201
|
Abstract
Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1BKO) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to defective BAT mitochondrial respiration in Lkb1BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the trade-off between BAT thermogenesis and systemic metabolism at room temperature and thermoneutrality. Collectively, our data demonstrate that ETC proteome imbalance in BAT regulates systemic metabolism independently of thermogenesis.
Collapse
|
202
|
Leu SY, Tsai YC, Chen WC, Hsu CH, Lee YM, Cheng PY. Raspberry ketone induces brown-like adipocyte formation through suppression of autophagy in adipocytes and adipose tissue. J Nutr Biochem 2018. [PMID: 29525531 DOI: 10.1016/j.jnutbio.2018.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Promoting white adipose tissue (WAT) to acquire brown-like characteristics is a promising approach for obesity treatment. Although raspberry ketone (RK) has been reported to possess antiobesity activity, its effects on the formation of brown-like adipocytes remain unclear. Therefore, we investigated the effects and underlying mechanism of RK on WAT browning in 3T3-L1 adipocytes and rats with ovariectomy (Ovx)-induced obesity. RK (100 μM) significantly induced browning of 3T3-L1 cells by increasing mitochondrial biogenesis and the expression of browning-specific proteins (PR domain containing 16, PRDM16; peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α; uncoupling protein-1, UCP-1) and lipolytic enzymes (hormone-sensitive lipase and adipose triglyceride lipase). RK significantly reduced the expression of the autophagy-related protein Atg12 and increased the expression of p62 and heme oxygenase 1 (HO-1). Additionally, these effects of RK were reversed by the HO-1 inhibitor SnPP (20 μM). In addition, RK (160 mg/kg, gavage, for 8 weeks) significantly reduced body weight gain (Ovx+RK, 191.8 ± 4.6 g vs. Ovx, 223.6 ± 5.9; P < .05), food intake, the amount of inguinal adipose tissue (Ovx+RK, 9.05 ± 1.1 g vs Ovx, 12.9 ± 0.92 g; P < .05) and the size of white adipocytes in Ovx rats. Moreover, compared to expression in the Ovx group, the levels of browning-specific proteins were significantly higher and the levels of autophagy-related proteins were significantly lower in the Ovx+RK group. Therefore, this study elucidated the mechanism associated with RK-induced WAT browning and thus provides evidence to support the clinical use of RK for obesity treatment.
Collapse
Affiliation(s)
- Sy-Ying Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan; Department of Medicine, Taipei Medical University, Taipei; Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Chi Chen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsiung Hsu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
203
|
Singh SP, McClung JA, Bellner L, Cao J, Waldman M, Schragenheim J, Arad M, Hochhauser E, Falck JR, Weingarten JA, Peterson SJ, Abraham NG. CYP-450 Epoxygenase Derived Epoxyeicosatrienoic Acid Contribute To Reversal of Heart Failure in Obesity-Induced Diabetic Cardiomyopathy via PGC-1 α Activation. ACTA ACUST UNITED AC 2018; 7. [PMID: 29707604 PMCID: PMC5922773 DOI: 10.4172/2329-6607.1000233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that an Epoxyeicosatrienoic Acid (EET) -agonist has pleiotropic effects and reverses cardiomyopathy by decreasing inflammatory molecules and increasing antioxidant signaling. We hypothesized that administration of an EET agonist would increase Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), which controls mitochondrial function and induction of HO-1 and negatively regulates the expression of the proinflammatory adipokines CCN3/NOV in cardiac and pericardial tissues. This pathway would be expected to further improve left ventricular (LV) systolic function as well as increase insulin receptor phosphorylation. Measurement of the effect of an EET agonist on oxygen consumption, fractional shortening, blood glucose levels, thermogenic and mitochondrial signaling proteins was performed. Control obese mice developed signs of metabolic syndrome including insulin resistance, hypertension, inflammation, LV dysfunction, and increased NOV expression in pericardial adipose tissue. EET agonist intervention decreased pericardial adipose tissue expression of NOV, while normalized FS, increased PGC-1α, HO-1 levels, insulin receptor phosphorylation and improved mitochondrial function, theses beneficial effect were reversed by deletion of PGC-1α. These studies demonstrate that an EET agonist increases insulin receptor phosphorylation, mitochondrial and thermogenic gene expression, decreased cardiac and pericardial tissue NOV levels, and ameliorates cardiomyopathy in an obese mouse model of the metabolic syndrome.
Collapse
Affiliation(s)
- S P Singh
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J A McClung
- Departments of Medicine, New York Medical College, Valhalla, New York, USA
| | - L Bellner
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - J Cao
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Chinese PLA General Hospital, Beijing 100853, China
| | - M Waldman
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA.,Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J Schragenheim
- Departments of Pharmacology and Medicine, New York Medical College, Valhalla, New York, USA
| | - M Arad
- Leviev Heart Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - E Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute and Sackler School of Medicine, Tel-Aviv University, Israel
| | - J R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J A Weingarten
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - S J Peterson
- Weill Cornell Medicine, New York, USA.,New York Presbyterian Brooklyn Methodist Hospital, New York, USA
| | - N G Abraham
- Departments of Medicine, New York Medical College, Valhalla, New York, USA.,Joan Edward School of Medicine, West Virginia, USA
| |
Collapse
|
204
|
Agudelo LZ, Ferreira DMS, Cervenka I, Bryzgalova G, Dadvar S, Jannig PR, Pettersson-Klein AT, Lakshmikanth T, Sustarsic EG, Porsmyr-Palmertz M, Correia JC, Izadi M, Martínez-Redondo V, Ueland PM, Midttun Ø, Gerhart-Hines Z, Brodin P, Pereira T, Berggren PO, Ruas JL. Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation. Cell Metab 2018; 27:378-392.e5. [PMID: 29414686 DOI: 10.1016/j.cmet.2018.01.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accumulation. Here we show that kynurenic acid increases energy utilization by activating G protein-coupled receptor Gpr35, which stimulates lipid metabolism, thermogenic, and anti-inflammatory gene expression in adipose tissue. This suppresses weight gain in animals fed a high-fat diet and improves glucose tolerance. Kynurenic acid and Gpr35 enhance Pgc-1α1 expression and cellular respiration, and increase the levels of Rgs14 in adipocytes, which leads to enhanced beta-adrenergic receptor signaling. Conversely, genetic deletion of Gpr35 causes progressive weight gain and glucose intolerance, and sensitizes to the effects of high-fat diets. Finally, exercise-induced adipose tissue browning is compromised in Gpr35 knockout animals. This work uncovers kynurenine metabolism as a pathway with therapeutic potential to control energy homeostasis.
Collapse
Affiliation(s)
- Leandro Z Agudelo
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Galyna Bryzgalova
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Shamim Dadvar
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo R Jannig
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Amanda T Pettersson-Klein
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Elahu G Sustarsic
- Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Porsmyr-Palmertz
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jorge C Correia
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Manizheh Izadi
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vicente Martínez-Redondo
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | | | - Zachary Gerhart-Hines
- Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Petter Brodin
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Teresa Pereira
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
205
|
Pettersson-Klein AT, Izadi M, Ferreira DMS, Cervenka I, Correia JC, Martinez-Redondo V, Southern M, Cameron M, Kamenecka T, Agudelo LZ, Porsmyr-Palmertz M, Martens U, Lundgren B, Otrocka M, Jenmalm-Jensen A, Griffin PR, Ruas JL. Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration. Mol Metab 2018; 9:28-42. [PMID: 29428596 PMCID: PMC5870114 DOI: 10.1016/j.molmet.2018.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
Objective The peroxisome proliferator-activated receptor-γ coactivator-1α1 (PGC-1α1) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1α1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1α1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1α1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1α1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions. Methods We designed a cell-based high-throughput screening system to identify PGC-1α1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1α1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes. Results Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1α1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes. Conclusions We identify compounds that induce PGC-1α1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders. A high-throughput platform to identify PGC-1α1 activators. PGC-1α1 protein stabilizers work as activators in brown adipocytes. Small molecule PGC-1α1 activators induce Ucp1 expression and cellular respiration.
Collapse
Affiliation(s)
- A T Pettersson-Klein
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M Izadi
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - D M S Ferreira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - I Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - J C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - V Martinez-Redondo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M Southern
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - M Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - T Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - L Z Agudelo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M Porsmyr-Palmertz
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - U Martens
- Science for Life Laboratory, RNAi Cell Screening Facility, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - B Lundgren
- Science for Life Laboratory, RNAi Cell Screening Facility, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | - M Otrocka
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - P R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - J L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
206
|
Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, Saris WHM, Astrup A, Maoret JJ, Iacovoni J, Déjean S, Moro C, Viguerie N, Langin D. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity. Cell Rep 2018; 22:1079-1089. [PMID: 29386128 DOI: 10.1016/j.celrep.2017.12.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.
