immunoblot and immunohistochemical analyses, we find that in chronic saline-treated rats a challenge injection of amphetamine increases phosphorylation of MAP [extracellular signal-regulated kinase 1/2 (ERK1/2)] kinase in the VTA that is independent of LTCCs. However, in chronic amphetamine-treated rats there is no increase in amphetamine-mediated ERK1/2 phosphorylation unless LTCCs are blocked, in which case there is robust phosphorylation in VTA dopamine neurons. Examination of the expression of phosphatases reveals an increase in calcineurin [protein phosphatase 2B (PP2B)] and MAP kinase phosphatase-1 (MKP-1) in the VTA. Using in situ hybridization histochemistry and immunoblot analyses, we further examined the mRNA and protein expression of the LTCC subtypes Ca(v)1.2 and Ca(v)1.3 in VTA dopamine neurons in drug-naive animals and in rats after chronic amphetamine treatment. We found an increase in Ca(v)1.2 mRNA and protein levels, with no change in Ca(v)1.3. Together, our results suggest that one aspect of LTCC-induced changes in second messenger pathways after chronic amphetamine exposure involves activation of the MAP kinase phosphatase pathway by upregulation of Ca(v)1.2 in VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Anjali Rajadhyaksha
- NMR Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Partida GJ, Lee SC, Haft-Candell L, Nichols GS, Ishida AT. DARPP-32-like immunoreactivity in AII amacrine cells of rat retina. J Comp Neurol 2005; 480:251-63. [PMID: 15515184 PMCID: PMC3232744 DOI: 10.1002/cne.20330] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies demonstrated that the dopamine- and adenosine 3',5'-monophosphate-regulated phosphatase inhibitor known as "DARPP-32" is present in rat, cat, monkey, and human retinas. We have followed up these studies by asking what specific cell subtypes contain DARPP-32. Using a polyclonal antibody directed against a peptide sequence of human DARPP-32, we immunostained adult rat retinas that were either transretinally sectioned or flat mounted and found DARPP-32-like immunoreactivity in some cells of the amacrine cell layer across the entire retinal surface. We report here, based on the shape and spatial distribution of these cells, their staining by an anti-parvalbumin antibody, and their juxtaposition with processes containing tyrosine hydroxylase, that DARPP-32-like immunoreactivity is present in AII amacrine cells of rat retina. These results suggest that the response of AII amacrine cells to dopamine is not mediated as simply as previously supposed.
Collapse
Affiliation(s)
| | | | | | | | - Andrew T. Ishida
- Correspondence to: Andrew Ishida at the address given above, tel & fax: (530) 752-3569,
| |
Collapse
|
215
|
Moncada A, Cendán CM, Baeyens JM, Del Pozo E. Inhibitors of serine/threonine protein phosphatases antagonize the antinociception induced by agonists of alpha 2 adrenoceptors and GABAB but not kappa-opioid receptors in the tail flick test in mice. Pain 2005; 114:212-20. [PMID: 15733647 DOI: 10.1016/j.pain.2004.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/01/2004] [Accepted: 12/13/2004] [Indexed: 11/22/2022]
Abstract
We previously reported that serine/threonine protein phosphatases (PPs) play a role in the antinociception induced by the mu-opioid receptor agonist morphine. In this study we evaluated the possible involvement of PPs on the antinociception induced by agonists of others G protein-coupled receptors in the tail flick test in mice. The subcutaneous administration of clonidine (0.25-4 mg/kg), baclofen (2-32 mg/kg) or U50,488H (2-16 mg/kg) (agonists of alpha(2) adrenoceptors, GABA(B) and kappa-opioid receptors, respectively) produced dose-dependent antinociception. The antinociceptive effects of clonidine and baclofen were antagonized in a dose-dependent way by the protein phosphatase inhibitors okadaic acid (0.001-10 pg/mouse, i.c.v.) and cantharidin (0.001-10 ng/mouse, i.c.v.), and okadaic acid was 1000 times more potent than cantharidin in producing this effect. The effects of these drugs appear to be specifically due to the blockade of PPs, since L-norokadaone (an analogue of okadaic acid that has no effect on PPs) did not modify clonidine- or baclofen-induced antinociception over the wide range of doses used (0.001-1000 pg/mouse, i.c.v.). On the other hand, the antinociception induced by activation of kappa-opioid receptors with U50,488H was not modified by okadaic acid or cantharidin. In conclusion, our data support the idea that serine/threonine PPs are differentially involved in the antinociceptive effects of several agonists of G protein-coupled receptors in mice.
Collapse
Affiliation(s)
- Ana Moncada
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, Avenida de Madrid 12, E-18012 Granada, Spain
| | | | | | | |
Collapse
|
216
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1132] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
217
|
Wickens J, Arbuthnott G. Chapter IV Structural and functional interactions in the striatum at the receptor level. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
218
|
Frank MJ. Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism. J Cogn Neurosci 2005; 17:51-72. [PMID: 15701239 DOI: 10.1162/0898929052880093] [Citation(s) in RCA: 627] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Dopamine (DA) depletion in the basal ganglia (BG) of Parkinson's patients gives rise to both frontal-like and implicit learning impairments. Dopaminergic medication alleviates some cognitive deficits but impairs those that depend on intact areas of the BG, apparently due to DA “overdose.” These findings are difficult to accommodate with verbal theories of BG/DA function, owing to complexity of system dynamics: DA dynamically modulates function in the BG, which is itself a modulatory system. This article presents a neural network model that instantiates key biological properties and provides insight into the underlying role of DA in the BG during learning and execution of cognitive tasks. Specifically, the BG modulates the execution of “actions” (e.g., motor responses and working memory updating) being considered in different parts of the frontal cortex. Phasic changes in DA, which occur during error feedback, dynamically modulate the BG threshold for facilitating/suppressing a cortical command in response to particular stimuli. Reduced dynamic range of DA explains Parkinson and DA overdose deficits with a single underlying dysfunction, despite overall differences in raw DA levels. Simulated Parkinsonism and medication effects provide a theoretical basis for behavioral data in probabilistic classification and reversal tasks. The model also provides novel testable predictions for neuropsychological and pharmacological studies, and motivates further investigation of BG/DA interactions with the prefrontal cortex in working memory.
