201
|
Zhao K, Chen X, Bian Y, Zhou Z, Wei X, Zhang J. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2269-2286. [PMID: 37119287 DOI: 10.1007/s00210-023-02506-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) discovered in recent years, where abnormal intracellular iron accumulation leads to the onset of lipid peroxidation, which further leads to the disruption of intracellular redox homeostasis and triggers cell death. Iron accumulation with lipid peroxidation is considered a hallmark of ferroptosis that distinguishes it from other RCDs. Myocardial ischemia-reperfusion injury (MIRI) is a process of increased myocardial cell injury that occurs during coronary reperfusion after myocardial ischemia and is associated with high post-infarction mortality. Multiple experiments have shown that ferroptosis plays an important role in MIRI pathophysiology. This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the possible link between the occurrence of MIRI and ferroptosis in cardiomyocytes. Finally, we discuss and analyze the related drugs that target ferroptosis to attenuate MIRI and its action targets, and point out the shortcomings of the current state of relevant research and possible future research directions. It is hoped to provide a new avenue for improving the prognosis of the acute coronary syndrome.
Collapse
Affiliation(s)
- Ke Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yujing Bian
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zhou Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xijin Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| |
Collapse
|
202
|
Shapiro JS, Chang HC, Tatekoshi Y, Zhao Z, Waxali ZS, Hong BJ, Chen H, Geier JA, Bartom ET, De Jesus A, Nejad FK, Mahmoodzadeh A, Sato T, Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Jiang SC, Sah-Teli SK, Li L, Bentrem D, Lopaschuk G, Ben-Sahra I, O'Halloran TV, Shilatifard A, Puig S, Bergelson J, Koivunen P, Ardehali H. Iron drives anabolic metabolism through active histone demethylation and mTORC1. Nat Cell Biol 2023; 25:1478-1494. [PMID: 37749225 PMCID: PMC11407783 DOI: 10.1038/s41556-023-01225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.
Collapse
Affiliation(s)
- Jason S Shapiro
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuki Tatekoshi
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Zohra Sattar Waxali
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bong Jin Hong
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Haimei Chen
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Justin A Geier
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Adam De Jesus
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Farnaz K Nejad
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Amir Mahmoodzadeh
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Lucia Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonia Maria Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Shang-Chuan Jiang
- Plant Production and Protection Division (NSP), Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - Shiv K Sah-Teli
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Bentrem
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Gary Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Joy Bergelson
- Center of Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
203
|
Xiong L, Helm EY, Dean JW, Sun N, Jimenez-Rondan FR, Zhou L. Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71-iron axis. Nat Immunol 2023; 24:1671-1684. [PMID: 37709985 PMCID: PMC11256193 DOI: 10.1038/s41590-023-01612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Eric Y Helm
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
204
|
Nabeshima H, Niitsu T, Fukushima K, Kida H. Invariant natural killer T cells and iron metabolism orchestrate skin development and homeostasis. Cell Mol Immunol 2023; 20:1095-1097. [PMID: 37147375 PMCID: PMC10541427 DOI: 10.1038/s41423-023-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023] Open
Affiliation(s)
- Hiroshi Nabeshima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Osaka, Japan
- Global Center for Medical Engineering and Informatics, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Osaka, Japan.
| |
Collapse
|
205
|
Yuan W, Sun Z, Ji G, Hu H. Emerging roles of ferroptosis in male reproductive diseases. Cell Death Discov 2023; 9:358. [PMID: 37770442 PMCID: PMC10539319 DOI: 10.1038/s41420-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation that leads to excessive lipid peroxidation in different cells. Ferroptosis is distinct from other forms of cell death and is associated with various diseases. Iron is essential for spermatogenesis and male reproductive function. Therefore, it is not surprising that new evidence supports the role of ferroptosis in testicular injury. Although the molecular mechanism by which ferroptosis induces disease is unknown, several genes and pathways associated with ferroptosis have been linked to testicular dysfunction. In this review, we discuss iron metabolism, ferroptosis, and related regulatory pathways. In addition, we analyze the endogenous and exogenous factors of ferroptosis in terms of iron metabolism and testicular dysfunction, as well as summarize the relationship between ferroptosis and male reproductive dysfunction. Finally, we discuss potential strategies to target ferroptosis for treating male reproductive diseases and provide new directions for preventing male reproductive diseases.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institute of Life Sciences, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
206
|
Xu Q, He L, Zhang S, Di X, Jiang H. Deubiquitinase OTUD3: a double-edged sword in immunity and disease. Front Cell Dev Biol 2023; 11:1237530. [PMID: 37829187 PMCID: PMC10566363 DOI: 10.3389/fcell.2023.1237530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
207
|
Lyle AN, Budd JR, Kennerley VM, Smith BN, Danilenko U, Pfeiffer CM, Vesper HW. Assessment of WHO 07/202 reference material and human serum pools for commutability and for the potential to reduce variability among soluble transferrin receptor assays. Clin Chem Lab Med 2023; 61:1719-1729. [PMID: 37071928 DOI: 10.1515/cclm-2022-1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES The clinical use of soluble transferrin receptor (sTfR) as an iron status indicator is hindered by a lack of assay standardization and common reference ranges and decision thresholds. In 2009, the WHO and National Institute for Biological Standards and Controls (NIBSC) released a sTfR reference material (RM), 07/202, for assay standardization; however, a comprehensive, formal commutability study was not conducted. METHODS This study evaluated the commutability of WHO 07/202 sTfR RM and human serum pools and the impacts of their use as common calibrators. Commutability was assessed for six different measurement procedures (MPs). Serum pools were prepared according to updated CLSI C37-A procedures (C37) or non-C37 procedures. The study design and analyses were based on Parts 2 and 3 of the 2018 IFCC Commutability in Metrological Traceability Working Group's Recommendations for Commutability Assessment. WHO 07/202 and serum pools were used for instrument/assay and mathematical recalibration, respectively, to determine if their use decreases inter-assay measurement variability for clinical samples. RESULTS The WHO 07/202 RM dilutions were commutable for all 6 MPs assessed and, when used for instrument calibration, decreased inter-assay variability from 208 to 55.7 %. Non-C37 and C37 serum pools were commutable for all 6 MPs assessed and decreased inter-assay variability from 208 to 13.8 % and 4.6 %, respectively, when used for mathematical recalibration. CONCLUSIONS All materials evaluated, when used as common calibrators, substantially decreased inter-assay sTfR measurement variability. MP calibration to non-C37 and C37 serum pools may reduce the sTfR IMPBR to a greater extent than WHO 07/202 RM.
Collapse
Affiliation(s)
- Alicia N Lyle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Victoria M Kennerley
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Uliana Danilenko
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christine M Pfeiffer
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hubert W Vesper
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
208
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
209
|
Ventura I, Rodriguez B, Suescum S, Revert F, Revert-Ros F, Moreno MA, Prieto-Ruiz JA, Pérez-Bermejo M. More Than Three Years for Normalisation of Routine Laboratory Values after Gluten Withdrawal in Paediatric Coeliac Patients. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1580. [PMID: 37761542 PMCID: PMC10529408 DOI: 10.3390/children10091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The assessment of the nutritional and inflammatory status of paediatric patients with coeliac disease is an interesting approach to early diagnosis and functional follow-up. Most authors agree that the normalisation of symptoms takes about one year. The aim of the study was to evaluate the clinical manifestation and normalisation of routine analytics in Spanish children diagnosed with celiac disease. METHODS We performed a retrospective case-control study in Spanish paediatric patients, including 21 celiac patients and 20 healthy controls. The 21 patients selected in the case-control study were followed for 5 years after starting a gluten-free diet (GFD). All patients had type 3 villous atrophy according to the Marsh-Oberhuber classification. A total of 39 blood samples were taken before the start of the GFD, and 109 were taken after. Twenty control sera from healthy donors were used for comparison. RESULTS We found that patients had a subclinical but statistically significant increase in blood calcium, transaminases, and white blood cells, and a decrease in serum iron, at the time of diagnosis. Our study also shows that analytical values normalise within five years on a gluten-free diet. CONCLUSIONS The use of a combination of subclinical changes, including low iron, high calcium, elevated leukocytes, lymphocytes, and ALT levels in blood samples, together with a low growth percentile, is pertinent in detecting coeliac disease. This set of parameters could help in the diagnosis of patients without clinical symptoms. We can also show that the levels of Fe, Ca, transaminases, and leucocytes remain subclinically altered after 3 years, despite the gluten-free diet.