Collapse
Affiliation(s)
- Valentin Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Benjamin Léger
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Frédéric Martins
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-José Maoret
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Jason Iacovoni
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Sébastien Déjean
- University of Toulouse, Paul Sabatier University, Toulouse, France; CNRS, UMR 5219, Toulouse Mathematics Institute, Toulouse, France
| | - Cédric Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
207
|
Xiong Y, Yue F, Jia Z, Gao Y, Jin W, Hu K, Zhang Y, Zhu D, Yang G, Kuang S. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:409-419. [PMID: 29341928 DOI: 10.1016/j.bbalip.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
Abstract
The thermogenic activities of brown and beige adipocytes can be exploited to reduce energy surplus and counteract obesity. Recent RNA sequencing studies have uncovered a number of long noncoding RNAs (lncRNAs) uniquely expressed in white and brown adipose tissues (WAT and BAT), but whether and how these lncRNAs function in adipogenesis remain largely unknown. Here, we report the identification of a novel brown adipocyte-enriched LncRNA (AK079912), and its nuclear localization, function and regulation. The expression of AK079912 increases during brown preadipocyte differentiation and in response to cold-stimulated browning of white adipocytes. Knockdown of AK079912 inhibits brown preadipocyte differentiation, manifested by reductions in lipid accumulation and down-regulation of adipogenic and BAT-specific genes. Conversely, ectopic expression of AK079912 in white preadipocytes up-regulates the expression of genes involved in thermogenesis. Mechanistically, inhibition of AK079912 reduces mitochondrial copy number and protein levels of mitochondria electron transport chain (ETC) complexes, whereas AK079912 overexpression increases the levels of ETC proteins. Lastly, reporter and pharmacological assays identify Pparγ as an upstream regulator of AK079912. These results provide new insights into the function of non-coding RNAs in brown adipogenesis and regulating browning of white adipocytes.
Collapse
Affiliation(s)
- Yan Xiong
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Gao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wen Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
208
|
Gao Z, Daquinag AC, Su F, Snyder B, Kolonin MG. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 2018; 145:dev.155861. [PMID: 29158445 DOI: 10.1242/dev.155861] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
The relative abundance of thermogenic beige adipocytes and lipid-storing white adipocytes in adipose tissue underlie its metabolic activity. The roles of adipocyte progenitor cells, which express PDGFRα or PDGFRβ, in adipose tissue function have remained unclear. Here, by defining the developmental timing of PDGFRα and PDGFRβ expression in mouse subcutaneous and visceral adipose depots, we uncover depot specificity of pre-adipocyte delineation. We demonstrate that PDGFRα expression precedes PDGFRβ expression in all subcutaneous but in only a fraction of visceral adipose stromal cells. We show that high-fat diet feeding or thermoneutrality in early postnatal development can induce PDGFRβ+ lineage recruitment to generate white adipocytes. In contrast, the contribution of PDGFRβ+ lineage to beige adipocytes is minimal. We provide evidence that human adipose tissue also contains distinct progenitor populations differentiating into beige or white adipocytes, depending on PDGFRβ expression. Based on PDGFRα or PDGFRβ deletion and ectopic expression experiments, we conclude that the PDGFRα/PDGFRβ signaling balance determines progenitor commitment to beige (PDGFRα) or white (PDGFRβ) adipogenesis. Our study suggests that adipocyte lineage specification and metabolism can be modulated through PDGFR signaling.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fei Su
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brad Snyder
- Department of Surgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
209
|
Valenti D, Braidy N, De Rasmo D, Signorile A, Rossi L, Atanasov AG, Volpicella M, Henrion-Caude A, Nabavi SM, Vacca RA. Mitochondria as pharmacological targets in Down syndrome. Free Radic Biol Med 2018; 114:69-83. [PMID: 28838841 DOI: 10.1016/j.freeradbiomed.2017.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
Abstract
Mitochondria play a pivotal role in cellular energy-generating processes and are considered master regulators of cell life and death fate. Mitochondrial function integrates signalling networks in several metabolic pathways controlling neurogenesis and neuroplasticity. Indeed, dysfunctional mitochondria and mitochondrial-dependent activation of intracellular stress cascades are critical initiating events in many human neurodegenerative or neurodevelopmental diseases including Down syndrome (DS). It is well established that trisomy of human chromosome 21 can cause DS. DS is associated with neurodevelopmental delay, intellectual disability and early neurodegeneration. Recently, molecular mechanisms responsible for mitochondrial damage and energy deficits have been identified and characterized in several DS-derived human cells and animal models of DS. Therefore, therapeutic strategies targeting mitochondria could have great potential for new treatment regimens in DS. The purpose of this review is to highlight recent studies concerning mitochondrial impairment in DS, focusing on alterations of the molecular pathways controlling mitochondrial function. We will also discuss the effects and molecular mechanisms of naturally occurring and chemically synthetized drugs that exert neuroprotective effects through modulation of mitochondrial function and attenuation of oxidative stress. These compounds might represent novel therapeutic tools for the modulation of energy deficits in DS.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Anna Signorile
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - A G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alexandra Henrion-Caude
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, GenAtlas Platform, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - S M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - R A Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| |
Collapse
|
210
|
Fromme T, Kleigrewe K, Dunkel A, Retzler A, Li Y, Maurer S, Fischer N, Diezko R, Kanzleiter T, Hirschberg V, Hofmann T, Klingenspor M. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity. Mol Metab 2017; 8:77-85. [PMID: 29310935 PMCID: PMC5985227 DOI: 10.1016/j.molmet.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP) and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. The total concentration of purine nucleotides is lower in brown than in white adipocytes. Upon adrenergic activation, brown adipocytes decrease purine nucleotide concentrations and release degradation products. Upon adrenergic activation, free purine nucleotide concentrations are further decreased by complexation to imported calcium. Full thermogenic activity of uncoupling protein 1 requires remodeling of purine pool sizes. Decreased free purine nucleotide concentrations contribute to full uncoupling protein 1 activity.
