201
|
Caccamo A, Belfiore R, Oddo S. Genetically reducing mTOR signaling rescues central insulin dysregulation in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 68:1. [PMID: 29729422 PMCID: PMC6777740 DOI: 10.1016/j.neurobiolaging.2018.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The causes of sporadic AD, which represents more than 95% of AD cases, are unknown. Several AD risk factors have been identified and among these, type 2 diabetes increases the risk of developing AD by 2-fold. However, the mechanisms by which diabetes contributes to AD pathogenesis remain elusive. The mammalian target of rapamycin (mTOR) is a protein kinase that plays a crucial role in the insulin signaling pathway and has been linked to AD. We used a crossbreeding strategy to remove 1 copy of the mTOR gene from the forebrain of Tg2576 mice, a mouse model of AD. We used 20-month-old mice to assess changes in central insulin signaling and found that Tg2576 mice had impaired insulin signaling. These impairments were mTOR dependent as we found an improvement in central insulin signaling in mice with lower brain mTOR activity. Furthermore, removing 1 copy of mTOR from Tg2576 mice improved cognition and reduced levels of Aβ, tau, and cytokines. Our findings indicate that mTOR signaling is a key mediator of central insulin dysfunction in Tg2576. These data further highlight a possible role for mTOR signaling in AD pathogenesis and add to the body of evidence indicating that reducing mTOR activity could be a valid therapeutic approach for AD.
Collapse
Affiliation(s)
- Antonella Caccamo
- The Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Ramona Belfiore
- The Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy, 95125
| | - Salvatore Oddo
- The Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287
| |
Collapse
|
202
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
203
|
Nteeba J, Ganesan S, Madden JA, Dickson MJ, Keating AF. Progressive obesity alters ovarian insulin, phosphatidylinositol-3 kinase, and chemical metabolism signaling pathways and potentiates ovotoxicity induced by phosphoramide mustard in mice. Biol Reprod 2018; 96:478-490. [PMID: 28203716 DOI: 10.1095/biolreprod.116.143818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Mechanisms underlying obesity-associated reproductive impairment are ill defined. Hyperinsulinemia is a metabolic perturbation often observed in obese subjects. Insulin activates phosphatidylinositol 3-kinase (PI3K) signaling, which regulates ovarian folliculogenesis, steroidogenesis, and xenobiotic metabolism. The impact of progressive obesity on ovarian genes encoding mRNA involved in insulin-mediated PI3K signaling and xenobiotic biotransformation [insulin receptor (Insr), insulin receptor substrate 1 (Irs1), 2 (Irs2), and 3 (Irs3); kit ligand (Kitlg), stem cell growth factor receptor (Kit), protein kinase B (AKT) alpha (Akt1), beta (Akt2), forkhead transcription factor (FOXO) subfamily 1 (Foxo1), and subfamily 3 (Foxo3a), microsomal epoxide hydrolase (Ephx1), cytochrome P450 family 2, subfamily E, polypeptide 1 (Cyp2e1), glutathione S-transferase (GST) class Pi (Gstp1) and class mu 1 (Gstm1)] was determined in normal wild-type nonagouti (a/a; lean) and lethal yellow mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 weeks of age. At 6 weeks, ovaries from obese mice had increased (P < 0.05) Insr and Irs3 but decreased (P < 0.05) Kitlg, Foxo1, and Cyp2e1 mRNA levels. Interestingly, at 12 weeks, an increase (P < 0.05) in Kitlg and Kit mRNA, pIRS1Ser302, pAKTThr308, EPHX1, and GSTP1 protein level was observed due to obesity, while Cyp2e1 mRNA and protein were reduced. A phosphoramide mustard (PM) challenge increased (P < 0.05) ovarian EPHX1 protein abundance in lean but not obese females. In addition, lung tissue from PM-exposed animals had increased (P < 0.05) EPHX1 protein with no impact of obesity thereon. Taken together, progressive obesity affected ovarian signaling pathways potentially involved in obesity-associated reproductive disorders.
Collapse
Affiliation(s)
- Jackson Nteeba
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Shanthi Ganesan
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Jill A Madden
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Mackenzie J Dickson
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| | - Aileen F Keating
- Department of Animal Science, 2356 Kildee Hall, Iowa State University, Ames, IA, USA
| |
Collapse
|
204
|
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting Insulin for Alzheimer’s Disease: Mechanisms, Status and Potential Directions. J Alzheimers Dis 2018; 64:S427-S453. [DOI: 10.3233/jad-179923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jung Hyun Lee
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordan B. Jahrling
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
205
|
Curcumin attenuates hepatic fibrosis and insulin resistance induced by bile duct ligation in rats. Br J Nutr 2018; 120:393-403. [PMID: 29880071 DOI: 10.1017/s0007114518001095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have strongly indicated the hepatoprotective effect of curcumin; however, the precise mechanisms are not well understood. This study aimed to determine the protective effect of curcumin on hepatic damage and hepatic insulin resistance in biliary duct ligated (BDL) fibrotic rat model. To accomplish this, male Wistar rats were divided into four groups (eight for each): sham group, BDL group, sham+Cur group and BDL+Cur group. The last two groups received curcumin at a dose of 100 mg/kg daily for 4 weeks. The mRNA/protein expression levels of Ras-related C3 botulinum toxin substrate 1 (Rac1), Rac1-GTP, dinucleotide phosphate oxidase 1 (NOX1), signal transducer and activator of transcription 3 (STAT3), suppressor of cytokine signalling 3 (SOCS3), insulin receptor substrate 1 (IRS1), extracellular signal-regulated kinase 1 (ERK1), specific protein 1 (Sp1) and hypoxia-inducible factor-1α (HIF-1α) were measured by real-time PCR and Western blotting, respectively. Fasting blood glucose, insulin and Leptin levels were determined and homoeostasis model assessment-estimated insulin resistance, as an index of insulin resistance, was calculated. Curcumin significantly attenuated liver injury and fibrosis, including amelioration of liver histological changes, reduction of hepatic enzymes, as well as decreased expression of liver fibrogenesis-associated variables, including Rac1, Rac1-GTP, NOX1, ERK1, HIF-1α and Sp1. Curcumin also attenuated leptin level and insulin resistance, which had increased in BDL rats (P<0·05). Furthermore, compared with the BDL group, we observed an increase in IRS1 and a decrease in SOCS3 and STAT3 expression in the curcumin-treated BDL group (P<0·05), indicating return of these parameters towards normalcy. In conclusion, Curcumin showed hepatoprotective activity against BDL-induced liver injury and hepatic insulin resistance by influencing the expression of some genes/proteins involved in these processes, and the results suggest that it can be used as a therapeutic option.
Collapse
|
206
|
Shin J, Fukuhara A, Onodera T, Kita S, Yokoyama C, Otsuki M, Shimomura I. SDF-1 Is an Autocrine Insulin-Desensitizing Factor in Adipocytes. Diabetes 2018; 67:1068-1078. [PMID: 29581126 DOI: 10.2337/db17-0706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/14/2018] [Indexed: 11/13/2022]
Abstract
Insulin desensitization occurs not only under the obese diabetic condition but also in the fasting state. However, little is known about the common secretory factor(s) that are regulated under these two insulin-desensitized conditions. Here, using database analysis and in vitro and in vivo experiments, we identified stromal derived factor-1 (SDF-1) as an insulin-desensitizing factor in adipocytes, overexpressed in both fasting and obese adipose tissues. Exogenously added SDF-1 induced extracellular signal-regulated kinase signal, which phosphorylated and degraded IRS-1 protein in adipocytes, decreasing insulin-mediated signaling and glucose uptake. In contrast, knockdown of endogenous SDF-1 or inhibition of its receptor in adipocytes markedly increased IRS-1 protein levels and enhanced insulin sensitivity, indicating the autocrine action of SDF-1. In agreement with these findings, adipocyte-specific ablation of SDF-1 enhanced insulin sensitivity in adipose tissues and in the whole body. These results point to a novel regulatory mechanism of insulin sensitivity mediated by adipose autocrine SDF-1 action and provide a new insight into the process of insulin desensitization in adipocytes.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chieko Yokoyama
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| |
Collapse
|
207
|
Ma M, Quan Y, Li Y, He X, Xiao J, Zhan M, Zhao W, Xin Y, Lu L, Luo L. Bidirectional modulation of insulin action by reactive oxygen species in 3T3‑L1 adipocytes. Mol Med Rep 2018; 18:807-814. [PMID: 29767231 PMCID: PMC6059710 DOI: 10.3892/mmr.2018.9016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/04/2018] [Indexed: 01/20/2023] Open
Abstract
Reactive oxygen species (ROS) serve an important role in glucose‑lipid metabolic regulation. In the present study, the results demonstrated that there was bidirectional regulation of insulin action in 3T3‑L1 adipocytes treated with ROS. Transient and acute ROS exposure improved insulin‑induced metabolic effects in 3T3‑L1 adipocytes. Hydrogen peroxide (H2O2), as a stable and diffusible ROS, diffused into adipocytes and altered intracellular redox homeostasis, resulting in oxidation and inactivation of phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Inactivation of PTEN enhanced the activation of insulin‑induced protein kinase B (AKT), leading to increased glucose transporter 4 (GLUT4) redistribution and glucose uptake in 3T3‑L1 adipocytes. However, chronic ROS treatment induced insulin resistance in 3T3‑L1 adipocytes. It was also revealed that insulin‑induced AKT activation, GLUT4 translocation to cell membrane and glucose uptake were significantly inhibited in chronic ROS‑treated 3T3‑L1 adipocytes. Taken together, the present study provided further demonstration that transient ROS treatment improved insulin sensitivity; however, chronic ROS exposure induced insulin resistance in 3T3‑L1 adipocytes.
