201
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
202
|
Bian X, Zhao Y, Xiao S, Yang H, Han Y, Zhang L. Metabolome and transcriptome analysis reveals the molecular profiles underlying the ginseng response to rusty root symptoms. BMC PLANT BIOLOGY 2021; 21:215. [PMID: 33985437 PMCID: PMC8117609 DOI: 10.1186/s12870-021-03001-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. RESULTS In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues' metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. CONCLUSION The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng's response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Shengyuan Xiao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China
| | - Yongzhong Han
- Jilin Provincial Ginseng and Pilose Antler Office, Changchun, China
| | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, China.
| |
Collapse
|
203
|
Selinski J, Scheibe R. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 2021; 34:1025-1047. [PMID: 32620064 PMCID: PMC8060724 DOI: 10.1089/ars.2020.8121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Significance: The importance of oxidoreductases in energy metabolism together with the occurrence of enzymes of central metabolism in the nucleus gave rise to the active research field aiming to understand moonlighting enzymes that undergo post-translational modifications (PTMs) before carrying out new tasks. Recent Advances: Cytosolic enzymes were shown to induce gene transcription after PTM and concomitant translocation to the nucleus. Changed properties of the oxidized forms of cytosolic glyceraldehyde 3-phosphate dehydrogenase, and also malate dehydrogenases and others, are the basis for a hypothesis suggesting moonlighting functions that directly link energy metabolism to adaptive responses required for maintenance of redox-homeostasis in all eukaryotes. Critical Issues: Small molecules, such as metabolic intermediates, coenzymes, or reduced glutathione, were shown to fine-tune the redox switches, interlinking redox state, metabolism, and induction of new functions via nuclear gene expression. The cytosol with its metabolic enzymes connecting energy fluxes between the various cell compartments can be seen as a hub for redox signaling, integrating the different signals for graded and directed responses in stressful situations. Future Directions: Enzymes of central metabolism were shown to interact with p53 or the assumed plant homologue suppressor of gamma response 1 (SOG1), an NAM, ATAF, and CUC transcription factor involved in the stress response upon ultraviolet exposure. Metabolic enzymes serve as sensors for imbalances, their inhibition leading to changed energy metabolism, and the adoption of transcriptional coactivator activities. Depending on the intensity of the impact, rerouting of energy metabolism, proliferation, DNA repair, cell cycle arrest, immune responses, or cell death will be induced. Antioxid. Redox Signal. 34, 1025-1047.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology/Chemistry, Osnabrueck University, Osnabrueck, Germany
| |
Collapse
|
204
|
Younes NA, Rahman MM, Wardany AA, Dawood MFA, Mostofa MG, Keya SS, Abdel Latef AAH, Tran LSP. Antioxidants and Bioactive Compounds in Licorice Root Extract Potentially Contribute to Improving Growth, Bulb Quality and Yield of Onion ( Allium cepa). Molecules 2021; 26:2633. [PMID: 33946396 PMCID: PMC8124151 DOI: 10.3390/molecules26092633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing culinary use of onion (Alium cepa) raises pressure on the current production rate, demanding sustainable approaches for increasing its productivity worldwide. Here, we aimed to investigate the beneficial effects of licorice (Glycyrrhiza glabra) root extract (LRE) in improving growth, yield, nutritional status, and antioxidant properties of two high-yielding onion cultivars, Shandaweel and Giza 20, growing under field conditions in two consecutive years. Our results revealed that pretreatments of both onion cultivars with LRE exhibited improved growth indices (plant height and number of leaves) and yield-related features (bulb length, bulb diameter, and bulb weight) in comparison with the corresponding LRE-devoid control plants. Pretreatments with LRE also improved the nutritional and antioxidant properties of bulbs of both cultivars, which was linked to improved mineral (e.g., K+ and Ca2+) acquisition, and heightened activities of enzymatic antioxidants (e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase) and increased levels of non-enzymatic antioxidants (e.g., ascorbic acid, reduced glutathione, phenolics, and flavonoids). LRE also elevated the contents of proline, total free amino acids, total soluble carbohydrates, and water-soluble proteins in both onion bulbs. In general, both cultivars displayed positive responses to LRE pretreatments; however, the Shandaweel cultivar performed better than the Giza 20 cultivar in terms of yield and, to some extent, bulb quality. Collectively, our findings suggest that the application of LRE as biostimulant might be an effective strategy to enhance bulb quality and ultimately the productivity of onion cultivars under field conditions.
Collapse
Affiliation(s)
- Nabil A. Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt;
| | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.R.); (S.S.K.)
| | - Ahmed A. Wardany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.R.); (S.S.K.)
| | - Arafat Abdel Hamed Abdel Latef
- Biology Department, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
205
|
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact 2021; 343:109494. [PMID: 33915161 DOI: 10.1016/j.cbi.2021.109494] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
206
|
Bernacki MJ, Rusaczonek A, Czarnocka W, Karpiński S. Salicylic Acid Accumulation Controlled by LSD1 Is Essential in Triggering Cell Death in Response to Abiotic Stress. Cells 2021; 10:962. [PMID: 33924244 PMCID: PMC8074770 DOI: 10.3390/cells10040962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (A.R.); (W.C.)
| | - Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (A.R.); (W.C.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| |
Collapse
|
207
|
Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Phan Tran LS. Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 2021; 41:918-934. [PMID: 33784900 DOI: 10.1080/07388551.2021.1892582] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accumulation of reactive oxygen species (ROS), and their destructive effects on cellular organelles are the hallmark features of plants exposed to abiotic stresses. Plants are well-equipped with defensive mechanisms like antioxidant systems to deal with ROS-induced oxidative stress. Silicon has been emerged as an important regulator of plant protective mechanisms under environmental stresses, which can be up-taken from soil through a system of various silicon-transporters. In plants, silicon is deposited underneath of cuticles and in the cell wall, and help plant cells reduce deleterious effects of stresses. Furthermore, silicon can provide resistance to ROS-toxicity, which often accounts for silicon-mediated improvement of plant tolerance to different abiotic constraints, including salinity, drought, and metal toxicity. Silicon enhances the ROS-detoxification ability of treated plants by modulating the antioxidant defense systems, and the expression of key genes associated with oxidative stress mitigation and hormone metabolism. Silicon also displays additive roles in ROS-elimination when supplied with other external stimuli. Here, we discuss recent findings on how silicon is able to modulate antioxidant defense of plants in response to oxidative stress triggered by different abiotic constraints. We also review interactions of silicon with other signaling molecules, including nitric oxide, ROS, polyamines, and phytohormones in the mediation of plant protection against abiotic stress-induced oxidative damage.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.,Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
208
|
Liang G, He H, Nai G, Feng L, Li Y, Zhou Q, Ma Z, Yue Y, Chen B, Mao J. Genome-wide identification of BAM genes in grapevine (Vitis vinifera L.) and ectopic expression of VvBAM1 modulating soluble sugar levels to improve low-temperature tolerance in tomato. BMC PLANT BIOLOGY 2021; 21:156. [PMID: 33771117 PMCID: PMC8004407 DOI: 10.1186/s12870-021-02916-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low temperature (LT) is one of the main limiting factors that affect growth and development in grape. Increasing soluble sugar and scavenging reactive oxygen species (ROS) play critical roles in grapevine resistance to cold stress. However, the mechanism of β-amylase (BAM) involved in the regulation of sugar levels and antioxidant enzyme activities in response to cold stress is unclear. RESULTS In this study, six BAM genes were identified and clustered into four groups. Multiple sequence alignment and gene structure analysis showed that VvBAM6 lacked the Glu380 residue and contained only an exon. The transcript abundance of VvBAM1 and VvBAM3 significantly increased as temperature decreased. After LT stress, VvBAM1 was highly expressed in the leaves, petioles, stems, and roots of overexpressing tomato lines. The total amylase and BAM activities increased by 6.5- and 6.01-fold in transgenic plants compared with those in wild-type tomato plants (WT) subjected to LT, respectively. The glucose and sucrose contents in transgenic plants were significantly higher than those in WT plants, whereas the starch contents in the former decreased by 1.5-fold compared with those in the latter under LT stress. The analysis of transcriptome sequencing data revealed that 541 genes were upregulated, and 663 genes were downregulated in transgenic plants. One sugar transporter protein gene (SlSTP10), two peroxidase (POD)-related genes (SlPER7 and SlPER5), and one catalase (CAT)-related gene (SlCAT1) were upregulated by 8.6-, 3.6-, 3.0-, and 2.3-fold in transgenic plants after LT stress, respectively. CONCLUSIONS Our results suggest that VvBAM1 overexpression promotes ROS scavenging and improves cold tolerance ability by modulating starch hydrolysis to affect soluble sugar levels in tomato plants.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yuan Yue
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
209
|
von der Mark C, Ivanov R, Eutebach M, Maurino VG, Bauer P, Brumbarova T. Reactive oxygen species coordinate the transcriptional responses to iron availability in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2181-2195. [PMID: 33159788 PMCID: PMC7966954 DOI: 10.1093/jxb/eraa522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). As this H2O2 increase occurs in a FIT-dependent manner, our aim was to understand the processes involved in maintaining H2O2 levels under prolonged Fe deficiency and the role of FIT. We identified the CAT2 gene, encoding one of the three Arabidopsis catalase isoforms, as regulated by FIT. CAT2 loss-of-function plants displayed severe susceptibility to Fe deficiency and greatly increased H2O2 levels in roots. Analysis of the Fe homeostasis transcription cascade revealed that H2O2 influences the gene expression of downstream regulators FIT, BHLH genes of group Ib, and POPEYE (PYE); however, H2O2 did not affect their upstream regulators, such as BHLH104 and ILR3. Our data shows that FIT and CAT2 participate in a regulatory loop between H2O2 and prolonged Fe deficiency.
Collapse
Affiliation(s)
- Claudia von der Mark
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschalle 1, D-53115 Bonn, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
- Correspondence: or
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
210
|
Shafiq F, Iqbal M, Ali M, Ashraf MA. Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve net-primary productivity under salt-stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111901. [PMID: 33453640 DOI: 10.1016/j.ecoenv.2021.111901] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The effects of fullerenol nanopriming (0, 10, 40, 80 and 120 nM concentration) on salt stressed-wheat (0 and 150 mM NaCl) were investigated under natural conditions. Salinity resulted in a shift in wheat growth pattern in the form of LAR (+ 40.9% increase) and RGR (+ 13.4% increase) while decreased NAR (- 31.7%). It also disturbed shoot and root biomass, ion uptake and reduced chlorophyll contents. Despite increase in enzyme activities, higher ROS generation (+ 48.1% O2- anion; and + 62.2% H2O2) and lipid peroxidation (+ 40.8% MDA) were detected in salt-stressed wheat plants. Possibly, the increases in enzyme activities were not up to the level to completely counteract the salinity induced oxidative stress. Nanopriming with fullerenol improved NAR (+ 8.77% to 23.2%), ROS metabolism and decreased indicators of oxidative stress. Hydropriming treatment also promoted NAR recovery by 21.9% than control plants. Compared to Na+ ions, improvements in shoot relative concentrations of K+, Ca2+ and P also recorded along with soluble sugars and amino acids, which improved osmotic balance. These biochemical modifications contributed to improvements in grain yield attributes (+11.8% to 18.3% in 100 grain-weight) than salinity stressed control. Hydropriming also contributed to a recovery in grain yield attributes by 12.6%. Above all, the harvested seeds from fullerenol treated plants also showed better germination and seedlings growth traits. Conclusively, we report non-toxic, growth-promoting effects of fullerenol nanoparticles on wheat crop and as a way forward; we suggest its exogenous application to recover crop productivity under saline environments.
Collapse
Affiliation(s)
- Fahad Shafiq
- Department of Botany, Government College University Faisalabad, Pakistan.; Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan.
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Pakistan..
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
211
|
Nowicka B, Trela-Makowej A, Latowski D, Strzalka K, Szymańska R. Antioxidant and Signaling Role of Plastid-Derived Isoprenoid Quinones and Chromanols. Int J Mol Sci 2021; 22:2950. [PMID: 33799456 PMCID: PMC7999835 DOI: 10.3390/ijms22062950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| |
Collapse
|
212
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
213
|
Tavanti TR, Melo AARD, Moreira LDK, Sanchez DEJ, Silva RDS, Silva RMD, Reis ARD. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:386-396. [PMID: 33556754 DOI: 10.1016/j.plaphy.2021.01.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide at low concentrations act as signaling of several abiotic stresses. Overproduction of hydrogen peroxide causes the oxidation of plant cell lipid phosphate layer promoting senescence and cell death. To mitigate the effect of ROS, plants develop antioxidant defense mechanisms (superoxide dismutase, catalase, guaiacol peroxidase), ascorbate-glutathione cycle enzymes (ASA-GSH) (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase), which have the function of removing and transforming ROS into non-toxic substances to maintain cellular homeostasis. Foliar or soil application of fertilizers containing B, Cu, Fe, Mn, Mo, Ni, Se and Zn at low concentrations has the ability to elicit and activate antioxidative enzymes, non-oxidizing metabolism, as well as sugar metabolism to mitigate damage by oxidative stress. Plants treated with micronutrients show higher tolerance to abiotic stress and better nutritional status. In this review, we summarized results indicating micronutrient actions in order to reduce ROS resulting the increase of photosynthetic capacity of plants for greater crop yield. This meta-analysis provides information on the mechanism of action of micronutrients in combating ROS, which can make plants more tolerant to several types of abiotic stress such as extreme temperatures, salinity, heavy metals and excess light.