Collapse
Affiliation(s)
- Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Andreas Dunkel
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Angelika Retzler
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stefanie Maurer
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Natascha Fischer
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Rolf Diezko
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Timo Kanzleiter
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Verena Hirschberg
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany
| | - Thomas Hofmann
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany; Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
211
|
Xiong W, Zhao X, Garcia-Barrio MT, Zhang J, Lin J, Chen YE, Jiang Z, Chang L. MitoNEET in Perivascular Adipose Tissue Blunts Atherosclerosis under Mild Cold Condition in Mice. Front Physiol 2017; 8:1032. [PMID: 29311966 PMCID: PMC5742148 DOI: 10.3389/fphys.2017.01032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/28/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Perivascular adipose tissue (PVAT), which surrounds most vessels, is de facto a distinct functional vascular layer actively contributing to vascular function and dysfunction. PVAT contributes to aortic remodeling by producing and releasing a large number of undetermined or less characterized factors that could target endothelial cells and vascular smooth muscle cells, and herein contribute to the maintenance of vessel homeostasis. Loss of PVAT in mice enhances atherosclerosis, but a causal relationship between PVAT and atherosclerosis and the possible underlying mechanisms remain to be addressed. The CDGSH iron sulfur domain 1 protein (referred to as mitoNEET), a mitochondrial outer membrane protein, regulates oxidative capacity and adipose tissue browning. The roles of mitoNEET in PVAT, especially in the development of atherosclerosis, are unknown. Methods: The brown adipocyte-specific mitoNEET transgenic mice were subjected to cold environmental stimulus. The metabolic rates and PVAT-dependent thermogenesis were investigated. Additionally, the brown adipocyte-specific mitoNEET transgenic mice were cross-bred with ApoE knockout mice. The ensuing mice were subsequently subjected to cold environmental stimulus and high cholesterol diet challenge for 3 months. The development of atherosclerosis was investigated. Results: Our data show that mitoNEET mRNA was downregulated in PVAT of both peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α)- and beta (Pgc1β)-knockout mice which are sensitive to cold. MitoNEET expression was higher in PVAT of wild type mice and increased upon cold stimulus. Transgenic mice with overexpression of mitoNEET in PVAT were cold resistant, and showed increased expression of thermogenic genes. ApoE knockout mice with mitoNEET overexpression in PVAT showed significant downregulation of inflammatory genes and showed reduced atherosclerosis development upon high fat diet feeding when kept in a 16°C environment. Conclusion: mitoNEET in PVAT is associated with PVAT-dependent thermogenesis and prevents atherosclerosis development. The results of this study provide new insights on PVAT and mitoNEET biology and atherosclerosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhao Xiong
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China.,Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Xiangjie Zhao
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | | | - Jifeng Zhang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Jiandie Lin
- Life Science Institute, University of Michigan, Ann Arbor, MI, United States
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Zhisheng Jiang
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
212
|
Supruniuk E, Mikłosz A, Chabowski A. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol 2017; 8:923. [PMID: 29187824 PMCID: PMC5694779 DOI: 10.3389/fphys.2017.00923] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT) PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3), whereas the results obtained for white adipose tissue (WAT) remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
213
|
Ramseyer VD, Kimler VA, Granneman JG. Vacuolar protein sorting 13C is a novel lipid droplet protein that inhibits lipolysis in brown adipocytes. Mol Metab 2017; 7:57-70. [PMID: 29175050 PMCID: PMC5784322 DOI: 10.1016/j.molmet.2017.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/02/2022] Open
Abstract
Objective Brown adipose tissue (BAT) thermogenesis depends on the mobilization and oxidation of fatty acids from intracellular lipid droplets (LD) within brown adipocytes (BAs); however, the identity and function of LD proteins that control BAT lipolysis remain incomplete. Proteomic analysis of mouse BAT subcellular fractions identified vacuolar protein sorting 13C (VPS13C) as a novel LD protein. The aim of this work was to investigate the role of VPS13C on BA LDs. Methods Biochemical fractionation and high resolution confocal and immuno-transmission electron microscopy (TEM) were used to determine the subcellular distribution of VPS13C in mouse BAT, white adipose tissue, and BA cell culture. Lentivirus-delivered shRNA was used to determine the role of VPS13C in regulating lipolysis and gene expression in cultured BA cells. Results We found that VPS13C is highly expressed in mouse BAT where it is targeted to multilocular LDs in a subspherical subdomain. In inguinal white adipocytes, VPS13C was mainly observed on small LDs and β3-adrenergic stimulation increased VPS13C in this depot. Silencing of VPS13C in cultured BAs decreased LD size and triglyceride content, increased basal free fatty acid release, augmented the expression of thermogenic genes, and enhanced the lipolytic potency and efficacy of isoproterenol. Mechanistically, we found that BA lipolysis required activation of adipose tissue triglyceride lipase (ATGL) and that loss of VPS13C greatly increased the association of ATGL to LDs. Conclusions VPS13C is present on BA LDs where is targeted to a distinct subdomain. VPS13C limits the access of ATGL to LD and loss of VPS13C elevates lipolysis and promotes oxidative gene expression. VPS13C is highly expressed on mouse brown adipose tissue lipid droplets. VPS13C is present on lipid droplets in a unique subspheric pattern. VPS13C silencing in BAs decreases lipid droplet size and triglyceride content. VPS13C silencing in BAs increases lipolysis and oxidative gene expression. VPS13C silencing in BAs enhances ATGL but not HSL targeting to LDs.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Center for Metabolic Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | | | - James G Granneman
- Center for Metabolic Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
214
|
Difference in intracellular temperature rise between matured and precursor brown adipocytes in response to uncoupler and β-adrenergic agonist stimuli. Sci Rep 2017; 7:12889. [PMID: 29018208 PMCID: PMC5635136 DOI: 10.1038/s41598-017-12634-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/13/2017] [Indexed: 01/27/2023] Open
Abstract
Brown adipocytes function to maintain body temperature by heat production. However, direct measurement of heat production at a single cell level remains difficult. Here we developed a method to measure the temperature within primary cultured brown adipocytes using a cationic fluorescent polymeric thermometer. Placement of the thermometer within a matured brown adipocyte and a precursor cell enabled the detection of heat production following uncoupler treatment. The increase in the intracellular temperature due to stimulation with a mitochondrial uncoupler was higher in matured brown adipocytes than in precursor cells. Stimulation with a β-adrenergic receptor (β-AR) agonist, norepinephrine, raised the intracellular temperature of matured brown adipocytes to a level comparable to that observed after stimulation with a β3-AR-specific agonist, CL316.243. In contrast, neither β-AR agonist induced an intracellular temperature increase in precursor cells. Further, pretreatment of brown adipocytes with a β3-AR antagonist inhibited the norepinephrine-stimulated elevation of temperature. These results demonstrate that our novel method successfully determined the difference in intracellular temperature increase between matured brown adipocytes and precursor cells in response to stimulation by an uncoupler and β-AR agonists.
Collapse
|
215
|
Mulberry anthocyanins, cyanidin 3-glucoside and cyanidin 3-rutinoside, increase the quantity of mitochondria during brown adipogenesis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
216
|
Imran KM, Rahman N, Yoon D, Jeon M, Lee BT, Kim YS. Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1110-1120. [PMID: 28807877 DOI: 10.1016/j.bbalip.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
Abstract
Although white adipose tissue (WAT) stores triglycerides and contributes to obesity, brown adipose tissue (BAT) dissipates energy as heat. Therefore, browning of WAT is regarded as an attractive way to counteract obesity. Our previous studies have revealed that treatment with cryptotanshinone (CT) during adipogenesis of 3T3-L1 cells inhibits their differentiation. Here, we found that pretreatment of C3H10T1/2 mesenchymal stem cells with CT before exposure to adipogenic hormonal stimuli promotes the commitment of these mesenchymal stem cells to the adipocyte lineage as confirmed by increased triglyceride accumulation. Furthermore, CT treatment induced the expression of early B-cell factor 2 (Ebf2) and bone morphogenetic protein 7 (Bmp7), which are known to drive differentiation of C3H10T1/2 mesenchymal stem cells toward preadipocytes and to the commitment to brown adipocytes. Consequently, CT treatment yielded brown-adipocyte-like features as evidenced by elevated expression of brown-fat signature genes including Ucp1, Prdm16, Pgc-1α, Cidea, Zic1, and beige-cell-specific genes such as CD137, Hspb7, Cox2, and Tmem26. Additionally, CT treatment induced mitochondrial biogenesis through upregulation of Sirt1, Tfam, Nrf1, and Cox7a and increased mitochondrial mass and DNA content. Our data also showed that cotreatment with CT and BMP4 was more effective at activating brown-adipocyte-specific genes. Mechanistic experiments revealed that treatment with CT activated AMPKα and p38-MAPK via their phosphorylation: the two major signaling pathways regulating energy metabolism. Thus, these findings suggest that CT is a candidate therapeutic agent against obesity working via activation of browning and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Naimur Rahman
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Dahyeon Yoon
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Miso Jeon
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea; Dept. of Tissue Engineering, College of Medicine, Soonchunhyang University, Korea
| | - Yong-Sik Kim
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea.
| |
Collapse
|
217
|
Song NJ, Chang SH, Li DY, Villanueva CJ, Park KW. Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp Mol Med 2017; 49:e353. [PMID: 28684864 PMCID: PMC5565954 DOI: 10.1038/emm.2017.70] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/25/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a central metabolic organ that controls energy homeostasis of the whole body. White adipose tissue (WAT) stores excess energy in the form of triglycerides, whereas brown adipose tissue (BAT) dissipates energy in the form of heat through mitochondrial uncoupling protein 1 (Ucp1). A newly identified adipose tissue called 'beige fat' (BAT-like) is produced through a process called WAT browning. This tissue mainly resides in WAT depots and displays intermediate characteristics of both WAT and BAT. Since the recent discovery of BAT in the human body, along with the identification of molecular targets for BAT activation, stimulating energy expenditure has been considered as a great strategy to treat human obesity and metabolic diseases. Here we summarize recent findings regarding molecular targets and thermogenic small molecules that can stimulate BAT and increase energy expenditure, with an emphasis on possible therapeutic applications in humans.
Collapse
Affiliation(s)
- No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
218
|
Cold-Inducible SIRT6 Regulates Thermogenesis of Brown and Beige Fat. Cell Rep 2017; 20:641-654. [DOI: 10.1016/j.celrep.2017.06.069] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023] Open
|
219
|
Emmett MJ, Lim HW, Jager J, Richter HJ, Adlanmerini M, Peed LC, Briggs ER, Steger DJ, Ma T, Sims CA, Baur JA, Pei L, Won KJ, Seale P, Gerhart-Hines Z, Lazar MA. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature 2017; 546:544-548. [PMID: 28614293 PMCID: PMC5826652 DOI: 10.1038/nature22819] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Ppargc1a (encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.