Collapse
Affiliation(s)
- Mingfeng Ma
- Department of Cardiology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, P.R. China
| | - Yingyao Quan
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Yong Li
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xu He
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Jing Xiao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Meixiao Zhan
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Wei Zhao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Yongjie Xin
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Ligong Lu
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
208
|
Laarse SAM, Leney AC, Heck AJR. Crosstalk between phosphorylation and O‐Glc
NA
cylation: friend or foe. FEBS J 2018; 285:3152-3167. [DOI: 10.1111/febs.14491] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Saar A. M. Laarse
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Aneika C. Leney
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| |
Collapse
|
209
|
Avivar-Valderas A, McEwen R, Taheri-Ghahfarokhi A, Carnevalli LS, Hardaker EL, Maresca M, Hudson K, Harrington EA, Cruzalegui F. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget 2018; 9:21444-21458. [PMID: 29765551 PMCID: PMC5940413 DOI: 10.18632/oncotarget.25118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2), decreased function in tumor suppressors (e.g. PTEN) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3KαH1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides mechanistic and in vivo evidence indicating a role for MAP3K1 as a tumor suppressor gene at least in the context of PIK3CA-mutant backgrounds. Further, our work predicts that MAP3K1 mutational status may be considered as a predictive biomarker for efficacy in PI3K pathway inhibitor trials.
Collapse
Affiliation(s)
- Alvaro Avivar-Valderas
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: TiGenix, Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Robert McEwen
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | | | - Marcello Maresca
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kevin Hudson
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: 2TheNth, Adelphi Mill, Bollington, Macclesfield, UK
| | | | - Francisco Cruzalegui
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: Pierre Fabre R&D Centre, Toulouse, France
| |
Collapse
|
210
|
Karki R, Kodamullil AT, Hofmann-Apitius M. Comorbidity Analysis between Alzheimer's Disease and Type 2 Diabetes Mellitus (T2DM) Based on Shared Pathways and the Role of T2DM Drugs. J Alzheimers Dis 2018; 60:721-731. [PMID: 28922161 PMCID: PMC5611890 DOI: 10.3233/jad-170440] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Various studies suggest a comorbid association between Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) indicating that there could be shared underlying pathophysiological mechanisms. Objective: This study aims to systematically model relevant knowledge at the molecular level to find a mechanistic rationale explaining the existing comorbid association between AD and T2DM. Method: We have used a knowledge-based modeling approach to build two network models for AD and T2DM using Biological Expression Language (BEL), which is capable of capturing and representing causal and correlative relationships at both molecular and clinical levels from various knowledge resources. Results: Using comparative analysis, we have identified several putative “shared pathways”. We demonstrate, at a mechanistic level, how the insulin signaling pathway is related to other significant AD pathways such as the neurotrophin signaling pathway, PI3K/AKT signaling, MTOR signaling, and MAPK signaling and how these pathways do cross-talk with each other both in AD and T2DM. In addition, we present a mechanistic hypothesis that explains both favorable and adverse effects of the anti-diabetic drug metformin in AD. Conclusion: The two computable models introduced here provide a powerful framework to identify plausible mechanistic links shared between AD and T2DM and thereby identify targeted pathways for new therapeutics. Our approach can also be used to provide mechanistic answers to the question of why some T2DM treatments seem to increase the risk of AD.
Collapse
Affiliation(s)
- Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Bonn, Germany
| |
Collapse
|
211
|
Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem Pharmacol 2018; 152:94-103. [PMID: 29577871 DOI: 10.1016/j.bcp.2018.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA and its overexpression is associated with the development of many types of malignancy. MALAT1 null mice show no overt phenotype. However, in transcriptome analysis of MALAT1 null mice we found significant upregulation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulated antioxidant genes including Nqo1 and Cat with significant reduction in reactive oxygen species (ROS) and greatly reduced ROS-generated protein carbonylation in hepatocyte and islets. We performed lncRNA pulldown assay using biotinylated antisense oligonucleotides against MALAT1 and found MALAT1 interacted with Nrf2, suggesting Nrf2 is transcriptionally regulated by MALAT1. Exposure to excessive ROS has been shown to cause insulin resistance through activation of c-Jun N-terminal kinase (JNK) which leads to inhibition of insulin receptor substrate 1 (IRS-1) and insulin-induced phosphorylation of serine/threonine kinase Akt. We found MALAT1 ablation suppressed JNK activity with concomitant insulin-induced activation of IRS-1 and phosphorylation of Akt suggesting MALAT1 regulated insulin responses. MALAT1 null mice exhibited sensitized insulin-signaling response to fast-refeeding and glucose/insulin challenges and significantly increased insulin secretion in response to glucose challenge in isolated MALAT1 null islets, suggesting an increased insulin sensitivity. In summary, we demonstrate that MALAT1 plays an important role in regulating insulin sensitivity and has the potential as a therapeutic target for the treatment of diabetes as well as other diseases caused by excessive exposure to ROS.
Collapse
|
212
|
Zhou X, Ren L, Yu Z, Huang X, Li Y, Wang C. The antipsychotics sulpiride induces fatty liver in rats via phosphorylation of insulin receptor substrate-1 at Serine 307-mediated adipose tissue insulin resistance. Toxicol Appl Pharmacol 2018; 345:66-74. [PMID: 29551354 DOI: 10.1016/j.taap.2018.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Cumulative evidence has suggested that many antipsychotics cause metabolic abnormalities. Adipose tissue insulin resistance (Adipo-IR) contributes to the development and progress of metabolic abnormalities including fatty liver by inducing excessive free fatty acid release from adipose tissue. Sulpiride is an old antipsychotic still frequently used in many developing countries. However, its adverse metabolic effects remain poorly understood. Here, chronic administration of sulpiride (80 mg/kg, subcutaneously, once daily for 6 weeks) elevated fasting insulin concentration and the index of the homeostasis model assessment of insulin resistance in rats. More importantly, sulpiride increased hepatic triglyceride accumulation and Oil Red O-stained area, indicating the induction of fatty liver by sulpiride. Sulpiride also increased plasma non-esterified fatty acid concentrations at the baseline and during an oral glucose tolerance test, the Adipo-IR index, and adipocyte size. Adipose gene expression profile revealed that sulpiride decreased mRNA and protein expression of insulin receptor substrate (IRS)-1, but not IRS-2. Furthermore, sulpiride increased phosphorylation of both Ser307 in IRS-1 and Ser473 in Akt at baseline. Co-treatment with bromocriptine (a dopamine D2 receptor agonist) attenuated sulpiride-induced hyperprolactinemia, but it was without effect on insulin resistance and fatty liver. Therefore, the present results suggest that sulpiride induces fatty liver in rats via phosphorylation of IRS-1 at Ser307-mediated adipose tissue insulin resistance, in which dopamine D2 receptor is possibly not involved. Our findings may provide new insights into the mechanisms underlying the steatotic effect of the old antipsychotic.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liying Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhiling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiaoqian Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Li
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW 2000, Australia
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
213
|
Buko V, Zavodnik I, Kanuka O, Belonovskaya E, Naruta E, Lukivskaya O, Kirko S, Budryn G, Żyżelewicz D, Oracz J, Sybirna N. Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food Funct 2018. [PMID: 29517782 DOI: 10.1039/c7fo01823a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protective effect of red cabbage extract (RCE) was evaluated in rats with streptozotocin-induced diabetes, assessing a probable role of this extract in the prevention of erythrocyte impairments associated with a high risk of vascular complications in diabetes. RCE was analyzed by ultrahigh performance liquid chromatography and mass spectrometry, and 11 anthocyanins, 3 hydroxybenzoic acids and 9 hydroxycinnamic acids were identified. Type 1 diabetes was induced by streptozotocin (60 mg kg-1) in Wistar male rats (n = 8 per group). After 7 days of acclimatization, streptozotocin-treated rats were given RCE (800 mg kg-1) or vehicle by intragastric administration for 4 weeks. The RCE treatment lowered blood glucose, and glycated and fetal hemoglobin concentrations and improved glucose tolerance as well as considerably raised serum insulin, proinsulin and C-peptide levels in streptozotocin-treated rats. Simultaneously, RCE improved pancreatic islet morphology, increasing the amount of pancreatic β-cells in diabetic animals. The RCE administration prevented anemia in rats with streptozotocin-induced diabetes, enhanced erythrocyte resistance to acid hemolysis, and normalized reticulocyte production as well as sialic acid content in erythrocyte membranes. The enhanced lectin-induced erythrocyte aggregation in diabetic rats was significantly lowered after the RCE treatment. RCE demonstrated a significant antioxidant effect, decreasing MDA and protein carbonyl contents and increasing catalase and glutathione peroxidase activities in erythrocytes. These results indicate that RCE can be considered as a promising candidate for use as a drug or a food supplement to alleviate diabetes and its vascular complications.