Collapse
Affiliation(s)
- Tauan Rimoldi Tavanti
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | | | | | | | - Rafael Dos Santos Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - Ricardo Messias da Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
214
|
Batova YV, Kaznina NM, Titov AF. Effect of Low Temperature on the Intensity of Oxidative Processes and the Activity of Antioxidant Enzymes in Wheat Plants at Optimal and Excessive Zinc Concentrations in the Root Medium. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
215
|
Tadaiesky LBA, da Silva BRS, Batista BL, Lobato AKDS. Brassinosteroids trigger tolerance to iron toxicity in rice. PHYSIOLOGIA PLANTARUM 2021; 171:371-387. [PMID: 33090462 DOI: 10.1111/ppl.13230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) toxicity is one of the most frequent abiotic stresses in rice, as it affects from 15% to 30% of the total production. Brassinosteroids (BRs), including 24-epibrassinolide (EBR), regulate ion homeostasis and improve the antioxidant system. The aim of this research was to determine whether EBR can contribute to the tolerance of rice plants exposed to Fe toxicity and to evaluate the possible effect on anatomical characteristics, nutrient concentrations, the antioxidant system, and gas exchange. The experiment was randomized with four treatments, two with different concentrations of Fe (250 and 6250 μM, control and toxicity, respectively) and these were either supplied with EBR or not (0 and 10 nM EBR, described as -EBR and +EBR, respectively). Treating plants grown under Fe toxic conditions with EBR caused an 70% increase in root aerenchyma area, compared to plants without steroid treatment. Our results revealed that EBR treatment could mitigate the deleterious effects of Fe toxicity in rice plants, by modulating the aerenchyma area, which contributes to the formation of an oxidative barrier and reduce the Fe mobilization at the root surface. Plants that were exposed to Fe toxic concentrations and treated with EBR showed (1) an increase in the enzyme activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase, (2) mitigation of oxidative damage and (3) increased scavenging of reactive oxygen species. Finally, EBR alleviated the negative impacts induced by excess Fe on the net photosynthetic rate and the instantaneous carboxylation efficiency. These benefits were directly related to higher electron transport and stomatal density and indirectly linked to the protection mechanism exercised by the antioxidant enzymes on photosynthetic machinery. We conclude that EBR is able to confer tolerance to Fe toxicity in rice plants.
Collapse
Affiliation(s)
- Lorene B A Tadaiesky
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | - Breno R S da Silva
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - Allan K da S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| |
Collapse
|
216
|
Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O 2 and mitochondrial cytochrome-c release. JOURNAL OF PLANT RESEARCH 2021; 134:179-194. [PMID: 33569718 DOI: 10.1007/s10265-021-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago de Compostela (USC), Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
217
|
Stephan OOH. Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. PLANT, CELL & ENVIRONMENT 2021; 44:665-691. [PMID: 33124689 DOI: 10.1111/pce.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Research concerning the effects of ionizing radiation (IR) on plant systems is essential for numerous aspects of human society, as for instance, in terms of agriculture and plant breeding, but additionally for elucidating consequences of radioactive contamination of the ecosphere. This comprehensive survey analyses effects of x- and γ-irradiation on male gametophytes comprising primarily in vitro but also in vivo data of diverse plant species. The IR-dose range for pollen performance was compiled and 50% inhibition doses (ID50 ) for germination and tube growth were comparatively related to physiological characteristics of the microgametophyte. Factors influencing IR-susceptibility of mature pollen and polarized tube growth were evaluated, such as dose-rate, environmental conditions, or species-related variations. In addition, all available reports suggesting bio-positive IR-effects particularly on pollen performance were examined. Most importantly, for the first time influences of IR specifically on diverse phylogenetic models of polar cell growth were comparatively analysed, and thus demonstrated that the gametophytic system of pollen is extremely resistant to IR, more than plant sporophytes and especially much more than comparable animal cells. Beyond that, this study develops hypotheses regarding a molecular basis for the extreme IR-resistance of the plant microgametophyte and highlights its unique rank among organismal systems.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
218
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
219
|
Palma JM, Corpas FJ. Editorial: Subcellular Compartmentalization of Plant Antioxidants and ROS Generating Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:643239. [PMID: 33679860 PMCID: PMC7935501 DOI: 10.3389/fpls.2021.643239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
|
220
|
Lindermayr C, Oracz K, Cuypers A, Schnitzler JP, Durner J. Editorial: Highlights of POG 2019 - Plant Oxygen Group Conference. FRONTIERS IN PLANT SCIENCE 2021; 12:639262. [PMID: 33597966 PMCID: PMC7882510 DOI: 10.3389/fpls.2021.639262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Krystyna Oracz
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ann Cuypers
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| |
Collapse
|
221
|
Zhang Y, Zhang Y, Xing J, Li Y, Yang Y, Wang Y, Jiang L, Zhang M, Li Z. Efficient carbon recycling and modulation of antioxidants involved in elongation of the parasitic plant dodder (Cuscuta spp.) in vitro. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110770. [PMID: 33487354 DOI: 10.1016/j.plantsci.2020.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Dodder is a holoparasitic flowering plant that re-establishes parasitism with the host when broken off from the host. However, how in vitro dodder shoots recycle stored nutrients to maintain growth for reparasitizing hosts is not well characterized. Here, the spatial and temporal distribution characteristics of carbohydrates and reactive oxygen species (ROS) were analysed to explore the mechanism of recycling stored nutrients in dodder shoots in vitro. Our results showed that in vitro dodder shoots grew actively for more than 10 d, while dry mass decreased continuously. During this process, the transcript levels and activities of amylases gradually increased until 2 d and then declined in basal stems, which induced starch degradation at the tissue, cellular and subcellular levels. Additionally, the distribution characteristics of H2O2 and the activities and transcript levels of antioxidant enzymes indicated that shoot tips exhibited more robust ROS-scavenging capacity, and basal stems maintained higher ROS accumulation. Comparative proteomics analysis revealed that starch in basal stems acted as an energy source, and the glycolysis, TCA cycle and pentose phosphate pathway represented the energy supply for shoot tip elongation with time. These results indicated that efficient nutrient recycling and ROS modulation facilitated the parasitism of dodder grown in vitro by promoting shoot elongation growth to reach the host.