Collapse
Affiliation(s)
- Michael J Frank
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, CO 80309, USA.
| |
Collapse
|
219
|
Hu XT, Dong Y, Zhang XF, White FJ. Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons. J Neurophysiol 2004; 93:1406-17. [PMID: 15590733 DOI: 10.1152/jn.00771.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptor-mediated dopamine (DA) modulation of neuronal excitability in the nucleus accumbens (NAc) has been shown to be critically involved in drug addiction and a variety of brain diseases. However, the mechanisms underlying the physiological or pathological molecular process of DA modulation remain largely elusive. Here, we demonstrate that stimulation of DA D2 class receptors (D2R) enhanced voltage-sensitive sodium currents (VSSCs, I(Na)) in freshly dissociated NAc neurons via suppressing tonic activity of the cyclic AMP/PKA cascade and facilitating intracellular Ca2+ signaling. D2R-mediated I(Na) enhancement depended on activation of G(i/o) proteins and was mimicked by direct inhibition of PKA. Furthermore, increasing free [Ca2+]in by activating inositol 1,4,5-triphosphate receptors (IP3Rs), blocking Ca2+ reuptake, or adding buffered Ca2+, all enhanced I(Na). Under these circumstances, D2R-mediated I(Na) enhancement was occluded. In contrast, D2R-mediated I(Na) enhancement was blocked by inhibition of IP3Rs, chelation of free Ca2+, or inhibition of Ca2(+)/calmodulin-activated calcineurin (CaN), but not by inhibition of phospholipase C (PLC). Although stimulation of muscarinic cholinergic receptors (mAChRs) also increased I(Na), this action was blocked by PLC inhibitors. Our findings indicate that D2Rs mediate an enhancement of VSSCs in NAc neurons, in which cytosolic free Ca2+ plays a crucial role. Our results also suggest that D2R-mediated reduction in tonic PKA activity may increase free [Ca2+]in, primarily via disinhibition of IP3Rs. IP3R activation then facilitates Ca2+ signaling and subsequently enhances VSSCs via decreasing PKA-induced phosphorylation and increasing CaN-induced dephosphorylation of Na+ channels. This study provides insight into the complex and dynamic role of D2Rs in the NAc.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Deptartment of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL 60064-3095, USA.
| | | | | | | |
Collapse
|
220
|
Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G. Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 2004; 93:1598-610. [PMID: 15537813 DOI: 10.1152/jn.00843.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala plays a role in affective behaviors, which are modulated by the dopamine (DA) innervation of the basolateral amygdala complex (BLA). Although in vivo studies indicate that activation of DA receptors alters BLA neuronal activity, it is unclear whether DA exerts direct effects on BLA neurons or whether it acts via indirect effects on BLA afferents. Using whole cell patch-clamp recordings in rat brain slices, we investigated the site and mechanisms through which DA regulates the excitability of BLA neurons. Dopamine enhanced the excitability of BLA projection neurons in response to somatic current injections via a postsynaptic effect. Dopamine D1 receptor activation increased excitability and evoked firing, whereas D2 receptor activation increased input resistance. Current- and voltage-clamp experiments in projection neurons showed that D1 receptor activation enhanced excitability by modulating a 4-aminopyridine- and alpha-dendrotoxin-sensitive, slowly inactivating K+ current. Furthermore, DA and D1 receptor activation increased evoked firing in fast-spiking BLA interneurons. Consistent with a postsynaptic modulation of interneuron excitability, DA also increased the frequency of spontaneous inhibitory postsynaptic currents recorded in projection neurons without changing release of GABA. These data demonstrate that DA exerts direct effects on BLA projection neurons and indirect actions via modulation of interneurons that may work in concert to enhance the neuronal response to large, suprathreshold inputs, while suppressing weaker inputs.
Collapse
Affiliation(s)
- Sven Kröner
- Center for Neural Basics Cognition, Deptartment of Neuroscience, University of Pittsburgh, Pittsburgh, Penssylvania.
| | | | | | | |
Collapse
|
221
|
Hu XT, Basu S, White FJ. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons. J Neurophysiol 2004; 92:1597-607. [PMID: 15331648 DOI: 10.1152/jn.00217.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) is an important forebrain area involved in sensitization, withdrawal effects, and self-administration of cocaine. However, little is known about cocaine-induced alterations in the neuronal excitability and whole cell neuroplasticity in this region that may affect behaviors. Our recent investigations have demonstrated that repeated cocaine administration decreases voltage-sensitive sodium and calcium currents (VSSCs and VSCCs, respectively) in freshly dissociated NAc neurons of rats. In this study, current-clamp recordings were performed in slice preparations to determine the effects of chronic cocaine on evoked Ca(2+) potentials and voltage-sensitive K(+) currents in NAc neurons. Repeated cocaine administration with 3-4 days of withdrawal caused significant alterations in Ca(2+) potentials, including suppression of Ca(2+)-mediated spikes, increase in the intracellular injected current intensity required for generation of Ca(2+) potentials (rheobase), reduced duration of Ca(2+) plateau potentials, and abolishment of secondary Ca(2+) potentials associated with the primary Ca(2+) plateau potential. Application of nickel (Ni(2+)), which blocks low-voltage activated T-type Ca(2+) channels, had no impact on evoked Ca(2+) plateau potentials in NAc neurons, indicating that these Ca(2+) potentials are high-voltage activated (HVA). In addition, repeated cocaine pretreatment also hyperpolarized the resting membrane potential, increased the amplitude of afterhyperpolarization in Ca(2+) spikes, and enhanced the outward rectification observed during membrane depolarization. These findings indicate that repeated cocaine administration not only suppressed HVA-Ca(2+) potentials but also significantly enhanced the activity of various K(+) channels in NAc neurons. They also demonstrate an integrative role of whole cell neuroplasticity during cocaine withdrawal, by which the subthreshold membrane excitability of NAc neurons is significantly decreased.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Neuropsychopharmacology Laboratory, Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA.
| | | | | |
Collapse
|
222
|
Sekerková G, Zheng L, Loomis PA, Changyaleket B, Whitlon DS, Mugnaini E, Bartles JR. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J Neurosci 2004; 24:5445-56. [PMID: 15190118 PMCID: PMC2855134 DOI: 10.1523/jneurosci.1279-04.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells, and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca(2+)-resistant manner, bound actin monomer via a WASP (Wiskott-Aldrich syndrome protein) homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53, and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5-bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics, and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in various mechanosensory and chemosensory cells.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
The D1-like (D1, D5) and D2-like (D2, D3, D4) classes of dopamine receptors each has shared signaling properties that contribute to the definition of the receptor class, although some differences among subtypes within a class have been identified. D1-like receptor signaling is mediated chiefly by the heterotrimeric G proteins Galphas and Galphaolf, which cause sequential activation of adenylate cyclase, cylic AMP-dependent protein kinase, and the protein phosphatase-1 inhibitor DARPP-32. The increased phosphorylation that results from the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription factors. D1 or a novel D1-like receptor also signals via phospholipase C-dependent and cyclic AMP-independent mobilization of intracellular calcium. D2-like receptor signaling is mediated by the heterotrimeric G proteins Galphai and Galphao. These pertussis toxin-sensitive G proteins regulate some effectors, such as adenylate cyclase, via their Galpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of Gbetagamma subunits. In addition to interactions between dopamine receptors and G proteins, other protein:protein interactions such as receptor oligomerization or receptor interactions with scaffolding and signal-switching proteins are critical for regulation of dopamine receptor signaling.