Collapse
Affiliation(s)
- Vyacheslav Buko
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, 230030 Grodno, Belarus. and University of Medical Sciences, 15-875 Białystok, Poland
| | - Ilya Zavodnik
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, 230030 Grodno, Belarus. and Department of Biochemistry, Yanka Kupala State University, 230023 Grodno, Belarus
| | - Olena Kanuka
- Department of Biochemistry, Ivan Franko Lviv National University, 79000 Lviv, Ukraine
| | - Elena Belonovskaya
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, 230030 Grodno, Belarus.
| | - Elena Naruta
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, 230030 Grodno, Belarus.
| | - Oxana Lukivskaya
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, 230030 Grodno, Belarus.
| | - Siargej Kirko
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, 230030 Grodno, Belarus.
| | - Grazyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Danuta Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland
| | - Natalia Sybirna
- Department of Biochemistry, Ivan Franko Lviv National University, 79000 Lviv, Ukraine
| |
Collapse
|
214
|
Zhang J, Song W, Sun Y, Cheng B, Shan A. Changes in glucose metabolism and mRNA expression of IRS-2 in rats exposed to phoxim and the protective effects of vitamin E. Toxicol Res (Camb) 2018; 7:201-210. [PMID: 30090575 PMCID: PMC6061297 DOI: 10.1039/c7tx00243b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Research has shown that organophosphorus pesticides impair glucose homeostasis and cause insulin resistance and type 2 diabetes. The current study investigates the influence of phoxim on insulin signaling pathways and the protective effects of vitamin E. Phoxim (180 mg kg-1) and VE (200 mg kg-1) were administered orally to Sprague-Dawley rats over a period of 28 consecutive days. After exposure to phoxim, the animals showed glucose intolerance and hyperinsulinemia during glucose tolerance tests, and insulin tolerance tests demonstrated an impaired glucose-lowering effect of insulin. Phoxim increases the fasting glucose, insulin and cholesterol levels, as well as the liver hexokinase activity (HK) significantly while decreasing the high density lipoprotein (HDL) cholesterol, and glycogen content in the liver and skeletal muscles observably. Furthermore, we observed an increase of insulin resistance biomarkers and a decrease of insulin sensitivity indices. The insulin receptor substrate (IRS)-2 mRNA expressions of liver and skeletal muscles were down-regulated by phoxim, while the expression of IRS-1 showed no difference. There were no differences in triglycerides, LDL-cholesterol, and fasting glucose treated with phoxim. On the basis of biochemical and molecular findings, phoxim has been determined to impair glucose homeostasis through insulin resistance and insulin signaling pathway disruptions resulting in a reduced function of insulin in hepatocytes and muscles. VE supplementation reduced the fasting glucose, increased the glycogen content and HDL-cholesterol, but did not reduce the insulin resistance indices, when phoxim-treated rats were compared to VE supplemented rats. Overall, this study shows that vitamin E modifies the phoxim toxicity in rats only to a moderate degree.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Wentao Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Yuecheng Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Baojing Cheng
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| |
Collapse
|
215
|
Gao J, Song J, Du M, Mao X. Bovine α-Lactalbumin Hydrolysates (α-LAH) Ameliorate Adipose Insulin Resistance and Inflammation in High-Fat Diet-Fed C57BL/6J Mice. Nutrients 2018; 10:nu10020242. [PMID: 29473848 PMCID: PMC5852818 DOI: 10.3390/nu10020242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity-induced adipose inflammation has been demonstrated to be a key cause of insulin resistance. Peptides derived from bovine α-lactalbumin have been shown to inhibit the activities of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE), scavenge 2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonate] (ABTS⁺) radical and stimulate glucagon-like peptide-2 secretion. In the present study, the effects of bovine α-lactalbumin hydrolysates (α-LAH) on adipose insulin resistance and inflammation induced by high-fat diet (HFD) were investigated. The insulin resistance model was established by feeding C57BL/6J mice with HFD (60% kcal from fat) for eight weeks. Then, the mice were fed with HFD and bovine α-LAH of different doses (100 mg/kg b.w., 200 mg/kg b.w. and 400 mg/kg b.w.) for another 12 weeks to evaluate its protective effects against HFD-induced insulin resistance. The oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (ipITT) were conducted after intervention with α-LAH for 10 weeks and 11 weeks, respectively. Results showed that bovine α-LAH significantly reduced body weight, blood glucose, serum insulin, and HOMA-IR (homeostatic model assessment of insulin resistance) levels, lowered the area-under-the-curve (AUC) during OGTT and ipITT, and downregulated inflammation-related gene [tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1] expression in adipose tissues of HFD-fed C57BL/6J mice. Furthermore, bovine α-LAH also suppressed insulin receptor substrate 1 (IRS-1) serine phosphorylation (Ser307, Ser612), enhanced protein kinase B (known as Akt) phosphorylation, and inhibited the activation of inhibitor of kappaB kinase (IKK) and mitogen activated protein kinase (MAPK) signaling pathways in adipose tissues of HFD-fed C57BL/6J mice. These results suggested that bovine α-LAH could ameliorate adipose insulin resistance and inflammation through IKK and MAPK signaling pathways in HFD-fed C57BL/6J mice.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Jiajia Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
216
|
Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC, Zernicke RF, Hart DA. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front Physiol 2018; 9:112. [PMID: 29527173 PMCID: PMC5829464 DOI: 10.3389/fphys.2018.00112] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 01/14/2023] Open
Abstract
Inflammation can arise in response to a variety of stimuli, including infectious agents, tissue injury, autoimmune diseases, and obesity. Some of these responses are acute and resolve, while others become chronic and exert a sustained impact on the host, systemically, or locally. Obesity is now recognized as a chronic low-grade, systemic inflammatory state that predisposes to other chronic conditions including metabolic syndrome (MetS). Although obesity has received considerable attention regarding its pathophysiological link to chronic cardiovascular conditions and type 2 diabetes, the musculoskeletal (MSK) complications (i.e., muscle, bone, tendon, and joints) that result from obesity-associated metabolic disturbances are less frequently interrogated. As musculoskeletal diseases can lead to the worsening of MetS, this underscores the imminent need to understand the cause and effect relations between the two, and the convergence between inflammatory pathways that contribute to MSK damage. Muscle mass is a key predictor of longevity in older adults, and obesity-induced sarcopenia is a significant risk factor for adverse health outcomes. Muscle is highly plastic, undergoes regular remodeling, and is responsible for the majority of total body glucose utilization, which when impaired leads to insulin resistance. Furthermore, impaired muscle integrity, defined as persistent muscle loss, intramuscular lipid accumulation, or connective tissue deposition, is a hallmark of metabolic dysfunction. In fact, many common inflammatory pathways have been implicated in the pathogenesis of the interrelated tissues of the musculoskeletal system (e.g., tendinopathy, osteoporosis, and osteoarthritis). Despite these similarities, these diseases are rarely evaluated in a comprehensive manner. The aim of this review is to summarize the common pathways that lead to musculoskeletal damage and disease that result from and contribute to MetS. We propose the overarching hypothesis that there is a central role for muscle damage with chronic exposure to an obesity-inducing diet. The inflammatory consequence of diet and muscle dysregulation can result in dysregulated tissue repair and an imbalance toward negative adaptation, resulting in regulatory failure and other musculoskeletal tissue damage. The commonalities support the conclusion that musculoskeletal pathology with MetS should be evaluated in a comprehensive and integrated manner to understand risk for other MSK-related conditions. Implications for conservative management strategies to regulate MetS are discussed, as are future research opportunities.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Graham Z. MacDonald
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Raylene A. Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline L. Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- CAPES Foundation, Brasilia, Brazil
| | - Ian C. Smith
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ronald F. Zernicke
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Departments of Orthopaedic Surgery and Biomedical Engineering, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Family Practice, The Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
- Alberta Health Services Bone and Joint Health Strategic Clinical Network, Calgary, AB, Canada
| |
Collapse
|
217
|
Zhang P, Zhu D, Zhang Y, Li L, Chen X, Zhang W, Shi R, Tao J, Han B, Xu Z. Synergetic Effects of Prenatal and Postnatal High Sucrose Intake on Glucose Tolerance and Hepatic Insulin Resistance in Rat Offspring. Mol Nutr Food Res 2018; 62. [PMID: 29346712 DOI: 10.1002/mnfr.201700771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Pengjie Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Di Zhu
- Obstetrics and Gynecology; Municipal Hospital; Suzhou China
| | - Yueming Zhang
- Obstetrics and Gynecology; First Hospital of Soochow University; Suzhou China
| | - Lingjun Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xionghui Chen
- Department of Emergency Surgery; First Hospital of Soochow University; Suzhou China
| | - Wenna Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Ruixiu Shi
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Jianying Tao
- Obstetrics and Gynecology; Municipal Hospital; Suzhou China
| | - Bing Han
- Obstetrics and Gynecology; First Hospital of Soochow University; Suzhou China
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
- Centre for Prenatal Biology; Loma Linda University; Loma Linda CA USA
| |
Collapse
|
218
|
Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples. Neuromolecular Med 2018; 20:124-132. [PMID: 29450841 DOI: 10.1007/s12017-018-8480-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/03/2018] [Indexed: 01/26/2023]
Abstract
Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), where inheritance of this isoform predisposes development of AD in a gene dose-dependent manner. Although the mode of action of ApoE4 on AD onset and progression remains unknown, we have previously shown that ApoE4, and not ApoE3 expression, resulted in insulin signaling deficits in the presence of amyloid beta (Aβ). However, these reports were not conducted with clinical samples that more accurately reflect human disease. In this study, we investigated the effect of ApoE genotype on the insulin signaling pathway in control and AD human brain samples. We found that targets of the insulin signaling pathway were attenuated in AD cases, regardless of ApoE isoform. We also found a decrease in GluR1 subunit expression, and an increase NR2B subunit expression in AD cases, regardless of ApoE isoform. Lastly, we observed that more insulin receptor (IR) was immunoprecipitated in control cases, and more Aβ was immunoprecipitated with AD cases. But, when comparing among AD cases, we found that more IR was immunoprecipitated with ApoE3 than ApoE4, and more Aβ was immunoprecipitated with ApoE4 than ApoE3. Our results suggest that the difference in IR binding and effect on protein expression downstream of the IR may affect onset and progression of AD.