Collapse
Affiliation(s)
- Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
- Translational Research Center “San Alberto Magno” CITSAM, Universidad Católica de Valencia ‘San Vicente Mártir’, 46001 Valencia, Spain
| | - Belén Rodriguez
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
| | - Sandra Suescum
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
| | - Fernando Revert
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
- Translational Research Center “San Alberto Magno” CITSAM, Universidad Católica de Valencia ‘San Vicente Mártir’, 46001 Valencia, Spain
| | - Francisco Revert-Ros
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
- Translational Research Center “San Alberto Magno” CITSAM, Universidad Católica de Valencia ‘San Vicente Mártir’, 46001 Valencia, Spain
| | - María Antonia Moreno
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
- Department of Pediatrics, Manises Hospital, 46940 Manises, Spain
| | - Jesús A. Prieto-Ruiz
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Universidad Católica de Valencia ‘San Vicent Mártir’, 46001 Valencia, Spain; (I.V.); (B.R.); (S.S.); (F.R.); (F.R.-R.); (M.A.M.); (J.A.P.-R.)
- Translational Research Center “San Alberto Magno” CITSAM, Universidad Católica de Valencia ‘San Vicente Mártir’, 46001 Valencia, Spain
| | - Marcelino Pérez-Bermejo
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
210
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
211
|
Liang Y, Xia L, Lu S, Yang S, Guo S, Shan X, Zhao P, Zhang C, Guo W, Xu M, Chen H, Lu R. A new mechanism of therapeutic effect of stachydrine on heart failure by inhibiting myocardial ferroptosis. Eur J Pharmacol 2023; 954:175881. [PMID: 37385579 DOI: 10.1016/j.ejphar.2023.175881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation and excessive production of ROS. Its morphology is characterized by mitochondrial atrophy, increased mitochondrial membrane density, mitochondrial cristae degeneration and rupture, and unchanged nuclear morphology. Here, we investigated whether a bioactive constituent extracted from the Chinese herb Leonurus japonicus Houtt. (Yimucao), stachydrine, could improve cardiac function by inhibiting myocardial ferroptosis. We found significant morphological features of ferroptosis in a TAC-induced mouse model of heart failure, in which increased lipid peroxidation in cardiac tissue was accompanied by abnormalities in cystine metabolism as well as iron metabolism. The contractile function of adult mouse cardiomyocytes was severely reduced after the occurrence of erastin-induced ferroptosis. We found that in heart failure mice and erastin-induced cardiomyocyte ferroptosis models, stachydrine significantly improved myocardial function, improving mitochondrial morphological features of ferroptosis and associated signaling pathway alterations, including lipid peroxidation levels, cystine metabolism, and iron metabolism. The results of studies on stachydrine provides new inspirations for the treatment of cardiac ferroptosis and chronic heart failure.
Collapse
Affiliation(s)
- Yueyang Liang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lei Xia
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Songru Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuting Guo
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
212
|
Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis Nanomedicine: Clinical Challenges and Opportunities for Modulating Tumor Metabolic and Immunological Landscape. ACS NANO 2023; 17:15328-15353. [PMID: 37573530 DOI: 10.1021/acsnano.3c04632] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis, a type of regulated cell death driven by iron-dependent phospholipid peroxidation, has captured much attention in the field of nanomedicine since it was coined in 2012. Compared with other regulated cell death modes such as apoptosis and pyroptosis, ferroptosis has many distinct features in the molecular mechanisms and cellular morphology, representing a promising strategy for treating cancers that are resistant to conventional therapeutic modalities. Moreover, recent insights collectively reveal that ferroptosis is tightly connected to the maintenance of the tumor immune microenvironment (TIME), suggesting the potential application of ferroptosis therapies for evoking robust antitumor immunity. From a biochemical perspective, ferroptosis is intricately regulated by multiple cellular metabolic pathways, including iron metabolism, lipid metabolism, redox metabolism, etc., highlighting the importance to elucidate the relationship between tumor metabolism and ferroptosis for developing antitumor therapies. In this review, we provide a comprehensive discussion on the current understanding of ferroptosis-inducing mechanisms and thoroughly discuss the relationship between ferroptosis and various metabolic traits of tumors, which offer promising opportunities for direct tumor inhibition through a nanointegrated approach. Extending from the complex impact of ferroptosis on TIME, we also discussed those important considerations in the development of ferroptosis-based immunotherapy, highlighting the challenges and strategies to enhance the ferroptosis-enabled immunostimulatory effects while avoiding potential side effects. We envision that the insights in this study may facilitate the development and translation of ferroptosis-based nanomedicines for tumor treatment.
Collapse
Affiliation(s)
- Huocheng Yang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
213
|
Zhang Z, Jiang W, Zhang C, Yin Y, Mu N, Wang Y, Yu L, Ma H. Frataxin inhibits the sensitivity of the myocardium to ferroptosis by regulating iron homeostasis. Free Radic Biol Med 2023; 205:305-317. [PMID: 37343689 DOI: 10.1016/j.freeradbiomed.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
RATIONALE Myocardial ischemia/reperfusion (I/R) injury is characterized by cell death via various cellular mechanisms upon reperfusion. As a new type of cell death, ferroptosis provides new opportunities to reduce myocardial cell death. Ferroptosis is known to be more active during reperfusion than ischemia. However, the mechanisms regulating ferroptosis during ischemia and reperfusion remain largely unknown. METHODS The contribution of ferroptosis in ischemic and reperfused myocardium were detected by administered of Fer-1, a ferroptosis inhibitor to C57BL/6 mice, followed by left anterior descending (LAD) ligation surgery. Ferroptosis was evaluated by measurement of cell viability, ptgs2 mRNA level, iron production, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. H9C2 cells were exposed to hypoxia/reoxygenation to mimic in vivo I/R. We used LC-MS/MS to identify potential E3 ligases that interacted with frataxin in heart tissue. Cardiac-specific overexpression of frataxin in whole heart was achieved by intracardiac injection of frataxin, carried by adeno-associated virus serotype 9 (AAV9) containing cardiac troponin T (cTnT) promoter. RESULTS We showed that regulators of iron metabolism, especially iron regulatory protein activity, were increased in the ischemic myocardium or hypoxia cardiomyocytes. In addition, we found that frataxin, which is involved in iron metabolism, is differentially expressed in the ischemic and reperfused myocardium and involved in the regulation of cardiomyocytes ferroptosis. Furthermore, we identified an E3 ligase, NHL repeat-containing 1 (NHLRC1), that mediates frataxin ubiquitination degradation. Cardiac-specific overexpression of frataxin ameliorated myocardial I/R injury through ferroptosis inhibition. CONCLUSIONS Through a multi-level study from molecule to animal model, these findings uncover the key role of frataxin in inhibiting cardiomyocyte ferroptosis and provide new strategies and perspectives for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
214
|
Chung B, Wang Y, Thiel M, Rostami F, Rogoll A, Hirsch VG, Malik Z, Bührke A, Bär C, Klintschar M, Schmitto JD, Vogt C, Werlein C, Jonigk D, Bauersachs J, Wollert KC, Kempf T. Pre-emptive iron supplementation prevents myocardial iron deficiency and attenuates adverse remodelling after myocardial infarction. Cardiovasc Res 2023; 119:1969-1980. [PMID: 37315201 DOI: 10.1093/cvr/cvad092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 06/16/2023] Open
Abstract
AIMS Heart failure (HF) after myocardial infarction (MI) is a major cause of morbidity and mortality. We sought to investigate the functional importance of cardiac iron status after MI and the potential of pre-emptive iron supplementation in preventing cardiac iron deficiency (ID) and attenuating left ventricular (LV) remodelling. METHODS AND RESULTS MI was induced in C57BL/6J male mice by left anterior descending coronary artery ligation. Cardiac iron status in the non-infarcted LV myocardium was dynamically regulated after MI: non-haem iron and ferritin increased at 4 weeks but decreased at 24 weeks after MI. Cardiac ID at 24 weeks was associated with reduced expression of iron-dependent electron transport chain (ETC) Complex I compared with sham-operated mice. Hepcidin expression in the non-infarcted LV myocardium was elevated at 4 weeks and suppressed at 24 weeks. Hepcidin suppression at 24 weeks was accompanied by more abundant expression of membrane-localized ferroportin, the iron exporter, in the non-infarcted LV myocardium. Notably, similarly dysregulated iron homeostasis was observed in LV myocardium from failing human hearts, which displayed lower iron content, reduced hepcidin expression, and increased membrane-bound ferroportin. Injecting ferric carboxymaltose (15 µg/g body weight) intravenously at 12, 16, and 20 weeks after MI preserved cardiac iron content and attenuated LV remodelling and dysfunction at 24 weeks compared with saline-injected mice. CONCLUSION We demonstrate, for the first time, that dynamic changes in cardiac iron status after MI are associated with local hepcidin suppression, leading to cardiac ID long term after MI. Pre-emptive iron supplementation maintained cardiac iron content and attenuated adverse remodelling after MI. Our results identify the spontaneous development of cardiac ID as a novel disease mechanism and therapeutic target in post-infarction LV remodelling and HF.