Collapse
Affiliation(s)
- Matthew J. Emmett
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Jager
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J. Richter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey C. Peed
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika R. Briggs
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J. Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tao Ma
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, and Institute for Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, 2200, DK
| | - Carrie A. Sims
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- The Trauma Center at Penn, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology at the Novo Nordisk Foundation Center for Basic Metabolic Research, and Institute for Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, 2200, DK
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
220
|
Oren T, Nimri L, Yehuda-Shnaidman E, Staikin K, Hadar Y, Friedler A, Amartely H, Slutzki M, Pizio AD, Niv MY, Peri I, Graeve L, Schwartz B. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Mol Nutr Food Res 2017; 61. [PMID: 28464422 DOI: 10.1002/mnfr.201700057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
SCOPE Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. METHODS AND RESULTS Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. CONCLUSION rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Collapse
Affiliation(s)
- Tom Oren
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lili Nimri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katy Staikin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Friedler
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Hadar Amartely
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Michal Slutzki
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lutz Graeve
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Betty Schwartz
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
221
|
Cao J, Singh SP, McClung JA, Joseph G, Vanella L, Barbagallo I, Jiang H, Falck JR, Arad M, Shapiro JI, Abraham NG. EET intervention on Wnt1, NOV, and HO-1 signaling prevents obesity-induced cardiomyopathy in obese mice. Am J Physiol Heart Circ Physiol 2017; 313:H368-H380. [PMID: 28576832 PMCID: PMC5582926 DOI: 10.1152/ajpheart.00093.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/15/2023]
Abstract
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on vascular function; in addition to its antiapoptotic action, it increases insulin sensitivity and inhibits inflammation. To uncover the signaling mechanisms by which EET reduces cardiomyopathy, we hypothesized that EET infusion might ameliorate obesity-induced cardiomyopathy by improving heme oxygenase (HO)-1, Wnt1, thermogenic gene levels, and mitochondrial integrity in cardiac tissues and improved pericardial fat phenotype. EET reduced levels of fasting blood glucose and proinflammatory adipokines, including nephroblastoma overexpressed (NOV) signaling, while increasing echocardiographic fractional shortening and O2 consumption. Of interest, we also noted a marked improvement in mitochondrial integrity, thermogenic genes, and Wnt 1 and HO-1 signaling mechanisms. Knockout of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in myocardial Wnt1 and HO-1 expression and an increase in NOV. To further elucidate the effects of EET on pericardial adipose tissues, we observed EET treatment increases in adiponectin, PGC-1α, phospho-AMP-activated protein kinase, insulin receptor phosphorylation, and thermogenic genes, resulting in a "browning" pericardial adipose phenotype under high-fat diets. Collectively, these experiments demonstrate that an EET agonist increased Wnt1 and HO-1 signaling while decreasing NOV pathways and the progression of cardiomyopathy. Furthermore, this report presents a portal into potential therapeutic approaches for the treatment of heart failure and metabolic syndrome.NEW & NOTEWORTHY The mechanism by which EET acts on obesity-induced cardiomyopathy is unknown. Here, we describe a previously unrecognized function of EET infusion that inhibits nephroblastoma overexpressed (NOV) levels and activates Wnt1, hence identifying NOV inhibition and enhanced Wnt1 expression as novel pharmacological targets for the prevention and treatment of cardiomyopathy and heart failure.Listen to this article's corresponding podcast at http://ajpheart.physiology.org/content/early/2017/05/31/ajpheart.00093.2017.
Collapse
Affiliation(s)
- Jian Cao
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York.,Chinese PLA General Hospital, Beijing, China
| | - Shailendra P Singh
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - John A McClung
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Gregory Joseph
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - Luca Vanella
- Department of Drug Science/Section of Biochemistry, University of Catania, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science/Section of Biochemistry, University of Catania, Catania, Italy
| | - Houli Jiang
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Arad
- Leviev Heart Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; and
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, New York; .,Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
222
|
Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM, Gutterman DD. PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension 2017; 70:166-173. [PMID: 28533333 DOI: 10.1161/hypertensionaha.117.09289] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/12/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022]
Abstract
Blood flow through healthy human vessels releases NO to produce vasodilation, whereas in patients with coronary artery disease (CAD), the mediator of dilation transitions to mitochondria-derived hydrogen peroxide (mtH2O2). Excessive mtH2O2 production contributes to a proatherosclerotic vascular milieu. Loss of PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α) is implicated in the pathogenesis of CAD. We hypothesized that PGC-1α suppresses mtH2O2 production to reestablish NO-mediated dilation in isolated vessels from patients with CAD. Isolated human adipose arterioles were cannulated, and changes in lumen diameter in response to graded increases in flow were recorded in the presence of PEG (polyethylene glycol)-catalase (H2O2 scavenger) or L-NAME (NG-nitro-l-arginine methyl ester; NOS inhibitor). In contrast to the exclusively NO- or H2O2-mediated dilation seen in either non-CAD or CAD conditions, respectively, flow-mediated dilation in CAD vessels was sensitive to both L-NAME and PEG-catalase after PGC-1α upregulation using ZLN005 and α-lipoic acid. PGC-1α overexpression in CAD vessels protected against the vascular dysfunction induced by an acute increase in intraluminal pressure. In contrast, downregulation of PGC-1α in non-CAD vessels produces a CAD-like phenotype characterized by mtH2O2-mediated dilation (no contribution of NO). Loss of PGC-1α may contribute to the shift toward the mtH2O2-mediated dilation observed in vessels from subjects with CAD. Strategies to boost PGC-1α levels may provide a therapeutic option in patients with CAD by shifting away from mtH2O2-mediated dilation, increasing NO bioavailability, and reducing levels of mtH2O2 Furthermore, increased expression of PGC-1α allows for simultaneous contributions of both NO and H2O2 to flow-mediated dilation.
Collapse
Affiliation(s)
- Andrew O Kadlec
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Dawid S Chabowski
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Joseph C Hockenberry
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Mary F Otterson
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - David D Gutterman
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
223
|
Mitochondrial retrograde signaling connects respiratory capacity to thermogenic gene expression. Sci Rep 2017; 7:2013. [PMID: 28515438 PMCID: PMC5435730 DOI: 10.1038/s41598-017-01879-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial respiration plays a crucial role in determining the metabolic state of brown adipose tissue (BAT), due to its direct roles in thermogenesis, as well as through additional mechanisms. Here, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to genetic and metabolic reprogramming of BAT. In mouse BAT, ablation of LRPPRC (LRP130), a potent regulator of mitochondrial transcription and respiratory capacity, triggers down-regulation of thermogenic genes, promoting a storage phenotype in BAT. This retrograde regulation functions by inhibiting the recruitment of PPARγ to the regulatory elements of thermogenic genes. Reducing cytosolic Ca2+ reverses the attenuation of thermogenic genes in brown adipocytes with impaired respiratory capacity, while induction of cytosolic Ca2+ is sufficient to attenuate thermogenic gene expression, indicating that cytosolic Ca2+ mediates mitochondria-nucleus crosstalk. Our findings suggest respiratory capacity governs thermogenic gene expression and BAT function via mitochondria-nucleus communication, which in turn leads to either a thermogenic or storage mode.
Collapse
|
224
|
An Additive Effect of Promoting Thermogenic Gene Expression in Mice Adipose-Derived Stromal Vascular Cells by Combination of Rosiglitazone and CL316,243. Int J Mol Sci 2017; 18:ijms18051002. [PMID: 28481288 PMCID: PMC5454915 DOI: 10.3390/ijms18051002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
It is well-documented that CL316,243 (a β3 agonist) or rosiglitazone (a PPARγ agonist) can induce white adipocyte populations to brown-like adipocytes, thus increasing energy consumption and combating obesity. However, whether there is a combined effect remains unknown. In the present study, stromal vascular cells of inguinal white adipose tissue (iWAT-SVCs for short) from mice were cultured and induced into browning by CL316,243, rosiglitazone, or both. Results showed that a combination of CL316,243 and rosiglitazone significantly upregulated the expression of the core thermogenic gene Ucp1 as well as genes related with mitochondrial function (Cidea, Cox5b, Cox7a1, Cox8b, and Cycs), compared with the treatment of CL316,243 or rosiglitazone alone. Moreover, co-treatment with rosiglitazone could reverse the downregulation of Adiponectin resulting from CL316,243 stimuli alone. Taken together, a combination of rosiglitazone and CL316,243 can produce an additive effect of promoting thermogenic gene expression and an improvement of insulin sensitivity in mouse iWAT-SVCs.
