201
|
Temporal Control of the Helicobacter pylori Cag Type IV Secretion System in a Mongolian Gerbil Model of Gastric Carcinogenesis. mBio 2020; 11:mBio.01296-20. [PMID: 32605987 PMCID: PMC7327173 DOI: 10.1128/mbio.01296-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.
Collapse
|
202
|
Peng C, Ouyang Y, Lu N, Li N. The NF-κB Signaling Pathway, the Microbiota, and Gastrointestinal Tumorigenesis: Recent Advances. Front Immunol 2020; 11:1387. [PMID: 32695120 PMCID: PMC7338561 DOI: 10.3389/fimmu.2020.01387] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancers, especially gastric cancer and colorectal cancer (CRC), represent a major global health burden. A large population of microorganisms residing in the GI tract regulate physiological processes, such as the immune response, metabolic balance, and homeostasis. Accumulating evidence has revealed the alteration of microbial communities in GI tumorigenesis. Experimental studies in cell lines and animal models showed the functional roles and molecular mechanisms of several bacteria in GI cancers, including Helicobacter pylori in gastric cancer as well as Fusobacterium nucleatum, Escherichia coli, Peptostreptococcus anaerobius, and Bacteroides fragilis in CRC. The transcriptional factor NF-κB plays a crucial role in the host response to microbial infection through orchestrating innate and adaptive immune functions. Moreover, NF-κB activity is linked to GI cancer initiation and development through its induction of chronic inflammation, cellular transformation and proliferation. Here, we provide an overview and discussion of modulation of the NF-κB signaling pathway by microbiota, especially infectious bacteria, in GI tumorigenesis, with a major focus on gastric cancer and CRC.
Collapse
Affiliation(s)
- Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
203
|
Kartika AV, Iizasa H, Ding D, Kanehiro Y, Tajima Y, Kaji S, Yanai H, Yoshiyama H. Application of Biopsy Samples Used for Helicobacter pylori Urease Test to Predict Epstein-Barr Virus-Associated Cancer. Microorganisms 2020; 8:microorganisms8060923. [PMID: 32570907 PMCID: PMC7355529 DOI: 10.3390/microorganisms8060923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Persistent gastric mucosal damage caused by Helicobacter pylori infection is a major risk factor for gastric cancer (GC). The Epstein-Barr virus (EBV) is also associated with GC. Most patients with EBV-associated GC are infected with H. pylori in East Asia. However, very few reports have described where and when both H. pylori and EBV infect the gastric mucosa. To clarify this, old biopsy samples used for the rapid urease test (RUT) were applied to count EBV genomic DNA (gDNA) copies using DNA probe quantitative polymerase chain reaction. DNA extracted from the gastric biopsy samples of 58 patients with atrophic gastritis was used to analyze the correlation between the degree of atrophic gastritis and the copy number of EBV gDNA. EBV was detected in 44 cases (75.9%), with viral copy numbers ranging from 12.6 to 4754.6. A significant correlation was found between patients with more than 900 copies of EBV gDNA and those with a more severe grade of atrophic gastritis (p = 0.041). This study shows that EBV can be detected in RUT samples in a manner that reduces patient burden.
Collapse
Affiliation(s)
- Andy Visi Kartika
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan; (A.V.K.); (H.I.); (D.D.); (Y.K.); (S.K.)
- Department of Pathology Anatomy, Faculty of Medicine, University of Muslim Indonesia, Jl. Urip Sumoharjo KM.5, Makassar, Sulawesi 90231, Indonesia
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan; (A.V.K.); (H.I.); (D.D.); (Y.K.); (S.K.)
| | - Dan Ding
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan; (A.V.K.); (H.I.); (D.D.); (Y.K.); (S.K.)
- Department of Neurobiology, Key Laboratory of Craniocerebral Disease, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Yuichi Kanehiro
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan; (A.V.K.); (H.I.); (D.D.); (Y.K.); (S.K.)
| | - Yoshitsugu Tajima
- Department of digestive and general surgery, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan;
| | - Shunsuke Kaji
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan; (A.V.K.); (H.I.); (D.D.); (Y.K.); (S.K.)
- Department of digestive and general surgery, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan;
| | - Hideo Yanai
- Department of Clinical Research, National Hospital Organization Kanmon Medical Center, 1-1 Chofu-Sotoura, Shimonoseki, Yamaguchi 752-8510, Japan
- Correspondence: (H.Y.); (H.Y.); Tel.: +81-83-241-1199 (H.Y.); +81-853-20-2146 (H.Y.)
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8504, Japan; (A.V.K.); (H.I.); (D.D.); (Y.K.); (S.K.)
- Correspondence: (H.Y.); (H.Y.); Tel.: +81-83-241-1199 (H.Y.); +81-853-20-2146 (H.Y.)
| |
Collapse
|
204
|
Xia W, Khan I, Li XA, Huang G, Yu Z, Leong WK, Han R, Ho LT, Wendy Hsiao WL. Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacol Res 2020; 159:104809. [PMID: 32502642 DOI: 10.1016/j.phrs.2020.104809] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Microbiome therapy has attracted a keen interest from both research and business sectors. Our lab has been applying this "second genome" platform to assess the functionality of herbal medicines with fulfilling results. In this study, we applied this platform to assess the potential cancer-preventive effects of three selected adaptogenic plants. The flower buds from these plants were used to constitute Preparations SL and FSP according to the receipts of two commonly consumed Chinese medicinal decoctions for gastrointestinal discomfort. Preparation SL contains Sophorae japonica and Lonicerae Japonicae, and Preparation FSP contains Sophorae japonica and Gardenia Jasminoides. SL and FSP extracts significantly (p < 0.001) lowered the polyp burden, as well as the expressions of oncogenic signaling molecules, such as MAPK/ERK, PI3K/AKT, and STAT3 in ApcMin/+ mice. The inflamed gut was alleviated by shifting M1 to M2 macrophage phenotypes and the associated immune cytokines. The other remarkable change was on the extracellular tight junction protein complex, where the occludin, ZO-1, ICAM-1, E-cadherin were significantly (p < 0.05) upregulated while the N-cadherin and β-catenin were downregulated in the treated mice. The above physiological changes in the gut epithelial barrier were companied with the changes in gut microbiome. The 16S Sequencing data revealed a marked decrease in the potential pathogens (especially Helicobacter species and hydrogen sulfide producing-bacteria) and the increase in beneficial bacteria (especially for species from the genera of Akkermansia, Barnesiella, Coprococcus, Lachnoclostridium, and Ruminococcus). The majority of which were the short-chain fatty acids (SCFAs) producers. Meanwhile SCFAs-sensing G protein-coupled receptors (GPCRs), including GPR41, GPR43, and GPR109a were also significantly upregulated. In a recent report, we proved that the bacteria-derived SCFAs plays an essential role to the anti-cancer effects of the mushroom polysaccharides and saponins in ApcMin/+ mice. In this study, we further demonstrated that butyrate treatment could enhance the extracellular tight junction protein complex as effective as the treatments with SL and FSP to the ApcMin/+ mice. Our findings provide strong evidence of the vital role of the SCFA-producers and their metabolites to the cancer-preventive properties of the SL and FSP preparations.
Collapse
Affiliation(s)
- Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Xiao-Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Zhiling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Leung Tsun Ho
- Department of Pathology, University Hospital, Macau University of Science and Technology, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
205
|
Toyoshima O, Nishizawa T, Sakitani K, Yamakawa T, Watanabe H, Yoshida S, Nakai Y, Hata K, Ebinuma H, Suzuki H, Koike K. Nodularity-like appearance in the cardia: novel endoscopic findings for Helicobacter pylori infection. Endosc Int Open 2020; 8:E770-E774. [PMID: 32490162 PMCID: PMC7247899 DOI: 10.1055/a-1136-9890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background and study aims Helicobacter pylori -associated nodular gastritis, which is associated with follicular lymphoid hyperplasia, is mainly recognized in the antrum. However, we have also observed nodularity-like appearance in the cardia. This study aimed to investigate the clinical significance of cardiac nodularity-like appearance in H. pylori -associated gastritis. Patients and methods Patients who underwent esophagogastroduodenoscopy and were evaluated for H. pylori infection for the first time were enrolled. A nodularity-like appearance in the cardia was defined as a miliary nodular appearance or scattered appearances of small circular whitish coloration. H. pylori infection was diagnosed according to serum anti- H. pylori antibody and the urea breath test or histology. Accuracy of the H. pylori infection diagnoses based on nodularity-like appearance were assessed. Results Among 265 patients, 42 patients (15.8 %) were diagnosed as positive for H. pylori . Cardiac nodularity-like appearance and antral nodularity were recognized in 25 and 15 patients, respectively. In accuracy of predicting H. pylori by cardiac nodularity-like appearance, specificity was 0.996, sensitivity was 0.571, positive predictive value was 0.960, negative predictive value was 0.925, and accuracy was 0.928. The sensitivity of cardiac nodularity-like appearance was significantly higher than that of antral nodularity ( P = 0.0284). Conclusions Cardiac nodularity-like appearance had a high accuracy rate for H. pylori infection diagnosis. Cardiac nodularity-like appearance was found more frequently than antral nodularity.
Collapse
Affiliation(s)
- Osamu Toyoshima
- Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Nishizawa
- Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo, Japan
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Kosuke Sakitani
- Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo, Japan
- Gastroenterology, Sakitani Endoscopy Clinic, Narashino, Japan
| | | | | | - Shuntaro Yoshida
- Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo, Japan
- Department of Surgical Oncology, Graduate school of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Hidekazu Suzuki
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Kanagawa, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
206
|
Functional Properties of Helicobacter pylori VacA Toxin m1 and m2 Variants. Infect Immun 2020; 88:IAI.00032-20. [PMID: 32284370 DOI: 10.1128/iai.00032-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).