Collapse
Affiliation(s)
- Bomee Chung
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Marleen Thiel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Fatemeh Rostami
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Anika Rogoll
- Institute for Analytical Chemistry, TU Bergakademie, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Valentin G Hirsch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Zulaikha Malik
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Anne Bührke
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Michael Klintschar
- Institute of Forensic Medicine, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Jan D Schmitto
- Department of Cardiac-, Thoracic-, Transplantation, and Vascular Surgery, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Carla Vogt
- Institute for Analytical Chemistry, TU Bergakademie, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Christopher Werlein
- Institute of Pathology and German Centre for Lung Research, Biomedical Research in End-stage and Obstructive Lung Disease Hannover, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology and German Centre for Lung Research, Biomedical Research in End-stage and Obstructive Lung Disease Hannover, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Tibor Kempf
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
215
|
Lin PC, Hsu WY, Lee PY, Hsu SH, Chiou SS. Insights into Hepatocellular Carcinoma in Patients with Thalassemia: From Pathophysiology to Novel Therapies. Int J Mol Sci 2023; 24:12654. [PMID: 37628834 PMCID: PMC10454908 DOI: 10.3390/ijms241612654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Thalassemia is a heterogeneous congenital hemoglobinopathy common in the Mediterranean region, Middle East, Indian subcontinent, and Southeast Asia with increasing incidence in Northern Europe and North America due to immigration. Iron overloading is one of the major long-term complications in patients with thalassemia and can lead to organ damage and carcinogenesis. Hepatocellular carcinoma (HCC) is one of the most common malignancies in both transfusion-dependent thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT). The incidence of HCC in patients with thalassemia has increased over time, as better chelation therapy confers a sufficiently long lifespan for the development of HCC. The mechanisms of iron-overloading-associated HCC development include the increased reactive oxygen species (ROS), inflammation cytokines, dysregulated hepcidin, and ferroportin metabolism. The treatment of HCC in patients with thalassemia was basically similar to those in general population. However, due to the younger age of HCC onset in thalassemia, regular surveillance for HCC development is mandatory in TDT and NTDT. Other supplemental therapies and experiences of novel treatments for HCC in the thalassemia population were also reviewed in this article.
Collapse
Affiliation(s)
- Pei-Chin Lin
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wan-Yi Hsu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Po-Yi Lee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Division of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| |
Collapse
|
216
|
Chang S, Wang P, Han Y, Ma Q, Liu Z, Zhong S, Lu Y, Chen R, Sun L, Wu Q, Gao G, Wang X, Chang YZ. Ferrodifferentiation regulates neurodevelopment via ROS generation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1841-1857. [PMID: 36929272 DOI: 10.1007/s11427-022-2297-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.
Collapse
Affiliation(s)
- Shiyang Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Peina Wang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yingying Han
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
217
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
218
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
219
|
Xu Z, Sung YS, Tomat E. Design of Tetrazolium Cations for the Release of Antiproliferative Formazan Chelators in Mammalian Cells. J Am Chem Soc 2023; 145:15197-15206. [PMID: 37410992 PMCID: PMC10521327 DOI: 10.1021/jacs.3c02033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cancer cells generally present a higher demand for iron, which plays crucial roles in tumor progression and metastasis. This iron addiction provides opportunities to develop broad spectrum anticancer drugs that target iron metabolism. In this context, prochelation approaches are investigated to release metal-binding compounds under specific conditions, thereby limiting off-target toxicity. Here, we demonstrate a prochelation strategy inspired by the bioreduction of tetrazolium cations widely employed to assess the viability of mammalian cells. We designed a series of tetrazolium-based compounds for the intracellular release of metal-binding formazan ligands. The combination of reduction potentials appropriate for intracellular reduction and an N-pyridyl donor on the formazan scaffold led to two effective prochelators. The reduced formazans bind as tridentate ligands and stabilize low-spin Fe(II) centers in complexes of 2:1 ligand-to-metal stoichiometry. The tetrazolium salts are stable in blood serum for over 24 h, and antiproliferative activities at micromolar levels were recorded in a panel of cancer cell lines. Additional assays confirmed the intracellular activation of the prochelators and their ability to affect cell cycle progression, induce apoptotic death, and interfere with iron availability. Demonstrating the role of iron in their intracellular effects, the prochelators impacted the expression levels of key iron regulators (i.e., transferrin receptor 1 and ferritin), and iron supplementation mitigated their cytotoxicity. Overall, this work introduces the tetrazolium core as a platform to build prochelators that can be tuned for activation in the reducing environment of cancer cells and produce antiproliferative formazan chelators that interfere with cellular iron homeostasis.
Collapse
Affiliation(s)
- Zoufeng Xu
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson AZ 85721 (USA)
| | - Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson AZ 85721 (USA)
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson AZ 85721 (USA)
| |
Collapse
|
220
|
Ghazaiean M, Aliasgharian A, Karami H, Darvishi-Khezri H. Ebselen: A promising therapy protecting cardiomyocytes from excess iron in iron-overloaded thalassemia patients. Open Med (Wars) 2023; 18:20230733. [PMID: 37465348 PMCID: PMC10350894 DOI: 10.1515/med-2023-0733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 07/20/2023] Open
Abstract
Iron-overload-associated cardiomyopathy has been one of the primary causes of mortality in thalassemia patients with iron burden. There is growing evidence citing the beneficial effects of ebselen as an antioxidant selectively blocking the divalent metal transporter 1 (DMT-1) to deter iron ingress into cardiomyocytes, raising internets in viewing this component in this population in order to treat and even prevent cardiomyopathy occurring from iron surplus. In this article, we reviewed the potential advantageous effects of ebselen in thalassemia patients who suffer from iron excess, susceptible to cardiomyopathy induced by iron overload. A systematic search in several databases, including PubMed, Scopus, and Web of Science, was conducted to explore the role of ebselen in controlling iron-overload-related cardiomyopathy in thalassemia patients by the keywords of Ebselen AND iron. The inclusion criteria were English-written preclinical and clinical studies investigating the efficacy and side effects of ebselen in an iron-overload context. After searching the databases, 44 articles were found. Next, of 19 published articles, 3 were included in this article. After reviewing the references of the included studies, no articles were added. In conclusion ebselen can be a promising adjuvant therapy in patients with thalassemia alongside the standard treatment with iron chelators, particularly in severe cases with cardiomyopathy, due to falling iron inflow by inhibiting DMT-1 and increasing ferroportin-1 expression and antioxidant properties. However, clinical studies need to be carried out to reach a definite conclusion.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Karami
- Department of Pediatric, School of Medicine, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
221
|
Lang Y, Xu S, Zhang C. Hydrothermal Synthesis of Molybdenum Disulfide Quantum Dots for Highly Sensitive Detection of Iron Ions in Protein Succinate Oral Solution. MICROMACHINES 2023; 14:1368. [PMID: 37512679 PMCID: PMC10385574 DOI: 10.3390/mi14071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
In this paper, a molybdenum disulfide fluorescent probe with an Fe3+ fluorescent system was first synthesized by the hydrothermal method for the detection of iron ion concentration in oral solution of protein succinate. It was characterized by infrared, fluorescence, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The probes were found to have good stability, photobleaching, and storage stability. The effects of dilution, pH, reaction time, and iron ion concentration on the fluorescent system were also investigated. The relative fluorescence intensity [(I0 - I)/I0] showed a good linear relationship with the iron ion concentration in the range of 0-50 μM, with the linear equation [(I0 - I)/I0] = 0.0148[Fe3+] + 0.0833 (r2 = 0.9943, n = 11) and the detection limit of 2.43 μM. The reaction mechanism was also explored, as well as its ion selectivity, reversibility, accuracy, precision, and concentration of Fe ions in the actual sample. It was found that the probe can selectively detect Fe ions with a certain degree of reversibility, accuracy, precision, and ideal recovery, and it can be used for the determination of Fe3+ in proteosuccinic acid oral solution.