Collapse
|
219
|
Saeid F, Aniseh J, Reza B, Manouchehr VS. Signaling mediators modulated by cardioprotective interventions in healthy and diabetic myocardium with ischaemia-reperfusion injury. Eur J Prev Cardiol 2018; 25:1463-1481. [PMID: 29442529 DOI: 10.1177/2047487318756420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischaemic heart diseases are one of the major causes of death in the world. In most patients, ischaemic heart disease is coincident with other risk factors such as diabetes. Patients with diabetes are more prone to cardiac ischaemic dysfunctions including ischaemia-reperfusion injury. Ischaemic preconditioning, postconditioning and remote conditionings are reliable interventions to protect the myocardium against ischaemia-reperfusion injuries through activating various signaling pathways and intracellular mediators. Diabetes can disrupt the intracellular signaling cascades involved in these myocardial protections, and studies have revealed that cardioprotective effects of the conditioning interventions are diminished in the diabetic condition. The complex pathophysiology and poor prognosis of ischaemic heart disease among people with diabetes necessitate the investigation of the interaction of diabetes with ischaemia-reperfusion injury and cardioprotective mechanisms. Reducing the outcomes of ischaemia-reperfusion injury using targeted strategies would be particularly helpful in this population. In this study, we review the protective interventional signaling pathways and mediators which are activated by ischaemic conditioning strategies in healthy and diabetic myocardium with ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Feyzizadeh Saeid
- 1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javadi Aniseh
- 4 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Badalzadeh Reza
- 1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,5 Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vafaee S Manouchehr
- 6 Department of Nuclear Medicine, Odense University Hospital, Odense-Denmark.,7 Institute of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense-Denmark.,8 Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
220
|
Zafirovic S, Sudar-Milovanovic E, Obradovic M, Djordjevic J, Jasnic N, Borovic ML, Isenovic ER. Involvement of PI3K, Akt and RhoA in Oestradiol Regulation of Cardiac iNOS Expression. Curr Vasc Pharmacol 2018; 17:307-318. [PMID: 29437011 DOI: 10.2174/1570161116666180212142414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oestradiol is an important regulatory factor with several positive effects on the cardiovascular (CV) system. We evaluated the molecular mechanism of the in vivo effects of oestradiol on the regulation of cardiac inducible nitric oxide (NO) synthase (iNOS) expression and activity. METHODS Male Wistar rats were treated with oestradiol (40 mg/kg, intraperitoneally) and after 24 h the animals were sacrificed. The concentrations of NO and L-Arginine (L-Arg) were determined spectrophotometrically. For protein expressions of iNOS, p65 subunit of nuclear factor-κB (NFκB-p65), Ras homolog gene family-member A (RhoA), angiotensin II receptor type 1 (AT1R), insulin receptor substrate 1 (IRS-1), p85, p110 and protein kinase B (Akt), Western blot method was used. Coimmunoprecipitation was used for measuring the association of IRS-1 with the p85 subunit of phosphatidylinositol- 3-kinase (PI3K). The expression of iNOS messenger ribonucleic acid (mRNA) was measured with the quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of the tissue was used to detect localization and expression of iNOS in heart tissue. RESULTS Oestradiol treatment reduced L-Arg concentration (p<0.01), iNOS mRNA (p<0.01) and protein (p<0.001) expression, level of RhoA (p<0.05) and AT1R (p<0.001) protein. In contrast, plasma NO (p<0.05), Akt phosphorylation at Thr308 (p<0.05) and protein level of p85 (p<0.001) increased after oestradiol treatment. CONCLUSION Our results suggest that oestradiol in vivo regulates cardiac iNOS expression via the PI3K/Akt signaling pathway, through attenuation of RhoA and AT1R.
Collapse
Affiliation(s)
- Sonja Zafirovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nebojsa Jasnic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology "Aleksandar D. Kostic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia.,Faculty of Stomatology, Pancevo, University Business Academy, Novi Sad, Serbia
| |
Collapse
|
221
|
Down-regulation of tensin2 enhances tumorigenicity and is associated with a variety of cancers. Oncotarget 2018; 7:38143-38153. [PMID: 27203214 PMCID: PMC5122378 DOI: 10.18632/oncotarget.9411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
Tensin family members, including tensin2 (TNS2), are present as major components of the focal adhesions. The N-terminal end of TNS2 contains a C1 region (protein kinase C conserved region 1) that is not found in other tensin members. Three isoforms of TNS2 have been identified with previous reports describing the shortest V3 isoform as lacking the C1 region. Although TNS2 is known to regulate cell proliferation and migration, its role in tumorigenicity is controversial. By gain-of-function overexpression approaches, results supporting either promotion or reduction of cancer cell tumorigenicity were reported. Here we report that the complete V3 isoform also contains the C1 region and describe the expression patterns of the three human TNS2 isoforms. By loss-of-function approaches, we show that silencing of TNS2 up-regulates the activities of Akt, Mek, and IRS1, and increases tumorigenicities in A549 and Hela cells. Using public database analyses we found that TNS2 is down-regulated in head and neck, esophageal, breast, lung, liver, and colon cancer. In addition, patients with low TNS2 expression showed poor relapse-free survival rates for breast and lung cancers. These results strongly suggest a role of tensin2 in suppressing cell transformation and reduction of tumorigenicity.
Collapse
|
222
|
Zhang J, Zhao J, Zheng X, Cai K, Mao Q, Xia H. Establishment of a novel hepatic steatosis cell model by Cas9/sgRNA-mediated DGKθ gene knockout. Mol Med Rep 2018; 17:2169-2176. [PMID: 29207074 PMCID: PMC5783457 DOI: 10.3892/mmr.2017.8140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023] Open
Abstract
To investigate the role of diacylglycerol kinase θ (DGKθ) in lipid metabolism and insulin resistance, the present study generated an in vitro hepatic steatosis cell model by knockout of the DGKθ gene in liver cancer cell line HepG2 using CRISPR/Cas9 technology. The cell line was characterized by Oil Red O staining and shown to exhibit increased intracellular lipid accumulation, compared with that in wild‑type liver cancer cell line HepG2. The gene expression levels of signaling proteins in pathways involved in lipid metabolism, insulin resistance and gluconeogenesis were also examined. The DGKθ‑knockout HepG2 cells showed increased mRNA and protein expression levels of lipid synthesis‑related genes, fatty acid synthase, peroxisome proliferator‑activated receptor‑γ and sterol regulatory element‑binding protein‑1c, and decreased expression levels of the lipolysis‑related gene, carnitine palmitoyltransferase1A. These changes may account for the increased intracellular lipid content of this cell line. The DGKθ‑knockout HepG2 cells also exhibited an increased phosphorylation level of protein kinase Cε and decreased phosphorylation levels of insulin receptor substrate 1, mechanistic target of rapamycin and protein kinase B (also known as Akt). These changes have been reported to mediate insulin resistance. Taken together, an in vitro hepatic steatosis cell model was established in the present study, providing a valuable tool for understanding the pathogenesis of nonalcoholic fatty liver disease and associated insulin resistance, and for developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Jingjing Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Kai Cai
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| |
Collapse
|
223
|
Song J, Kim OY. Perspectives in Lipocalin-2: Emerging Biomarker for Medical Diagnosis and Prognosis for Alzheimer's Disease. Clin Nutr Res 2018; 7:1-10. [PMID: 29423384 PMCID: PMC5796918 DOI: 10.7762/cnr.2018.7.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023] Open
Abstract
Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily was reported to participate in various biological processes including cell migration, cell survival, inflammatory responses, and insulin sensitivity. LCN2 is expressed in the multiple tissues such as kidney, liver, uterus, and bone marrow. The receptors for LCN2 were additionally found in microglia, astrocytes, epithelial cells, and neurons, but the role of LCN2 in the central nervous system (CNS) has not been fully understood yet. Recently, in vitro, in vivo, and clinical studies reported the association between LCN2 and the risk of Alzheimer's disease (AD). Here, we reviewed the significant evidences showing that LCN2 contributes to the onset and progression of AD. It may suggest that the manipulation of LCN2 in the CNS would be a crucial target for regulation of the pathogenesis and risk of AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Korea.,Human Life Research Center, Dong-A University, Busan 49315, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan 49315, Korea.,Department of Food Science and Nutrition, Brain Busan 21 Project, Dong-A University, Busan 49315, Korea
| |
Collapse
|
224
|
Sun B, Zhong Z, Wang F, Xu J, Xu F, Kong W, Ling Z, Shu N, Li Y, Wu T, Zhang M, Zhu L, Liu X, Liu L. Atorvastatin impaired glucose metabolism in C2C12 cells partly via inhibiting cholesterol-dependent glucose transporter 4 translocation. Biochem Pharmacol 2018; 150:108-119. [PMID: 29338971 DOI: 10.1016/j.bcp.2018.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Skeletal muscle accounts for approximately 75% of glucose disposal in body and statins impair glucose metabolism. We aimed to investigate the effect of atorvastatin on glucose metabolism in C2C12 cells. Glucose metabolism and expression of glucose transporter 4 (GLUT4) and hexokinase II (HXKII) were measured following incubation with atorvastatin or pravastatin. Roles of cholesterol in atorvastatin-induced glucose metabolism impairment were investigated via adding cholesterol or mevalonic acid and confirmed by cholesterol depletion with methyl-β-cyclodextrin. Hypercholesterolemia mice induced by high fat diet (HFD) feeding, orally received atorvastatin (6 and 12 mg/kg) or pravastatin (12 mg/kg) for 22 days. Results showed that atorvastatin not pravastatin concentration-dependently impaired glucose consumption, glucose uptake and GLUT4 membrane translocation in C2C12 cells without affecting expression of HXKII or total GLUT4 protein. The atorvastatin-induced alterations were reversed by cholesterol or mevalonic acid. Cholesterol depletion exerted similar impact to atorvastatin, which could be alleviated by cholesterol supplement. Glucose consumption or GLUT4 translocation was positively associated with cellular cholesterol levels. In HFD mice, atorvastatin not pravastatin significantly increased blood glucose levels following glucose or insulin dose and decreased expression of membrane not total GLUT4 protein in muscle. Glucose exposure following glucose or insulin dose was negatively correlated to muscular free cholesterol concentration. Expression of membrane GLUT4 protein was positively related to free cholesterol in muscle. In conclusion, atorvastatin impaired glucose utilization in muscle cells partly via inhibiting GLUT4 membrane translocation due to inhibition of cholesterol synthesis by atorvastatin, at least, partly contributing to glucose intolerance in HFD mice.