Collapse
Affiliation(s)
- Kim A Neve
- Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | |
Collapse
|
224
|
Håkansson K, Lindskog M, Pozzi L, Usiello A, Fisone G. DARPP-32 and modulation of cAMP signaling: involvement in motor control and levodopa-induced dyskinesia. Parkinsonism Relat Disord 2004; 10:281-6. [PMID: 15196506 DOI: 10.1016/j.parkreldis.2004.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
The dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) is abundantly expressed in the medium spiny neurons of the striatum. Phosphorylation catalysed by cAMP-dependent protein kinase (PKA) converts DARPP-32 into an inhibitor of protein phosphatase-1. In contrast, phosphorylation catalysed by cyclin dependent kinase-5 on Thr75 converts DARPP-32 into an inhibitor of PKA. Changes in the state of phosphorylation of DARPP-32 reinforce the behavioral effects produced by stimulation or inhibition of the cAMP pathway. Dopamine, via D(1) receptors, and adenosine, via A(2A) receptors, affect motor behavior by acting on medium spiny neurons, via G(olf) mediated stimulation of the cAMP signaling cascade. The involvement of DARPP-32 in dopamine and adenosine transmission and the possible role played by abnormal regulation of DARPP-32 phosphorylation in levodopa-induced dyskinesia are discussed.
Collapse
Affiliation(s)
- Kerstin Håkansson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
225
|
Sánchez-Lemus E, Arias-Montaño JA. Histamine H3 receptor activation inhibits dopamine D1 receptor-induced cAMP accumulation in rat striatal slices. Neurosci Lett 2004; 364:179-84. [PMID: 15196671 DOI: 10.1016/j.neulet.2004.04.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 04/15/2004] [Accepted: 04/17/2004] [Indexed: 11/25/2022]
Abstract
In striatal membranes bearing significant levels of histamine H3 receptors (72 +/- 14 fmol/mg protein), the H3 agonist immepip (1 microM) increased [35S]GTPgammaS binding to 119 +/- 2% of basal, an effect prevented by the H3 antagonist clobenpropit and by pre-treatment with pertussis toxin. In slices labelled with [3H]adenine and in the presence of 1 mM isobutylmethylxantine (IBMX), the selective dopamine D1-like (D1/D5) receptor agonist SKF-81297 stimulated cyclic [3H]AMP ([3H]cAMP) accumulation (maximal stimulation 205 +/- 24% of basal, EC50 113 +/- 12 nM), an effect fully blocked by the D1/D5 antagonist SCH-23390. The accumulation of [3H]cAMP induced by 1 microM SKF-81297 was inhibited in a concentration-dependent manner by the selective H3 receptor agonist immepip (maximal inhibition 60+/-5%, IC50 13 +/- 5 nM). The inhibitory action of 100 nM immepip was reversed in a concentration-dependent manner by the H3 antagonist thioperamide (EC50 13 +/- 3 nM, Ki 1.4 +/- 0.3 nM). Forskolin-induced [3H]cAMP accumulation (726 +/- 57% of basal) was also reduced by H3 receptor activation, although to a lesser extent (19.1 +/- 3.2% inhibition), an action not affected by the absence of either IBMX or Ca2+ ions in the incubation medium. Neither the density of [3H]SCH-23390 binding sites (D1 receptors) nor the inhibition by SKF-81297 were affected by 1 microM immepip, ruling out a direct interaction between D1 and H3 receptors. These results indicate that through H3 receptors coupled to Galphai/o proteins, histamine modulates cAMP formation in striatal neurones that possess D1 receptors, most probably GABAergic striato-nigral neurones.
Collapse
Affiliation(s)
- Enrique Sánchez-Lemus
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 México, D.F., Mexico
| | | |
Collapse
|
226
|
Tang TS, Bezprozvanny I. Dopamine receptor-mediated Ca(2+) signaling in striatal medium spiny neurons. J Biol Chem 2004; 279:42082-94. [PMID: 15292232 DOI: 10.1074/jbc.m407389200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP(3)) and cAMP are the two second messengers that play an important role in neuronal signaling. Here, we investigated the interactions of InsP(3)- and cAMP-mediated signaling pathways activated by dopamine in striatal medium spiny neurons (MSN). We found that in approximately 40% of the MSN, application of dopamine elicited robust repetitive Ca(2+) transients (oscillations). In pharmacological experiments with specific agonists and antagonists, we found that the observed Ca(2+) oscillations were triggered by activation of D1 class dopamine receptors (DARs). We further demonstrated that activation of phospholipase C was required for induction of dopamine-induced Ca(2+) oscillations and that maintenance of dopamine-evoked Ca(2+) oscillations required both Ca(2+) influx and Ca(2+) mobilization from internal Ca(2+) stores. In "priming" experiments with a type 2 5-hydroxytryptamine receptor agonist, we have shown a likely role for calcyon in coupling D1 class DARs with Ca(2+) oscillations in MSN. In experiments with the DAR-specific agonist SKF83959, we discovered that phospholipase C activation alone could not account for dopamine-induced Ca(2+) oscillations. We further demonstrated that direct activation of protein kinase A by 8-bromo-cAMP or inhibition of protein phosphatase-1 (PP1) or calcineurin (PP2B) resulted in elevation of basal Ca(2+) levels in MSN, but not in Ca(2+) oscillations. In experiments with competitive peptides, we have shown an importance of type 1 InsP(3) receptor association with PP1alpha and with AKAP9.protein kinase A for dopamine-induced Ca(2+) oscillations. In experiments with MSN from DARPP-32 knock-out mice, we demonstrated a regulatory role of DARPP-32 in dopamine-induced Ca(2+) oscillations. Our results indicate that, following D1 class DAR activation, InsP(3) and cAMP signaling pathways converge on the type 1 InsP(3) receptor, resulting in Ca(2+) oscillations in MSN.