Collapse
|
207
|
Holleczek B, Schöttker B, Brenner H. Helicobacter pylori
infection, chronic atrophic gastritis and risk of stomach and esophagus cancer: Results from the prospective population‐based ESTHER cohort study. Int J Cancer 2020; 146:2773-2783. [DOI: 10.1002/ijc.32610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Bernd Holleczek
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ) Heidelberg Germany
- Saarland Cancer Registry Saarbrücken Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ) Heidelberg Germany
- Network Aging Research, University of Heidelberg Heidelberg Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ) Heidelberg Germany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
208
|
Jangam D, Butzmann A, Sridhar K, Deresinski S, Banaei N, Shigeo Ohgami R. Significance of bacterial and viral genotypes as a risk factor in driving cancer (Review). Mol Clin Oncol 2020; 13:3-12. [PMID: 32499911 PMCID: PMC7265216 DOI: 10.3892/mco.2020.2043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Microbes have been known to drive human cancers for over half a century. However, despite the association of bacterial and viral infections with a high risk of cancer, most infections do not result in the development of cancer. Additionally, certain bacteria and viruses, considered to drive oncogenesis, are commonly prevalent in the global population. The current study performed a comprehensive meta-analysis of primary literature data to identify particular aspects of microbial genotypes as crucial factors that dictate the cancer risks associated with infection. The results indicated the importance of incorporating microbial genotype information with human genotypes into clinical assays for the more efficient diagnosis and prognosis of patients with cancer. The current review focuses on the importance of microbial genotypes and specific genes and genetic differences that are important to human oncogenesis.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Butzmann
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kaushik Sridhar
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Niaz Banaei
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Robert Shigeo Ohgami
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
209
|
Palrasu M, Zaika E, El-Rifai W, Garcia-Buitrago M, Piazuelo MB, Wilson KT, Peek RM, Zaika AI. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells. J Clin Invest 2020; 130:2422-2434. [PMID: 32250340 PMCID: PMC7190987 DOI: 10.1172/jci130015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Approximately half of the world's population is infected with the stomach pathogen Helicobacter pylori. Infection with H. pylori is the main risk factor for distal gastric cancer. Bacterial virulence factors, such as the oncoprotein CagA, augment cancer risk. Yet despite high infection rates, only a fraction of H. pylori-infected individuals develop gastric cancer. This raises the question of defining the specific host and bacterial factors responsible for gastric tumorigenesis. To investigate the tumorigenic determinants, we analyzed gastric tissues from human subjects and animals infected with H. pylori bacteria harboring different CagA status. For laboratory studies, well-defined H. pylori strain B128 and its cancerogenic derivative strain 7.13, as well as various bacterial isogenic mutants were employed. We found that H. pylori compromises key tumor suppressor mechanisms: the host stress and apoptotic responses. Our studies showed that CagA induces phosphorylation of XIAP E3 ubiquitin ligase, which enhances ubiquitination and proteasomal degradation of the host proapoptotic factor Siva1. This process is mediated by the PI3K/Akt pathway. Inhibition of Siva1 by H. pylori increases survival of human cells with damaged DNA. It occurs in a strain-specific manner and is associated with the ability to induce gastric tumor.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elena Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, Florida, USA
| | - Monica Garcia-Buitrago
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, VA Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander I. Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, Florida, USA
| |
Collapse
|
210
|
Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L. MAP Kinases Pathways in Gastric Cancer. Int J Mol Sci 2020; 21:ijms21082893. [PMID: 32326163 PMCID: PMC7215608 DOI: 10.3390/ijms21082893] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is turning out today to be one of the most important welfare issues for both Asian and European countries. Indeed, while the vast majority of the disease burden is located in China and in Pacific and East Asia, GC in European countries still account for about 100,000 deaths per year. With this review article, we aim to focus the attention on one of the most complex cellular pathways involved in GC proliferation, invasion, migration, and metastasis: the MAP kinases. Such large kinases family is to date constantly studied, since their discovery more than 30 years ago, due to the important role that it plays in the regulation of physiological and pathological processes. Interactions with other cellular proteins as well as miRNAs and lncRNAs may modulate their expression influencing the cellular biological features. Here, we summarize the most important and recent studies involving MAPK in GC. At the same time, we need to underly that, differently from cancers arising from other tissues, where MAPK pathways seems to be a gold target for anticancer therapies, GC seems to be unique in any aspect. Our aim is to review the current knowledge in MAPK pathways alterations leading to GC, including H. pylori MAPK-triggering to derail from gastric normal epithelium to GC and to encourage researches involved in MAPK signal transduction, that seems to definitely sustain GC development.
Collapse
Affiliation(s)
- Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
- Correspondence: ; Tel.: +39-055-2751397
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| |
Collapse
|
211
|
Mi Y, Dong H, Sun X, Ren F, Tang Y, Zheng P. The association of Helicobacter pylori CagA EPIYA motifs and vacA genotypes with homologous recombination repair markers during the gastric precancerous cascade. Int J Biol Markers 2020; 35:49-55. [PMID: 32286927 DOI: 10.1177/1724600820914935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Helicobacter pylori-induced DNA damage and impaired homologous recombination repair are vital molecular mechanisms for gastric cancer, which mainly count on its virulence factors cytotoxic-associated gene A (CagA) and vacuolating cytotoxin A (VacA). However, the relationship between H. pylori CagA EPIYA motifs and vacA genotypes with DNA damage and homologous recombination repair markers is still not clear. METHODS H. pylori positive and negative gastric biopsies were taken from 165 subjects with different gastric precancerous pathologic stages, and DNA damage marker γH2AX and key homologous recombination repair proteins (CtIP and Rad51) were investigated for their association with H. pylori CagA EPIYA motifs and vacAs-, m-, i-, and d-region genotypes and histology (Sydney classification). RESULTS Out of 165 patients, 78 were identified as H. pylori-positive. CagA EPIYA motifs were identified as AB, ABC, and ABD in 2 (3.3%), 21 (35%), and 37 (61.7%) patients, respectively, while vacA alleles were identified as: s1, s2, m1, m2, i1, i2, d1, and d2 in 50 (89.3%), 6 (10.7%), 24 (42.9%), 32 (57.1%), 45 (80.4%), 11 (19.6%), 40 (71.4%), and 16 (28.6%) patients, respectively. vacAs1m1i1d1, s1m2i1d1, and s1m2i2d2 were the most prevailing genotypes. γH2AX was highly localized in H. pylori-positive tissues with corresponding CagA EPIYA motifs and vacA genotypes, while Rad51 and CtIP signals were weak. CONCLUSION H. pylori were positively correlated with the DNA damage marker in precancerous lesions, but were negatively correlated with the key homologous recombination repair proteins, which may be due to the specific CagA EPIYA motifs and vacA genotypes.
Collapse
Affiliation(s)
- Yang Mi
- Key Laboratory of Helicobacter pylori & Microbiota and GI cancer in Henan Province, Marshall Medical Research Center of Zhengzhou University, the 5th Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Haibin Dong
- Key Laboratory of Helicobacter pylori & Microbiota and GI cancer in Henan Province, Marshall Medical Research Center of Zhengzhou University, the 5th Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.,Tshinghua Changgung Hospital, Tsinghua University, Beijing, P.R. China
| | - Xiangdong Sun
- Key Laboratory of Helicobacter pylori & Microbiota and GI cancer in Henan Province, Marshall Medical Research Center of Zhengzhou University, the 5th Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Feifei Ren
- Key Laboratory of Helicobacter pylori & Microbiota and GI cancer in Henan Province, Marshall Medical Research Center of Zhengzhou University, the 5th Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Youcai Tang
- Department of Pediatrics, the 5th Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Pengyuan Zheng
- Key Laboratory of Helicobacter pylori & Microbiota and GI cancer in Henan Province, Marshall Medical Research Center of Zhengzhou University, the 5th Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
212
|
Fujii Y, Murata-Kamiya N, Hatakeyama M. Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells. Cancer Sci 2020; 111:1596-1606. [PMID: 32198795 PMCID: PMC7226221 DOI: 10.1111/cas.14391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA‐positive strains is causally associated with the development of gastric diseases, most notably gastric cancer. The cagA‐encoded CagA protein, which is injected into gastric epithelial cells by bacterial type IV secretion, undergoes tyrosine phosphorylation at the Glu‐Pro‐Ile‐Tyr‐Ala (EPIYA) segments (EPIYA‐A, EPIYA‐B, EPIYA‐C, and EPIYA‐D), which are present in various numbers and combinations in its C‐terminal polymorphic region, thereby enabling CagA to promiscuously interact with SH2 domain‐containing host cell proteins, including the prooncogenic SH2 domain‐containing protein tyrosine phosphatase 2 (SHP2). Perturbation of host protein functions by aberrant complex formation with CagA has been considered to contribute to the development of gastric cancer. Here we show that SHIP2, an SH2 domain‐containing phosphatidylinositol 5′‐phosphatase, is a hitherto undiscovered CagA‐binding host protein. Similar to SHP2, SHIP2 binds to the Western CagA‐specific EPIYA‐C segment or East Asian CagA‐specific EPIYA‐D segment through the SH2 domain in a tyrosine phosphorylation‐dependent manner. In contrast to the case of SHP2, however, SHIP2 binds more strongly to EPIYA‐C than to EPIYA‐D. Interaction with CagA tethers SHIP2 to the plasma membrane, where it mediates production of phosphatidylinositol 3,4‐diphosphate [PI(3,4)P2]. The CagA‐SHIP2 interaction also potentiates the morphogenetic activity of CagA, which is caused by CagA‐deregulated SHP2. This study indicates that initially delivered CagA interacts with SHIP2 and thereby strengthens H. pylori‐host cell attachment by altering membrane phosphatidylinositol compositions, which potentiates subsequent delivery of CagA that binds to and thereby deregulates the prooncogenic phosphatase SHP2.