Collapse
Affiliation(s)
- Binbin Sun
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Zhong
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Wang
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiong Xu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Xu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weimin Kong
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoli Ling
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Shu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Li
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Wu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
225
|
Ajoy R, Chou SY. Studying the Hypothalamic Insulin Signal to Peripheral Glucose Intolerance with a Continuous Drug Infusion System into the Mouse Brain. J Vis Exp 2018. [PMID: 29364220 PMCID: PMC5908432 DOI: 10.3791/56410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Insulin regulates systematic metabolism in the hypothalamus and the peripheral insulin response. An inflammatory reaction in peripheral adipose tissues contributes to type 2 diabetes mellitus (T2DM) development and appetite regulation in the hypothalamus. Chemokine CCL5 and C-C chemokine receptor type 5 (CCR5) levels have been suggested to mediate arteriosclerosis and glucose intolerance in type 2 diabetes mellitus (T2DM). In addition, CCL5 plays a neuroendocrine role in the hypothalamus by regulating food intake and body temperature, thus, prompting us to investigate its function in hypothalamic insulin signaling and the regulation of peripheral glucose metabolism. The micro-osmotic pump brain infusion system is a quick and precise way to manipulate CCL5 function and study its effect in the brain. It also provides a convenient alternative approach to generating a transgenic knockout animal. In this system, CCL5 signaling was blocked by intracerebroventricular (ICV) infusion of its antagonist, MetCCL5, using a micro-osmotic pump. The peripheral glucose metabolism and insulin responsiveness was detected by the Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). Insulin signaling activity was then analyzed by protein blot from tissue samples derived from the animals. After 7-14 days of MetCCL5 infusion, the glucose metabolism and insulin responsiveness was impaired in mice, as seen in the results of the OGTT and ITT. The IRS-1 serine302 phosphorylation was increased and the Akt activity was reduced in mice hypothalamic neurons following CCL5 inhibition. Altogether, our data suggest that blocking CCL5 in the mouse brain increases the phosphorylation of IRS-1 S302 and interrupts hypothalamic insulin signaling, leading to a decrease in insulin function in peripheral tissues as well as the impairment of glucose metabolism.
Collapse
Affiliation(s)
- Reni Ajoy
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University
| | - Szu-Yi Chou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University; TMU research center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University;
| |
Collapse
|
226
|
Wu WKK, Zhang L, Chan MTV. Autophagy, NAFLD and NAFLD-Related HCC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:127-138. [PMID: 29956211 DOI: 10.1007/978-981-10-8684-7_10] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) will become a dominant cause of hepatocellular carcinoma (HCC) in the coming decade. Whereas the exact molecular mechanisms underlying the progression from simple steatosis, through steatohepatitis, to HCC remains largely unclear, emerging evidence has supported a central role of defective autophagy in the pathogenesis of NAFLD and its complications. Autophagy not only regulates lipid metabolism and insulin resistance, but also protects hepatocytes from injury and cell death. Nevertheless, in inflammation and tumorigenesis, the role of autophagy is more paradoxical. In NAFLD, defective hepatic autophagy occurs at multiple levels through numerous mechanisms and is causally linked to NAFLD-related HCC. In this chapter, we summarize the regulation and function of autophagy in NAFLD and highlight recent identification of potential pharmacological agents for restoring autophagic flux in NAFLD.
Collapse
Affiliation(s)
- William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong. .,State Key Laboratory of Digestive Diseases, Department of Medicine & Therapeutics and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases, Department of Medicine & Therapeutics and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
227
|
Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Links Between Obesity-Induced Brain Insulin Resistance, Brain Mitochondrial Dysfunction, and Dementia. Front Endocrinol (Lausanne) 2018; 9:496. [PMID: 30233495 PMCID: PMC6127253 DOI: 10.3389/fendo.2018.00496] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
It is widely recognized that obesity and associated metabolic changes are considered a risk factor to age-associated cognitive decline. Inflammation and increased oxidative stress in peripheral areas, following obesity, are patently the major contributory factors to the degree of the severity of brain insulin resistance as well as the progression of cognitive impairment in the obese condition. Numerous studies have demonstrated that the alterations in brain mitochondria, including both functional and morphological changes, occurred following obesity. Several studies also suggested that brain mitochondrial dysfunction may be one of underlying mechanism contributing to brain insulin resistance and cognitive impairment in the obese condition. Thus, this review aimed to comprehensively summarize and discuss the current evidence from various in vitro, in vivo, and clinical studies that are associated with obesity, brain insulin resistance, brain mitochondrial dysfunction, and cognition. Contradictory findings and the mechanistic insights about the roles of obesity, brain insulin resistance, and brain mitochondrial dysfunction on cognition are also presented and discussed. In addition, the potential therapies for obese-insulin resistance are reported as the therapeutic strategies which exert the neuroprotective effects in the obese-insulin resistant condition.
Collapse
Affiliation(s)
- Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Siriporn C. Chattipakorn ;
| |
Collapse
|
228
|
Zhou Y, Ding YL, Zhang JL, Zhang P, Wang JQ, Li ZH. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed Pharmacother 2018; 97:1397-1408. [DOI: 10.1016/j.biopha.2017.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022] Open
|
229
|
Sun S, Tan P, Huang X, Zhang W, Kong C, Ren F, Su X. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes. J Biol Chem 2017; 293:2383-2394. [PMID: 29269414 DOI: 10.1074/jbc.m117.811471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shishuo Sun
- From the Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China and
| | - Pengcheng Tan
- From the Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China and
| | - Xiaoheng Huang
- From the Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China and
| | - Wei Zhang
- the Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Chen Kong
- the Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Fangfang Ren
- From the Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China and
| | - Xiong Su
- From the Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China and .,the Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
230
|
High-fat diet-induced obesity impairs insulin signaling in lungs of allergen-challenged mice: Improvement by resveratrol. Sci Rep 2017; 7:17296. [PMID: 29229986 PMCID: PMC5725490 DOI: 10.1038/s41598-017-17558-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance plays an important role in obesity-associated asthma exacerbations. Using a murine model of allergic airway inflammation, we evaluated the insulin signaling transmission in lungs of obese compared with lean mice. We further evaluated the effects of the polyphenol resveratrol in the pulmonary insulin signaling. In lean mice, insulin stimulation significantly increased phosphorylations of AKT, insulin receptor substrate 1 (IRS-1) and insulin receptor β (IRβ) in lung tissue and isolated bronchi (p < 0.05), which were impaired in obese group. Instead, obese mice displayed increased tyrosine nitrations of AKT, IRβ and IRS-1 (p < 0.05). Two-week therapy of obese mice with resveratrol (100 mg/kg/day) restored insulin-stimulated AKT, IRS-1 and IRβ phosphorylations, and simultaneously blunted the tyrosine nitration of these proteins. Additionally, the c-Jun N-terminal kinase (JNK) and inhibitor of NF-κB Kinase (IκK) phosphorylations were significantly increased in obese group, an effect normalized by resveratrol. In separate experiments, the inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (20 mg/kg/day, three weeks) mimicked the protective effects exerted by resveratrol in lungs of obese mice. Lungs of obese mice display nitrosative-associated impairment of insulin signaling, which is reversed by resveratrol. Polyphenols may be putative drugs to attenuate asthma exacerbations in obese individuals.