Collapse
Affiliation(s)
- Tie-Shan Tang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | |
Collapse
|
227
|
Nicola SM, Hopf FW, Hjelmstad GO. Contrast enhancement: a physiological effect of striatal dopamine? Cell Tissue Res 2004; 318:93-106. [PMID: 15503151 DOI: 10.1007/s00441-004-0929-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 05/25/2004] [Indexed: 11/27/2022]
Abstract
Dopamine functions as an important neuromodulator in the dorsal striatum and ventral striatum/nucleus accumbens. Evidence is accumulating for the idea that striatal neurons compete with each other for control over the animal's motor resources, and that dopamine plays an important modulatory role that allows a particular subset of neurons, encoding a specific behavior, to predominate in this competition. One means by which dopamine could facilitate selection among competing neurons is to enhance the contrast between stronger and weaker excitations (or to increase the "signal to noise ratio" among neurons, where the firing of the most excited neurons is assumed to transmit signal and the firing of the least excited to transmit noise). Here, we review the electrophysiological evidence for this hypothesis and discuss potential cellular mechanisms by which dopamine-mediated contrast enhancement could occur.
Collapse
Affiliation(s)
- Saleem M Nicola
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton St., Ste. 200, Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
228
|
Tseng KY, O'Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004; 24:5131-9. [PMID: 15175382 PMCID: PMC6729185 DOI: 10.1523/jneurosci.1021-04.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, the nature of DA actions in the PFC remains controversial. A critical component in DA actions is its modulation of glutamate transmission, which can be different when specific receptors are activated. To obtain a clear picture of cellular mechanisms involved in these interactions, we studied the effects of DA-glutamate coactivation on pyramidal cell excitability in brain slices obtained from developmentally mature rats using whole-cell patch-clamp recordings. Bath application of NMDA, AMPA, and the D1 agonist SKF38393 induced concentration-dependent excitability increases, whereas bath application of the D2 receptor agonist quinpirole induced a concentration-dependent excitability decrease. The NMDA-mediated response was potentiated by SKF38393. This NMDA-D1 synergism required postsynaptic intracellular Ca2+ and protein kinase A (PKA) and was independent of membrane depolarization. On the other hand, the excitatory effects of both NMDA and AMPA were attenuated by a D2 agonist. Surprisingly, the D2-NMDA interaction was also blocked by the GABA(A) antagonists bicuculline and picrotoxin, suggesting that the inhibitory action of D2 receptors on NMDA-induced responses in the PFC may be mediated by GABAergic interneurons. In contrast, the D2-AMPA interaction involves inhibition of PKA and activation of phospholipase lipase C-IP3 and intracellular Ca2+ at a postsynaptic level. Thus, the modulatory actions of D1 and D2 receptors on PFC pyramidal cell excitability are mediated by multiple intracellular mechanisms and by activation of GABA(A) receptors, depending on the glutamate receptor subtypes involved.
Collapse
Affiliation(s)
- Kuei Y Tseng
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
229
|
Tully K, Treistman SN. Distinct Intracellular Calcium Profiles Following Influx Through N- Versus L-Type Calcium Channels: Role of Ca2+-Induced Ca2+Release. J Neurophysiol 2004; 92:135-43. [PMID: 14999048 DOI: 10.1152/jn.01004.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective activation of neuronal functions by Ca2+is determined by the kinetic profile of the intracellular calcium ([Ca2+]i) signal in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca2+current and the resulting rise and decay of [Ca2+]iin differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca2+entering through N-type and L-type voltage-gated Ca2+channels result in significantly different [Ca2+]itemporal profiles. When the contribution of N-type channels was reduced by ω-conotoxin MVIIA treatment, a faster [Ca2+]idecay was observed. Conversely, when the contribution of L-type channels was reduced by nifedipine treatment, [Ca2+]idecay was slower. Potentiating L-type current with BayK8644, or inactivating N-type channels by shifting the holding potential to −40 mV, both resulted in a more rapid decay of [Ca2+]i. Channel-specific differences in [Ca2+]idecay rates were abolished by depleting intracellular Ca2+stores with thapsigargin or by blocking ryanodine receptors with ryanodine, suggesting the involvement of Ca2+-induced Ca2+release (CICR). Further support for involvement of CICR is provided by the demonstration that caffeine slowed [Ca2+]idecay while ryanodine at high concentrations increased the rate of [Ca2+]idecay. We conclude that Ca2+entering through N-type channels is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR provides a mechanism whereby the kinetics of intracellular Ca2+leaves a fingerprint of the route of entry, potentially encoding the selective activation of a subset of Ca2+-sensitive processes within the neuron.
Collapse
Affiliation(s)
- Keith Tully
- Program of Neuroscience, Department of Neuobiology, University of Massachusetts Medical School, Worcester 01605, USA
| | | |
Collapse
|
230
|
Hernández-Echeagaray E, Starling AJ, Cepeda C, Levine MS. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Neurosci 2004; 19:2455-63. [PMID: 15128399 DOI: 10.1111/j.0953-816x.2004.03344.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamatergic afferents from the neocortex constitute the major excitatory input to striatal medium-sized spiny neurons (MSNs). Glutamate's actions on MSNs are modulated by dopamine (DA) through D1 and D2 receptor families. Although D1 modulation of glutamate responses has been well-characterized, the contribution of postsynaptic D2 receptors to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses has not been studied extensively. We examined DA modulation of AMPA currents using whole-cell voltage-clamp recordings of MSNs acutely dissociated and in slices. In dissociated cells, the D2 agonist quinpirole (10 micro m) produced small and inconsistent effects on AMPA currents. The magnitude of the current, as well as its modulation by quinpirole, was related to the dendritic elaboration of the dissociated cell. Thus, quinpirole altered AMPA currents only slightly when few initial dendritic segments were present. The amplitude of the current was greater and quinpirole consistently decreased this current in dissociated cells displaying at least three primary dendrites and several secondary and tertiary dendrites. Cyclothiazide, a compound that prevents AMPA receptor desensitization, greatly increased AMPA currents. In the presence of cyclothiazide, quinpirole also consistently reduced AMPA currents. Finally, in slices, AMPA current amplitude was always reduced after application of quinpirole. Sulpiride, a D2 antagonist, prevented attenuation of AMPA currents in both acutely dissociated neurons and neurons in slices. These results provide evidence that AMPA currents are attenuated by DA via activation of postsynaptic D2 receptors. In addition, they indicate that the dendrites and/or the amplitude of the current are important variables for DA modulation of AMPA currents in MSNs.