Collapse
Affiliation(s)
- Yumiko Fujii
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max-Planck Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan.,Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoko Murata-Kamiya
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max-Planck Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
213
|
Sukhan DS, Vernygorodskyi SV, Haidukov NV, Ludkevich HP. Molecular and Genetic Aspects of Helicobacter pylori Interaction with Cells of Gastric Mucosa. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
214
|
The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol 2020; 28:682-695. [PMID: 32451226 DOI: 10.1016/j.tim.2020.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.
Collapse
|
215
|
Tabata N, Sueta D, Arima Y, Okamoto K, Shono T, Hanatani S, Takashio S, Oniki K, Saruwatari J, Sakamoto K, Kaikita K, Sinning JM, Werner N, Nickenig G, Sasaki Y, Fukui T, Tsujita K. Cytotoxin-associated gene-A-seropositivity and Interleukin-1 polymorphisms influence adverse cardiovascular events. IJC HEART & VASCULATURE 2020; 27:100498. [PMID: 32181324 PMCID: PMC7062927 DOI: 10.1016/j.ijcha.2020.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Aims Although the bacterial virulent factor of cytotoxin-associated gene-A (CagA)-seropositivity and the host genetic factors of interleukin (IL)-1 polymorphisms have been suggested to influence Helicobacter pylori (HP) -related diseases, the underlying mechanisms of the association between HP infection and acute coronary syndrome (ACS) remain unknown. Methods and results Among 341 consecutive ACS patients, the clinical outcomes after ACS included composite cardiovascular events within the 2-year follow-up period. A significantly higher probability of primary outcomes was observed in HP positive patients than in HP negative patients. There were no significant differences in the rate of cardiovascular events between HP positive and HP negative patients in the absence of an IL-polymorphism, while there were significant differences in the presence of an IL-polymorphism. There were significant differences in the rate of cardiovascular events among CagA positive, CagA negative/ HP positive and CagA negative/HP negative patients. Moreover, via immunohistochemical staining, aortic CagA positive cells were confirmed in the vasa vasorum in CagA positive patients, whereas they could not be identified in CagA negative patients. Conclusions The bacterial virulence factor CagA and host genetic IL-1 polymorphisms influence the incidence of adverse cardiovascular events, possibly through infection of atherosclerotic lesions. Registration: University Hospital Medical Information Network (UMIN)-CTR (http://www.umin.ac.jp/ctr/). Identifier: UMIN000035696.
Collapse
Affiliation(s)
- Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan.,Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Ken Okamoto
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Takashi Shono
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jan-Malte Sinning
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Nikos Werner
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Toshihiro Fukui
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| |
Collapse
|
216
|
Helicobacter pylori Infection Facilitates the Expression of Resistin-like Molecule Beta in Gastric Carcinoma and Precursor Lesions. Curr Med Sci 2020; 40:95-103. [PMID: 32166670 DOI: 10.1007/s11596-020-2151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/08/2019] [Indexed: 10/24/2022]
Abstract
Helicobacter pylori (H. pylori) was reported to be associated with gastric carcinogenesis. Resistin-like molecule beta (RELMβ), a recently described goblet cell-specific protein, was demonstrated to aberrantly express in gastric cancer and correlated with its clinicopathological features. This study aimed to examine the association between H. pylori and RELMβ expression in gastric carcinoma and precursor lesions. H. pylori infection and RELMβ expression were immunohistochemically evaluated in gastric biopsies from 230 patients. The biopsies consisted of normal gastric mucosa (n=20), mucosa with chronic gastritis (n=41), intestinal metaplasia (n=42), dysplasia (n=31), intestinal-type adenocarcinoma (n=56), and diffuse-type adenocarcinoma (n=40). RELMβ expression was measured in gastric biopsies after H. pylori eradication therapy in a subgroup of 32 patients. Cultured gastric cancer cell line SGC-7901 was infected with H. pylori strains, and RELMβ expression was detected by reverse transcription PCR, real-time PCR and Western blotting. Higher RELMβ immunoreactivity was observed in H. pylori-positive intestinal metaplasia (P=0.003), dysplasia (P=0.032), intestinal-type (P=0.037) and diffuse-type adenocarcinomas (P=0.001) than in H. pylori-negative specimens. Expression rates of RELMβ in dysplasia (P=0.005), intestinal-type adenocarcinoma (P<0.001), and diffuse-type adenocarcinoma (P=0.001) were significantly correlated with the grade of H. pylori density. In addition, H. pylori eradication reduced the RELMβ intensity in intestinal metaplasia (P=0.001). Infection of gastric cancer SGC-7901 cells with cag pathogenicity island (PAI)-positive H. pylori TN2, but not with its PAI totally deleted mutant (TN2-ΔPAI) for 4-8 h, resulted in enhanced protein and transcript levels of RELMβ (P<0.05). In summary, our study suggested that H. pylori infection facilitated the expression of RELMβ in gastric garcinoma and precursor lesions.
Collapse
|
217
|
Toracchio S, Caruso RA, Perconti S, Rigoli L, Betri E, Neri M, Verginelli F, Mariani-Costantini R. Evolutionarily-Related Helicobacter pylori Genotypes and Gastric Intraepithelial Neoplasia in a High-Risk Area of Northern Italy. Microorganisms 2020; 8:324. [PMID: 32110918 PMCID: PMC7142731 DOI: 10.3390/microorganisms8030324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023] Open
Abstract
Helicobacter pylori (Hp) is the major recognized risk factor for non-cardia gastric cancer (GC), but only a fraction of infected subjects develop GC, thus GC risk might reflect other genetic/environmental cofactors and/or differences in virulence among infectious Hp strains. Focusing on a high GC risk area of Northern Italy (Cremona, Lombardy) and using archived paraffin-embedded biopsies, we investigated the associations between the Hp vacA and cagA genotype variants and gastric intraepithelial neoplasia (GIN, 33 cases) versus non-neoplastic gastroduodenal lesions (NNGDLs, 37 cases). The glmM gene and the cagA and vacA (s and m) genotypes were determined by polymerase chain reaction (PCR) and sequencing. Hp was confirmed in 37/37 (100%) NNGDLs and detected in 9/33 GINs (27%), consistently with the well-known Hp loss in GC. CagA was detected in 4/9 Hp-positive GINs and in 29/37 NNGDLs. The vacA s1a and m1 subtypes were more common in GINs than in NNGDLs (6/7 vs. 12/34, p=0.014, for s1a; 7/7 vs. 18/34, p=0.020 for m1), with significant vacA s genotype-specific variance. The GIN-associated vacA s1a sequences clustered together, suggesting that aggressive Hp strains from a unique founder contribute to GC in the high-risk area studied.
Collapse
Affiliation(s)
- Sonia Toracchio
- Center for Advanced Studies (CAST/CeSI-MeT), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.T.); (S.P.); (M.N.)
| | - Rosario Alberto Caruso
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98123 Messina, Italy; (R.A.C.); (L.R.)
| | - Silvia Perconti
- Center for Advanced Studies (CAST/CeSI-MeT), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.T.); (S.P.); (M.N.)
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luciana Rigoli
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98123 Messina, Italy; (R.A.C.); (L.R.)
| | - Enrico Betri
- Department of Pathology, Istituti Ospitalieri, 26100 Cremona, Italy;
| | - Matteo Neri
- Center for Advanced Studies (CAST/CeSI-MeT), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.T.); (S.P.); (M.N.)
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Center for Advanced Studies (CAST/CeSI-MeT), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.T.); (S.P.); (M.N.)
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Renato Mariani-Costantini
- Center for Advanced Studies (CAST/CeSI-MeT), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.T.); (S.P.); (M.N.)
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
218
|
Yang T, Wang R, Zhang J, Bao C, Zhang J, Li R, Chen X, Wu S, Wen J, Wei S, Li H, Cai H, Yang X, Zhao Y. Mechanism of berberine in treating Helicobacter pylori induced chronic atrophic gastritis through IRF8-IFN-γ signaling axis suppressing. Life Sci 2020; 248:117456. [PMID: 32097666 DOI: 10.1016/j.lfs.2020.117456] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
AIMS In this study, we will investigate the therapeutic effects of berberine (BBR) in Helicobacter pylori (H. pylori) induced chronic atrophic gastritis (CAG). Furthermore, potential mechanisms of BBR in regulating IRF8-IFN-γ signaling axis will also be investigated. MATERIALS AND METHODS H. pylori were utilized to establish CAG model of rats. Therapeutic effects of BBR on serum supernatant indices, and histopathology of stomach were analyzed in vivo. Moreover, GES-1 cells were infected by H. pylori, and intervened with BBR in vitro. Cell viability, morphology, proliferation, and quantitative analysis were detected by high-content screening (HCS) imaging assay. To further investigate the potential mechanisms of BBR, relative mRNA, immunohistochemistry and protein expression in IRF8-IFN-γ signaling axis were measured. KEY FINDINGS Results showed serum supernatant indices including IL-17, CXCL1, and CXCL9 were downregulated by BBR intervention, while, G-17 increased significantly. Histological injuries of gastric mucosa induced by H. pylori also were alleviated. Moreover, cell viability and morphology changes of GES-1 cells were improved by BBR intervention. In addition, proinflammatory genes and IRF8-IFN-γ signaling axis related genes, including Ifit3, Upp1, USP18, Nlrc5, were suppressed by BBR administration in vitro and in vivo. The proteins expression related to IRF8-IFN-γ signaling axis, including Ifit3, IRF1 and Ifit1 were downregulated by BBR intervention.