Collapse
|
225
|
Inflammation Downregulates UCP1 Expression in Brown Adipocytes Potentially via SIRT1 and DBC1 Interaction. Int J Mol Sci 2017; 18:ijms18051006. [PMID: 28481291 PMCID: PMC5454919 DOI: 10.3390/ijms18051006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
Brown adipose tissue thermogenesis at the cost of energy is not only important for the development of obesity, but also possesses great promise in anti-obesity treatment. Uncoupling protein 1 (UCP1) expression has been reported to be under control of the intracellular deacetylase SIRT1. Here, we investigated the effect and mechanism of inflammation and sirtuin-1 (SIRT1) activation on the induction of thermogenic genes in immortalized brown adipocytes incubated with LPS or IL1β and mice with elevated inflammatory tone. In vitro stimulation of brown adipocytes with dibutyryl cyclic adenosine monophosthate (dbcAMP) reduced the expression of deleted in breast cancer-1 (Dbc1) (SIRT1 inhibitor) and increased the Ucp1 expression. Silencing of SIRT1 attenuated dbcAMP induction of Ucp1. In contrast, IL1β increased the expression of Dbc1 and greatly reduced the induction of Ucp1. Similarly, in vivo studies revealed decreased expression of Ucp1 in brown adipose tissue (BAT) in mice chronically infused with LPS. Resveratrol, a known SIRT1 activator, partly rescued the Ucp1 downregulation by inflammation in both the cell cultures and mice. Here, we describe how the expression of Ucp1 in BAT is controlled via SIRT1 and is reduced under inflammation and can be rescued by SIRT1 activation by resveratrol. We suggest the reduced UCP1 expression under inflammation is mediated by the increased expression of DBC1, which inhibits SIRT1 activity.
Collapse
|
226
|
Singh R, Braga M, Reddy ST, Lee SJ, Parveen M, Grijalva V, Vergnes L, Pervin S. Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues. Endocrinology 2017; 158:1217-1230. [PMID: 28324027 PMCID: PMC5460830 DOI: 10.1210/en.2016-1607] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
We previously demonstrated that Fst expression is highest in brown adipose tissue (BAT) and skeletal muscle, but is also present at substantial levels in epididymal and subcutaneous white adipose tissues (WATs). Fst promotes mouse brown preadipocyte differentiation and promotes browning during differentiation of mouse embryonic fibroblasts. Fst-transgenic (Fst-Tg) mice show substantial increases in circulating Fst levels and increased brown adipose mass. BAT of Fst-Tg mice had increased expression of brown adipose-associated markers including uncoupling protein 1 (UCP1), PRDM16, PGC-1α, and Glut4. WATs from Fst-Tg mice show upregulation of brown/beige adipose markers and significantly increased levels of phosphorylated p38 MAPK/ERK1/2 proteins compared with the wild-type (WT) mice. Pharmacological inhibition of pp38 MAPK/pERK1/2 pathway of recombinant mouse Fst (rFst) treated differentiating 3T3-L1 cells led to significant blockade of Fst-induced UCP1 protein expression. On the other hand, BAT from Fst-Tg mice or differentiating mouse BAT cells treated with rFst show dramatic increase in Myf5 protein levels as well as upregulation of Zic1 and Lhx8 gene expression. Myf5 levels were significantly downregulated in Fst knock-out embryos and small inhibitory RNA-mediated inhibition of Myf5 led to significant inhibition of UCP1, Lhx8, and Zic1 gene expression and significant blockade of Fst-induced induction of UCP1 protein expression in mouse BAT cells. Both interscapular BAT and WAT tissues from Fst-Tg mice display enhanced response to CL316,243 treatment and decreased expression of pSmad3 compared with the WT mice. Therefore, our results indicate that Fst promotes brown adipocyte characteristics in both WAT and BAT depots in vivo through distinct mechanisms.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, Brown/physiology
- Adipocytes, White/physiology
- Adipose Tissue, Brown/anatomy & histology
- Adipose Tissue, Brown/physiology
- Adipose Tissue, White/anatomy & histology
- Adipose Tissue, White/physiology
- Animals
- Cell Differentiation/genetics
- Cell Transdifferentiation/genetics
- Cells, Cultured
- Embryo, Mammalian
- Female
- Follistatin/blood
- Follistatin/genetics
- Follistatin/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Signal Transduction/genetics
- Thermogenesis/genetics
Collapse
Affiliation(s)
- Rajan Singh
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059; Departments of
- 2Obstetrics and Gynecology and
| | - Melissa Braga
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059; Departments of
| | - Srinivasa T. Reddy
- 2Obstetrics and Gynecology and
- Medicine, Molecular and Medical Pharmacology and
| | - Se-Jin Lee
- Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, Maryland 21205
| | - Meher Parveen
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059; Departments of
| | | | - Laurent Vergnes
- Molecular Biology and Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Shehla Pervin
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059; Departments of
- 2Obstetrics and Gynecology and
| |
Collapse
|
227
|
Gill J, La Merrill MA. An emerging role for epigenetic regulation of Pgc-1α expression in environmentally stimulated brown adipose thermogenesis. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx009. [PMID: 29492311 PMCID: PMC5804549 DOI: 10.1093/eep/dvx009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
Abstract
Metabolic disease is a leading cause of death worldwide, and obesity, a central risk factor, is reaching epidemic proportions. Energy expenditure and brown adipose tissue (BAT) thermogenesis are implicated in metabolic disease, and it is becoming evident that impaired BAT activity is regulated by gene/environment interactions. Peroxisome proliferator-activated receptor γ coactivator 1α (Pgc-1α) is a critical regulator of BAT thermogenesis, which is highly inducible by environmental stimuli such as cold and diet. This review focuses on the environmentally mediated epigenetic and transcriptional regulation of Pgc-1α gene expression during BAT thermogenesis. We illustrate interactions between histone modifications and transcription factors at the Pgc-1α promoter that cause BAT Pgc-1α transcription in response to cold. Histone modifications also modulate BAT Pgc-1α transcription in response to nutrients though diet has been less characterized than cold with respect to regulation of Pgc-1α transcription. Pgc-1α DNA methylation and RNA expression were also correlated to indicators of adiposity and glucose homeostasis across numerous human tissues. Although post-translational modification of Pgc-1α protein has been well-characterized across diverse tissues and environments, comparatively little is known of the epigenetic mechanisms regulating Pgc-1α transcription, particularly in BAT thermogenesis.
Collapse
Affiliation(s)
- J.A. Gill
- Department of Environmental Toxicology, Genome Center, and Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, Genome Center, and Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
228
|
Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18040831. [PMID: 28420087 PMCID: PMC5412415 DOI: 10.3390/ijms18040831] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation and accumulation of fatty acid intermediates in the form of long and medium chain acylcarnitines, may contribute to ectopic lipid deposition and insulin resistance during high fat diet (HFD)-induced obesity. The present review discusses the roles of anterograde and retrograde communication in nucleo-mitochondrial crosstalk that determines skeletal muscle mitochondrial adaptations, specifically alterations in mitochondrial number and function in relation to obesity and insulin resistance. Special emphasis is placed on the effects of high fat diet (HFD) feeding on expression of nuclear-encoded mitochondrial genes (NEMGs) nuclear receptor factor 1 (NRF-1) and 2 (NRF-2) and peroxisome proliferator receptor gamma coactivator 1 alpha (PGC-1α) in the onset and progression of insulin resistance during obesity and how HFD-induced alterations in NEMG expression affect skeletal muscle mitochondrial adaptations in relation to beta oxidation of fatty acids. Finally, the potential ability of acylcarnitines or fatty acid intermediates resulting from mitochondrial beta oxidation to act as retrograde signals in nucleo-mitochondrial crosstalk is reviewed and discussed.
Collapse
|
229
|
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, Vazhappilly R, Baxter JH, Sweedler JV, Rhodes JS. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res 2017; 320:97-112. [DOI: 10.1016/j.bbr.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
|
230
|
Jokinen R, Pirnes-Karhu S, Pietiläinen KH, Pirinen E. Adipose tissue NAD +-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health. Redox Biol 2017; 12:246-263. [PMID: 28279944 PMCID: PMC5343002 DOI: 10.1016/j.redox.2017.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD+/NADH redox balance and NAD+ is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD+ homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD+ pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications.