Collapse
Affiliation(s)
- Elizabeth Hernández-Echeagaray
- Mental Retardation Research Center, David Geffen School of Medicine, NPI, Room 58-258, 760 Westwood Plaza, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
231
|
Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 2004; 174:3-16. [PMID: 15118803 DOI: 10.1007/s00213-004-1793-y] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND RATIONALE Reinstatement of the function of working memory, the cardinal cognitive process essential for human reasoning and judgment, is potentially the most intractable problem for the treatment of schizophrenia. Since deficits in working memory are associated with dopamine dysregulation and altered D(1) receptor signaling within prefrontal cortex, we present the case for targeting novel drug therapies towards enhancing prefrontal D(1) stimulation for the amelioration of the debilitating cognitive deficits in schizophrenia. OBJECTIVES This review examines the role of dopamine in regulating cellular and circuit function within prefrontal cortex in order to understand the significance of the dopamine dysregulation found in schizophrenia and related non-human primate models. By revealing the associations among prefrontal neuronal function, dopamine and D(1) signaling, and cognition, we seek to pinpoint the mechanisms by which dopamine modulates working memory processes and how these mechanisms may be exploited to improve cognitive function. RESULTS AND CONCLUSIONS Dopamine deficiency within dorsolateral prefrontal cortex leads to abnormal recruitment of this region by cognitive tasks. Both preclinical and clinical studies have demonstrated a direct relationship between prefrontal dopamine function and the integrity of working memory, suggesting that insufficient D(1) receptor signaling in this region results in cognitive deficits. Moreover, working memory deficits can be ameliorated by treatments that augment D(1) receptor stimulation, indicating that this target presents a unique opportunity for the restoration of cognitive function in schizophrenia.
Collapse
|
232
|
Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lança AJ, O'Dowd BF, George SR. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 2004; 279:35671-8. [PMID: 15159403 DOI: 10.1074/jbc.m401923200] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although dopamine D1 and D2 receptors belong to distinct subfamilies of dopamine receptors, several lines of evidence indicate that they are functionally linked. However, a mechanism for this linkage has not been elucidated. In this study, we demonstrate that agonist stimulation of co-expressed D1 and D2 receptors resulted in an increase of intracellular calcium levels via a signaling pathway not activated by either receptor alone or when only one of the co-expressed receptors was activated by a selective agonist. Calcium signaling by D1-D2 receptor co-activation was abolished following treatment with a phospholipase C inhibitor but not with pertussis toxin or inhibitors of protein kinase A or protein kinase C, indicating coupling to the G(q) pathway. We also show, by co-immunoprecipitation from rat brain and from cells co-expressing the receptors, that D1 and D2 receptors are part of the same heteromeric protein complex and, by immunohistochemistry, that these receptors are co-expressed and co-localized within neurons of human and rat brain. This demonstration that D1 and D2 receptors have a novel cellular function when co-activated in the same cell represents a significant step toward elucidating the mechanism of the functional link observed between these two receptors in brain.
Collapse
Affiliation(s)
- Samuel P Lee
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Scheler G. Regulation of neuromodulator receptor efficacy—implications for whole-neuron and synaptic plasticity. Prog Neurobiol 2004; 72:399-415. [PMID: 15177784 DOI: 10.1016/j.pneurobio.2004.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 03/26/2004] [Indexed: 11/20/2022]
Abstract
Membrane receptors for neuromodulators (NM) are highly regulated in their distribution and efficacy-a phenomenon which influences the individual cell's response to central signals of NM release. Even though NM receptor regulation is implicated in the pharmacological action of many drugs, and is also known to be influenced by various environmental factors, its functional consequences and modes of action are not well understood. In this paper we summarize relevant experimental evidence on NM receptor regulation (specifically dopamine D1 and D2 receptors) in order to explore its significance for neural and synaptic plasticity. We identify the relevant components of NM receptor regulation (receptor phosphorylation, receptor trafficking and sensitization of second-messenger pathways) gained from studies on cultured cells. Key principles in the regulation and control of short-term plasticity (sensitization) are identified, and a model is presented which employs direct and indirect feedback regulation of receptor efficacy. We also discuss long-term plasticity which involves shifts in receptor sensitivity and loss of responsivity to NM signals. Finally, we discuss the implications of NM receptor regulation for models of brain plasticity and memorization. We emphasize that a realistic model of brain plasticity will have to go beyond Hebbian models of long-term potentiation and depression. Plasticity in the distribution and efficacy of NM receptors may provide another important source of functional plasticity with implications for learning and memory.
Collapse
Affiliation(s)
- Gabriele Scheler
- International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA.
| |
Collapse
|
234
|
Muly EC, Smith Y, Allen P, Greengard P. Subcellular distribution of spinophilin immunolabeling in primate prefrontal cortex: localization to and within dendritic spines. J Comp Neurol 2004; 469:185-97. [PMID: 14694533 DOI: 10.1002/cne.11001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signal transduction in the nervous system depends on kinases and phosphatases, whose localization is regulated by a large group of scaffolding proteins. In particular, protein phosphatase-1 mediates dopamine's actions on a variety of substrates, including glutamate receptors, and this, in turn, depends on the binding of protein phosphatase-1 to its binding protein spinophilin. To better understand spinophilin's role in targeting protein phosphatase-1 within neurons, we used a combination of preembedding immunoperoxidase and postembedding immunogold labeling and electron microscopy to determine the localization of this scaffolding protein in macaque prefrontal cortex. Consistent with previous reports, spinophilin was found predominantly in dendritic spines, but a significant number of labeled dendritic shafts and, less frequently, glia and preterminal axons were also identified. By using the postembedding immunogold method, we further examined the distribution of spinophilin within dendritic spines. Spinophilin immunoreactivity was present throughout the spine, but the density of label was heterogeneous and defined two domains. The highest density of label was associated with the postsynaptic density and the 100 nm immediately subjacent to it. The deeper region of the spine, further than 100 nm from the postsynaptic density, had a lower density of spinophilin label. The distribution of spinophilin reported in this study supports its role in modulating glutamatergic neurotransmission but also suggests the possibility that spinophilin may target protein phosphatase-1 to other sites within the spine or to other neuronal or glial compartments.