Collapse
Affiliation(s)
- Yuexia Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yan Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Linjian Jiang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
222
|
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 11:615942. [PMID: 33584756 PMCID: PMC7876081 DOI: 10.3389/fpls.2020.615942] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/28/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Qing-Hua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Feng Bai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
223
|
Vicino P, Carrillo J, Gómez R, Shahinnia F, Tula S, Melzer M, Rutten T, Carrillo N, Hajirezaei MR, Lodeyro AF. Expression of Flavodiiron Proteins Flv2-Flv4 in Chloroplasts of Arabidopsis and Tobacco Plants Provides Multiple Stress Tolerance. Int J Mol Sci 2021; 22:1178. [PMID: 33503994 PMCID: PMC7865949 DOI: 10.3390/ijms22031178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
With the notable exception of angiosperms, all phototrophs contain different sets of flavodiiron proteins that help to relieve the excess of excitation energy on the photosynthetic electron transport chain during adverse environmental conditions, presumably by reducing oxygen directly to water. Among them, the Flv2-Flv4 dimer is only found in β-cyanobacteria and induced by high light, supporting a role in stress protection. The possibility of a similar protective function in plants was assayed by expressing Synechocystis Flv2-Flv4 in chloroplasts of tobacco and Arabidopsis. Flv-expressing plants exhibited increased tolerance toward high irradiation, salinity, oxidants, and drought. Stress tolerance was reflected by better growth, preservation of photosynthetic activity, and membrane integrity. Metabolic profiling under drought showed enhanced accumulation of soluble sugars and amino acids in transgenic Arabidopsis and a remarkable shift of sucrose into starch, in line with metabolic responses of drought-tolerant genotypes. Our results indicate that the Flv2-Flv4 complex retains its stress protection activities when expressed in chloroplasts of angiosperm species by acting as an additional electron sink. The flv2-flv4 genes constitute a novel biotechnological tool to generate plants with increased tolerance to agronomically relevant stress conditions that represent a significant productivity constraint.
Collapse
Affiliation(s)
- Paula Vicino
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (P.V.); (J.C.); (R.G.); (N.C.)
| | - Julieta Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (P.V.); (J.C.); (R.G.); (N.C.)
| | - Rodrigo Gómez
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (P.V.); (J.C.); (R.G.); (N.C.)
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany; (F.S.); (S.T.); (M.M.); (T.R.)
| | - Suresh Tula
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany; (F.S.); (S.T.); (M.M.); (T.R.)
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany; (F.S.); (S.T.); (M.M.); (T.R.)
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany; (F.S.); (S.T.); (M.M.); (T.R.)
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (P.V.); (J.C.); (R.G.); (N.C.)
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany; (F.S.); (S.T.); (M.M.); (T.R.)
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (P.V.); (J.C.); (R.G.); (N.C.)
| |
Collapse
|
224
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
225
|
Rusaczonek A, Czarnocka W, Willems P, Sujkowska-Rybkowska M, Van Breusegem F, Karpiński S. Phototropin 1 and 2 Influence Photosynthesis, UV-C Induced Photooxidative Stress Responses, and Cell Death. Cells 2021; 10:cells10020200. [PMID: 33498294 PMCID: PMC7909289 DOI: 10.3390/cells10020200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022] Open
Abstract
Phototropins are plasma membrane-associated photoreceptors of blue light and UV-A/B radiation. The Arabidopsis thaliana genome encodes two phototropins, PHOT1 and PHOT2, that mediate phototropism, chloroplast positioning, and stomatal opening. They are well characterized in terms of photomorphogenetic processes, but so far, little was known about their involvement in photosynthesis, oxidative stress responses, and cell death. By analyzing phot1, phot2 single, and phot1phot2 double mutants, we demonstrated that both phototropins influence the photochemical and non-photochemical reactions, photosynthetic pigments composition, stomata conductance, and water-use efficiency. After oxidative stress caused by UV-C treatment, phot1 and phot2 single and double mutants showed a significantly reduced accumulation of H2O2 and more efficient photosynthetic electron transport compared to the wild type. However, all phot mutants exhibited higher levels of cell death four days after UV-C treatment, as well as deregulated gene expression. Taken together, our results reveal that on the one hand, both phot1 and phot2 contribute to the inhibition of UV-C-induced foliar cell death, but on the other hand, they also contribute to the maintenance of foliar H2O2 levels and optimal intensity of photochemical reactions and non-photochemical quenching after an exposure to UV-C stress. Our data indicate a novel role for phototropins in the condition-dependent optimization of photosynthesis, growth, and water-use efficiency as well as oxidative stress and cell death response after UV-C exposure.
Collapse
Affiliation(s)
- Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (W.C.); (M.S.-R.)
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: (A.R.); (S.K.)
| | - Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (W.C.); (M.S.-R.)
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; (P.W.); (F.V.B.)
- VIB Center of Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (W.C.); (M.S.-R.)
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; (P.W.); (F.V.B.)
- VIB Center of Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: (A.R.); (S.K.)
| |
Collapse
|
226
|
Hou J, Li C, Cheng Y, Jiang C, Li Y, Ge Y, Li J. Roles of calcium-dependent protein kinases mediated reactive oxygen species homeostasis in inducing resistance of apples by acibenzolar-S-methyl. Food Chem 2021; 346:128881. [PMID: 33482531 DOI: 10.1016/j.foodchem.2020.128881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
This study was carried out to investigate the effect of acibenzolar-S-methyl (ASM) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA) treatments on calcium-dependent protein kinases (CDPKs) and reactive oxygen species (ROS) metabolism in apples. Postharvest ASM treatment increased H2O2 content, reduced glutathione and ascorbic acid contents, and NADPH oxidase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase activities and retarded catalase activity and MdCAT expression in apples. ASM treatment enhanced MdSOD, MdPOD, MdAPX, MdGR, MdCDPK1, MdCDPK4, MdCDPK5, MdCDPK7, and MdCDPK21 expressions in apples. However, EGTA + ASM treatments suppressed H2O2, glutathione and ascorbic acid contents, NADPH oxidase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase activities. EGTA + ASM treatments suppressed the selected genes expressions in ROS metabolism and CDPKs, but up-regulated MdCAT expression in apples. These findings suggest that CDPKs play a vital role in regulating ROS metabolism and involve in inducing resistance in apples by ASM.
Collapse
Affiliation(s)
- Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Chaonan Jiang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yihan Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China.