Collapse
Affiliation(s)
- Riikka Jokinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, Biomedicum Helsinki, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland
| | - Sini Pirnes-Karhu
- Molecular Neurology, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, Biomedicum Helsinki, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland; Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland; FIMM, Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Pirinen
- Molecular Neurology, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
231
|
Sanders MA, Zhang H, Mladenovic L, Tseng YY, Granneman JG. Molecular Basis of ABHD5 Lipolysis Activation. Sci Rep 2017; 7:42589. [PMID: 28211464 PMCID: PMC5314347 DOI: 10.1038/srep42589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha-beta hydrolase domain-containing 5 (ABHD5), the defective gene in human Chanarin-Dorfman syndrome, is a highly conserved regulator of adipose triglyceride lipase (ATGL)-mediated lipolysis that plays important roles in metabolism, tumor progression, viral replication, and skin barrier formation. The structural determinants of ABHD5 lipolysis activation, however, are unknown. We performed comparative evolutionary analysis and structural modeling of ABHD5 and ABHD4, a functionally distinct paralog that diverged from ABHD5 ~500 million years ago, to identify determinants of ABHD5 lipolysis activation. Two highly conserved ABHD5 amino acids (R299 and G328) enabled ABHD4 (ABHD4 N303R/S332G) to activate ATGL in Cos7 cells, brown adipocytes, and artificial lipid droplets. The corresponding ABHD5 mutations (ABHD5 R299N and ABHD5 G328S) selectively disrupted lipolysis without affecting ATGL lipid droplet translocation or ABHD5 interactions with perilipin proteins and ABHD5 ligands, demonstrating that ABHD5 lipase activation could be dissociated from its other functions. Structural modeling placed ABHD5 R299/G328 and R303/G332 from gain-of-function ABHD4 in close proximity on the ABHD protein surface, indicating they form part of a novel functional surface required for lipase activation. These data demonstrate distinct ABHD5 functional properties and provide new insights into the functional evolution of ABHD family members and the structural basis of lipase regulation.
Collapse
Affiliation(s)
- Matthew A. Sanders
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Huamei Zhang
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ljiljana Mladenovic
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yan Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James G. Granneman
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
232
|
BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci Rep 2017; 7:42801. [PMID: 28202906 PMCID: PMC5311892 DOI: 10.1038/srep42801] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a highly prevalent chronic liver disease. Here, we have investigated whether BAR502, a non-bile acid, steroidal dual ligand for FXR and GPBAR1, reverses steato-hepatitis in mice fed a high fat diet (HFD) and fructose. After 9 week, mice on HFD gained ≈30% of b.w (P < 0.01 versus naïve) and were insulin resistant. These overweighting and insulin resistant mice were randomized to receive HFD or HFD in combination with BAR502. After 18 weeks, HFD mice developed NASH like features with severe steato-hepatitis and fibrosis, increased hepatic content of triacylglycerol and cholesterol and expression of SREPB1c, FAS, ApoC2, PPARα and γ, α-SMA, α1 collagen and MCP1 mRNAs. Treatment with BAR502 caused a ≈10% reduction of b.w., increased insulin sensitivity and circulating levels of HDL, while reduced steatosis, inflammatory and fibrosis scores and liver expression of SREPB1c, FAS, PPARγ, CD36 and CYP7A1 mRNA. BAR502 increased the expression of SHP and ABCG5 in the liver and SHP, FGF15 and GLP1 in intestine. BAR502 promoted the browning of epWAT and reduced liver fibrosis induced by CCl4. In summary, BAR502, a dual FXR and GPBAR1 agonist, protects against liver damage caused by HFD by promoting the browning of adipose tissue.
Collapse
|
233
|
Sturla L, Mannino E, Scarfì S, Bruzzone S, Magnone M, Sociali G, Booz V, Guida L, Vigliarolo T, Fresia C, Emionite L, Buschiazzo A, Marini C, Sambuceti G, De Flora A, Zocchi E. Abscisic acid enhances glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:131-144. [PMID: 27871880 DOI: 10.1016/j.bbalip.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/20/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) is a plant hormone also present in animals, where it is involved in the regulation of innate immune cell function and of glucose disposal, through its receptor LANCL2. ABA stimulates glucose uptake by myocytes and pre-adipocytes in vitro and oral ABA improves glycemic control in rats and in healthy subjects. Here we investigated the role of the ABA/LANCL2 system in the regulation of glucose uptake and metabolism in adipocytes. Silencing of LANCL2 abrogated both the ABA- and insulin-induced increase of glucose transporter-4 expression and of glucose uptake in differentiated 3T3-L1 murine adipocytes; conversely, overexpression of LANCL2 enhanced basal, ABA- and insulin-stimulated glucose uptake. As compared with insulin, ABA treatment of adipocytes induced lower triglyceride accumulation, CO2 production and glucose-derived fatty acid synthesis. ABA per se did not induce pre-adipocyte differentiation in vitro, but stimulated adipocyte remodeling in terminally differentiated cells, with a reduction in cell size, increased mitochondrial content, enhanced O2 consumption, increased transcription of adiponectin and of brown adipose tissue (BAT) genes. A single dose of oral ABA (1μg/kg body weight) increased BAT glucose uptake 2-fold in treated rats compared with untreated controls. One-month-long ABA treatment at the same daily dose significantly upregulated expression of BAT markers in the WAT and in WAT-derived preadipocytes from treated mice compared with untreated controls. These results indicate a hitherto unknown role of LANCL2 in adipocyte sensitivity to insulin-stimulated glucose uptake and suggest a role for ABA in the induction and maintenance of BAT activity.
Collapse
Affiliation(s)
- Laura Sturla
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
| | - Elena Mannino
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Mirko Magnone
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Giovanna Sociali
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Valeria Booz
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Lucrezia Guida
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Chiara Fresia
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Laura Emionite
- Animal Facility, IRCCS AOU San Martino - IST, Genova, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, Dept of Health Sciences, University of Genova, Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Section of Genova, Genova, Italy; IRCCS AOU San Martino - IST, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, Dept of Health Sciences, University of Genova, Genova, Italy; IRCCS AOU San Martino - IST, Genova, Italy
| | - Antonio De Flora
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Zocchi
- Department of Experimental Medicine and CEBR, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| |
Collapse
|
234
|
Lob HE, Song J, Hurr C, Chung A, Young CN, Mark AL, Davisson RL. Deletion of p22 phox-dependent oxidative stress in the hypothalamus protects against obesity by modulating β3-adrenergic mechanisms. JCI Insight 2017; 2:e87094. [PMID: 28138551 DOI: 10.1172/jci.insight.87094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A role for oxidative stress in the brain has been suggested in the pathogenesis of diet-induced obesity (DIO), although the underlying neural regions and mechanisms remain incompletely defined. We tested the hypothesis that NADPH oxidase-dependent oxidative stress in the paraventricular nucleus (PVN), a hypothalamic energy homeostasis center, contributes to the development of DIO. Cre/LoxP technology was coupled with selective PVN adenoviral microinjection to ablate p22phox , the obligatory subunit for NADPH oxidase activity, in mice harboring a conditional p22phox allele. Selective deletion of p22phox in the PVN protected mice from high-fat DIO independent of changes in food intake or locomotor activity. This was accompanied by β3-adrenoceptor-dependent increases in energy expenditure, elevations in brown adipose tissue thermogenesis, and browning of white adipose tissue. These data reveal a potentially novel role for brain oxidative stress in the development of DIO by modulating β3-adrenoceptor mechanisms and point to the PVN as an underlying neural site.