Collapse
|
231
|
Jovanović L, Pantelić M, Prodanović R, Vujanac I, Đurić M, Tepavčević S, Vranješ-Đurić S, Korićanac G, Kirovski D. Effect of Peroral Administration of Chromium on Insulin Signaling Pathway in Skeletal Muscle Tissue of Holstein Calves. Biol Trace Elem Res 2017; 180:223-232. [PMID: 28378114 DOI: 10.1007/s12011-017-1007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
The objective of this study was to investigate the effects of peroral administration of chromium-enriched yeast on glucose tolerance in Holstein calves, assessed by insulin signaling pathway molecule determination and intravenous glucose tolerance test (IVGTT). Twenty-four Holstein calves, aged 1 month, were chosen for the study and divided into two groups: the PoCr group (n = 12) that perorally received 0.04 mg of Cr/kg of body mass daily, for 70 days, and the NCr group (n = 12) that received no chromium supplementation. Skeletal tissue samples from each calf were obtained on day 0 and day 70 of the experiment. Chromium supplementation increased protein content of the insulin β-subunit receptor, phosphorylation of insulin receptor substrate 1 at Tyrosine 632, phosphorylation of Akt at Serine 473, glucose transporter-4, and AMP-activated protein kinase in skeletal muscle tissue, while phosphorylation of insulin receptor substrate 1 at Serine 307 was not affected by chromium treatment. Results obtained during IVGTT, which was conducted on days 0, 30, 50, and 70, suggested an increased insulin sensitivity and, consequently, a better utilization of glucose in the PoCr group. Lower basal concentrations of glucose and insulin in the PoCr group on days 30 and 70 were also obtained. Our results indicate that chromium supplementation improves glucose utilization in calves by enhancing insulin intracellular signaling in the skeletal muscle tissue.
Collapse
Affiliation(s)
- Ljubomir Jovanović
- Department for Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Pantelić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Radiša Prodanović
- Department for Ruminants and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Vujanac
- Department for Ruminants and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloje Đurić
- Department for Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Snežana Tepavčević
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Goran Korićanac
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Kirovski
- Department for Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
232
|
Overexpression of insulin receptor substrate-4 is correlated with clinical staging in colorectal cancer patients. J Mol Histol 2017; 49:39-49. [DOI: 10.1007/s10735-017-9745-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023]
|
233
|
Nishina A, Itagaki M, Sato D, Kimura H, Hirai Y, Phay N, Makishima M. The Rosiglitazone-Like Effects of Vitexilactone, a Constituent from Vitex trifolia L. in 3T3-L1 Preadipocytes. Molecules 2017; 22:molecules22112030. [PMID: 29165364 PMCID: PMC6150318 DOI: 10.3390/molecules22112030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022] Open
Abstract
The increased number of patients with type 2 diabetes (T2D) has become a worldwide problem, and insulin sensitizers such as thiazolidinediones (TZDs) are used as therapeutic agents. We found that extracts of Vitex trifolia L. (V. trifolia), a medicinal plant from Myanmar, induced adipogenesis similar to rosiglitazone (ROS), which is a TZD, in 3T3-L1 preadipocytes. In the present study, we attempted to isolate from V. trifolia those compounds that showed ROS-like effects. Among the extracts of hexane, ethyl acetate, and methanol obtained from V. trifolia, the ethyl acetate extract with the strongest ROS-like effects was purified by various chromatographic methods to obtain three known compounds: vitexilactone (1), vitexicarpin (2) and oleanolic acid (3). Among the isolated compounds, the ROS-like action of 1 was the strongest. The effects of 1 on 3T3-L1 cells during adipogenesis were compared with those of ROS. Both 1 and ROS increased lipid accumulation, the expression of adiponectin and GLUT4 in the cell membrane and decreased both the size of adipocytes and the phosphorylation of IRS-1, ERK1/2 and JNK in 3T3-L1 cells. In contrast, unlike ROS, the induction of proteins involved in lipogenesis was partial. ROS-like effects of 1 in 3T3-L1 cells were suppressed by the addition of bisphenol A diglycidyl ether (BADGE), one of a peroxisome proliferator-activated receptor γ (PPARγ) antagonists, suggesting that the action of 1 on adipocytes is mediated by PPARγ. From the results of the present study, it can be concluded that 1 is a novel insulin sensitizer candidate.
Collapse
Affiliation(s)
- Atsuyoshi Nishina
- College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masaya Itagaki
- College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Daisuke Sato
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma 370-0006, Japan.
| | - Yasuaki Hirai
- Faculty of Arts and Sciences, Showa University, 4562 Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan.
| | - Nyunt Phay
- Botany Department, Pathein University, Main Rd., Pathein, Myanmar.
| | - Makoto Makishima
- School of Medicine, Nihon University, 30-1 Oyaguchi-kamicho, Itabashi, Tokyo 173-8610, Japan.
| |
Collapse
|
234
|
Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats. Stem Cell Res Ther 2017; 8:241. [PMID: 29096724 PMCID: PMC5667486 DOI: 10.1186/s13287-017-0668-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/27/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Insulin resistance is one of the most common and important pathological features of type 2 diabetes (T2D). Recently, insulin resistance is increasingly considered to be associated with systemic chronic inflammation. Elevated levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in blood are predictive indicators of the development of T2D. Mesenchymal stem cell (MSC)-based therapies have been proven to have potential immunomodulation and anti-inflammatory properties through their paracrine effects; however, the mechanism for the anti-inflammatory effect of MSCs in enhancing insulin sensitivity is still uncertain. METHODS In the present experiment, we used HepG2 cells, a human hepatoma cell line, and a MSC-HepG2 transwell culturing system to investigate the anti-inflammatory mechanism of human umbilical cord-derived MSCs (UC-MSCs) under palmitic acid (PA) and lipopolysaccharide (LPS)-induced insulin resistance in vitro. Insulin resistance was confirmed by glycogen assay kit and glucose assay kit. Inflammatory factor release was detected by ELISA, gene expression was tested by quantitative real-time PCR, and insulin signaling activation was determined by western blotting analysis. The changes of inflammatory factors and insulin signaling protein were also tested in T2D rats injected with UC-MSCs. RESULTS Treating HepG2 cells with PA-LPS caused NLRP3 inflammation activation, including overexpression of NLRP3 and caspase-1, and overproduction of IL-1β and IL-18 as well as TNF-α from HepG2 cells. The elevated levels of these inflammatory cytokines impaired insulin receptor action and thereby prevented downstream signaling pathways, exacerbating insulin resistance in HepG2 cells. Importantly, UC-MSCs cocultured with HepG2 could effectively alleviate PA and LPS-induced insulin resistance by blocking the NLRP3 inflammasome activation and inflammatory agents. Furthermore, knockdown of NLRP3 or IL-1β partially improved PA and LPS-induced insulin signaling impairments in the presence of UC-MSCs. Similarly, UC-MSC infusion significantly ameliorated hyperglycemia in T2D rats and decreased inflammatory activity, which resulted in improved insulin sensitivity in insulin target tissues. CONCLUSIONS Our results indicated that UC-MSCs could attenuate insulin resistance and this regulation was correlated with their anti-inflammatory activity. Thus, MSCs might become a novel therapeutic strategy for insulin resistance and T2D in the near future.
Collapse
|
235
|
Li F, Li Q, Shi X, Guo Y. Maslinic acid inhibits impairment of endothelial functions induced by high glucose in HAEC cells through improving insulin signaling and oxidative stress. Biomed Pharmacother 2017; 95:904-913. [DOI: 10.1016/j.biopha.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
|
236
|
Xiao X, Qi W, Clark JM, Park Y. Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes. Food Chem Toxicol 2017; 109:123-129. [DOI: 10.1016/j.fct.2017.08.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
237
|
Bassil F, Canron MH, Vital A, Bezard E, Li Y, Greig NH, Gulyani S, Kapogiannis D, Fernagut PO, Meissner WG. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain 2017; 140:1420-1436. [PMID: 28334990 DOI: 10.1093/brain/awx044] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
See Stayte and Vissel (doi:10.1093/awx064) for a scientific commentary on this article. Multiple system atrophy is a fatal sporadic adult-onset neurodegenerative disorder with no symptomatic or disease-modifying treatment available. The cytopathological hallmark of multiple system atrophy is the accumulation of α-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Impaired insulin/insulin-like growth factor-1 signalling (IGF-1) and insulin resistance (i.e. decreased insulin/IGF-1) have been reported in other neurodegenerative disorders such as Alzheimer's disease. Increasing evidence also suggests impaired insulin/IGF-1 signalling in multiple system atrophy, as corroborated by increased insulin and IGF-1 plasma concentrations in multiple system atrophy patients and reduced IGF-1 brain levels in a transgenic mouse model of multiple system atrophy. We here tested the hypothesis that multiple system atrophy is associated with brain insulin resistance and showed increased expression of the key downstream messenger insulin receptor substrate-1 phosphorylated at serine residue 312 in neurons and oligodendrocytes in the putamen of patients with multiple system atrophy. Furthermore, the expression of insulin receptor substrate 1 (IRS-1) phosphorylated at serine residue 312 was more apparent in inclusion bearing oligodendrocytes in the putamen. By contrast, it was not different between both groups in the temporal cortex, a less vulnerable structure compared to the putamen. These findings suggest that insulin resistance may occur in multiple system atrophy in regions where the neurodegenerative process is most severe and point to a possible relation between α-synuclein aggregates and insulin resistance. We also observed insulin resistance in the striatum of transgenic multiple system atrophy mice and further demonstrate that the glucagon-like peptide-1 analogue exendin-4, a well-tolerated and Federal Drug Agency-approved antidiabetic drug, has positive effects on insulin resistance and monomeric α-synuclein load in the striatum, as well as survival of nigral dopamine neurons. Additionally, plasma levels of exosomal neural-derived IRS-1 phosphorylated at serine residue 307 (corresponding to serine residue 312 in humans) negatively correlated with survival of nigral dopamine neurons in multiple system atrophy mice treated with exendin-4. This finding suggests the potential for developing this peripheral biomarker candidate as an objective outcome measure of target engagement for clinical trials with glucagon-like peptide-1 analogues in multiple system atrophy. In conclusion, our observation of brain insulin resistance in multiple system atrophy patients and transgenic mice together with the beneficial effects of the glucagon-like peptide-1 agonist exendin-4 in transgenic mice paves the way for translating this innovative treatment into a clinical trial.