Collapse
Affiliation(s)
- Tao Yang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 37, 12 Bridge Road, Chengdu 610075, PR China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Jianzhong Zhang
- Center of Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing 100039, PR China
| | - Chunmei Bao
- Division of Clinical Microbiology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Juling Zhang
- Division of Clinical Microbiology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Xing Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shihua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Huadan Cai
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China
| | - Xiangdong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, No 152 Daqiang East Street, Taisheng South Road, Chengdu 610075, PR China.
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing 100039, PR China.
| |
Collapse
|
219
|
Precancerous Gastric Lesions with Helicobacter pylori vacA +/ babA2 +/ oipA + Genotype Increase the Risk of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7243029. [PMID: 32149129 PMCID: PMC7049835 DOI: 10.1155/2020/7243029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Objective The clinical outcomes of gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer have been attributed to the interplay of virulence factors of Helicobacter pylori (H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of cagA, vacA, iceA2, babA2, and oipA genes and their association with clinical outcomes. Methods Chronic gastritis, atrophic gastritis, and intestinal metaplasia specimens were obtained from patients who underwent endoscopy and surgical resection between January 2017 and December 2018; specimens from gastric cancer patients treated between January 2014 and December 2018 were also added. H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of cagA, vacA, iceA2, babA2, and oipA genes and their association with clinical outcomes. H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of Results H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of vacA, babA2, and oipA genes and their association with clinical outcomes. vacA, babA2, and oipA genes and their association with clinical outcomes. P=0.033, OR = 2.64; 95% CI = 1.44–4.82, P=0.033, OR = 2.64; 95% CI = 1.44–4.82, P=0.033, OR = 2.64; 95% CI = 1.44–4.82, H. pylori vacA+/babA2, and oipA genes and their association with clinical outcomes. P=0.033, OR = 2.64; 95% CI = 1.44–4.82, Conclusion In this present study, we reported on the virulence genes of H. pylori infection to reveal their association with increased risk of chronic gastritis, precancerous gastric lesions, and gastric cancer. Precancerous gastric lesions with H. pylori vacA+/babA2+/oipA+ genotype increased the risk of gastric cancer.H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of H. pylori vacA+/babA2, and oipA genes and their association with clinical outcomes.
Collapse
|
220
|
Salavati S, Ahmadi Hedayati M, Ahmadi A, Fakhari S, Jalili A. Relationship between Helicobacter pylori cagA Genotypes Infection and IL-10 and TGFβ1 Genes' Expression in Gastric Epithelial Cells. Int J Prev Med 2020; 11:20. [PMID: 32175060 PMCID: PMC7050228 DOI: 10.4103/ijpvm.ijpvm_536_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The correlation of Helicobacter pylori infection with gastritis, peptic ulcer, and gastric cancer has been proven. The aim of this study was to determine the effects of cagA + and cagA - genotypes of H. pylori on genes expression of interleukin (IL) -10 and tumor growth factor (TGF) β1 in gastric epithelial cells of patients with gastritis and H. pylori infection. METHODS In all, 45 gastric biopsy samples were collected from patients with gastritis and H. pylori infection admitted to Tohid Hospital in Sanandaj city. Status of urease and cagA genes of H. pylori were directly determined from the biopsy samples using polymerase chain reaction (PCR) method. Expression of IL-10 and TGF-β1 genes in gastric epithelial cells of patients with gastritis and cagA + and cagA- genotypes of H. pylori infection was serveyed using real-time PCR method. RESULTS Overall, 25 samples had infection with H. pylori cagA + and 20 with cagA - genotypes. This study showed that there is a positive correlation between cagA - genotypes of H. pylori and increasing of IL-10 gene expression in gastric epithelial cells of patients with gastritis (P = 0.001). CONCLUSIONS Level of gene expression of IL-10 as an anti-inflammatory cytokine in gastric epithelial cells of patients with H. pylori infection is connected to cagA- genotypes.
Collapse
Affiliation(s)
- Saeed Salavati
- Liver and Digestive Research Center, Reaserch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Ahmadi Hedayati
- Liver and Digestive Research Center, Reaserch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amjad Ahmadi
- Liver and Digestive Research Center, Reaserch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shohreh Fakhari
- Liver and Digestive Research Center, Reaserch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Liver and Digestive Research Center, Reaserch Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
221
|
Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol 2020; 28:401-423. [PMID: 32298617 DOI: 10.1016/j.tim.2020.01.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Eco-Systems Biology group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
222
|
Shalapour S, Karin M. Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Cancers. Annu Rev Immunol 2020; 38:649-671. [PMID: 32040356 DOI: 10.1146/annurev-immunol-082019-081656] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
223
|
Ji J, Yang H. Using Probiotics as Supplementation for Helicobacter pylori Antibiotic Therapy. Int J Mol Sci 2020; 21:E1136. [PMID: 32046317 PMCID: PMC7037652 DOI: 10.3390/ijms21031136] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a well-known pathogen that is highly prevalent in the world population, and H. pylori infection is potentially hazardous to humans because of its relationship to various gastrointestinal diseases, such as gastric ulcers, chronic gastritis, and gastric carcinoma. Therefore, the clinical guidelines recommend taking antibiotic therapy to eradicate the pathogen, which usually leads to the desired therapeutic effect. However, some failure cases of this therapy indicate that the increasing antibiotic resistance and side effects may affect the therapeutic effect. Here we propose that using probiotics as supplementation for antibiotic therapy may provide an extra help. Recent studies have shown that probiotic supplementation therapy has promising application prospects; it can enhance the antibiotic effect to achieve a better therapeutic result and maintain the balance of the host gastrointestinal microbiota. In summary, under global conditions of increasing H. pylori prevalence, probiotic supplementation therapy is worthy of further studies for future clinical application.
Collapse
Affiliation(s)
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 201100, China;
| |
Collapse
|
224
|
Toyoshima O, Nishizawa T, Koike K. Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis. World J Gastroenterol 2020; 26:466-477. [PMID: 32089624 PMCID: PMC7015719 DOI: 10.3748/wjg.v26.i5.466] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Recent advances in endoscopic technology allow detailed observation of the gastric mucosa. Today, endoscopy is used in the diagnosis of gastritis to determine the presence/absence of Helicobacter pylori (H. pylori) infection and evaluate gastric cancer risk. In 2013, the Japan Gastroenterological Endoscopy Society advocated the Kyoto classification, a new grading system for endoscopic gastritis. The Kyoto classification organized endoscopic findings related to H. pylori infection. The Kyoto classification score is the sum of scores for five endoscopic findings (atrophy, intestinal metaplasia, enlarged folds, nodularity, and diffuse redness with or without regular arrangement of collecting venules) and ranges from 0 to 8. Atrophy, intestinal metaplasia, enlarged folds, and nodularity contribute to gastric cancer risk. Diffuse redness and regular arrangement of collecting venules are related to H. pylori infection status. In subjects without a history of H. pylori eradication, the infection rates in those with Kyoto scores of 0, 1, and ≥ 2 were 1.5%, 45%, and 82%, respectively. A Kyoto classification score of 0 indicates no H. pylori infection. A Kyoto classification score of 2 or more indicates H. pylori infection. Kyoto classification scores of patients with and without gastric cancer were 4.8 and 3.8, respectively. A Kyoto classification score of 4 or more might indicate gastric cancer risk.
Collapse
Affiliation(s)
- Osamu Toyoshima
- Department of Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo 157-0066, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshihiro Nishizawa
- Department of Gastroenterology, Toyoshima Endoscopy Clinic, Tokyo 157-0066, Japan
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
225
|
Dávila-Collado R, Jarquín-Durán O, Dong LT, Espinoza JL. Epstein-Barr Virus and Helicobacter Pylori Co-Infection in Non-Malignant Gastroduodenal Disorders. Pathogens 2020; 9:pathogens9020104. [PMID: 32041355 PMCID: PMC7168260 DOI: 10.3390/pathogens9020104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr virus (EBV) and Helicobacter pylori (H. pylori) are two pathogens associated with the development of various human cancers. The coexistence of both microorganisms in gastric cancer specimens has been increasingly reported, suggesting that crosstalk of both pathogens may be implicated in the carcinogenesis process. Considering that chronic inflammation is an initial step in the development of several cancers, including gastric cancer, we conducted a systematic review to comprehensively evaluate publications in which EBV and H. pylori co-infection has been documented in patients with non-malignant gastroduodenal disorders (NMGDs), including gastritis, peptic ulcer disease (PUD), and dyspepsia. We searched the PubMed database up to August 2019, as well as publication references and, among the nine studies that met the inclusion criteria, we identified six studies assessing EBV infection directly in gastric tissues (total 949 patients) and three studies in which EBV infection status was determined by serological methods (total 662 patients). Due to the substantial methodological and clinical heterogeneity among studies identified, we could not conduct a meta-analysis. The overall prevalence of EBV + H. pylori co-infection in NMGDs was 34% (range 1.8% to 60%). A higher co-infection rate (EBV + H. pylori) was reported in studies in which EBV was documented by serological methods in comparison with studies in which EBV infection was directly assessed in gastric specimens. The majority of these studies were conducted in Latin-America and India, with most of them comparing NMGDs with gastric cancer, but there were no studies comparing the co-infection rate in NMGDs with that in asymptomatic individuals. In comparison with gastritis caused by only one of these pathogens, EBV + H. pylori co-infection was associated with increased severity of gastric inflammation. In conclusion, only relatively small studies testing EBV and H. pylori co-infection in NMGDs have been published to date and the variable report results are likely influenced by geographic factors and detection methods.