Collapse
Affiliation(s)
- Yan Lang
- Department of Rehabilitation Therapy, Wuyi University, Nanping 354301, China
| | - Shuru Xu
- Department of Medical Technology, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou 363000, China
| | - Chunbin Zhang
- Department of Medical Technology, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou 363000, China
| |
Collapse
|
222
|
Beavers CJ, Ambrosy AP, Butler J, Davidson BT, Gale SE, Piña IL, Mastoris I, Reza N, Mentz RJ, Lewis GD. Iron Deficiency in Heart Failure: A Scientific Statement from the Heart Failure Society of America. J Card Fail 2023; 29:1059-1077. [PMID: 37137386 DOI: 10.1016/j.cardfail.2023.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Iron deficiency is present in approximately 50% of patients with symptomatic heart failure and is independently associated with worse functional capacity, lower quality of, life and increased mortality. The purpose of this document is to summarize current knowledge of how iron deficiency is defined in heart failure and its epidemiology and pathophysiology, as well as pharmacological considerations for repletion strategies. This document also summarizes the rapidly expanding array of clinical trial evidence informing when, how, and in whom to consider iron repletion.
Collapse
Affiliation(s)
- Craig J Beavers
- University of Kentucky College of Pharmacy, Lexington, Kentucky.
| | - Andrew P Ambrosy
- Kaiser Permanente Northern California - Division of Research (DOR), Oakland, CA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas; University of Mississippi, Jackson, Mississippi
| | - Beth T Davidson
- Centennial Heart Cardiovascular Consultants, Nashville, Tennessee
| | - Stormi E Gale
- Novant Health Matthews Medical Center, Matthews, North Carolina
| | - Ileana L Piña
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Nosheen Reza
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Mentz
- Duke University School of Medicine, Durham, North Carolina
| | | |
Collapse
|
223
|
Olivari V, Di Modica SM, Lidonnici MR, Aghajan M, Cordero-Sanchez C, Tanzi E, Pettinato M, Pagani A, Tiboni F, Silvestri L, Guo S, Ferrari G, Nai A. A single approach to targeting transferrin receptor 2 corrects iron and erythropoietic defects in murine models of anemia of inflammation and chronic kidney disease. Kidney Int 2023; 104:61-73. [PMID: 36990212 DOI: 10.1016/j.kint.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.
Collapse
Affiliation(s)
- Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maria Rosa Lidonnici
- Gene Transfer into Stem Cell Unit, SR-Tiget, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | | | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesca Tiboni
- Gene Transfer into Stem Cell Unit, SR-Tiget, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Shuling Guo
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Giuliana Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Gene Transfer into Stem Cell Unit, SR-Tiget, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
224
|
Qian ZM, Li W, Guo Q. Ferroportin1 in the brain. Ageing Res Rev 2023; 88:101961. [PMID: 37236369 DOI: 10.1016/j.arr.2023.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Despite years of research, it remains unclear why certain brain regions of patients with neurodegenerative diseases (NDs) have abnormally high levels of iron, although it has long been suggested that disrupted expression of iron-metabolizing proteins due to genetic or non-genetic factors is responsible for the enhancement in brain iron contents. In addition to the increased expression of cell-iron importers lactoferrin (lactotransferrin) receptor (LfR) in Parkinson's disease (PD) and melanotransferrin (p97) in Alzheimer's disease (AD), some investigations have suggested that cell-iron exporter ferroportin 1 (Fpn1) may be also associated with the elevated iron observed in the brain. The decreased expression of Fpn1 and the resulting decrease in the amount of iron excreted from brain cells has been thought to be able to enhance iron levels in the brain in AD, PD and other NDs. Cumulative results also suggest that the reduction of Fpn1 can be induced by hepcidin-dependent and -independent pathways. In this article, we discuss the current understanding of Fpn1 expression in the brain and cell lines of rats, mice and humans, with emphasis on the potential involvement of reduced Fpn1 in brain iron enhancement in patients with AD, PD and other NDs.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019.
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
225
|
Cui F, Sun J, Mi H, Li B, Tang L, Wang R, Du Y, Guo B, Li Y, Shi M. Chronic intermittent hypobaric hypoxia improves iron metabolism disorders via the IL-6/JAK2/STAT3 and Epo/STAT5/ERFE signaling pathways in metabolic syndrome rats. J Trace Elem Med Biol 2023; 79:127259. [PMID: 37413927 DOI: 10.1016/j.jtemb.2023.127259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) improved iron metabolism disorder in obese rats through the downregulation of hepcidin. This study aimed to observe the molecular mechanism of CIHH in improving iron metabolism disorders, especially by Janus kinase/signal transducer and activation of the transcription (JAK/STAT) signaling pathway in metabolic syndrome (MS) rats. METHODS Six-week-old male Sprague-Dawley rats were randomly divided into four groups: CON, CIHH (subjected to hypobaric hypoxia simulating 5000-m altitude for 28 days, 6 h daily), MS (induced by high fat diet and fructose water), and MS+CIHH. The serum levels of glucose, lipid metabolism, iron metabolism, interleukin-6 (IL-6), erythropoietin (Epo) and hepcidin were measured. The protein expressions of JAK2, STAT3, STAT5, bone morphogenetic protein 6 (BMP6), small mothers against decapentaplegic 1 (SMAD1) and hepcidin were examined. The mRNA expressions of erythroferrone (ERFE) and hepcidin were analyzed. RESULTS The MS rats displayed obesity, hyperglycemia, hyperlipidemia, iron metabolism disorder, increased IL-6 and hepcidin serum levels, upregulation of JAK2/STAT3 signaling pathway, decreased Epo serum levels, downregulation of STAT5/ERFE signaling pathway in spleen, upregulation of BMP/SMAD signaling pathway in liver, and increased hepcidin mRNA and protein expression compared to CON rats. All the aforementioned abnormalities in MS rats were ameliorated in MS + CIHH rats. CONCLUSIONS CIHH improved iron metabolism disorders, possibly by inhibiting IL-6/JAK2/STAT3 and activating Epo/STAT5/ERFE signaling pathway, thus downregulating hepcidin in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China; Department of Electron Microscope Laboratory Centre, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jie Sun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, PR China
| | - Haichao Mi
- Department of Laboratory Medicine, Linyi Peoples' Hospital, Linyi 276000, PR China
| | - Bo Li
- Department of Emergency, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050001, Hebei, PR China
| | - Longmei Tang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Ruotong Wang
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Yutao Du
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Yongjun Li
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Min Shi
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China.
| |
Collapse
|
226
|
Monko TR, Tripp EH, Burr SE, Gunderson KN, Lanier LM, Georgieff MK, Bastian TW. Cellular Iron Deficiency Disrupts Thyroid Hormone Regulated Gene Expression in Developing Hippocampal Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.17.545408. [PMID: 37398002 PMCID: PMC10312787 DOI: 10.1101/2023.06.17.545408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Developing neurons have high thyroid hormone and iron requirements to support their metabolism and growth. Early-life iron and thyroid hormone deficiencies are prevalent, often coexist, and increase the risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid hormone levels and impairs thyroid hormone-responsive gene expression in the neonatal rat brain. Objective This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. Methods Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 days in vitro (DIV). At 11DIV and 18DIV, mRNA levels for thyroid hormone-regulated genes indexing thyroid hormone homeostasis (Hr, Crym, Dio2, Slco1c1, Slc16a2) and neurodevelopment (Nrgn, Pvalb, Klf9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures and gene expression and ATP levels were quantified at 21DIV. Results At 11DIV and 18DIV, neuronal iron deficiency decreased Nrgn, Pvalb, and Crym, and by 18DIV, Slc16a2, Slco1c1, Dio2, and Hr were increased; collectively suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal Component Analysis (PCA) reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status (Tfr1 mRNA). Iron repletion from 14-21DIV restored neurodevelopmental genes, but not all thyroid hormone homeostatic genes, and ATP concentrations remained significantly altered. PCA clustering suggests that cultures replete with iron maintain a gene expression signature indicative of previous iron deficiency. Conclusions These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of homeostatic response to match neuronal energy production and growth signaling for these important metabolic regulators. However, iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.