Collapse
Affiliation(s)
- Heinrich E Lob
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jiunn Song
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Chansol Hurr
- Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Alvin Chung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin N Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.,Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Allyn L Mark
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Robin L Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
235
|
Ortega SP, Chouchani ET, Boudina S. Stress turns on the heat: Regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 2017; 6:56-61. [PMID: 28452586 DOI: 10.1080/21623945.2016.1273298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production and oxidative stress (OS) in adipose tissue are associated with obesity and insulin resistance (IR). The nature of this relationship i.e., cause and effect or consequence has not been clearly determined. We provide evidence that elevated mitochondrial ROS generated by adipocytes from mice with diet-induced obesity (DIO) represents an adaptive mechanism that precipitates fatty acid oxidation, mitochondrial biogenesis, and mitochondrial uncoupling in an effort to defend against weight gain. Consistent with that, mice with adipocyte-specific deletion of manganese superoxide dismutase (MnSOD) exhibit increased adipocyte superoxide generation and are protected from weight gain and insulin resistance which otherwise develops in wild-type (WT) mice that consume an obesogenic diet. The defense mechanism displayed by MnSOD-deficiency in fat cells appears to be mediated by a dual effect of ROS on inefficient substrate oxidation through uncoupling of oxidative phosphorylation and enhanced mitochondrial biogenesis. The aim of this commentary is to summarize and contextualize additional evidence supporting the importance of mitochondrial ROS in the regulation of mitochondrial biogenesis and the modulation of uncoupling protein 1 (UCP1) expression and activation in both white and brown adipocytes.
Collapse
Affiliation(s)
- Sara P. Ortega
- Department of Nutrition and Integrative Physiology and Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Edward T. Chouchani
- Dana-Farber Cancer Institute & Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology and Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
236
|
Minsky N, Roeder RG. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α. PLoS One 2016; 11:e0165598. [PMID: 27984584 PMCID: PMC5161318 DOI: 10.1371/journal.pone.0165598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.
Collapse
Affiliation(s)
- Neri Minsky
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
237
|
Minsky N, Roeder RG. Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α. J Biol Chem 2016; 292:43-50. [PMID: 27909049 DOI: 10.1074/jbc.c116.761049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Secreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes, and signal molecules. However, how the secretome is regulated remains incompletely understood. Here we demonstrate, unexpectedly, that peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate the expression of diverse genes encoding secreted molecules and extracellular matrix components to modulate the secretome. Using cell lines, primary cells, and mice, we show that both endogenous and exogenous PGC-1α down-regulate the expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1α on the expression of genes encoding secreted proteins. Interestingly, PGC-1α requires the central heat shock response regulator heat shock factor protein 1 (HSF1) to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1α modulates the secretome of mouse embryonic fibroblasts. Our results define a link between a key pathway controlling metabolic regulation and the regulation of the mammalian secretome.
Collapse
Affiliation(s)
- Neri Minsky
- From the Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065
| | - Robert G Roeder
- From the Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065
| |
Collapse
|
238
|
Abstract
Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center,
Albuquerque, New Mexico, USA
| |
Collapse
|
239
|
ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues. Neurobiol Dis 2016; 97:36-45. [PMID: 27818323 DOI: 10.1016/j.nbd.2016.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Monogenetic forms of amyotrophic lateral sclerosis (ALS) offer an opportunity for unraveling the molecular mechanisms underlying this devastating neurodegenerative disorder. In order to identify a link between ALS-related metabolic changes and neurodegeneration, we investigated whether ALS-causing mutations interfere with the peripheral and brain-specific expression and signaling of the metabolic master regulator PGC (PPAR gamma coactivator)-1α (PGC-1α). METHODS We analyzed the expression of PGC-1α isoforms and target genes in two mouse models of familial ALS and validated the stimulated PGC-1α signaling in primary adipocytes and neurons of these animal models and in iPS derived motoneurons of two ALS patients harboring two different frame-shift FUS/TLS mutations. RESULTS Mutations in SOD1 and FUS/TLS decrease Ppargc1a levels in the CNS whereas in muscle and brown adipose tissue Ppargc1a mRNA levels were increased. Probing the underlying mechanism in neurons, we identified the monocarboxylate lactate as a previously unrecognized potent and selective inducer of the CNS-specific PGC-1α isoforms. Lactate also induced genes like brain-derived neurotrophic factor, transcription factor EB and superoxide dismutase 3 that are down-regulated in PGC-1α deficient neurons. The lactate-induced CNS-specific PGC-1α signaling system is completely silenced in motoneurons derived from induced pluripotent stem cells obtained from two ALS patients harboring two different frame-shift FUS/TLS mutations. CONCLUSION ALS mutations increase the canonical PGC-1α system in the periphery while inhibiting the CNS-specific isoforms. We identify lactate as an inducer of the neuronal PGC-1α system directly linking brain metabolism and neuroprotection. Changes in the PGC-1α system might be involved in the ALS accompanied metabolic changes and in neurodegeneration.
Collapse
|
240
|
Epoxyeicosatrienoic Acid as Therapy for Diabetic and Ischemic Cardiomyopathy. Trends Pharmacol Sci 2016; 37:945-962. [DOI: 10.1016/j.tips.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
241
|
Kristóf E, Doan-Xuan QM, Sárvári AK, Klusóczki Á, Fischer-Posovszky P, Wabitsch M, Bacso Z, Bai P, Balajthy Z, Fésüs L. Clozapine modifies the differentiation program of human adipocytes inducing browning. Transl Psychiatry 2016; 6:e963. [PMID: 27898069 PMCID: PMC5290354 DOI: 10.1038/tp.2016.230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain.
Collapse
Affiliation(s)
- E Kristóf
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Q-M Doan-Xuan
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - A K Sárvári
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Á Klusóczki
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - P Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - M Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Z Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - P Bai
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Z Balajthy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - L Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary,MTA-DE Stem Cells, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary,Department of Biochemistry and Molecular Biology, University of Debrecen, Life Science Building, H-4032 Debrecen, Egyetem tér 1, Hungary. E-mail:
| |
Collapse
|
242
|
Abstract
Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli - notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells, and have revealed unanticipated cell-lineage relationships between vascular smooth muscle cells and beige adipocytes, and between skeletal muscle cells and brown fat. In addition, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells, have crucial roles in regulating the differentiation and function of brown and beige fat.
Collapse
Affiliation(s)
- Wenshan Wang
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
243
|
Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 2016; 134:86-92. [PMID: 27693079 DOI: 10.1016/j.biochi.2016.09.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes.
Collapse
Affiliation(s)
- Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain.
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
244
|
Fan J, Ping J, Zhang WX, Rao YS, Liu HX, Zhang J, Yan YE. Prenatal and lactation nicotine exposure affects morphology and function of brown adipose tissue in male rat offspring. Ultrastruct Pathol 2016; 40:288-95. [DOI: 10.1080/01913123.2016.1223243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
245
|
Type 2 diabetes is associated with decreased PGC1α expression in epicardial adipose tissue of patients with coronary artery disease. J Transl Med 2016; 14:243. [PMID: 27542888 PMCID: PMC4992233 DOI: 10.1186/s12967-016-0999-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background Although recent studies indicate that epicardial adipose tissue expresses brown fat-like genes, such as PGC1α, UCP1 and PRDM16, the association of these genes with type 2 diabetes mellitus (DM2) in coronary artery disease (CAD) remains unknown. Methods PGC1α, UCP1, and PRDM16 mRNAs expression levels were measured by real-time PCR in epicardial and thoracic subcutaneous adipose tissue from 44 CAD patients (22 with DM2 [CAD-DM2] and 22 without DM2 [CAD-NDM2]) and 23 non-CAD patients (NCAD). Results The CAD-DM2 patients had significantly lower PGC1α and UCP1 expression in epicardial adipose tissue than the CAD-NDM2 and NCAD patients. However, PGC1α and UCP1 mRNA trended upward in subcutaneous adipose tissue from CAD-DM2 patients. At multiple regression analysis, age, body mass index, left ventricular ejection fraction, UCP1 expression of epicardial adipose tissue and diabetes came out to be independent predictors of PGC1α levels. Epicardial adipose tissue PGC1α expression was dependent on the number of injured coronary arteries and logistic regression analysis showed that PGC1α expression in epicardial adipose tissue could exert a protective effect against coronary lesions. Conclusions DM2 is associated with decreased expression of PGC1α and UCP1 mRNA in epicardial adipose tissue of patients with CAD, likely reflecting a loss of brown-like fat features. Decreased expression of PGC1α in human epicardial adipose tissue is associated with higher prevalence of coronary lesions.