Collapse
Affiliation(s)
- E Chris Muly
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30329, USA.
| | | | | | | |
Collapse
|
235
|
Young CE, Yang CR. Dopamine D1/D5 receptor modulates state-dependent switching of soma-dendritic Ca2+ potentials via differential protein kinase A and C activation in rat prefrontal cortical neurons. J Neurosci 2004; 24:8-23. [PMID: 14715933 PMCID: PMC6729575 DOI: 10.1523/jneurosci.1650-03.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To determine the nature of dopamine modulation of dendritic Ca2+ signaling in layers V-VI prefrontal cortex (PFC) neurons, whole-cell Ca2+ potentials were evoked after blockade of Na+ and K+ channels. Soma-dendritic Ca2+ spikes evoked by suprathreshold depolarizing pulses, which could be terminated by superimposed brief intrasomatic hyperpolarizing pulses, are blocked by the L-type Ca2+ channel antagonist nimodipine (1 microM). The D1/D5 receptor agonist dihydrexidine (DHX) (0.01-10 microM; 5 min) or R-(+)SKF81291 (10 microM) induced a prolonged (>30 min) dose-dependent peak suppression of these Ca2+ spikes. This effect was dependent on [Ca2+]i- and protein kinase C (PKC)-dependent mechanisms because [Ca2+]i chelation by BAPTA or inhibition of PKC by bisindolymaleimide (BiM1), but not inhibition of [Ca2+]i release with heparin or Xestospongin C, prevented the D1-mediated suppression of Ca2+ spikes. Depolarizing pulses subthreshold to activating a Ca2+ spike evoked a nimodipine-sensitive Ca2+ "hump" potential. D1/D5 stimulation induced an N-[2-((o-bromocinamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89)- or internal PKA inhibitory peptide[5-24]-sensitive (PKA-dependent) transient (approximately 7 min) potentiation of the hump potential to full Ca2+ spike firing. Furthermore, application of DHX in the presence of the PKC inhibitor BiM1 or internal PKC inhibitory peptide[19-36] resulted in persistent firing of full Ca2+ spike bursts, suggesting that a D1/D5-PKA mechanism switches subthreshold Ca2+ hump potential to fire full Ca2+ spikes, which are eventually turned off by a D1/D5-Ca2+-dependent PKC mechanism. This depolarizing state-dependent, D1/D5-activated, bi-directional switching of soma-dendritic L-type Ca2+ channels via PKA-dependent potentiation and PKC-dependent suppression may provide spatiotemporal regulation of synaptic integration and plasticity in PFC.
Collapse
Affiliation(s)
- Clint E Young
- Neuroscience Discovery, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana 46285-0510, USA
| | | |
Collapse
|
236
|
Chen X, Zhang L, Kombian SB. Dopamine-induced synaptic depression in the parabrachial nucleus is independent of CTX- and PTX-sensitive G-proteins, PKA and PLC signalling pathways. Brain Res 2004; 995:236-46. [PMID: 14672813 DOI: 10.1016/j.brainres.2003.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that dopamine (DA) depresses non-NMDA receptor-mediated glutamatergic transmission in the rat parabrachial nucleus (PBN), an interface between brainstem and forebrain that is implicated in autonomic regulation. This work examined cellular signalling pathways that might underlie this DA-induced synaptic depression. Direct activation of adenylyl cyclase with 10 microM forskolin increased the evoked EPSC but did not occlude DA-induced EPSC depression. Similarly, a preferential protein kinase A inhibitor, H-7 (10 microM), did not block DA's synaptic effects. Incubation of slices with cholera toxin (CTX; 1 microgram/ml) or pertussis toxin (PTX; 0.5 microgram/ml) for 20 h, procedures used to irreversibly activate or disable the G(s) and G(i) proteins, respectively, did not change DA's effects. The putative phospholipase C inhibitor, U-73122 (10 microM) and its inactive analogue U-73343 (10 microM) did not alter DA-induced reduction in the EPSCs. Alterations in signalling molecules downstream of phospholipase C including depleting internal calcium stores by thapsigargin and cyclopiazonic acid and blocking protein kinase C with chelerythrine, had no effect on DA-induced synaptic depression. Furthermore, DA's depression of the non-NMDA response was not blocked by APV, an NMDA receptor antagonist. Finally, DA depressed evoked, pharmacologically isolated NMDA receptor-mediated synaptic responses while increasing NMDA-induced inward currents in the PBN. These results indicate that DA-induced synaptic effects in the PBN are not through the activation of cholera or pertussis toxin sensitive G proteins. Furthermore, it does not employ the adenylyl cyclase-cAMP-PKA cascade, the phospholipase C signalling pathway and NMDA receptor-coupled mechanisms to depress excitatory synaptic transmission in the PBN.
Collapse
Affiliation(s)
- Xihua Chen
- Division of Basic Medical Sciences, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6.
| | | | | |
Collapse
|
237
|
Ikegami A, Duvauchelle CL. Dopamine Mechanisms and Cocaine Reward. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 62:45-94. [PMID: 15530568 DOI: 10.1016/s0074-7742(04)62002-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aiko Ikegami
- Division of Pharmacology/Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
238
|
Liu JC, DeFazio RA, Espinosa-Jeffrey A, Cepeda C, de Vellis J, Levine MS. Calcium modulates dopamine potentiation of N-methyl-D-aspartate Responses: Electrophysiological and imaging evidence. J Neurosci Res 2004; 76:315-22. [PMID: 15079860 DOI: 10.1002/jnr.20079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the striatum, dopamine (DA) exerts a major modulatory influence on voltage- and ligand-gated currents. Previously we have shown that DA modulates glutamatergic neurotransmission and that the direction of this modulation depends on, among other factors, the glutamate and DA receptor subtypes activated. These effects also involve DA-induced alterations in voltage-gated Ca(2+) currents. In the present experiments, the effects of Ca(2+) channel blockers on DA and D1 receptor-dependent potentiation of N-methyl-D-aspartate (NMDA) responses were examined in vitro in striatal slices using current clamp recording techniques. DA or D1 receptor agonists consistently enhanced NMDA responses. Cadmium and the more selective L-type Ca(2+) channel antagonists nifedipine and methoxyverapamil reduced the potentiation of NMDA responses by DA or D1 receptor activation. Furthermore, studies using Ca(2+) imaging with Fluo-3 in cultured cortical or dissociated striatal neurons demonstrated that DA and D1 agonists increased intracellular Ca(2+) transients induced by NMDA. These as well as previous findings indicate that in striatal neurons at least two mechanisms contribute to the enhancement of NMDA responses by DA receptor activation, facilitation of voltage-gated Ca(2+) currents and D1 receptor activation of the cAMP-protein kinase A cascade. The existence of multiple mechanisms leading to a similar outcome allows a certain degree of redundancy in the consequences of DA modulation.