Collapse
Affiliation(s)
- Timothy R Monko
- University of Minnesota, School of Medicine, Department of Pediatrics
| | - Emma H Tripp
- University of Minnesota, School of Medicine, Department of Pediatrics
| | - Sierra E Burr
- University of Minnesota, School of Medicine, Department of Pediatrics
| | | | | | | | - Thomas W Bastian
- University of Minnesota, School of Medicine, Department of Pediatrics
| |
Collapse
|
227
|
Gao G, You L, Zhang J, Chang YZ, Yu P. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel) 2023; 12:1289. [PMID: 37372019 DOI: 10.3390/antiox12061289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.
Collapse
Affiliation(s)
- Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| |
Collapse
|
228
|
Sekine Y, Houston R, Eckl EM, Fessler E, Narendra DP, Jae LT, Sekine S. A mitochondrial iron-responsive pathway regulated by DELE1. Mol Cell 2023; 83:2059-2076.e6. [PMID: 37327776 PMCID: PMC10329284 DOI: 10.1016/j.molcel.2023.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The heme-regulated kinase HRI is activated under heme/iron deficient conditions; however, the underlying molecular mechanism is incompletely understood. Here, we show that iron-deficiency-induced HRI activation requires the mitochondrial protein DELE1. Notably, mitochondrial import of DELE1 and its subsequent protein stability are regulated by iron availability. Under steady-state conditions, DELE1 is degraded by the mitochondrial matrix-resident protease LONP1 soon after mitochondrial import. Upon iron chelation, DELE1 import is arrested, thereby stabilizing DELE1 on the mitochondrial surface to activate the HRI-mediated integrated stress response (ISR). Ablation of this DELE1-HRI-ISR pathway in an erythroid cell model enhances cell death under iron-limited conditions, suggesting a cell-protective role for this pathway in iron-demanding cell lineages. Our findings highlight mitochondrial import regulation of DELE1 as the core component of a previously unrecognized mitochondrial iron responsive pathway that elicits stress signaling following perturbation of iron homeostasis.
Collapse
Affiliation(s)
- Yusuke Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ryan Houston
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eva-Maria Eckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shiori Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
229
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
230
|
Uguen K, Ka C, Collod-Béroud G, Le Tertre M, Guellec J, Férec C, Béroud C, Callebaut I, Le Gac G. The Spectra of Disease-Causing Mutations in the Ferroportin 1 ( SLC40A1) Encoding Gene and Related Iron Overload Phenotypes (Hemochromatosis Type 4 and Ferroportin Disease). Hum Mutat 2023; 2023:5162256. [PMID: 40225168 PMCID: PMC11919020 DOI: 10.1155/2023/5162256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 04/15/2025]
Abstract
SLC40A1 is the sole iron export protein reported in mammals and is a key player in both cellular and systemic iron homeostasis. This unique iron exporter, which belongs to the major facilitator superfamily, is predominantly regulated by the hyposideremic hormone hepcidin. SLC40A1 dysfunction causes ferroportin disease, and autosomal dominant iron overload disorder characterized by cellular iron retention, principally in reticuloendothelial cells, correlating with high serum ferritin and low to normal transferrin saturation. Resistant to hepcidin, SLC40A1 mutations are rather associated with elevated plasma iron and parenchymal iron deposition, a condition that resembles HFE-related hemochromatosis and is associated with more clinical complications. With very few exceptions, only missense variations are reported at the SLC40A1 locus; this situation increasingly limits the establishment of pathogenicity. In this mutation update, we provide a comprehensive review of all the pathogenic or likely pathogenic variants, variants of unknown significance, and benign or likely benign SLC40A1 variants. The classification is essentially determined using functional, structural, segregation, and recurrence data. We furnish new information on genotype-phenotype correlations for loss-of-function, gain-of-function, and other SLC40A1 variants, confirming the existence of wide clinical heterogeneity and the potential for misdiagnosis. All information is recorded in a locus-specific online database.
Collapse
Affiliation(s)
- Kevin Uguen
- Univ Brest, Inserm, EFS, UMR1078, GGB F-29200, France
- CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR1078, GGB F-29200, France
- CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
- Laboratory of Excellence GR-Ex, F-75015, France
| | | | - Marlène Le Tertre
- Univ Brest, Inserm, EFS, UMR1078, GGB F-29200, France
- CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Julie Guellec
- Univ Brest, Inserm, EFS, UMR1078, GGB F-29200, France
- CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
- Association Gaétan Saleün, F-29200, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR1078, GGB F-29200, France
- CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
- Association Gaétan Saleün, F-29200, France
| | - Christophe Béroud
- Aix Marseille University, INSERM, Marseille Medical Genetics, F-13005, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005, France
| | - Gérald Le Gac
- Univ Brest, Inserm, EFS, UMR1078, GGB F-29200, France
- CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
- Laboratory of Excellence GR-Ex, F-75015, France
| |
Collapse
|
231
|
Liu F, Liu Y, Xu S, Wang Q, Xu F, Liu Y. Mendelian randomization study reveals a causal relationship between serum iron status and coronary heart disease and related cardiovascular diseases. Front Cardiovasc Med 2023; 10:1152201. [PMID: 37383700 PMCID: PMC10294586 DOI: 10.3389/fcvm.2023.1152201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023] Open
Abstract
Background Growing observational studies have shown that abnormal systemic iron status is associated with Coronary heart disease (CHD). However, these results from observational studies was not entirely consistent.It remains unclear whether this relationship represents causality.It is necessary to explore the causal relationship between iron status and CHD and related cardiovascular diseases (CVD). Objective We aimed to investigate the potential casual relationship between serum iron status and CHD and related CVD using a two-sample Mendelian randomization (MR) approach. Methods Genetic statistics for single nucleotide polymorphisms (SNPs) between four iron status parameters were identified in a large-scale genome-wide association study (GWAS) conducted by the Iron Status Genetics organization. Three independent single nucleotide polymorphisms (SNPs) (rs1800562, rs1799945, and rs855791) aligned with four iron status biomarkers were used as instrumental variables. CHD and related CVD genetic statistics We used publicly available summary-level GWAS data. Five different MR methods random effects inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and Wald ratio were used to explore the causal relationship between serum iron status and CHD and related CVD. Results In the MR analysis, we found that the causal effect of serum iron (OR = 0.995, 95% CI = 0.992-0.998, p = 0.002) was negatively associated with the odds of coronary atherosclerosis (AS). Transferrin saturation (TS) (OR = 0.885, 95% CI = 0.797-0.982, p = 0.02) was negatively associated with the odds of Myocardial infarction (MI). Conclusion This MR analysis provides evidence for a causal relationship between whole-body iron status and CHD development. Our study suggests that a high iron status may be associated with a reduced risk of developing CHD.
Collapse
Affiliation(s)
- Fenglan Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
232
|
Amaechi UM, Chukwudum E, Aiwuyo HO, Ilerhunmwuwa N, Osarenkhoe JO, Kweki AG, Onuwaje OE, Obilahi JO, Irabor GI, Attuquayefio S. Clinical and Echocardiographic Correlates of Iron Status in Chronic Heart Failure Patients: A Cross-Sectional Descriptive Study. Cureus 2023; 15:e39998. [PMID: 37415988 PMCID: PMC10321567 DOI: 10.7759/cureus.39998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Chronic heart failure (HF) is one of the conditions commonly seen in the medical outpatient departments, and iron deficiency (ID) has been reported as the commonest nutritional deficiency in these patients. The presence of ID may interfere with the clinical parameters of chronic HF. The relationship between iron status and chronic HF needs more attention and should be given more consideration in the evaluation of patients with chronic HF. AIM The aim of the study was to determine the relationship, if any, between iron status and clinical/echocardiographic variables in chronic HF. METHODS AND MATERIALS A cross-sectional descriptive study was carried out at the Lagos University Teaching Hospital (LUTH), Nigeria, where 88 patients with chronic HF were recruited to participate in this study. The participants underwent clinical and laboratory assessments. Iron status was assessed with full blood count parameters; serum ferritin and transferrin saturation (Tsat) and its relationship with clinical parameters among these participants were also studied. RESULTS No correlations existed between the duration of chronic HF and iron status when compared using Tsat. However, a significant weak negative correlation was observed between the duration of HF and the serum ferritin levels. The clinical characteristics of the HF participants with and without ID were compared. There was no significant difference in the frequency of prior hospitalization in both groups. However, a higher proportion of participants with severe HF (New York Heart Association (NYHA) classes III/IV) (n = 14; 46.7%) were iron-deficient compared to those with moderate chronic HF (NYHA II) (n = 11; 36.7%). This relationship was statistically significant. Left ventricular ejection fraction (LVEF) was similar in the iron-deficient and iron-replete groups (using serum ferritin or Tsat) both when compared as means and when compared after categorizing LVEF as HF with preserved ejection fraction (HFpEF) vs HF with reduced ejection fraction (HFrEF). There was no statistically significant correlation between the severity of ID and LVEF. Conclusion: A spectrum of clinical changes occurs in patients with chronic HF. ID can make these changes more profound and the condition less amenable to standard HF treatments. These patients may therefore benefit from further evaluation for this nutritional deficiency. Laboratory measurements including Tsat and serum ferritin may help in further assessment of select patients with worse and/or non-responsive clinical parameters.