Collapse
Affiliation(s)
| | | | - Le Thanh Dong
- Faculty of Medical Technology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - J. Luis Espinoza
- Faculty of Health Sciences, Kanazawa University, Kodatsuno 5-11-80, Kanazawa 920-0942, Ishikawa, Japan
- Correspondence:
| |
Collapse
|
226
|
Zhao R, Liu Z, Xu W, Song L, Ren H, Ou Y, Liu Y, Wang S. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism. Cancer Med 2020; 9:2551-2563. [PMID: 32017451 PMCID: PMC7131848 DOI: 10.1002/cam4.2892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) has a tumor suppressor role in the progression of gastric cancer (GC), and inhibition or loss of KLF4 expression was identified in GC. The aim of this study was to explore the new molecular mechanism of KLF4 inactivation in gastric cancer. Herein, we report that Helicobacter pylori infection or Cag pathogenicity island protein A (CagA) gene transduction resulted in KLF4 expression downregulation and promoted gastric epithelial cell and gastric cancel cell proliferation, migration, and colony formation. Mechanistically, we found that CagA gene transduction led to DNA methylation of the KLF4 promoter, an effect that was relevant to the significant downregulation of TET1 expression. Causally, knockdown of TET1 expression decreased KLF4 expression, whereas overexpression of TET1 had the opposite effect. Clinically, we found that KLF4 expression and the 5-hmC levels were lower in GC cells with H pylori infection than in GC cells without H pylori infection. Thus, our study not only sheds new light on how H pylori infection promotes the progression of GC but also elucidates a novel mechanism of KLF4 inactivation in GC pathogenesis. During pathogenesis, an alteration in the H pylori/CagA-TET1-KLF4 signaling pathway plays a critical role, suggesting that this pathway may be a prospective target for gastric carcinoma intervention and therapy.
Collapse
Affiliation(s)
- Rongrong Zhao
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Wenting Xu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Le Song
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Ren
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yang Ou
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yakun Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Siying Wang
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
227
|
The oncogenic roles of bacterial infections in development of cancer. Microb Pathog 2020; 141:104019. [PMID: 32006638 DOI: 10.1016/j.micpath.2020.104019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Initiation of cancer is interconnected with different factors like infections. It has been estimated that infections, particularly viruses, participate in about 20% of all cancers. Bacteria as the most common infectious agents are also reported to be emerging players in the establishment of malignant cells. Microbial infections are able to modulate host cell transformation for promoting malignant features through the production of carcinogenic metabolites participating in inflammation responses, disruption of cell metabolism, and integrity and also genomic or epigenetic manipulations. It seems that the best example of the role of bacteria in cancer promotion is Helicobacter pylori infection, which is related to gastric cancer. World Health Organization (WHO) describes bacterium as class I carcinogens. Several bacterial infections have been reported in association with prevalent cancers. In this review, we will summarize the role of known bacterial infections in the initiation of the main common cancers, which show high mortality in the world. Examining the microbiomes in cancer patients is important and necessary to better understand the pathogenesis of this disease and also to plan therapeutic interventions.
Collapse
|
228
|
Brüggemann H, Al-Zeer MA. Bacterial signatures and their inflammatory potentials associated with prostate cancer. APMIS 2020; 128:80-91. [PMID: 31990107 DOI: 10.1111/apm.13021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic inflammation can create a microenvironment that can contribute to the formation of prostate pathologies. Far less well understood is the origin of inflammation in the prostate. One potential source is microbial infections of the prostate. This review summarizes recent findings regarding the presence of bacteria in the prostate and the dysbiosis of bacterial populations in the urinary tract and the gastrointestinal tract related to prostate cancer, thereby focusing on next-generation sequencing (NGS)-generated data. The current limitations regarding NGS-based detection methods and other difficulties in the quest for a microbial etiology for prostate cancer are discussed. We then focus on a few bacterial species, including Cutibacterium acnes and Escherichia coli that are often NGS-detected in prostatic tissue specimens, and discuss their possible contribution as initiator or enhancer of prostate inflammation and prostate carcinogenesis.
Collapse
Affiliation(s)
| | - Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
229
|
Immune Response in H. pylori-Associated Gastritis and Gastric Cancer. Gastroenterol Res Pract 2020; 2020:9342563. [PMID: 32411209 PMCID: PMC7204331 DOI: 10.1155/2020/9342563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the dominant member of the gastric microbiota and has infected more than half of the human population, of whom 5–15% develop gastric diseases ranging from gastritis and metaplasia to gastric cancer. These diseases always follow inflammation induced by cell surface and intracellular receptors and subsequent signaling, such as the NF-κB pathway and inflammasomes. Some types of immune cells are recruited to enforce an antibacterial response, which could be impeded by H. pylori virulence factors with or without a specific immune cell. Following decreased inflammation, neoplasm may appear with a little immune surveillance and may inhibit antitumor immunity. Therefore, the balance between H. pylori-associated inflammation and anti-inflammation is crucial for human health and remains to be determined. Here, we discuss multiple inflammation and immunoregulatory cells in gastritis and summarize the main immune evasion strategies employed by gastric cancer.
Collapse
|
230
|
Bacterial Energetic Requirements for Helicobacter pylori Cag Type IV Secretion System-Dependent Alterations in Gastric Epithelial Cells. Infect Immun 2020; 88:IAI.00790-19. [PMID: 31712269 DOI: 10.1128/iai.00790-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori colonizes the stomach in about half of the world's population. H. pylori strains containing the cag pathogenicity island (cag PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than cag PAI-negative strains. The cag PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. H. pylori-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagβ, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for H. pylori-induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagβ was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.
Collapse
|
231
|
CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci U S A 2020; 117:2645-2655. [PMID: 31964836 DOI: 10.1073/pnas.1908787117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main risk factor for stomach cancer, the third most common cause of cancer death worldwide, is infection with Helicobacter pylori bacterial strains that inject cytotoxin-associated gene A (CagA). As the first described bacterial oncoprotein, CagA causes gastric epithelial cell transformation by promoting an epithelial-to-mesenchymal transition (EMT)-like phenotype that disrupts junctions and enhances motility and invasiveness of the infected cells. However, the mechanism by which CagA disrupts gastric epithelial cell polarity to achieve its oncogenicity is not fully understood. Here we found that the apoptosis-stimulating protein of p53 2 (ASPP2), a host tumor suppressor and an important CagA target, contributes to the survival of cagA-positive H. pylori in the lumen of infected gastric organoids. Mechanistically, the CagA-ASPP2 interaction is a key event that promotes remodeling of the partitioning-defective (PAR) polarity complex and leads to loss of cell polarity of infected cells. Blockade of cagA-positive H. pylori ASPP2 signaling by inhibitors of the EGFR (epidermal growth factor receptor) signaling pathway-identified by a high-content imaging screen-or by a CagA-binding ASPP2 peptide, prevents the loss of cell polarity and decreases the survival of H. pylori in infected organoids. These findings suggest that maintaining the host cell-polarity barrier would reduce the detrimental consequences of infection by pathogenic bacteria, such as H. pylori, that exploit the epithelial mucosal surface to colonize the host environment.
Collapse
|
232
|
Zhu GH, Sang YT, Li J. Role and significance of traditional Chinese medicine in regulating gastrointestinal microecology to prevent and treat gastrointestinal cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:1-8. [DOI: 10.11569/wcjd.v28.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown that gastrointestinal microecology is closely related to the occurrence and development of gastrointestinal cancers and anti-tumor treatment efficacy, so effective regulation of gastrointestinal microecology plays an important role in the prevention and treatment of gastrointestinal cancers. Traditional Chinese medicine, adopting oral administration, can directly regulate gastrointestinal microecology. Traditional Chinese medicine can improve the precancerous condition and enhance the clinical efficacy of anti-tumor treatment via multiple mechanisms, such as improving the microecological structure of the gastrointestinal tract, protecting the gastrointestinal mucosal barrier, preventing the translocation of the flora, and enhancing the immune function of the gastrointestinal mucosa. Some research has shown that the imbalance of gastrointestinal microecology is closely related to spleen deficiency syndrome and damp-heat syndrome. The therapeutic principles of traditional Chinese medicine can be Jianpi Hewei and Qingre Qushi following the concept of "combination of disease and syndrome". It is of great significance to prevent and cure gastrointestinal tumors from a new perspective of regulating intestinal microecology. We hope of providing new strategies for the anti-tumor research of traditional Chinese medicine.