| |
Collapse
|
227
|
Florencio-Ortiz V, Sellés-Marchart S, Casas JL. Proteome changes in pepper (Capsicum annuum L.) leaves induced by the green peach aphid (Myzus persicae Sulzer). BMC PLANT BIOLOGY 2021; 21:12. [PMID: 33407137 PMCID: PMC7788789 DOI: 10.1186/s12870-020-02749-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/22/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Aphid attack induces defense responses in plants activating several signaling cascades that led to the production of toxic, repellent or antinutritive compounds and the consequent reorganization of the plant primary metabolism. Pepper (Capsicum annuum L.) leaf proteomic response against Myzus persicae (Sulzer) has been investigated and analyzed by LC-MS/MS coupled with bioinformatics tools. RESULTS Infestation with an initially low density (20 aphids/plant) of aphids restricted to a single leaf taking advantage of clip cages resulted in 6 differentially expressed proteins relative to control leaves (3 proteins at 2 days post-infestation and 3 proteins at 4 days post-infestation). Conversely, when plants were infested with a high density of infestation (200 aphids/plant) 140 proteins resulted differentially expressed relative to control leaves (97 proteins at 2 days post-infestation, 112 proteins at 4 days post-infestation and 105 proteins at 7 days post-infestation). The majority of proteins altered by aphid attack were involved in photosynthesis and photorespiration, oxidative stress, translation, protein folding and degradation and amino acid metabolism. Other proteins identified were involved in lipid, carbohydrate and hormone metabolism, transcription, transport, energy production and cell organization. However proteins directly involved in defense were scarce and were mostly downregulated in response to aphids. CONCLUSIONS The unexpectedly very low number of regulated proteins found in the experiment with a low aphid density suggests an active mitigation of plant defensive response by aphids or alternatively an aphid strategy to remain undetected by the plant. Under a high density of aphids, pepper leaf proteome however changed significantly revealing nearly all routes of plant primary metabolism being altered. Photosynthesis was so far the process with the highest number of proteins being regulated by the presence of aphids. In general, at short times of infestation (2 days) most of the altered proteins were upregulated. However, at longer times of infestation (7 days) the protein downregulation prevailed. Proteins involved in plant defense and in hormone signaling were scarce and mostly downregulated.
Collapse
Affiliation(s)
- Victoria Florencio-Ortiz
- Unidad Asociada CSIC-UA IPAB. Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Carretera de San Vicente del Raspeig, s/n, E-03690 San Vicente del Raspeig, Alicante, Spain.
| | - Susana Sellés-Marchart
- Genomics and Proteomics Unit, Servicios Técnicos de Investigación, University of Alicante, Carretera de San Vicente del Raspeig, s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - José L Casas
- Unidad Asociada CSIC-UA IPAB. Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Carretera de San Vicente del Raspeig, s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
228
|
Jamali Jaghdani S, Jahns P, Tränkner M. Mg deficiency induces photo-oxidative stress primarily by limiting CO 2 assimilation and not by limiting photosynthetic light utilization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110751. [PMID: 33287999 DOI: 10.1016/j.plantsci.2020.110751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 05/27/2023]
Abstract
Photosynthetic processes within chloroplasts require substantial amounts of magnesium (Mg). It is suggested that the minimum Mg concentration for yield and dry matter (DM) formation is 1.5 mg g-1 DM. Yet, it was never clarified whether this amount is required for photosynthetic processes as well. The aim of this study was to determine how varying Mg concentrations affect the photosynthetic efficiency and photoprotective responses. Barley (Hordeum vulgare L.) was grown under four different Mg supplies (1, 0.05, 0.025 and 0.015 mM Mg) for 21 days to investigate the photosynthetic and photoprotective responses to Mg deficiency. Leaf Mg concentrations, CO2 assimilation, photosystem II efficiency, electron transport rate, photochemical and non-photochemical quenching, expression of reactive oxygen species (ROS) scavengers, and the pigment composition were analyzed. Our data indicate that CO2 assimilation is more sensitive to the reduction of tissue Mg concentrations than photosynthetic light reactions. Moreover, supply with the two lowest Mg concentrations induced photo-oxidative stress, as could be derived from increased expression of ROS scavengers and an increased pool size of the xanthophyll cycle pigments. We hypothesize, that the reduction of CO2 assimilation is a critical determinant for the increase of photo-oxidative stress under Mg deficiency.
Collapse
Affiliation(s)
- Setareh Jamali Jaghdani
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany.
| | - Peter Jahns
- Institute of Plant Biochemistry, Heinrich-Heine-University Duesseldorf, D-40225, Duesseldorf, Germany
| | - Merle Tränkner
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany
| |
Collapse
|
229
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
230
|
Al-Mohanna T, Nejat N, Iannetta AA, Hicks LM, Popescu GV, Popescu SC. Arabidopsis thimet oligopeptidases are redox-sensitive enzymes active in the local and systemic plant immune response. J Biol Chem 2021; 296:100695. [PMID: 33894200 PMCID: PMC8215294 DOI: 10.1016/j.jbc.2021.100695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Upon pathogen infection, receptors in plants will activate a localized immune response, the effector-triggered immunity (ETI), and a systemic immune response, the systemic acquired response (SAR). Infection also induces oscillations in the redox environment of plant cells, triggering response mechanisms involving sensitive cysteine residues that subsequently alter protein function. Arabidopsis thaliana thimet oligopeptidases TOP1 and TOP2 are required for plant defense against pathogens and the oxidative stress response. Herein, we evaluated the biochemical attributes of TOP isoforms to determine their redox sensitivity using ex vivo Escherichia coli cultures and recombinant proteins. Moreover, we explored the link between their redox regulation and plant immunity in wild-type and mutant Arabidopsis lines. These analyses revealed that redox regulation of TOPs occurs through two mechanisms: (1) oxidative dimerization of full-length TOP1 via intermolecular disulfides engaging cysteines in the N-terminal signal peptide, and (2) oxidative activation of all TOPs via cysteines that are unique and conserved. Further, we detected increased TOP activity in wild-type plants undergoing ETI or SAR following inoculation with Pseudomonas syringae strains. Mutants unable to express the chloroplast NADPH-dependent thioredoxin reductase C (NTRC) showed elevated TOP activity under unstressed conditions and were SAR-incompetent. A top1top2 knockout mutant challenged with P. syringae exhibited misregulation of ROS-induced gene expression in pathogen-inoculated and distal tissues. Furthermore, TOP1 and TOP2 could cleave a peptide derived from the immune component ROC1 with distinct efficiencies at common and specific sites. We propose that Arabidopsis TOPs are thiol-regulated peptidases active in redox-mediated signaling of local and systemic immunity.
Collapse
Affiliation(s)
- Thualfeqar Al-Mohanna
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Najmeh Nejat
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Anthony A Iannetta
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George V Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sorina C Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA.
| |
Collapse
|
231
|
Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2020:8817778. [PMID: 33381540 PMCID: PMC7749770 DOI: 10.1155/2020/8817778] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Reducing oxidative species to non- or less-reactive matter is the principal function of an antioxidant. Plant-based food is the main external source of antioxidants that helps protect our cells from oxidative damage. During postharvest storage and distribution, fruits and vegetables often increase ROS production that is quenched by depleting their antioxidant pools to protect their cells, which may leave none for humans. ROS are molecules produced from oxygen metabolism; some of the most widely analyzed ROS in plants are singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS concentration and lifetime are determined by the availability and composition of the antioxidant system that includes enzymatic components such as SOD, CAT, and APX and nonenzymatic components such as vitamins, polyphenols, and carotenoid. Depending on its concentration in the cell, ROS can either be harmful or beneficial. At high concentrations, ROS can damage various kinds of biomolecules such as lipids, proteins, DNA, and RNA, whereas at low or moderate concentrations, ROS can act as second messengers in the intracellular signaling cascade that mediates various plant responses. Novel postharvest methods are sought to maintain fruit and vegetable quality, including minimizing ROS while preserving their antioxidant content.