Collapse
Affiliation(s)
| | | | - Henry O Aiwuyo
- Internal Medicine, Brookdale University Hospital and Medical Center, New York, USA
| | | | - John O Osarenkhoe
- Medicine and Surgery, Igbinedion University Teaching Hospital, Benin City, NGA
| | - Anthony G Kweki
- Internal Medicine and Cardiology, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, GBR
| | | | | | | | | |
Collapse
|
233
|
Nandavaram A, Nandakumar A, Kashif GM, Sagar AL, Shailaja G, Ramesh A, Siddavattam D. Unusual Relationship between Iron Deprivation and Organophosphate Hydrolase Expression. Appl Environ Microbiol 2023; 89:e0190322. [PMID: 37074175 PMCID: PMC10231211 DOI: 10.1128/aem.01903-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023] Open
Abstract
Organophosphate hydrolases (OPH), hitherto known to hydrolyze the third ester bond of organophosphate (OP) insecticides and nerve agents, have recently been shown to interact with outer membrane transport components, namely, TonB and ExbB/ExbD. In an OPH negative background, Sphingopyxis wildii cells failed to transport ferric enterobactin and showed retarded growth under iron-limiting conditions. We now show the OPH-encoding organophosphate degradation (opd) gene from Sphingobium fuliginis ATCC 27551 to be part of the iron regulon. A fur-box motif found to be overlapping with the transcription start site (TSS) of the opd gene coordinates with an iron responsive element (IRE) RNA motif identified in the 5' coding region of the opd mRNA to tightly regulate opd gene expression. The fur-box motif serves as a target for the Fur repressor in the presence of iron. A decrease in iron concentration leads to the derepression of opd. IRE RNA inhibits the translation of opd mRNA and serves as a target for apo-aconitase (IRP). The IRP recruited by the IRE RNA abrogates IRE-mediated translational inhibition. Our findings establish a novel, multilayered, iron-responsive regulation that is crucial for OPH function in the transport of siderophore-mediated iron uptake. IMPORTANCE Sphingobium fuliginis, a soil-dwelling microbe isolated from agricultural soils, was shown to degrade a variety of insecticides and pesticides. These synthetic chemicals function as potent neurotoxins, and they belong to a class of chemicals termed organophosphates. S. fuliginis codes for OPH, an enzyme that has been shown to be involved in the metabolism of several organophosphates and their derivatives. Interestingly, OPH has also been shown to facilitate siderophore-mediated iron uptake in S. fuliginis and in another Sphingomonad, namely, Sphingopyxis wildii, implying that this organophosphate-metabolizing protein has a role in iron homeostasis, as well. Our research dissects the underlying molecular mechanisms linking iron to the expression of OPH, prompting a reconsideration of the role of OPH in Sphingomonads and a reevaluation of the evolutionary origins of the OPH proteins from soil bacteria.
Collapse
Affiliation(s)
- Aparna Nandavaram
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anirudh Nandakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru, Karnataka, India
| | - G. M. Kashif
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - G. Shailaja
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arati Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, School of Sciences, GITAM University, Visakhapatnam, India
| |
Collapse
|
234
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
235
|
Zhu L, Li G, Liang Z, Qi T, Deng K, Yu J, Peng Y, Zheng J, Song Y, Chang X. Microbiota-assisted iron uptake promotes immune tolerance in the intestine. Nat Commun 2023; 14:2790. [PMID: 37188703 PMCID: PMC10185671 DOI: 10.1038/s41467-023-38444-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Iron deficiencies are the most common nonenteric syndromes observed in patients with inflammatory bowel disease, but little is known about their impacts on immune tolerance. Here we show that homeostasis of regulatory T cells in the intestine was dependent on high cellular iron levels, which were fostered by pentanoate, a short-chain fatty acid produced by intestinal microbiota. Iron deficiencies in Treg caused by the depletion of Transferrin receptor 1, a major iron transporter, result in the abrogation of Treg in the intestine and lethal autoimmune disease. Transferrin receptor 1 is required for differentiation of c-Maf+ Treg, major constituents of intestinal Treg. Mechanistically, iron enhances the translation of HIF-2α mRNA, and HIF-2α in turn induces c-Maf expression. Importantly, microbiota-produced pentanoate promotes iron uptake and Treg differentiation in the intestine. This subsequently restores immune tolerance and ameliorated iron deficiencies in mice with colitis. Our results thus reveal an association between nutrient uptake and immune tolerance in the intestine.
Collapse
Affiliation(s)
- Lizhen Zhu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Geng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhixin Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tuan Qi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kui Deng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiancheng Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Peng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jusheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yan Song
- School of Medicine, University of California San Diego, La Jolla, CA, US
| | - Xing Chang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
236
|
Aguree S, Owora A, Hawkins M, Reddy MB. Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001-2006. Nutrients 2023; 15:nu15102272. [PMID: 37242155 DOI: 10.3390/nu15102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity has been linked to numerous health and nutritional problems, including impaired iron metabolism, a common cause of anemia. We aimed to determine the prevalence of anemia, iron deficiency (ID), and iron deficiency anemia (IDA) among women aged 20-49 years based on body mass index (BMI) status. We used measures of iron status and body mass index from the 2001-2006 National Health and Nutrition Examination Survey (NHANES). Mean serum ferritin, erythrocyte protoporphyrin, and soluble transferrin receptor were higher, while those of serum iron, percent transferrin saturation, and mean cell volume (MCV) were lower in women with obesity than those with normal weight (all p < 0.016). ID based on the ferritin model was 12.5 ± 1.0% vs. 22.9 ± 1.6% (p < 0.001); 9.0 ± 0.9% vs. 20.0 ± 1.3% (p < 0.001) based on the MCV model; and 8.1 ± 1.0% vs. 10.5 ± 1.2% (p > 0.05) based on the BII model for women with normal weight and women with obesity, respectively. Anemia prevalence was 5.5 ± 0.8% (normal) vs. 9.3 ± 1.0% (obese) (p = 0.005). The IDA estimates based on the ferritin and MCV models were similar but higher than that from the BII model (p < 0.001). Generally, the prevalence rates of ID and anemia (and IDA) were higher for women with obesity, but the method used to define deficiency mattered. The choice of iron indices is important for estimating ID and IDA in populations with obesity.
Collapse
Affiliation(s)
- Sixtus Aguree
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Arthur Owora
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN 47405, USA
| | - Misty Hawkins
- Department of Health and Wellness Design, School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Manju B Reddy
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
237
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
238
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
239
|
Pan J, Xiong W, Zhang A, Zhang H, Lin H, Gao L, Ke J, Huang S, Zhang J, Gu J, Chang ACY, Wang C. The Imbalance of p53-Park7 Signaling Axis Induces Iron Homeostasis Dysfunction in Doxorubicin-Challenged Cardiomyocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206007. [PMID: 36967569 DOI: 10.1002/advs.202206007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity (DoIC) is a major side effect for cancer patients. Recently, ferroptosis, triggered by iron overload, is demonstrated to play a role in DoIC. How iron homeostasis is dysregulated in DoIC remains to be elucidated. Here, the authors demonstrate that DOX challenge exhibits reduced contractile function and induction of ferroptosis-related phenotype in cardiomyocytes, evidenced by iron overload, lipid peroxide accumulation, and mitochondrial dysfunction. Compared to Ferric ammonium citrate (FAC) induced secondary iron overload, DOX-challenged cardiomyocytes show a dysfunction of iron homeostasis, with decreased cytoplasmic and mitochondrial iron-sulfur (FeS) cluster-mediated aconitase activity and abnormal expression of iron homeostasis-related proteins. Mechanistically, mass spectrometry analysis identified DOX-treatment induces p53-dependent degradation of Parkinsonism associated deglycase (Park7) which results in iron homeostasis dysregulation. Park7 counteracts iron overload by regulating iron regulatory protein family transcription while blocking mitochondrial iron uptake. Knockout of p53 or overexpression of Park7 in cardiomyocytes remarkably restores the activity of FeS cluster and iron homeostasis, inhibits ferroptosis, and rescues cardiac function in DOX treated animals. These results demonstrate that the iron homeostasis plays a key role in DoIC ferroptosis. Targeting of the newly identified p53-Park7 signaling axis may provide a new approach to prevent DoIC.