Collapse
Affiliation(s)
- Guang-Hui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi-Ting Sang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
233
|
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2020; 17:156-166. [PMID: 30546113 DOI: 10.1038/s41579-018-0129-6] [Citation(s) in RCA: 708] [Impact Index Per Article: 141.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusobacterium nucleatum has long been found to cause opportunistic infections and has recently been implicated in colorectal cancer; however, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To address this dissonance, we explore the diversity and niches of fusobacteria and reconsider historic fusobacterial taxonomy in the context of current technology. We also undertake a critical reappraisal of fusobacteria with a focus on F. nucleatum as a mutualist, infectious agent and oncogenic microorganism. In this Review, we delve into recent insights and future directions for fusobacterial research, including the current genetic toolkit, our evolving understanding of its mechanistic role in promoting colorectal cancer and the challenges of developing diagnostics and therapeutics for F. nucleatum.
Collapse
Affiliation(s)
| | - Wendy S Garrett
- Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
234
|
Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch 2019; 476:353-365. [PMID: 31836926 DOI: 10.1007/s00428-019-02724-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Thirty years have passed since a possible association of Epstein-Barr virus (EBV) with gastric carcinoma was reported. We now know EBV-associated gastric carcinoma to be a specific subtype of gastric carcinoma. Global epigenetic methylation and counteraction of the antitumour microenvironment are two major characteristics of this subtype of gastric carcinoma. Recent development of therapeutic modalities for gastric carcinoma, such as endoscopic mucosal dissection and immune checkpoint inhibitor therapy, has made the presence of EBV infection a biomarker for the treatment of gastric carcinoma. This review presents a portrait of EBV-associated gastric carcinoma from initiation to maturity that we define as the 'gastritis-infection-cancer sequence', followed by its molecular abnormalities and interactions with immune checkpoint molecules and the microenvironment. EBV non-coding RNAs (microRNA and circular RNA) and exosomes derived from EBV-infected cells that were previously behind the scenes are now recognized for their roles in EBV-associated gastric carcinoma. The virus utilizes cellular machinery skilfully to control infected cells and their microenvironment. We should thus strive to understand virus-host interactions more fully in the following years to overcome this virus-driven subtype of gastric carcinoma.
Collapse
|
235
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
236
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
237
|
Molina-Castro SE, Tiffon C, Giraud J, Boeuf H, Sifre E, Giese A, Belleannée G, Lehours P, Bessède E, Mégraud F, Dubus P, Staedel C, Varon C. The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric Mucosa. Cell Mol Gastroenterol Hepatol 2019; 9:257-276. [PMID: 31669263 PMCID: PMC6957828 DOI: 10.1016/j.jcmgh.2019.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. METHODS Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. RESULTS LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other's expression. Loss-of-function experiments showed that LATS2 restricts H pylori-induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori-induced preneoplastic changes. CONCLUSIONS H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host-pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development.
Collapse
Affiliation(s)
- Silvia Elena Molina-Castro
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,University of Costa Rica, San José, Costa Rica
| | - Camille Tiffon
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Julie Giraud
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Hélène Boeuf
- INSERM, UMR1026, Bioingénierie tissulaire (BioTis), University of Bordeaux, Bordeaux, France
| | - Elodie Sifre
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Alban Giese
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | | | - Philippe Lehours
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Emilie Bessède
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Pierre Dubus
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Cathy Staedel
- INSERM, UMR1212, University of Bordeaux, Bordeaux, France,Cathy Staedel, PhD, INSERM U1212, “ARN: Régulations naturelle et artificielle” (ARNA)-Unités Mixtes de Recherche (UMR) Centre national de la recherche scientifique (CNRS) 5320, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 57 57 10 15.
| | - Christine Varon
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Correspondence Address correspondence to: Christine Varon, PhD, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 56 79 60 18.
| |
Collapse
|
238
|
Su T, Li F, Guan J, Liu L, Huang P, Wang Y, Qi X, Liu Z, Lu L, Wang D. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152968. [PMID: 31280140 DOI: 10.1016/j.phymed.2019.152968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Gastric cancer has a high morbidity and is a leading cause of cancer-related mortality worldwide. Helicobacter pylori (H. pylori) infection is commonly found in the early stage of gastric cancer pathogenesis, which induces chronic gastritis. Artemisinin (ART) and its derivatives (ARTS, artesunate and DHA, dihydroartemisinin), a new class of potent antimalarials, have been reported to exert both preventive and anti-gastric cancer effects. However, the underlying mechanisms of the chemopreventive effects of ART and its derivatives in H. pylori infection induced-gastric cancer are not fully elucidated. PURPOSE We investigated the effects of H. pylori infection in gastric cancer; and the preventive mechanisms of ART, ARTS and DHA. METHODS The H. pylori growth was determined by the broth macro-dilution method, and its adhesion to gastric cancer cells was evaluated by using the urease assay. The protein and mRNA levels, reactive oxygen species (ROS) production, as well as the production of inflammatory cytokines were evaluated by Western blot, real-time PCR, flow cytometry and ELISA, respectively. Moreover, an in vivo MNU (N-methyl-N-nitroso-urea) and H. pylori-induced gastric adenocarcinoma mouse model was established for the investigation of the cancer preventive effects of ART and its derivaties, and the underlying mechanisms of action. RESULTS ART, DHA and ARTS inhibited the growth of H. pylori and gastric cancer cells,suppressed H. pylori adhesion to the gastric cancer cells, and reduced the H. pylori-enhanced ROS production. Moreover, ART, DHA and ARTS significantly reduced tumor incidence, number of tumor nodules and tumor size in the mouse model. Among these three compounds, DHA exerted the most potent chemopreventive effect. Mechanistic studies showed that ART and its derivatives potently inhibited the NF-κB activation. CONCLUSION ART, DHA and ARTS have potent preventive effects in H. pylori-induced gastric carcinogenesis. These effects are, at least in part, attributed to the inhibition of NF-κB signaling pathway. Our findings provide a molecular justification of using ART and its derivatives for the prevention and treatment of gastric cancer.
Collapse
Key Words
- ARTS, artesunate
- Abbreviations: ART, artemisinin
- Artemisinin
- Artesunate
- CFU, colony forming units
- COX-2, cyclooxygenase-2
- DHA, dehydroartemisinin
- DMSO, dimethyl sulfoxide
- Dihydroartemisinin
- ELISA, enzyme-linked immunosorbent assay
- Gastric cancer
- Helicobacter pylori
- IARC, International Agency for Research on Cancer
- IL-8, interleukin-8
- MNU, N-methyl-N-nitroso-urea
- MOI, multiplicity of infection
- NF-κB signaling
- NF-κB, nuclear factor-κB
- PBS, phosphate buffer solution
- ROS, reactive oxygen species
- TNF-α, tumor necrosis factor-α
Collapse
Affiliation(s)
- Tao Su
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangyuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaji Guan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Lu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde, Guangdong, China.
| |
Collapse
|
239
|
Evolutionary mechanism leading to the multi-cagA genotype in Helicobacter pylori. Sci Rep 2019; 9:11203. [PMID: 31371778 PMCID: PMC6672019 DOI: 10.1038/s41598-019-47240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Infection with CagA+ Helicobacter pylori strains is linked to an increased risk for gastric diseases, including gastric cancer. Recent evidence indicates that dynamic expansion and contraction of cagA copy number may serve as a novel mechanism to enhance disease development. Herein, comparative genomic analysis divided hpEurope into two groups: hpEurope/type-A and type-B. Only hpEurope/type-B displayed the multi-cagA genotype. Further analysis showed that cagPAI appears to have been independently introduced into two different H. pylori types, termed pre-type-A and pre-type-B, which consequently evolved to cagPAI type-A and type-B, respectively; importantly, all multi-cagA genotype strains displayed cagPAI type-B. Two direct cagA-flanking repeats of a genetic element termed CHA-ud were essential for the multi-cagA genotype in strain PMSS1 (hpEurope/type-B and cagPAI type-B). Furthermore, introduction of this genetic element into strain G27 (hpEurope/type-A and cagPAI type-A) was sufficient to generate the multi-cagA genotype. The critical steps in the evolution of the multi-cagA genotype involved creation of CHA-ud at cagA upstream in cagPAI type-B strains followed by its duplication to cagA downstream. En masse, elucidation of the mechanism by which H. pylori evolved to carry multiple copies of cagA helps to provide a better understanding of how this ancient pathogen interacts with its host.
Collapse
|
240
|
Peng C, Li NS, Hu Y, Lu NH. Impact factors that modulate gastric cancer risk in Helicobacter pylori-infected rodent models. Helicobacter 2019; 24:e12580. [PMID: 30950162 DOI: 10.1111/hel.12580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer causes a large social and economic burden to humans. Helicobacter pylori (H pylori) infection is a major risk factor for distal gastric cancer. Detailed elucidation of H pylori pathogenesis is significant for the prevention and treatment of gastric cancer. Animal models of H pylori-induced gastric cancer have provided an invaluable resource to help elucidate the mechanisms of H pylori-induced carcinogenesis as well as the interaction between host and the bacterium. Rodent models are commonly used to study H pylori infection because H pylori-induced pathological processes in the stomachs of rodents are similar to those in the stomachs of humans. The risk of gastric cancer in H pylori-infected animal models is greatly dependent on host factors, bacterial determinants, environmental factors, and microbiota. However, the related mechanisms and the effects of the interactions among these impact factors on gastric carcinogenesis remain unclear. In this review, we summarize the impact factors mediating gastric cancer risk when establishing H pylori-infected animal models. Clarifying these factors and their potential interactions will provide insights to construct animal models of gastric cancer and investigate the in-depth mechanisms of H pylori pathogenesis, which might contribute to the management of H pylori-associated gastric diseases.