Collapse
|
232
|
Goggin FL, Fischer HD. Reactive Oxygen Species in Plant Interactions With Aphids. FRONTIERS IN PLANT SCIENCE 2021; 12:811105. [PMID: 35251065 PMCID: PMC8888880 DOI: 10.3389/fpls.2021.811105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are produced in plants in response to many biotic and abiotic stressors, and they can enhance stress adaptation in certain circumstances or mediate symptom development in others. The roles of ROS in plant-pathogen interactions have been extensively studied, but far less is known about their involvement in plant-insect interactions. A growing body of evidence, however, indicates that ROS accumulate in response to aphids, an economically damaging group of phloem-feeding insects. This review will cover the current state of knowledge about when, where, and how ROS accumulate in response to aphids, which salivary effectors modify ROS levels in plants, and how microbial associates influence ROS induction by aphids. We will also explore the potential adaptive significance of intra- and extracellular oxidative responses to aphid infestation in compatible and incompatible interactions and highlight knowledge gaps that deserve further exploration.
Collapse
|
233
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
234
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH, Ragaey MM. Mechanistic Insight of Allantoin in Protecting Tomato Plants Against Ultraviolet C Stress. PLANTS (BASEL, SWITZERLAND) 2020; 10:E11. [PMID: 33374845 PMCID: PMC7824269 DOI: 10.3390/plants10010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Allantoin ((AT) a purine metabolite)-mediated ultraviolet C (UVC) stress mitigation has not been studied to date. Here, we reported the physicochemical mechanisms of UVC-induced stress in tomato (Solanum lycopersicum L.) plants, including an AT-directed mitigation strategy. UVC stress reduced plant growth and photosynthetic pigments. Heatmap and principal component analysis (PCA) revealed that these toxic impacts were triggered by the greater oxidative damage and disruption of osmolyte homeostasis. However, pre-treatment of AT noticeably ameliorated the stress-induced toxicity as evident by enhanced chlorophyll, soluble protein, and soluble carbohydrate contents in AT-pretreated UVC-stressed plants relative to only stressed plants leading to the improvement of the plant growth and biomass. Moreover, AT pre-treatment enhanced endogenous AT and allantoate content, phenylalanine ammonia-lyase, non-enzymatic antioxidants, and the enzymatic antioxidants leading to reduced oxidative stress markers compared with only stressed plants, indicating the protective effect of AT against oxidative damage. Moreover, PCA displayed that the protective roles of AT strongly associate with the improved antioxidants. On the other hand, post-treatment of AT showed less efficacy in UVC stress mitigation relative to pre-treatment of AT. Overall, this finding illustrated that AT pre-treatment could be an effective way to counteract the UVC stress in tomato, and perhaps in other crop plants.
Collapse
Affiliation(s)
- Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.-U.-A.); (A.A.M.S.)
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.T.-U.-A.); (A.A.M.S.)
| | - Arafat Abdel Hamed Abdel Latef
- Department of Biology, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Marwa M. Ragaey
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja 72511, Egypt;
| |
Collapse
|
235
|
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. Int J Mol Sci 2020; 22:E41. [PMID: 33375193 PMCID: PMC7793146 DOI: 10.3390/ijms22010041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.
Collapse
Affiliation(s)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
236
|
Mir AR, Siddiqui H, Alam P, Hayat S. Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica juncea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2503-2520. [PMID: 33424161 PMCID: PMC7772134 DOI: 10.1007/s12298-020-00914-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 05/07/2023]
Abstract
Auxins (Aux) are primary growth regulators that regulate almost every aspect of growth and development in plants. It plays a vital role in various plant processes besides controlling the key aspects of cell division, cell expansion, and cell differentiation. Considering the significance of Aux, and its potential applications, a study was conducted to observe the impact of indole acetic acid (IAA), a most active and abundant form of Aux on Brassica juncea plants growing under natural environmental conditions. Different concentrations (0, 10-10, 10-8, 10-6 M) of IAA were applied once in a day at 25-day stage of growth for 5 days, consecutively. Various parameters (growth, photosynthetic, biochemical, oxidative biomarkers and nutrient composition) were assessed at different days after sowing (DAS). Scanning electron microscopy (SEM) of leaf stomata, reactive oxygen species (ROS) localization in leaf and roots, and confocal microscopy were also conducted. The results revealed that all the IAA concentrations were effective in growth promotion and ROS reduction, however, the 10-8 M of IAA exhibited the maximum improvement in all the above mentioned parameters as compared to the control.
Collapse
Affiliation(s)
- Anayat Rasool Mir
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
237
|
Agathokleous E, Calabrese EJ. Environmental toxicology and ecotoxicology: How clean is clean? Rethinking dose-response analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:138769. [PMID: 32389333 DOI: 10.1016/j.scitotenv.2020.138769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/17/2023]
Abstract
Global agendas for sustaining clean environments target remediation of multimedia contaminants, but how clean is clean? Environmental Toxicology and Ecotoxicology focus on issues concerning "clean". However, the models used to assess the effects of environmental multimedia on individual living organisms and communities or populations in Environmental Toxicology and Ecotoxicology may fail to provide reliable estimates for risk assessment and optimize health. Recent developments in low-dose effects research provide a novel means in Environmental Toxicology and Ecotoxicology to improve the quality of hazard and risk assessment.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
238
|
Wang S, Wei M, Cheng H, Wu B, Du D, Wang C. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111160. [PMID: 32853864 DOI: 10.1016/j.ecoenv.2020.111160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The functional similarity between indigenous plant species (IPS) and invasive alien species (IAS) governs the invasion process of successful IAS because IPS and coexisting IAS suffer alike or even same ecological selection pressures. The aggravated condition created by heavy metal pollution (HMP) and drought stress may generate a noticeable impact on the invasive competitiveness and invasion process of IAS possibly via the variations in the functional similarity between IPS and IAS. Consequently, it is necessary to illumine the functional similarity between IPS and IAS under HMP and drought stress to clarify the mechanisms underlying the successful invasion of IAS. This study aims to estimate the functional similarity between IPS Amaranthus tricolor L. and IAS A. retroflexus L. under the condition with the alone and combined effects of HMP with different kinds (e.g., Cu and Pb) and drought stress [simulated by polyethylene glycol-6000 (PEG) solution]. HMP notably declines A. tricolor growth but has no remarkable effect on A. retroflexus growth. A. retroflexus displays a strong competitive intensity than A. tricolor under HMP. Further, HMP makes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Therefore, HMP can accelerate A. retroflexus invasion. A. retroflexus displays a poor competitive intensity under drought stress. Thus, drought stress can hinder A. retroflexus invasion. However, drought stress causes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the continued drought stress may converse the adverse effects of drought stress on A. retroflexus invasion potentially. The two Amaranthus species tend to diverge functionally under the combined HMP and drought stress. Further, A. retroflexus shows a strong competitive intensity than A. tricolor under the combined HMP and drought stress. Moreover, the combined HMP and drought stress induces a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the combined HMP and drought stress can facilitate A. retroflexus invasion. Meanwhile, the competitiveness for sunlight acquisition and leaf photosynthetic capacity may play a key role in the successful invasion of A. retroflexus under the combined HMP and drought stress.