Collapse
Affiliation(s)
- Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Weiyao Xiong
- Department of Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200135, P. R. China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Hui Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, 200030, P. R. China
| | - Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
- Department of Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200135, P. R. China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| |
Collapse
|
240
|
Rodrigues F, Coman T, Fouquet G, Côté F, Courtois G, Trovati Maciel T, Hermine O. A deep dive into future therapies for microcytic anemias and clinical considerations. Expert Rev Hematol 2023; 16:349-364. [PMID: 37092971 DOI: 10.1080/17474086.2023.2206556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Microcytic anemias (MA) have frequent or rare etiologies. New discoveries in understanding and treatment of microcytic anemias need to be reviewed. AREAS COVERED Microcytic anemias with a focus on the most frequent causes and on monogenic diseases that are relevant for understanding biocellular mechanisms of MA. All treatments except gene therapy, with a focus on recent advances. PubMed search with references selected by expert opinion. EXPERT OPINION As the genetic and cellular backgrounds of dyserythropoiesis will continue to be clarified, collaboration with bioengineering of treatments acting specifically at the protein domain level will continue to provide new therapies in hematology as well as oncology and neurology.
Collapse
Affiliation(s)
- François Rodrigues
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | - Tereza Coman
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
- Département d'hématologie, Institut Gustave Roussy, Villejuif, France
| | - Guillemette Fouquet
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Hématologie clinique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Francine Côté
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | | | | | - Olivier Hermine
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| |
Collapse
|
241
|
Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, Pulliero A. Modulation of Ferroptosis by microRNAs in Human Cancer. J Pers Med 2023; 13:jpm13050719. [PMID: 37240889 DOI: 10.3390/jpm13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a cell death pathway triggered by an imbalance between the production of oxidants and antioxidants, which plays an emerging role in tumorigenesis. It is mainly regulated at three different levels including iron metabolism, the antioxidant response, and lipid metabolism. Epigenetic dysregulation is a "hallmark" of human cancer, with nearly half of all human cancers harboring mutations in epigenetic regulators such as microRNA. While being the crucial player in controlling gene expression at the mRNA level, microRNAs have recently been shown to modulate cancer growth and development via the ferroptosis pathway. In this scenario, some miRNAs have a function in upregulating, while others play a role in inhibiting ferroptosis activity. The investigation of validated targets using the miRBase, miRTarBase, and miRecords platforms identified 13 genes that appeared enriched for iron metabolism, lipid peroxidation, and antioxidant defense; all are recognized contributors of tumoral suppression or progression phenotypes. This review summarizes and discuss the mechanism by which ferroptosis is initiated through an imbalance in the three pathways, the potential function of microRNAs in the control of this process, and a description of the treatments that have been shown to have an impact on the ferroptosis in cancer along with potential novel effects.
Collapse
Affiliation(s)
- Irena Velkova
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Martina Pasino
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
242
|
Jiang J, Srivastava S, Liu S, Seim G, Claude R, Zhong M, Cao S, Davé U, Kapur R, Mosley AL, Zhang C, Wan J, Fan J, Zhang J. Asparagine starvation suppresses histone demethylation through iron depletion. iScience 2023; 26:106425. [PMID: 37034982 PMCID: PMC10074807 DOI: 10.1016/j.isci.2023.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Intracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sankalp Srivastava
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gretchen Seim
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rodney Claude
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Minghua Zhong
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Utpal Davé
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jing Fan
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
243
|
He XY, Fan X, Qu L, Wang X, Jiang L, Sang LJ, Shi CY, Lin S, Yang JC, Yang ZZ, Lei K, Li JH, Ju HQ, Yan Q, Liu J, Wang F, Shao J, Xiong Y, Wang W, Lin A. LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism. Nat Commun 2023; 14:2253. [PMID: 37080959 PMCID: PMC10119135 DOI: 10.1038/s41467-023-37871-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Iron metabolism dysregulation is tightly associated with cancer development. But the underlying mechanisms remain poorly understood. Increasing evidence has shown that long noncoding RNAs (lncRNAs) participate in various metabolic processes via integrating signaling pathway. In this study, we revealed one iron-triggered lncRNA, one target of YAP, LncRIM (LncRNA Related to Iron Metabolism, also named ZBED5-AS1 and Loc729013), which effectively links the Hippo pathway to iron metabolism and is largely independent on IRP2. Mechanically, LncRIM directly binds NF2 to inhibit NF2-LATS1 interaction, which causes YAP activation and increases intracellular iron level via DMT1 and TFR1. Additionally, LncRIM-NF2 axis mediates cellular iron metabolism dependent on the Hippo pathway. Clinically, high expression of LncRIM correlates with poor patient survival, suggesting its potential use as a biomarker and therapeutic target. Taken together, our study demonstrated a novel mechanism in which LncRIM-NF2 axis facilitates iron-mediated feedback loop to hyperactivate YAP and promote breast cancer development.
Collapse
Affiliation(s)
- Xin-Yu He
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, 158 Guangchang Back Road, 313000, Huzhou, Zhejiang, P.R. China
| | - Li Jiang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling-Jie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Cheng-Yu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Siyi Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jie-Cheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zuo-Zhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jun-Hong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, Guangzhou, Guangdong, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jian Liu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, 310002, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 314400, Haining, Zhejiang, China
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, 310000, Hangzhou, Zhejiang, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, 310058, Hangzhou, Zhejiang, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
244
|
Kuno S, Iwai K. Oxygen modulates iron homeostasis by switching iron-sensing of NCOA4. J Biol Chem 2023; 299:104701. [PMID: 37059186 DOI: 10.1016/j.jbc.2023.104701] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
To ensure proper utilization of iron and avoid its toxicity, cells are equipped with iron-sensing proteins to maintain cellular iron homeostasis. We showed previously that NCOA4, a ferritin-specific autophagy adapter, intricately regulates the fate of ferritin; upon binding to Fe3+, NCOA4 forms insoluble condensates and regulates ferritin autophagy in iron-replete conditions. Here, we demonstrate an additional iron-sensing mechanism of NCOA4. Our results indicate that the insertion of an Fe-S cluster enables preferential recognition of NCOA4 by the HERC2 ubiquitin ligase in iron-replete conditions, resulting in degradation by the proteasome and subsequent inhibition of ferritinophagy. We also found that both condensation and ubiquitin-mediated degradation of NCOA4 can occur in the same cell, and the cellular oxygen tension determines the selection of these pathways. Fe-S cluster-mediated degradation of NCOA4 is enhanced under hypoxia, whereas NCOA4 forms condensates and degrades ferritin at higher oxygen levels. Considering the involvement of iron in oxygen handling, our findings demonstrate that the NCOA4/ferritin axis is another layer of cellular iron regulation in response to oxygen levels.