Collapse
Affiliation(s)
- J C Liu
- Mental Retardation Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
239
|
Davare MA, Hell JW. Increased phosphorylation of the neuronal L-type Ca(2+) channel Ca(v)1.2 during aging. Proc Natl Acad Sci U S A 2003; 100:16018-23. [PMID: 14665691 PMCID: PMC307685 DOI: 10.1073/pnas.2236970100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Indexed: 11/18/2022] Open
Abstract
An increase in Ca2+ influx through L-type Ca2+ channels is thought to contribute to neuronal dysfunctions that underlie senile symptoms and Alzheimer's disease. The molecular basis of the age-dependent up-regulation in neuronal L-type Ca2+ channel activity is largely unknown. We show that phosphorylation of the L-type channel Cav1.2 by cAMP-dependent protein kinase is increased >2-fold in the hippocampus of aged rats. The hippocampus is critical for learning and is one of the first brain regions to be affected in Alzheimer's disease. Phosphorylation of Cav1.2 by cAMP-dependent protein kinase strongly enhances its activity. Therefore, increased Cav1.2 phosphorylation may account for a substantial portion of the age-related rise in neuronal Ca2+ influx and its neuropathological consequences.
Collapse
Affiliation(s)
- Monika A Davare
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706-1532, USA
| | | |
Collapse
|
240
|
West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA. Electrophysiological Interactions between Striatal Glutamatergic and Dopaminergic Systems. Ann N Y Acad Sci 2003; 1003:53-74. [PMID: 14684435 DOI: 10.1196/annals.1300.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamatergic and dopaminergic systems play a primary role in frontal-subcortical circuits involved in motor and cognitive functions. Considerable evidence has emerged indicating that the complex interaction between these neurotransmitter systems within the dorsal striatum and nucleus accumbens is critically involved in the gating of information flow in these highly integrative brain regions. As a result, disruptions of the interaction between glutamate and dopamine has been proposed as a pathological basis for a number of disorders, including the pathophysiology of schizophrenia. In this chapter, we discuss recent studies that have significantly advanced our understanding of the reciprocal interactions between glutamatergic and dopaminergic systems within the striatal complex in the normal brain and in pathological states.
Collapse
Affiliation(s)
- Anthony R West
- Department of Neuroscience, Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | | | | | |
Collapse
|
241
|
Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci 2003. [PMID: 12867509 DOI: 10.1523/jneurosci.23-15-06245.2003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
By stimulating distinct receptor subtypes, dopamine (DA) exerts presynaptic and postsynaptic actions on both large aspiny (LA) cholinergic and fast-spiking (FS) parvalbumin-positive interneurons of the striatum. Lack of receptor- and isoform-specific pharmacological agents, however, has hampered the progress toward a detailed identification of the specific DA receptors involved in these actions. To overcome this issue, in the present study we used four different mutant mice in which the expression of specific DA receptors was ablated. In D1 receptor null mice, D1R-/-, DA dose-dependently depolarized both LA and FS interneurons. Interestingly, SCH 233390 (10 microm), a D1-like (D1 and D5) receptor antagonist, but not l-sulpiride (3-10 microm), a D2-like (D2, D3, D4) receptor blocker, prevented this effect, implying D5 receptors in this action. Accordingly, immunohistochemical analyses in both wild-type and D1R-/- mice confirmed the expression of D5 receptors in both cholinergic and parvalbumin-positive interneurons of the striatum. In mice lacking D2 receptors, D2R-/-, the DA-dependent inhibition of GABA transmission was lost in both interneuron populations. Both isoforms of D2 receptor, D2L and D2S, were very likely involved in this inhibitory action, as revealed by the electrophysiological analysis of the effect of the DA D2-like receptor agonist quinpirole in two distinct mutants lacking D2L receptors and expressing variable contents of D2S receptors. The identification of the receptor subtypes involved in the actions of DA on different populations of striatal cells is essential to understand the circuitry of the basal ganglia and to develop pharmacological strategies able to interfere selectively with specific neuronal functions.
Collapse
|
242
|
Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J Neurosci 2003. [PMID: 12832531 DOI: 10.1523/jneurosci.23-12-05079.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine in the nucleus accumbens modulates both motivational and addictive behaviors. Dopamine D1 and D2 receptors are generally considered to exert opposite effects at the cellular level, but many behavioral studies find an apparent cooperative effect of D1 and D2 receptors in the nucleus accumbens. Here, we show that a dopamine-induced enhancement of spike firing in nucleus accumbens neurons in brain slices required both D1 and D2 receptors. One intracellular mechanism that might underlie cooperativity of D1 and D2 receptors is activation of specific subtypes of adenylyl cyclases by G-protein betagamma subunits (Gbetagamma) released from the Gi/o-linked D2 receptor in combination with Galpha(s)-like subunits from the D1 receptor. In this regard, dopaminergic enhancement of spike firing was prevented by inhibitors of protein kinase A or Gbetagamma. Furthermore, intracellular perfusion with Gbetagamma enabled D1 receptor activation but not D2 receptor activation to enhance spike firing. Finally, our data suggest that these pathways may increase spike firing by inhibition of a slow A-type potassium current. These results provide evidence for a novel cellular mechanism through which cooperative action of D1 and D2 receptors in the nucleus accumbens could mediate dopamine-dependent behaviors.
Collapse
|
243
|
Gruber AJ, Solla SA, Surmeier DJ, Houk JC. Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 2003; 90:1095-114. [PMID: 12649314 DOI: 10.1152/jn.00618.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-unit activity in the neostriatum of awake monkeys shows a marked dependence on expected reward. Responses to visual cues differ when animals expect primary reinforcements, such as juice rewards, in comparison to secondary reinforcements, such as tones. The mechanism of this reward-dependent modulation has not been established experimentally. To assess the hypothesis that direct neuromodulatory effects of dopamine on spiny neurons can account for this modulation, we develop a computational model based on simplified representations of key ionic currents and their modulation by D1 dopamine receptor activation. This minimal model can be analyzed in detail. We find that D1-mediated increases of inward rectifying potassium and L-type calcium currents cause a bifurcation: the native up/down state behavior of the spiny neuron model becomes truly bistable, which modulates the peak firing rate and the duration of the up state and introduces a dependence of the response on the past state history. These generic consequences of dopamine neuromodulation through bistability can account for both reward-dependent enhancement and suppression of spiny neuron single-unit responses to visual cues. We validate the model by simulating responses to visual targets in a memory-guided saccade task; our results are in close agreement with the main features of the experimental data. Our model provides a conceptual framework for understanding the functional significance of the short-term neuromodulatory actions of dopamine on signal processing in the striatum.