Collapse
Affiliation(s)
- Shu Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mei Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huiyuan Cheng
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bingde Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daolin Du
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
239
|
Santiago FEM, Silva MLS, Cardoso AAS, Duan Y, Guilherme LRG, Liu J, Li L. Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:328-338. [PMID: 33186850 DOI: 10.1016/j.plaphy.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) biofortification in crops provides a valuable strategy to enhance human Se intake. However, crops vary greatly with their capacity in tolerating and metabolizing/accumulating Se, and the basis underlying such variations remains to be fully understood. Here, we compared the effects of Se and its analog S treatments on plant growth and biochemical responses between a Se accumulator (arugula) and a non-accumulator (lettuce). Arugula exhibited an increased biomass production in comparison with untreated controls at a higher selenate concentration than lettuce (20 μM vs. 10 μM Na2SeO4), showing better tolerance to Se. Arugula accumulated 3-folds more Se and S than lettuce plants under the same treatments. However, the Se/S assimilation as assessed by ATP sulfurylase and O-acetylserine (thiol)lyase activities was comparable between arugula and lettuce plants. Approximately 4-fold higher levels of Se in proteins under the same doses of Se treatments were observed in arugula than in lettuce, indicating that Se accumulators have better tolerance to selenoamino acids in proteins. Noticeably, arugula showed 6-fold higher ascorbate peroxidase activity and produced over 5-fold more glutathione and non-protein thiols than lettuce plants, which suggest critical roles of antioxidants in Se tolerance. Taken together, our results show that the elevated Se tolerance of arugula compared to lettuce is most likely due to an efficient antioxidant defense system. This study provides further insights into our understanding of the difference in tolerating and metabolizing/accumulating Se between Se accumulators and non-accumulators.
Collapse
Affiliation(s)
- Franklin E M Santiago
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Maria L S Silva
- Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Arnon A S Cardoso
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Yongbo Duan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Luiz R G Guilherme
- Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
240
|
Effect of exogenously-applied abscisic acid, putrescine and hydrogen peroxide on drought tolerance of barley. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00644-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The objective of this study was to identify the effect of abscisic acid (ABA), putrescine (Put) and hydrogen peroxide (H2O2) foliar pre-treatment on drought tolerance of barley. Despite water limitation, ABA-sprayed plants preserved increased water content, photosynthetic efficiency of PSII (ΦPSII) and CO2 assimilation rate (Pn) compared to untreated stressed plants. The ABA-treated plants presented also the lowest rate of lipid peroxidation (MDA), lowered the rate of PSII primary acceptor reduction (1 – qP) and increased the yield of regulated energy dissipation (NPQ) with higher accumulation of PGRL1 (PROTON GRADIENT REGULATION LIKE1) protein. These plants preserved a similar level of photochemical efficiency and the rate of electron transport of PSII (ETRII) to the well-watered samples. The significantly less pronounced response was observed in Put-sprayed samples under drought. Additionally, the combined effects of drought and H2O2 application increased the 1 – qP and quantum yield of non-regulated energy dissipation in PSII (ΦNO) and reduced the accumulation of Rubisco activase (RCA). In conclusion, ABA foliar application allowed to balance water retention and preserve antioxidant capacity resulting in efficient photosynthesis and the restricted risk of oxidative damage under drought. Neither hydrogen peroxide nor putrescine has been able to ameliorate drought stress as effectively as ABA.
Collapse
|
241
|
Fan WJ, Feng YX, Li YH, Lin YJ, Yu XZ. Unraveling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140951. [PMID: 32711325 DOI: 10.1016/j.scitotenv.2020.140951] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 05/12/2023]
Abstract
Plants possess a well-organized protective network, wherein antioxidant enzymes play an important part in dealing with oxidative stress induced by over accumulation of ROS in plant cells. In the present study, a microcosm hydroponic experiment was performed to investigate the molecular modification of antioxidant enzymes at subcellular levels in rice seedlings in the presence of either trivalent [Cr(III)] or hexavalent chromium [Cr(VI)] using rice oligonucleotide microarray analysis. The results indicated that the production of ROS induced by Cr(III, VI) was concentration-dependent, Cr-specific and tissue-specific. Trivalent or hexavalent chromium exposure significantly (p < 0.05) altered the antioxidant enzymes activities in both rice tissues in comparison to control plants. In total, 41 genes were identified from the data of rice oligonucleotide microarray analysis. Under Cr(III) exposure, relatively higher expression of genes was observed in roots compared to those in shoots (p < 0.05), while gene expressions in both plant parts differed slightly during Cr(VI) exposure, implying different regulation and response strategies of plants against Cr(III) and Cr(VI). Subcellular localization indicated that genes encoding SOD, POD, APX, and GPX are mainly prevalent in the cytoplasm (30.77%), chloroplasts (29.23%), peroxisomes (10.77%) and mitochondria (9.23%), suggesting that cytoplasm and chloroplasts are the main sites responsible for scavenging ROS through enzymatic processes. Our study provides new insight into the roles of antioxidant enzymes in ROS metabolism at subcellular levels under Cr exposure.
Collapse
Affiliation(s)
- Wei-Jia Fan
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yan-Hong Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China.
| |
Collapse
|
242
|
Cembrowska-Lech D. Tissue Printing and Dual Excitation Flow Cytometry for Oxidative Stress-New Tools for Reactive Oxygen Species Research in Seed Biology. Int J Mol Sci 2020; 21:E8656. [PMID: 33212814 PMCID: PMC7697308 DOI: 10.3390/ijms21228656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/14/2023] Open
Abstract
The intracellular homeostasis of reactive oxygen species (ROS) and especially of superoxide anion and hydrogen peroxide participate in signaling cascades which dictate developmental processes and reactions to stresses. ROS are also biological molecules that play important roles in seed dormancy and germination. Because of their rapid reactivity, short half-life and low concentration, ROS are difficult to measure directly with high accuracy and precision. In presented work tissue printing method with image analysis and dual excitation flow cytometry (FCM) were developed for rapid detection and localization of O2•- and H2O2 in different part of seed. Tissue printing and FCM detection of ROS showed that germination of wild oat seeds was associated with the accumulation of O2•- and H2O2 in embryo (coleorhiza, radicle and scutellum), aleurone layer and coat. To verify if printing and FCM signals were specified, the detection of O2•- and H2O2 in seeds incubated in presence of O2•- generation inhibitor (DPI) or H2O2 scavenger (CAT) were examined. All results were a high level of agreement among the level of ROS derived from presented procedures with the ones created from spectrophotometric measured data. In view of the data obtained, tissue printing with image analysis and FCM are recommended as a simple and fast methods, which could help researchers to detection and level determination of ROS in the external and inner parts of the seeds.