Collapse
Affiliation(s)
- Sota Kuno
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
245
|
Chen OCW, Siebel S, Colaco A, Nicoli ER, Platt N, Shepherd D, Newman S, Armitage AE, Farhat NY, Seligmann G, Smith C, Smith DA, Abdul-Sada A, Jeyakumar M, Drakesmith H, Porter FD, Platt FM. Defective iron homeostasis and hematological abnormalities in Niemann-Pick disease type C1. Wellcome Open Res 2023; 7:267. [PMID: 37065726 PMCID: PMC10090865 DOI: 10.12688/wellcomeopenres.17261.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1 -/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1 -/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Oscar C W Chen
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Stephan Siebel
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Alexandria Colaco
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Elena-Raluca Nicoli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Stephanie Newman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, OX3 9DS, UK
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - George Seligmann
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Alaa Abdul-Sada
- Chemistry Department, School of Life Sciences, University of Sussex, Brighton, Sussex, BN1 9QJ, UK
| | - Mylvaganam Jeyakumar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire, OX3 9DS, UK
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, OX1 3QT, UK
| |
Collapse
|
246
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
247
|
Chen S, Lai X, Fu J, Yang J, Zhao B, Shang H, Huang R, Chen X. A novel C19ORF12 mutation in two MPAN sisters treated with deferiprone. BMC Neurol 2023; 23:134. [PMID: 37004026 PMCID: PMC10064749 DOI: 10.1186/s12883-023-03172-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare and devastating disease caused by pathogenic mutations in C19orf12 gene. MPAN is characterized by pathological iron accumulation in the brain and fewer than 100 cases of MPAN have been described. Although the diagnosis of MPAN has achieved a great breakthrough with the application of the whole exome gene sequencing technology, the therapeutic effect of iron chelation therapy in MPAN remains controversial. CASE PRESENTATION We reported that two sisters from the same family diagnosed with MPAN had dramatically different responses to deferiprone (DFP) treatment. The diagnosis of MPAN were established based on typical clinical manifestations, physical examination, brain magnetic resonance imaging (MRI), cerebrospinal fluid analysis (CSF) and gene sequencing results. The clinical presentations of the two sisters with MPAN due to novel gene locus mutations were similar to those previously reported. There is no other difference in basic information except that the proband had a later onset age and fertility history. Both the proband and his second sister were treated with deferiprone (DFP), but they had dramatically different responses to the treatment. The proband's condition deteriorated sharply after treatment with DFP including psychiatric symptoms and movement disorders. However, the second sister of the proband became relatively stable after receiving the DFP treatment. After four years of follow-up, the patient still denies any new symptoms of neurological deficits. CONCLUSION The findings of this study enriched the MPAN gene database and indicated that DFP might ameliorate symptom progression in patients without severe autonomic neuropsychiatric impairment at the early stage of the disease.
Collapse
Affiliation(s)
- Sihui Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Xiaohui Lai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Jiajia Fu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Jing Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Bi Zhao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Huifang Shang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Rui Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Xueping Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| |
Collapse
|
248
|
Hacioglu C, Kar F, Davran F, Tuncer C. Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988300 DOI: 10.1002/tox.23797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM) is classified as a stage-IV glioma. Unfortunately, there are currently no curative treatments for GBM. Poly(rC)-binding protein 1 (PCBP1) is a cytosolic iron chaperone with diverse functions. PCBP1 is also known to regulate autophagy, but the role of PCBP1 in ferroptosis, iron-dependent cell death pathway, remains unrevealed in GBM cells. Here, we investigated the effects of borax, a boron compound, on the ferroptosis signaling pathway mediated by PCBP1 and autophagy. The study analyzed cell viability, proliferation, and cell cycle on U87-MG and HMC3 cells to investigate the effects of borax. After determining the cytotoxic concentrations of borax, morphological analyzes and measurement of PCBP1, Beclin1, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase 4 (GPx4) and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were performed. Finally, expression levels of PCBP1, Beclin1, GPx4 and ACSL4, and caspase-3/7 activity were determined. We found that borax reduced U87-MG cell viability in a concentration- and time-dependent manner. Additionally, borax altered cell proliferation and remarkably reduced S phase in the U87-MG cells and exhibited selectivity by having an opposite effect on normal cells (HMC3). According to DAPI staining, borax caused nuclear deficits in U87-MG cells. The result showed that borax in U87-MG cells induced reduction of the PCBP1, GSH, and GPx4 and enhancement of Beclin1, MDA, and ACSL4. Furthermore, borax triggered apoptosis by activating caspase 3/7 in U87-MG cells. Our study indicated that the borax has potential as an anticancer treatment for GBM via regulating PCBP1/Beclin1/GPx4/ACSL4 signaling pathways.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Davran
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Cengiz Tuncer
- Department of Neurosurgery, Faculty of Medicine, Duzce University, Duzce, Turkey
| |
Collapse
|
249
|
Khan MA, Mohammad T, Malik A, Hassan MI, Domashevskiy AV. Iron response elements (IREs)-mRNA of Alzheimer's amyloid precursor protein binding to iron regulatory protein (IRP1): a combined molecular docking and spectroscopic approach. Sci Rep 2023; 13:5073. [PMID: 36977734 PMCID: PMC10050399 DOI: 10.1038/s41598-023-32073-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The interaction between the stem-loop structure of the Alzheimer's amyloid precursor protein IRE mRNA and iron regulatory protein was examined by employing molecular docking and multi-spectroscopic techniques. A detailed molecular docking analysis of APP IRE mRNA∙IRP1 reveals that 11 residues are involved in hydrogen bonding as the main driving force for the interaction. Fluorescence binding results revealed a strong interaction between APP IRE mRNA and IRP1 with a binding affinity and an average binding sites of 31.3 × 106 M-1 and 1.0, respectively. Addition of Fe2+(anaerobic) showed a decreased (3.3-fold) binding affinity of APP mRNA∙IRP1. Further, thermodynamic parameters of APP mRNA∙IRP1 interactions were an enthalpy-driven and entropy-favored event, with a large negative ΔH (-25.7 ± 2.5 kJ/mol) and a positive ΔS (65.0 ± 3.7 J/mol·K). A negative ΔH value for the complex formation suggested the contribution of hydrogen bonds and van der Waals forces. The addition of iron increased the enthalpic contribution by 38% and decreased the entropic influence by 97%. Furthermore, the stopped-flow kinetics of APP IRE mRNA∙IRP1 also confirmed the complex formation, having the rate of association (kon) and the rate of dissociation (koff) as 341 μM-1 s-1, and 11 s-1, respectively. The addition of Fe2+ has decreased the rate of association (kon) by ~ three-fold, whereas the rate of dissociation (koff) has increased by ~ two-fold. The activation energy for APP mRNA∙IRP1 complex was 52.5 ± 2.1 kJ/mol. The addition of Fe2+ changed appreciably the activation energy for the binding of APP mRNA with IRP1. Moreover, circular dichroism spectroscopy has confirmed further the APP mRNA∙IRP1 complex formation and IRP1 secondary structure change with the addition of APP mRNA. In the interaction between APP mRNA and IRP1, iron promotes structural changes in the APP IRE mRNA∙IRP1 complexes by changing the number of hydrogen bonds and promoting a conformational change in the IRP1 structure when it is bound to the APP IRE mRNA. It further illustrates how IRE stem-loop structure influences selectively the thermodynamics and kinetics of these protein-RNA interactions.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, Saudi Arabia.
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ajamaluddin Malik
- Department of Biochemistry, Protein Research Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Artem V Domashevskiy
- Department of Sciences, John Jay College of Criminal Justice, The City University of New York, New York, NY, 10019, USA
| |
Collapse
|
250
|
Huang B, Liu Q, Bai C, Li C, Wang C, Xin L. A Putative Receptor for Ferritin in Mollusks: Characterization of the Insulin-like Growth Factor Type 1 Receptor. Int J Mol Sci 2023; 24:ijms24076175. [PMID: 37047145 PMCID: PMC10094261 DOI: 10.3390/ijms24076175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
The ferritin secreted by mammals has been well documented, with the protein capable of localizing to cell membranes and facilitating the delivery of iron to cells through endocytosis. However, the presence of ferritin in the circulatory fluid of mollusks and its functions remain largely unknown. In this study, we aimed to investigate the potential interacting proteins of ferritin in the ark clam (SbFn) through the use of a pull-down assay. Our findings revealed the presence of an insulin-like growth factor type 1 receptor (IGF-1R) in ark clams, which was capable of binding to SbFn and was named SbIGF-1R. SbIGF-1R was found to be composed of two leucine-rich repeat domains (L domain), a cysteine-rich domain, three fibronectin type III domains, a transmembrane domain, and a tyrosine kinase domain. The ectodomain of SbIGF-1R was observed to form a symmetrical antiparallel homodimer in the shape of the letter 'A', with the fibronectin type III domains serving as its 'legs'. The mRNA expression of SbIGF-1R gene was detected ubiquitously in various tissues of the ark clam, with the highest expression levels found in hemocytes, as determined by qRT-PCR. Using a confocal microscopic and yeast two-hybrid assays, the interaction between SbIGF-1R and SbFn was further verified. The results showed that SbFn co-localized with SbIGF-1R on the cell membrane, and their interaction was expected to occur on the FNIII domains of the SbIGF-1R. In conclusion, our findings highlight the identification of a putative receptor, SbIGF-1R, for SbFn, demonstrating the versatility of IGF-1R in ark clams.
Collapse
Affiliation(s)
- Bowen Huang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qin Liu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China
| | - Changming Bai
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chen Li
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chongming Wang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lusheng Xin
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China
| |
Collapse
|