Collapse
Affiliation(s)
- Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nian-Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
241
|
Kakiuchi T, Matsuo M, Endo H, Nakayama A, Sato K, Takamori A, Sasaki K, Takasaki M, Hara M, Sakata Y, Okuda M, Kikuchi S, Eguchi Y, Takahashi H, Anzai K, Fujimoto K. A Helicobacter pylori screening and treatment program to eliminate gastric cancer among junior high school students in Saga Prefecture: a preliminary report. J Gastroenterol 2019; 54:699-707. [PMID: 30770975 DOI: 10.1007/s00535-019-01559-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND To present the strategies and preliminary findings of the first 3 years after implementing a Helicobacter pylori screening and eradication program to prevent gastric cancer in Saga Prefecture. METHODS A screening and treatment program to eradicate H. pylori from third-grade junior high students was started in Saga Prefecture in 2016, using local governmental grants. Screening was with urinary anti-H. pylori antibody tests, followed by H. pylori stool antigen tests for students who were antibody positive. Those positive on both tests underwent H. pylori eradication by triple therapy based on a potassium-competitive acid blocker. RESULTS From 2016 to 2018, the participation rate was 83.1% and the H. pylori infection rate was 3.1% (660/21,042). The participation rates were higher in 2017 (85.4%) and 2018 (85.9%) compared with 2016 (78.5%) (P < 0.0001), and the infection rate also decreased in a time-dependent manner (2016: 3.6%, 2017: 3.3%, 2018: 2.5%, P = 0.0001). In total, 501 students positive for H. pylori received eradication therapy (85.1% success) and adverse events occurred in 20 of these (4.0%). However, no serious complications occurred. CONCLUSIONS The H. pylori screening and eradication project for school students in Saga Prefecture has started successfully and we have seen both a steady increase in the participation rate and a steady decrease in the infection rate, without major safety concerns.
Collapse
Affiliation(s)
- Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan.
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Hiroyoshi Endo
- Department of Internal Medicine, Saiseikai Karatsu Hospital, 817 Motohata-machi, Karatsu-shi, 847-0852, Japan
| | - Aiko Nakayama
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Keiko Sato
- Clinical Research Center, Saga University Hospital, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Kazumi Sasaki
- Saga Cancer Center, Saga University Hospital, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Mitsuhiro Takasaki
- Medical Informatics, Saga University Hospital, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Megumi Hara
- Department of Prevention Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Yasuhisa Sakata
- Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Masumi Okuda
- Department of Pediatrics, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute-shi, 480-1195, Aichi, Japan
| | - Shogo Kikuchi
- Department of Public Health, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute-shi, 480-1195, Aichi, Japan
| | - Yuichiro Eguchi
- Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Hirokazu Takahashi
- Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Keizo Anzai
- Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| | - Kazuma Fujimoto
- Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga-shi, 849-8501, Saga, Japan
| |
Collapse
|
242
|
Yang S, Xia YP, Luo XY, Chen SL, Li BW, Ye ZM, Chen SC, Mao L, Jin HJ, Li YN, Hu B. Exosomal CagA derived from Helicobacter pylori-infected gastric epithelial cells induces macrophage foam cell formation and promotes atherosclerosis. J Mol Cell Cardiol 2019; 135:40-51. [PMID: 31352044 DOI: 10.1016/j.yjmcc.2019.07.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Seroepidemiological studies have highlighted a positive relation between CagA-positive Helicobacter pylori (H. pylori), atherosclerosis and related clinic events. However, this link has not been well validated. The present study was designed to explore the role of H. pylori PMSS1 (a CagA-positive strain that can translocate CagA into host cells) and exosomal CagA in the progression of atherosclerosis. METHODS To evaluate whether H. pylori accelerates or even induces atherosclerosis, H. pylori-infected C57/BL6 mice and ApoE-/- mice were maintained under different dietary conditions. To identify the role of H. pylori-infected gastric epithelial cells-derived exosomes (Hp-GES-EVs) and exosomal CagA in atherosclerosis, ApoE-/- mice were given intravenous or intraperitoneal injections of saline, GES-EVs, Hp-GES-EVs, and recombinant CagA protein (rCagA). FINDINGS CagA-positive H. pylori PMSS1 infection does not induce but promotes macrophage-derived foam cell formation and augments atherosclerotic plaque growth and instability in two animal models. Meanwhile, circulating Hp-GES-EVs are taken up in aortic plaque, and CagA is secreted in Hp-GES-EVs. Furthermore, the CagA-containing EVs and rCagA exacerbates macrophage-derived foam cell formation and lesion development in vitro and in vivo, recapitulating the pro-atherogenic effects of CagA-positive H. pylori. Mechanistically, CagA suppresses the transcription of cholesterol efflux transporters by downregulating the expression of transcriptional factors PPARγ and LXRα and thus enhances foam cell formation. INTERPRETATION These results may provide new insights into the role of exosomal CagA in the pathogenesis of CagA-positive H. pylori infection-related atherosclerosis. It is suggested that preventing and eradicating CagA-positive H. pylori infection could reduce the incidence of atherosclerosis and related events.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Ying Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Li Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo-Wei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Ming Ye
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sheng-Cai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
243
|
Gutiérrez-González LH, Santos-Mendoza T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism. FASEB J 2019; 33:10607-10617. [PMID: 31336050 DOI: 10.1096/fj.201900518r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.
Collapse
Affiliation(s)
- Luis H Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
244
|
Sokolova O, Naumann M. Crosstalk Between DNA Damage and Inflammation in the Multiple Steps of Gastric Carcinogenesis. Curr Top Microbiol Immunol 2019; 421:107-137. [PMID: 31123887 DOI: 10.1007/978-3-030-15138-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last years, intensive investigations in molecular biology and cell physiology extended tremendously the knowledge about the association of inflammation and cancer. In frame of this paradigm, the human pathogen Helicobacter pylori triggers gastritis and gastric ulcer disease, and contributes to the development of gastric cancer. Mechanisms, by which the bacteria-induced inflammation in gastric mucosa leads to intestinal metaplasia and carcinoma, are represented in this review. An altered cell-signaling response and increased production of free radicals by epithelial and immune cells account for the accumulation of DNA damage in gastric mucosa, if infection stays untreated. Host genetics and environmental factors, especially diet, can accelerate the process, which offers the opportunity of intervention based on a balanced nutrition. It is supposed that inflammation might influence stem- or progenitor cells in gastric tissue predisposing for metaplasia or tumor relapse. Herein, DNA is strongly mutated and labile, which restricts therapy options. Thus, the understanding of the mechanisms that underlie gastric carcinogenesis will be of preeminent importance for the development of strategies for screening and early detection. As most gastric cancer patients face late-stage disease with a poor overall survival, the development of multi-targeted therapeutic intervention strategies is a major challenge for the future.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
245
|
Tepler A, Narula N, Peek RM, Patel A, Edelson C, Colombel JF, Shah SC. Systematic review with meta-analysis: association between Helicobacter pylori CagA seropositivity and odds of inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:121-131. [PMID: 31165513 PMCID: PMC7393806 DOI: 10.1111/apt.15306] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accumulating data support a protective role of Helicobacter pylori against inflammatory bowel diseases (IBD), which might be mediated by strain-specific constituents, specifically cagA expression. AIM To perform a systematic review and meta-analysis to more clearly define the association between CagA seropositivity and IBD. METHODS We identified comparative studies that included sufficient detail to determine the odds or risk of IBD, Crohn's disease (CD) or ulcerative colitis (UC) amongst individuals with vs without evidence of cagA expression (eg CagA seropositivity). Estimates were pooled using a random effects model. RESULTS Three clinical studies met inclusion criteria. cagA expression was represented by CagA seropositivity in all studies. Compared to CagA seronegativity overall, CagA seropositivity was associated with lower odds of IBD (OR 0.31, 95% CI 0.21-0.44) and CD (OR 0.25, 95% CI 0.17-0.38), and statistically nonsignificant lower odds for UC (OR 0.68, 95% CI 0.35-1.32). Similarly, compared to H pylori non-exposed individuals, H pylori exposed, CagA seropositive individuals had lower odds of IBD (OR 0.26, 95% CI 0.16-0.41) and CD (OR 0.23, 95% CI 0.15-0.35), but not UC (OR 0.66, 0.34-1.27). However, there was no significant difference in the odds of IBD, CD or UC between H pylori exposed, CagA seronegative and H pylori non-exposed individuals. CONCLUSION We found evidence for a significant association between CagA seropositive H pylori exposure and reduced odds of IBD, particularly CD, but not for CagA seronegative H pylori exposure. Additional studies are needed to confirm these findings and define underlying mechanisms.