Collapse
Affiliation(s)
- Fares Bassil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Marie-Hélène Canron
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Anne Vital
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,Service de Pathologie, CHU de Bordeaux, 33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Seema Gulyani
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,Centre de Référence Maladie Rare AMS, Hôpital Pellegrin, CHU de Bordeaux, F-33076 Bordeaux, France.,Service de Neurologie, Hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
238
|
The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017; 9:nu9111176. [PMID: 29077002 PMCID: PMC5707648 DOI: 10.3390/nu9111176] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.
Collapse
|
239
|
Yeh YT, Chiang AN, Hsieh SC. Chinese Olive (Canarium album L.) Fruit Extract Attenuates Metabolic Dysfunction in Diabetic Rats. Nutrients 2017; 9:nu9101123. [PMID: 29036927 PMCID: PMC5691739 DOI: 10.3390/nu9101123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia and dysregulation of lipid metabolism play a crucial role in metabolic dysfunction. The aims of present study were to evaluate the ameliorative effect of the ethyl acetate fraction of Chinese olive fruit extract (CO-EtOAc) on high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic rats. CO-EtOAc, rich in gallic acid and ellagic acid, could markedly decreased the body weight and epididymal adipose mass. In addition, CO-EtOAc increased serum HDL-C levels, hepatic GSH levels, and antioxidant enzyme activities; lowered blood glucose, serum levels of total cholesterol (TC), triglycerides (TG), bile acid, and tumor necrosis factor alpha (TNFα); and reduced TC and TG in liver. We further demonstrated that CO-EtOAc mildly suppressed hepatic levels of phosphorylated IRS-1, TNF-α, and IL-6, but enhanced Akt phosphorylation. The possible mechanisms of cholesterol metabolism were assessed by determining the expression of genes involved in cholesterol transportation, biosynthesis, and degradation. It was found that CO-EtOAc not only inhibited mRNA levels of SREBP-2, HMG-CoAR, SR-B1, and CYP7A1 but also increased the expression of genes, such as ABCA1 and LDLR that governed cholesterol efflux and cholesterol uptake. Moreover, the protein expressions of ABCA1 and LDLR were also significantly increased in the liver of rats supplemented with CO-EtOAc. We suggest that Chinese olive fruit may ameliorate metabolic dysfunction in diabetic rats under HFD challenge.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
240
|
Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, Dineley KT. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease. Neurobiol Aging 2017; 58:1-13. [PMID: 28688899 PMCID: PMC5819888 DOI: 10.1016/j.neurobiolaging.2017.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/23/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling.
Collapse
Affiliation(s)
- Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - An Tran
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Egide Ishimwe
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Larry Denner
- Internal Medicine, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Nikhil Dave
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Salvatore Oddo
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA.
| |
Collapse
|
241
|
Luna-Vital D, Weiss M, Gonzalez de Mejia E. Anthocyanins from Purple Corn Ameliorated Tumor Necrosis Factor-α-Induced Inflammation and Insulin Resistance in 3T3-L1 Adipocytes via Activation of Insulin Signaling and Enhanced GLUT4 Translocation. Mol Nutr Food Res 2017; 61. [PMID: 28759152 DOI: 10.1002/mnfr.201700362] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Indexed: 12/19/2022]
Abstract
SCOPE The aim was to compare the effect of an anthocyanin-rich extract from purple corn pericarp (PCW) and pure anthocyanins on adipogenesis, inflammation, and insulin resistance in 3T3-L1 adipocytes on basal and inflammatory conditions. METHODS AND RESULTS Preadipocytes (3T3-L1) were treated during differentiation with or without PCW. Differentiated adipocytes were treated either individually or in combination with tumor necrosis factor α (TNF-α) and PCW, or pure C3G, Pr3G, P3G. PCW reduced preadipocyte differentiation (IC50 = 0.4 mg/mL). PCW and pure anthocyanins including C3G reduced fatty acid synthase enzymatic activity. PCW reduced TNF-α-dependent inflammatory status increasing adiponectin (39%), and decreasing leptin (-79%). PCW and C3G increased glucose uptake and reduced reactive oxygen species generation in insulin resistant adipocytes. An increase in phosphorylation was observed in AKT, IKK, and MEK, and a decrease in IRS and mTOR activating the insulin receptor-associated pathway. PCW (7.5-fold) and C3G (6.3-fold) enhanced GLUT4 membrane translocation compared to insulin resistant adipocytes. CONCLUSION Anthocyanins from colored corn prevented adipocyte differentiation, lipid accumulation, and reduced PPAR-γ transcriptional activity on adipocytes in basal conditions. Ameliorated TNF-α-induced inflammation and insulin resistance in adipocytes via activation of insulin signaling and enhanced GLUT4 translocation suggesting a reduced hyperglycemia associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Diego Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew Weiss
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
242
|
Tangseefa P, Martin SK, Fitter S, Baldock PA, Proud CG, Zannettino ACW. Osteocalcin-dependent regulation of glucose metabolism and fertility: Skeletal implications for the development of insulin resistance. J Cell Physiol 2017; 233:3769-3783. [PMID: 28834550 DOI: 10.1002/jcp.26163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023]
Abstract
The skeleton has recently emerged as a critical insulin target tissue that regulates whole body glucose metabolism and male reproductive function. While our understanding of these new regulatory axes remains in its infancy, the bone-specific protein, osteocalcin, has been shown to be centrally involved. Undercarboxylated osteocalcin acts as a secretagogue in a feed-forward loop to stimulate pancreatic β-cell proliferation and insulin secretion, improve insulin sensitivity, and promote testosterone production. Importantly, dysregulation of insulin signaling in bone causes a reduction in serum osteocalcin levels that is associated with elevated blood glucose and reduced serum insulin levels, suggesting that the skeleton may play a significant role in the development of diet-induced insulin resistance. Insulin signaling is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) which becomes hyper-activated in response to nutrient overload. Loss- and gain-of function models suggest that mTORC1 function in bone is essential for normal skeletal development; however, the role of this complex in the regulation of glucose metabolism remains to be determined. This review highlights our current understanding of the role played by osteocalcin in the skeletal regulation of glucose metabolism and fertility. In particular, it examines data emerging from transgenic mouse models which have revealed a pancreas-bone-testis regulatory axis and discusses recent human studies which seek to corroborate findings from mouse models with clinical observations. Moreover, we review recent studies which suggest dysregulation of insulin signaling in bone leads to the development of insulin resistance and discuss the potential role of mTORC1 signaling in this process.
Collapse
Affiliation(s)
- Pawanrat Tangseefa
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sally K Martin
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stephen Fitter
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul A Baldock
- Skeletal Metabolism Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andrew C W Zannettino
- Faculty of Health and Medical Science, Myeloma Research Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
243
|
Sun Q, Peng Y, Qi W, Kim Y, Clark JM, Kim D, Park Y. Permethrin decreased insulin-stimulated AKT phosphorylation dependent on extracellular signal-regulated kinase-1 (ERK), but not AMP-activated protein kinase α (AMPKα), in C2C12 myotubes. Food Chem Toxicol 2017; 109:95-101. [PMID: 28866332 DOI: 10.1016/j.fct.2017.08.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Previously 10 μM permethrin (38.7% cis and 59.4% trans isomers), a pyrethroid insecticide widely used in agriculture and household products for pest control, was reported to reduce insulin-stimulated glucose uptake and phosphorylation of protein kinase B (p-AKT) in C2C12 mouse myotubes. The underlying mechanisms on how permethrin decreases insulin-stimulated AKT phosphorylation, however, are unknown. Thus, the goal of this study was to determine the possible mechanism(s) through which permethrin reduced insulin-stimulated AKT phosphorylation in C2C12 myotubes. Permethrin treatment, at 10 μM, decreased insulin-stimulated membrane glucose transporter type 4 (GLUT4) and AKT phosphorylation, and increased insulin receptor substrate 1 (IRS1) Ser307 phosphorylation in the presence of insulin. The inactivation of AKT by permethrin was independent of AMPKα. ERK inactivation by U0126, however, restored insulin-stimulated AKT phosphorylation, which was decreased by permethrin treatment. These results suggest that permethrin decreased insulin-stimulated AKT phosphorylation via ERK activation, but not by AMPKα inactivation.
Collapse
Affiliation(s)
| | - Ye Peng
- Department of Food Science, United States
| | - Weipeng Qi
- Department of Food Science, United States
| | - Yoo Kim
- Department of Food Science, United States
| | - John M Clark
- Department of Veterinary and Animal Sciences, United States
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, 01003, United States
| | | |
Collapse
|
244
|
Exendin-4 reduces food intake via the PI3K/AKT signaling pathway in the hypothalamus. Sci Rep 2017; 7:6936. [PMID: 28761132 PMCID: PMC5537284 DOI: 10.1038/s41598-017-06951-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023] Open
Abstract
Exendin-4 (EX-4), a glucagon-like peptide-1 (GLP-1) receptor agonist, has been shown to reduce food intake and to increase proopiomelanocortin (POMC) gene expression in the hypothalamus. In this study, we examined the potential neural mechanisms by which these effects occur. Male Sprague Dawley rats were implanted with a cannula in the third ventricle of the brain through which an inhibitor of phosphatidylinositol-3 kinase (PI3K) (wortmannin) was administered, and EX-4 or vehicle was administered via intraperitoneal (IP) injection. The activity of PI3K/protein kinase B (AKT) and insulin receptor substrate-1 (IRS-1) in the hypothalamic arcuate was determined. We found that EX-4 treatment significantly decreased food intake and body weight. However, there were almost no changes in food intake and body weight when wortmannin injection (into the third ventricle) occurred prior to EX-4 IP injection. EX-4 not only increased the activity of PI3K/AKT, but it also increased IRS-1 activity. These results show that EX-4 likely suppresses food intake due to its ability to enhance insulin signaling.