Collapse
Affiliation(s)
- Aaron J Gruber
- Department of Biomedical Engineering, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
244
|
Affiliation(s)
- Kwok-On Lai
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
245
|
Pérez-Garci E, Bargas J, Galarraga E. The role of Ca2+ channels in the repetitive firing of striatal projection neurons. Neuroreport 2003; 14:1253-6. [PMID: 12824770 DOI: 10.1097/00001756-200307010-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Blockade of L-type Ca2+ channels results in a decrease in firing frequency of neostriatal neurons. In contrast, N- and P/Q-types of Ca2+ channel cooperate to tune firing pattern, since both of these channel types have to be blocked to enhance firing frequency. Parameters of the intensity-frequency plot were differentially modified by Ca2+ channel antagonists: while L-type Ca2+ channel block reduced the dynamic range by about 80%, block of N- and P/Q-types of Ca2+ channel generated a steeper intensity-frequency plot. These effects are explained in terms of the sustained depolarization and the afterhyperpolarizing potential known to be dependent upon L- and N-, P/Q-types of Ca2+ channels, respectively.
Collapse
|
246
|
Allen JP, Hathway GJ, Clarke NJ, Jowett MI, Topps S, Kendrick KM, Humphrey PPA, Wilkinson LS, Emson PC. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. Eur J Neurosci 2003; 17:1881-95. [PMID: 12752788 DOI: 10.1046/j.1460-9568.2003.02629.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.
Collapse
Affiliation(s)
- Jeremy P Allen
- Department of Neurobiology, The Babraham Institute, Babraham, Cambridge, CB2 AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Okada Y, Miyamoto T, Toda K. Dopamine modulates a voltage-gated calcium channel in rat olfactory receptor neurons. Brain Res 2003; 968:248-55. [PMID: 12663094 DOI: 10.1016/s0006-8993(03)02267-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine D2 receptors exist in the soma of rat olfactory receptor neurons. Actions of dopamine on the voltage-gated Ca(2+) channels in the neurons were investigated using the perforated whole-cell voltage-clamp. In 10 mM Ba(2+) solution, rat olfactory receptor neurons displayed the inward currents elicited by the voltage ramp (167 mV/s) and depolarizing step pulses from a holding potential of -91 mV. The inward Ba(2+) currents were greatly reduced by 10 microM nifedipine (L-type Ca(2+) channel blocker). The Ba(2+) currents were inhibited by the external application of dopamine. The IC(50) for the inhibition was about 1 microM. Quinpirole (10 microM, a D2 dopamine agonist) also inhibited the Ba(2+) currents. Quinpirole did not affect the activation and inactivation kinetics of the Ba(2+) currents. The results suggest that dopamine modulates the L-type Ca(2+) channels in rat olfactory receptor neurons via the mechanism independent of voltage.
Collapse
Affiliation(s)
- Yukio Okada
- Integrative Sensory Physiology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | |
Collapse
|
248
|
Abstract
It is only recently that a number of studies on synaptic plasticity in the hippocampus and other brain areas have considered that a heterosynaptic modulatory input could be recruited as well as the coincident firing of pre- and post-synaptic neurons. So far, the strongest evidence for such a regulation has been attributed to dopaminergic (DA) systems but other modulatory pathways have also been considered to influence synaptic plasticity. This review will focus on dopamine contribution to synaptic plasticity in different brain areas (hippocampus, striatum and prefrontal cortex) with, for each region, a few lines on the distribution of DA projections and receptors. New insights into the possible mechanisms underlying these plastic changes will be considered. The contribution of various DA systems in certain forms of learning and memory will be reviewed with recent advances supporting the hypothesis of similar cellular mechanisms underlying DA regulation of synaptic plasticity and memory processes in which the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway has a potential role. To summarize, endogenous DA, which depends on the activity patterns of DA midbrain neurons in freely moving animals, appears as a key regulator in specific synaptic changes observed at certain stages of learning and memory and of synaptic plasticity.
Collapse
Affiliation(s)
- Thérèse M Jay
- Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris Sud, Bât. 446, 91405 Orsay, France.
| |
Collapse
|
249
|
Muscarinic potentiation of GABA(A) receptor currents is gated by insulin signaling in the prefrontal cortex. J Neurosci 2003. [PMID: 12598604 DOI: 10.1523/jneurosci.23-04-01159.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic neurotransmission and insulin signaling in cognitive areas, such as the prefrontal cortex (PFC), play a key role in regulating learning and memory. However, the cellular mechanisms by which this regulation occurs are unclear. Because GABAergic inhibition in the PFC controls the timing of neuronal activity during cognitive operations, we examined the potential regulation of GABA transmission by cholinergic and insulin signaling in PFC pyramidal neurons. Activation of muscarinic acetylcholine receptors (mAChRs) with carbachol produced an enhancement of GABA(A) receptor currents in acutely dissociated cells after a short treatment with insulin. Inhibiting phosphoinositide-3 kinase (PI3K), a downstream target of insulin signaling, eliminated this effect as well as the carbachol-induced enhancement of GABAergic miniature IPSC amplitudes in PFC slices. The muscarinic potentiation of GABA(A) currents was blocked by PKC inhibitors, broad-spectrum protein tyrosine kinase inhibitors, and specific inhibitors of the nonreceptor tyrosine kinase Src. Additionally, muscarinic receptors in PFC slices activated PKC and the focal adhesion kinase Pyk2 (a potential molecular link between PKC and Src) in a PI3K-dependent manner. Together, our results show that mAChR activation in PFC pyramidal neurons enhances GABA(A) receptor functions through a PKC-dependent, Src-mediated signaling cascade that is gated by an insulin/PI3K pathway. Given the significance of GABAergic transmission in regulating PFC functions, our results provide a novel mechanism for understanding the role of cholinergic systems and insulin signaling in learning and memory.
Collapse
|
250
|
Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci 2003; 6:258-66. [PMID: 12592408 DOI: 10.1038/nn1019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 01/10/2003] [Indexed: 11/09/2022]
Abstract
Neurons with the capacity to discharge at high rates--'fast-spiking' (FS) neurons--are critical participants in central motor and sensory circuits. It is widely accepted that K+ channels with Kv3.1 or Kv3.2 subunits underlie fast, delayed-rectifier (DR) currents that endow neurons with this FS ability. Expression of these subunits in heterologous systems, however, yields channels that open at more depolarized potentials than do native Kv3 family channels, suggesting that they differ. One possibility is that native channels incorporate a subunit that modifies gating. Molecular, electrophysiological and pharmacological studies reported here suggest that a splice variant of the Kv3.4 subunit coassembles with Kv3.1 subunits in rat brain FS neurons. Coassembly enhances the spike repolarizing efficiency of the channels, thereby reducing spike duration and enabling higher repetitive spike rates. These results suggest that manipulation of K3.4 subunit expression could be a useful means of controlling the dynamic range of FS neurons.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Department of Physiology, Feinberg School of Medicine, 303 E. Chicago Ave., Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|