Collapse
|
246
|
Modica S, Straub LG, Balaz M, Sun W, Varga L, Stefanicka P, Profant M, Simon E, Neubauer H, Ukropcova B, Ukropec J, Wolfrum C. Bmp4 Promotes a Brown to White-like Adipocyte Shift. Cell Rep 2016; 16:2243-2258. [PMID: 27524617 DOI: 10.1016/j.celrep.2016.07.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/25/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
While Bmp4 has a well-established role in the commitment of mesenchymal stem cells into the adipogenic lineage, its role in brown adipocyte formation and activity is not well defined. Here, we show that Bmp4 has a dual function in adipogenesis by inducing adipocyte commitment while inhibiting the acquisition of a brown phenotype during terminal differentiation. Selective brown adipose tissue overexpression of Bmp4 in mice induces a shift from a brown to a white-like adipocyte phenotype. This effect is mediated by Smad signaling and might be in part due to suppression of lipolysis, via regulation of hormone sensitive lipase expression linked to reduced Ppar activity. Given that we observed a strong correlation between BMP4 levels and adipocyte size, as well as insulin sensitivity in humans, we propose that Bmp4 is an important factor in the context of obesity and type 2 diabetes.
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipogenesis/drug effects
- Adipogenesis/genetics
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Protein 4/pharmacology
- Cell Differentiation
- Cell Line, Transformed
- Cyclic AMP/pharmacology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation
- Humans
- Insulin Resistance
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Peroxisome Proliferator-Activated Receptors/genetics
- Peroxisome Proliferator-Activated Receptors/metabolism
- Rosiglitazone
- Signal Transduction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Sterol Esterase/genetics
- Sterol Esterase/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Salvatore Modica
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Leon G Straub
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Miroslav Balaz
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Wenfei Sun
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Lukas Varga
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Milan Profant
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Eric Simon
- Target Discovery Research, Boehringer Ingelheim Pharma, 88400 Biberach/Riss, Germany
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, 88400 Biberach/Riss, Germany
| | - Barbara Ukropcova
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 02 Bratislava, Slovakia
| | - Jozef Ukropec
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
247
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
248
|
Zhou HJ, Wang H, Shu Q, He WJ, Wang YY, Gao Y, Liang FX. Effect of ''Biao-Ben points association'' electro-acupuncture combined with dietary restriction on SIRT1 and UCP1 expression in brown adipose tissue of obese rats. Shijie Huaren Xiaohua Zazhi 2016; 24:3410-3416. [DOI: 10.11569/wcjd.v24.i22.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of "Biao-Ben points association" electro-acupuncture combined with dietary control on SIRT1 and UCP1 expression in brown adipose tissue of obese rats.
METHODS: Forty rats with obesity induced with a high-fat diet were randomly divided into four groups, with 10 rats in each group. Rats in the model control group (C) were continued to be given a high-fat diet. Rats in the electro-acupuncture group (E) were treated with "Biao-Ben points association" electro-acupuncture. The dietary restriction group (R) was fed only 70% of high-fat diet to the control group. The electro-acupuncture combined with dietary restriction group (E + R) was treated with both acupuncture and dietary restriction. After 8 wk of treatment, changes of body weight, fasting glucose, insulin, triglycerides, and total cholesterol were recorded. The expression of silent information regulator 1 (SIRT1) and uncoupling protein 1 (UCP1) mRNA was detected in brown adipose tissue.
RESULTS: Compared with the C group, body weight, FPG, FINS, TG, and TC in the other three intervention groups were significantly lower (P < 0.01); these indexes were also significantly lower in the E + R group than in the other two intervention groups (P < 0.05). Compared with the C group, the expression of SIRT1 in the other three intervention groups was significantly higher (P < 0.01). Compared with the C group, the expression of UPC1 mRNA in the other three intervention groups was significantly higher (P < 0.01); UPC1 mRNA expression in the E + R group was also significantly higher than that in the other two intervention groups (P < 0.05).
CONCLUSION: "Biao-Ben points association" electro-acupuncture and dietary restriction might increase the heat production and result in weight loss by promoting the expression of SIRT1 and UCP1 in brown adipose tissue. The anti-obesity effect of "Biao-Ben points association" electro-acupuncture is comparable to that of dietary restriction, and there exist some synergistic effects between them.
Collapse
|
249
|
Iacovelli J, Rowe GC, Khadka A, Diaz-Aguilar D, Spencer C, Arany Z, Saint-Geniez M. PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity. Invest Ophthalmol Vis Sci 2016; 57:1038-51. [PMID: 26962700 PMCID: PMC4788093 DOI: 10.1167/iovs.15-17758] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Oxidative stress and metabolic dysregulation of the RPE have been implicated in AMD; however, the molecular regulation of RPE metabolism remains unclear. The transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a powerful mediator of mitochondrial function. This study examines the ability of PGC-1α to regulate RPE metabolic program and oxidative stress response. Methods Primary human fetal RPE (hfRPE) and ARPE-19 were matured in vitro using standard culture conditions. Mitochondrial mass of RPE was measured using MitoTracker staining and citrate synthase activity. Expression of PGC-1 isoforms, RPE-specific genes, oxidative metabolism proteins, and antioxidant enzymes was analyzed by quantitative PCR and Western blot. Mitochondrial respiration and fatty-acid oxidation were monitored using the Seahorse extracellular flux analyzer. Expression of PGC-1α was increased using adenoviral delivery. ARPE-19 were exposed to hydrogen peroxide to induce oxidative stress. Reactive oxygen species were measured by CM-H2DCFDA fluorescence. Cell death was analyzed by LDH release. Results Maturation of ARPE-19 and hfRPE was associated with significant increase in mitochondrial mass, expression of oxidative phosphorylation (OXPHOS) genes, and PGC-1α gene expression. Overexpression of PGC-1α increased expression of OXPHOS and fatty-acid β-oxidation genes, ultimately leading to the potent induction of mitochondrial respiration and fatty-acid oxidation. PGC-1α gain of function also strongly induced numerous antioxidant genes and, importantly, protected RPE from oxidant-mediated cell death without altering RPE functions. Conclusions This study provides important insights into the metabolic changes associated with RPE functional maturation and identifies PGC-1α as a potent driver of RPE mitochondrial function and antioxidant capacity.
Collapse
Affiliation(s)
- Jared Iacovelli
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arogya Khadka
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Daniel Diaz-Aguilar
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Carrie Spencer
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
250
|
Côté S, Gagné-Ouellet V, Guay SP, Allard C, Houde AA, Perron P, Baillargeon JP, Gaudet D, Guérin R, Brisson D, Hivert MF, Bouchard L. PPARGC1α gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics 2016; 8:72. [PMID: 27340502 PMCID: PMC4918074 DOI: 10.1186/s13148-016-0239-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Children exposed to gestational diabetes mellitus (GDM) are at a higher risk of developing obesity and type 2 diabetes. This susceptibility might involve brown adipose tissue (BAT), which is suspected to protect against obesity. The objective of this study is to assess whether fetal exposure to maternal hyperglycemia is associated with DNA methylation variations in genes involved in BAT genesis and activation. Methods DNA methylation levels at the PRDM16, BMP7, CTBP2, and PPARGC1α gene loci were measured in placenta samples using bisulfite pyrosequencing in E-21 (n = 133; 33 cases of GDM) and the HumanMethylation450 array in Gen3G (n = 172, all from non-diabetic women) birth cohorts. Glucose tolerance was assessed in all women using an oral glucose tolerance test at the second trimester of pregnancy. Participating women were extensively phenotyped throughout pregnancy, and placenta and cord blood samples were collected at birth. Results We report that maternal glycemia at the second and third trimester of pregnancy are correlated with variations in DNA methylation levels at PRDM16, BMP7, and PPARGC1α and with cord blood leptin levels. Variations in PRDM16 and PPARGC1α DNA methylation levels were also correlated with cord blood leptin levels. Mediation analyses support that DNA methylation variations at the PPARGC1α gene locus explain 0.8 % of the cord blood leptin levels variance independently of maternal fasting glucose levels (p = 0.05). Conclusions These results suggest that maternal glucose in pregnancy could produce variations in DNA methylation in BAT-related genes and that some of these DNA methylation marks seem to mediate the impact of maternal glycemia on cord blood leptin levels, an adipokine regulating body weight. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0239-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Côté
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Valérie Gagné-Ouellet
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Catherine Allard
- Department of Mathematics, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Andrée-Anne Houde
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| | - Patrice Perron
- ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC Canada
| | | | - Daniel Gaudet
- ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada.,Department of Medicine, Université de Montréal, Montréal, QC Canada
| | - Renée Guérin
- Department of Medical Biology, Chicoutimi Hospital, Saguenay, QC Canada
| | - Diane Brisson
- ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada.,Department of Medicine, Université de Montréal, Montréal, QC Canada
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA USA
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC Canada.,ECOGENE-21 Laboratory and Lipid Clinic, CIUSSS du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, QC Canada
| |
Collapse
|