Collapse
|
245
|
Lee JS, Park JM, Lee S, Lee HJ, Yang HS, Yeo J, Lee KR, Choi BH, Hong EK. Hispidin rescues palmitate‑induced insulin resistance in C2C12 myotubes. Mol Med Rep 2017; 16:4229-4234. [PMID: 28731188 DOI: 10.3892/mmr.2017.7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle serves an important role in the utilization of glucose during insulin‑stimulated conditions. Excessive saturated fatty acids are considered to be a major contributing factor to insulin resistance in skeletal muscle cells. The present study investigated the effects of hispidin on palmitate‑induced insulin resistance in C2C12 skeletal muscle myotubes via an MTT assay, glucose uptake assay, Oil‑Red‑O staining and western blot analysis. Hispidin reversed the palmitate‑induced inhibition of glucose uptake, and inhibited palmitate‑induced intracellular lipid accumulation. Hispidin suppressed insulin receptor substrate‑1 Ser307 phosphorylation, and significantly promoted the activation of phosphatidylinositol‑3‑kinase and Akt, via inhibition of protein kinase C theta. Furthermore, hispidin treatment of C2C12 muscle cells increased glucose uptake via activation of adenosine monophosphate‑activated protein kinase. These findings indicated that hispidin may improve palmitate‑induced insulin resistance in skeletal muscle myotubes, and therefore hispidin treatment may be beneficial for patients with diabetes.
Collapse
Affiliation(s)
- Jong Seok Lee
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Jun Myoung Park
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Hye Jin Lee
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Joohong Yeo
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Ki Rim Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Byung Hyun Choi
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
246
|
D'Oria R, Laviola L, Giorgino F, Unfer V, Bettocchi S, Scioscia M. PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: Novel potential insights in endothelial dysfunction in preeclampsia. Pregnancy Hypertens 2017; 10:107-112. [PMID: 29153661 DOI: 10.1016/j.preghy.2017.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 02/01/2023]
Abstract
PKB/Akt and MAP/ERK are intracellular kinases regulating cell survival, proliferation and metabolism and as such hold a strategical role in preeclampsia. In fact intracellular pathways related to immunological alterations, endothelial dysfunction and insulin resistance in preeclampsia converge on these molecules. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. To evaluate the pathophysiological significance of this response, the effect of myo-inositol and d-chiro inositol on the activation of PKB/Akt and MAPK/ERK was assessed in human endothelial cells in vitro. Time-course and dose-response analyses of phosphorylation following incubation with inositols showed an approximately 6-fold and 15-fold increase for myo-inositol and d-chiro inositol (p<0.05), respectively. Both inositols promoted a significantly higher PKB/Akt and MAPK/ERK phosphorylation than insulin. Thus, exogenously administered inositols can activate PKB/Akt and MAPK/ERK in human endothelial cells in vitro. The increased production of d-chiro inositol phosphoglycans (IPG-P) during preeclampsia may thus represent a compensatory response, potentially promoting cell survival and metabolism.
Collapse
Affiliation(s)
- Rossella D'Oria
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, Chiasso, Switzerland
| | - Stefano Bettocchi
- Department of Gynecology, Obstetrics and Neonatology (DIGON), I Clinic, Medical University Policlinico of Bari, Bari, Italy
| | - Marco Scioscia
- Department of Obstetrics and Gynecology, Sacro Cuore Don Calabria, Negrar, Verona, Italy.
| |
Collapse
|
247
|
Crespo MC, Tomé-Carneiro J, Pintado C, Dávalos A, Visioli F, Burgos-Ramos E. Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer's disease. Biofactors 2017; 43:540-548. [PMID: 28317262 DOI: 10.1002/biof.1356] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Abstract
Recent epidemiological evidence demonstrated that diabetes is a risk factor for AD onset and development. Indeed, meta-analyses of longitudinal epidemiologic studies show that diabetes increases AD risk by 50-100%, being insulin resistance (IR) the main binding link between diabetes and AD. Astrocytes are the foremost cerebral macroglial cells and are responsible for converting glucose into lactate and transfer it to neurons that use it as fuel, but Aβ(1-42) impairs insulin signaling and glycogen storage. Recent prospective studies showed that the Mediterranean diet is associated with lower incidence of AD. We hypothesized that hydroxytyrosol (HT, the preeminent polyphenol of olives and olive oil) could exert beneficial effects on IR associated with AD and investigated it mechanisms of action in an astrocytic model of AD. The astrocytic cell line C6 was exposed to Aβ(25-35) and co-incubated with HT for different periods. After treatment with Aβ(25-35), astrocytes' viability was significantly decreased as compared with controls; however, both pre- and post-treatment with HT prevented this effect. Mechanistically, we found that the preventive role of HT on Aβ(25-35)- induced cytotoxicity in astrocytes is moderated by an increased HT-induced activation of Akt, which is mediated by the insulin signaling pathway. In addition, we report that HT prevented the pronounced activation of mTOR, thereby restoring proper insulin signaling. In conclusion, we demonstrate that HT protects Aβ(25-35)-treated astrocytes by improving insulin sensitivity and restoring proper insulin-signaling. These data provide some mechanistic insight on the observed inverse association between olive oil consumption and prevalence of cognitive impairment. © 2017 BioFactors, 43(4):540-548, 2017.
Collapse
Affiliation(s)
| | | | - Cristina Pintado
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | - Francesco Visioli
- IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Emma Burgos-Ramos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
248
|
Sulaimanov N, Klose M, Busch H, Boerries M. Understanding the mTOR signaling pathway via mathematical modeling. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:e1379. [PMID: 28186392 PMCID: PMC5573916 DOI: 10.1002/wsbm.1379] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/09/2016] [Accepted: 12/07/2016] [Indexed: 12/12/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulatory pathway that integrates a variety of environmental cues to control cellular growth and homeostasis by intricate molecular feedbacks. In spite of extensive knowledge about its components, the molecular understanding of how these function together in space and time remains poor and there is a need for Systems Biology approaches to perform systematic analyses. In this work, we review the recent progress how the combined efforts of mathematical models and quantitative experiments shed new light on our understanding of the mTOR signaling pathway. In particular, we discuss the modeling concepts applied in mTOR signaling, the role of multiple feedbacks and the crosstalk mechanisms of mTOR with other signaling pathways. We also discuss the contribution of principles from information and network theory that have been successfully applied in dissecting design principles of the mTOR signaling network. We finally propose to classify the mTOR models in terms of the time scale and network complexity, and outline the importance of the classification toward the development of highly comprehensive and predictive models. WIREs Syst Biol Med 2017, 9:e1379. doi: 10.1002/wsbm.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Nurgazy Sulaimanov
- Department of Electrical Engineering and Information TechnologyTechnische Universität DarmstadtDarmstadtGermany
- Department of BiologyTechnische Universitat DarmstadtDarmstadtGermany
| | - Martin Klose
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment at the DKFZ Partner Site Freiburg ‐ Member of the German Cancer Consortium, Institute of Molecular Medicine and Cell ResearchAlbert‐Ludwigs‐University FreiburgFreiburgGermany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
249
|
An ErChen and YinChen Decoction Ameliorates High-Fat-Induced Nonalcoholic Steatohepatitis in Rats by Regulating JNK1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4603701. [PMID: 28680450 PMCID: PMC5478830 DOI: 10.1155/2017/4603701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
ErChen and YinChen decoction (ECYCD) is an effective traditional Chinese medicine and has been widely used in traditional Chinese medicine to treat nonalcoholic steatohepatitis (NASH), with good curative effects. However, the specific mechanisms underlying these effects are unclear. In this study, we determined the efficacy of ECYCD in a high-fat diet-induced NASH rat model, established by 8-week administration of a high-fat diet. ECYCD was administered daily for 4 weeks, after which the rats were euthanized. The results demonstrated that ECYCD ameliorated high-fat diet-induced NASH, as evidenced by decreased liver indexes, reduced hepatic lipid deposition and liver injury, lower serum biochemistry markers (including low-density lipoprotein), and reduced HOMA-IR scores. Moreover, levels of free fatty acids, tumor necrosis factor, and malondialdehyde were decreased, whereas glutathione was increased in the liver. Serum high-density lipoprotein was also increased in the liver, and ECYCD regulated the c-Jun N-terminal kinase 1 (JNK1) signaling pathway by decreasing the levels of JNK1 protein, JNK1 mRNA, activator protein- (AP-) 1 protein, AP-1 mRNA, and phospho-insulin receptor substrate- (IRS-) 1ser307 and increasing phopsho-PKBser473 levels. These results suggested that ECYCD could ameliorate high-fat diet-induced NASH in rats through JNK1 signaling. ECYCD may be a safe therapeutic option for the treatment of NASH.
Collapse
|
250
|
Engin A. Human Protein Kinases and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:111-134. [PMID: 28585197 DOI: 10.1007/978-3-319-48382-5_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|