Collapse
Affiliation(s)
- Adam Tepler
- Department of Medicine, Montefiore Medical Center, New York NY USA
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton Ontario Canada
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN USA
| | - Anish Patel
- Department of Gastroenterology, Brooke Army Medical Center, Houston TX USA
| | - Cyrus Edelson
- Department of Medicine, Brooke Army Medical Center, Houston TX USA
| | | | - Shailja C. Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN USA,Corresponding Author: Shailja C. Shah, MD, 2215 Garland Avenue, Medical Research Building IV, 1030C, Vanderbilt University Medical Center, Nashville, TN 37212, Phone: (615) 343-5952 / Fax: (615) 343-6229,
| |
Collapse
|
246
|
Xiong Y, Yang Z, Zhang J, Li J, Chen P, Xiang Y. Panning using a phage-displayed random peptide library to identify peptides that antagonize the Helicobacter pylori ArsS acid-sensing domain. Microb Pathog 2019; 135:103614. [PMID: 31255726 DOI: 10.1016/j.micpath.2019.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is an important etiological factor involved in chronic gastritis, peptic ulcer, and gastric cancer. There are currently no optimal preventive or therapeutic interventions for H. pylori infection. H. pylori survives in the stomach by sensing and adapting to the highly acidic environment by using the two-component signal transduction system that contains the most widely known gastric acid receptor, ArsRS (which is composed of ArsS and ArsR). This study aimed to identify peptides that antagonize the acid-sensing domain of H. pylori ArsS. These peptides could be used to block the acid-sensing signal and thereby hinder H. pylori adaption to acidic environments to prevent its survival. Using proSite, the functional domains (including the N-terminal acid-sensing domain) of H. pylori J99 ArsS were predicted. The purified recombinant ArsS N-terminal acid-sensing protein (P-ArsS-A) was used as the target in a panning protocol in which peptides from the Ph.D.-7 Phage Display Peptide Library that could bind to P-ArsS-A were identified. As a result, eight phage clones that could specifically bind to P-ArsS-A were obtained and five amino acid sequences were identified, including P03 (MMSYPKH) and P06 (LTPMPNW). An in vitro minimum inhibitory concentration (MIC) evaluation showed that P03 and P06 significantly inhibited the growth of H. pylori J99. The MIC of P03 was 8 μM, and the MIC of P06 was >16 μM, indicating that P03 is a stronger inhibitor compared to P06. This was confirmed by colony counting on blood agar plates after P03 and P06 administration. Using homology modeling and molecular docking analysis, it was shown that P03 and P06 could bind to the ArsS N-terminal domain, and there were four shared binding sites: TYR25, ASN39, ARG73, and GLU74. Additionally, one hydrogen bond was found between P03 and ArsS, which is more cohesive than other forms of bonding (van der Waals force, other non-covalent bonds).
Collapse
Affiliation(s)
- Yuxia Xiong
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhibang Yang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jin Zhang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jinyang Li
- College of Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Pu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yu Xiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
247
|
Valenzuela-Valderrama M, Cerda-Opazo P, Backert S, González MF, Carrasco-Véliz N, Jorquera-Cordero C, Wehinger S, Canales J, Bravo D, Quest AFG. The Helicobacter pylori Urease Virulence Factor Is Required for the Induction of Hypoxia-Induced Factor-1α in Gastric Cells. Cancers (Basel) 2019; 11:cancers11060799. [PMID: 31185594 PMCID: PMC6627347 DOI: 10.3390/cancers11060799] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Helicobacter pylori infection increases the risk of gastric cancer and induction of hypoxia-induced factor (HIF), which is frequently associated with the development and progression of several types of cancer. We recently showed that H. pylori activation of the PI3K-AKT-mTOR pathway in gastric cells increased HIF-1α expression. Here, we identified the H. pylori virulence factor responsible for HIF-1α induction. A mutant of the H. pylori 84-183 strain was identified with reduced ability to induce HIF-1α. Coomassie blue staining of extracts from these bacteria separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed poor expression of urease subunits that correlated with reduced urease activity. This finding was confirmed in the 26695 strain, where urease mutants were unable to induce HIF-1α expression. Of note, HIF-1α induction was also observed in the presence of the urease inhibitor acetohydroxamic acid at concentrations (of 20 mM) that abrogated urease activity in bacterial culture supernatants, suggesting that enzymatic activity of the urease is not required for HIF-1α induction. Finally, the pre-incubation of the human gastric adenocarcinoma cell line AGS with blocking antibodies against Toll-like receptor-2 (TLR2), but not TLR4, prevented HIF-1α induction. In summary, these results reveal a hitherto unexpected role for the urease protein in HIF-1α induction via TLR2 activation following H. pylori infection of gastric cells.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Paulina Cerda-Opazo
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Steffen Backert
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Nicolás Carrasco-Véliz
- Laboratorio de Microbiología Celular, Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
| | - Carla Jorquera-Cordero
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Sergio Wehinger
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| | - Jimena Canales
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Denisse Bravo
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
- Laboratorio de Microbiología Oral, Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Andrew F G Quest
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| |
Collapse
|
248
|
Ou Y, Ren H, Zhao R, Song L, Liu Z, Xu W, Liu Y, Wang S. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR-155/KLF4 signaling pathway. Mol Carcinog 2019; 58:1427-1437. [PMID: 31162747 DOI: 10.1002/mc.23025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
The Helicobacter pylori (H. pylori) cytotoxin-associated gene A (CagA) and Krüppel-like transcription factor (KLF4) were both closely associated with the development and progression of gastric cancer (GC). However, the nature of the interactions between CagA and KLF4 in GC development has not been elucidated. Therefore, we focused on the CagA-mediated promotion of the malignant transformation of gastric epithelial cells. Herein, we first examined the expression of KLF4 in both human cancer and paracarcinoma tissues with or without H. pylori infection and found that KLF4 expression was significantly decreased in H. pylori-positive GC cells compared with the H. pylori-negative GC cells. Further functional studies revealed that the increased expression of CagA could suppress KLF4 expression and promote the malignant transformation of normal epithelial cells. Subsequently, we found that CagA could upregulate miR-155 and further restrict the expression of downstream KLF4. More importantly, the overexpression of miR-155 in GES-1 promoted epithelial-mesenchymal transition and eventually facilitated tumor growth in vivo. Overall, the identification of the CagA/miR-155/KLF4 signaling pathway provided a new insight into the development and treatment of GC.
Collapse
Affiliation(s)
- Yang Ou
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Haifeng Ren
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Rongrong Zhao
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Le Song
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengxia Liu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenting Xu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yakun Liu
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Siying Wang
- Department of physiopathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
249
|
Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019; 156:2158-2173. [PMID: 30831083 PMCID: PMC6715393 DOI: 10.1053/j.gastro.2019.02.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Acidification of the gastric lumen poses a barrier to transit of potentially pathogenic bacteria and enables activation of pepsin to complement nutrient proteolysis initiated by salivary proteases. Histamine-induced activation of the PKA signaling pathway in gastric corpus parietal cells causes insertion of proton pumps into their apical plasma membranes. Parietal cell secretion and homeostasis are regulated by signaling pathways that control cytoskeletal changes required for apical membrane remodeling and organelle and proton pump activities. Helicobacter pylori colonization of human gastric mucosa affects gastric epithelial cell plasticity and homeostasis, promoting epithelial progression to neoplasia. By intervening in proton pump expression, H pylori regulates the abundance and diversity of microbiota that populate the intestinal lumen. We review stimulation-secretion coupling and renewal mechanisms in parietal cells and the mechanisms by which H pylori toxins and effectors alter cell secretory pathways (constitutive and regulated) and organelles to establish and maintain their inter- and intracellular niches. Studies of bacterial toxins and their effector proteins have provided insights into parietal cell physiology and the mechanisms by which pathogens gain control of cell activities, increasing our understanding of gastrointestinal physiology, microbial infectious disease, and immunology.
Collapse
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia.
| | - Adam J. Smolka
- Gastroenterology and Hepatology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
250
|
Tsugawa H, Kato C, Mori H, Matsuzaki J, Kameyama K, Saya H, Hatakeyama M, Suematsu M, Suzuki H. Cancer Stem-Cell Marker CD44v9-Positive Cells Arise From Helicobacter pylori-Infected CAPZA1-Overexpressing Cells. Cell Mol Gastroenterol Hepatol 2019; 8:319-334. [PMID: 31146068 PMCID: PMC6713896 DOI: 10.1016/j.jcmgh.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS CD44 variant 9 (CD44v9)-positive cancer stem-like cells strongly contribute to the development and recurrence of gastric cancer. However, the origin of CD44v9-positive cells is uncertain. METHODS CD44v9, β-catenin, and epithelial splicing regulatory protein 1 signals were assessed by real-time reverse-transcription polymerase chain reaction, immunoblot analysis, or immunofluorescence microscopy. Capping actin protein of muscle Z-line α subunit 1 (CAPZA1) expression was assessed by immunoblot analysis or immunohistochemical analysis of Mongolian gerbils' gastric mucosa or human biopsy specimens. Levels of oxidative stress were assessed by measuring malondialdehyde and protein carbonylation. Histone H3 acetylation levels in the CAPZA1 proximal promoter region were measured by using chromatin immunoprecipitation analysis with an antibody against the acetylated histone H3 in human gastric carcinoma cell line (AGS) cells. RESULTS CD44v9 is expressed in CAPZA1-overexpressing cells in human gastric cancer tissues. CAPZA1 overexpression enhanced expression of β-catenin, which is a transcription factor for CD44, and epithelial splicing regulatory protein 1, which increases alternative splicing of CD44 to generate CD44v9. CAPZA1-overexpressing cells after cytotoxin-associated gene A accumulation showed CD44v9 expression by inducing nuclear accumulation of β-catenin, concomitant with the enhancement of expression of Sal-like protein 4 and Krüppel-like factor 5, which encode reprogramming factors. Oxidative stress increased the CAPZA1 expression in AGS cells through the enhancement of histone H3 acetylation of CAPZA1 promoter. CAPZA1 expression was increased depending on oxidative stress in H pylori-infected gastric mucosa. CONCLUSIONS CD44v9 expression is evoked from CAPZA1-overexpressing cells after accumulation of cytotoxin-associated gene A. Our findings provide important insights into the mechanisms underlying the development of CD44v9-positive cells.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Chihiro Kato
- Medical Education Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideki Mori
- Division of Gastroenterology and Hepatology, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hidekazu Suzuki
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|