Collapse
|
243
|
Bernacki MJ, Czarnocka W, Zaborowska M, Różańska E, Labudda M, Rusaczonek A, Witoń D, Karpiński S. EDS1-Dependent Cell Death and the Antioxidant System in Arabidopsis Leaves is Deregulated by the Mammalian Bax. Cells 2020; 9:cells9112454. [PMID: 33182774 PMCID: PMC7698216 DOI: 10.3390/cells9112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death is the ultimate end of a cell cycle that occurs in all living organisms during development or responses to biotic and abiotic stresses. In the course of evolution, plants and animals evolve various molecular mechanisms to regulate cell death; however, some of them are conserved among both these kingdoms. It was found that mammalian proapoptotic BCL-2 associated X (Bax) protein, when expressed in plants, induces cell death, similar to hypersensitive response (HR). It was also shown that changes in the expression level of genes encoding proteins involved in stress response or oxidative status regulation mitigate Bax-induced plant cell death. In our study, we focused on the evolutional compatibility of animal and plant cell death molecular mechanisms. Therefore, we studied the deregulation of reactive oxygen species burst and HR-like propagation in Arabidopsis thaliana expressing mammalian Bax. We were able to diminish Bax-induced oxidative stress and HR progression through the genetic cross with plants mutated in ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), which is a plant-positive HR regulator. Plants expressing the mouse Bax gene in eds1-1 null mutant background demonstrated less pronounced cell death and exhibited higher antioxidant system efficiency compared to Bax-expressing plants. Moreover, eds1/Bax plants did not show HR marker genes induction, as in the case of the Bax-expressing line. The present study indicates some common molecular features between animal and plant cell death regulation and can be useful to better understand the evolution of cell death mechanisms in plants and animals.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Magdalena Zaborowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Correspondence:
| |
Collapse
|
244
|
Torti P, Raineri J, Mencia R, Campi M, Gonzalez DH, Welchen E. The sunflower TLDc-containing protein HaOXR2 confers tolerance to oxidative stress and waterlogging when expressed in maize plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110626. [PMID: 33180706 DOI: 10.1016/j.plantsci.2020.110626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus L.) genome encodes six proteins containing a TLDc domain, typical of the eukaryotic OXidation Resistance (OXR) protein family. Expression of sunflower HaOXR2 in Arabidopsis generated plants with increased rosette diameter, higher number of leaves and increased seed production. Maize inbred lines expressing HaOXR2 also showed increased total leaf area per plant. In addition, heterologous expression of HaOXR2 induced an increase in the oxidative stress tolerance in Arabidopsis and maize. Maize transgenic plants expressing HaOXR2 experienced less oxidative damage and exhibited increased photosynthetic performance and efficiency than non-transgenic segregant plants after treatment of leaves with the reactive oxygen species generating compound Paraquat. Expression of HaOXR2 in maize also improved tolerance to waterlogging. The number of expanded leaves, aerial biomass, and stem height and cross-section area were less affected by waterlogging in HaOXR2 expressing plants, which also displayed less aerial tissue damage under these conditions. Transgenic plants also showed an increased production of roots, a typical adaptive stress response. The results show the existence of functional conservation of OXR proteins in dicot and monocot plants and indicate that HaOXR2 could be useful to improve plant performance under conditions that increase oxidative stress.
Collapse
Affiliation(s)
- Pablo Torti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Mabel Campi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| |
Collapse
|
245
|
Li P, Sun P, Li D, Li D, Li B, Dong X. Evaluation of Pyraclostrobin as an Ingredient for Soybean Seed Treatment by Analyzing its Accumulation-Dissipation Kinetics, Plant-Growth Activation, and Protection Against Phytophthora sojae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11928-11938. [PMID: 33078613 DOI: 10.1021/acs.jafc.0c04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seed treatment with fungicides has been regarded as a principal, effective, and economic technique for soybean [Glycine max (L.) Merr.] against pathogenic microorganisms during seed germination and seedling growth. Investigation of the characteristics of seed-treatment reagents is an indispensable basis for their application. The aim of the present work is to evaluate the use of pyraclostrobin as an ingredient for soybean seed treatment by investigating its accumulation-dissipation kinetics in plants, plant-growth activation, and protection against Phytophthora sojae. The results showed that the pyraclostrobin stimulated the visible growth (root and shoot length) of soybean plants, increased the chlorophyll level and root activity, and lowered the malonaldehyde (MDA) level. The peak level and bioavailability of pyraclostrobin in soybean roots were 19.9- and 33.2-fold those in leaves, respectively, indicating that pyraclostrobin was mainly accumulated in roots. Pyraclostrobin had a continuous positive effect on the flavonoid levels and the phenylalanine ammonialyase (PAL) activity in roots and leaves, which could enhance the plant defense system. Pyraclostrobin showed in vitro toxicity to P. sojae with a half-inhibition concentration (EC50) of 1.59 and 1.24 μg/mL for pyraclostrobin and pyraclostrobin plus salicylhydroxamic acid (SHAM, an inhibitor of the alternative pathway of respiration), respectively. Seed treatment with pyraclostrobin significantly reduced the severity of Phytophthora root rot, with a control efficacy of 60.7%. To the best of our knowledge, this is the first report on the characteristics of pyraclostrobin used in soybean seed treatment and its efficacy against Phytophthora root rot.
Collapse
Affiliation(s)
- Pingliang Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pingyang Sun
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Dong Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Delong Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Baohua Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiangli Dong
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
246
|
Tan XL, Zhao YT, Shan W, Kuang JF, Lu WJ, Su XG, Tao NG, Lakshmanan P, Chen JY. Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis. Food Res Int 2020; 138:109790. [PMID: 33288176 DOI: 10.1016/j.foodres.2020.109790] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) trigger and accelerate leaf senescence. Melatonin, a low molecular compound with several biological functions in plants, is known to delay leaf senescence in different species, including Chinese flowering cabbage. However, the mechanism(s) underpinning melatonin-delayed leaf senescence remains unclear. Here, we found that melatonin lowered the expression of chlorophyll catabolic genes (BrPAO and BrSGR1) and senescence-associated genes (BrSAG12 and BrSEN4), decreased chlorophyll loss, minimized the alteration in Fv/Fm ratio and remarkably delayed senescence of Chinese flowering cabbage after harvest. Moreover, the over-accumulation of O2•-, hydrogen peroxide (H2O2) and malondialdehyde contents and the expression of respiratory burst oxidase homologues (RBOH) genes (BrRbohB, BrRbohC, BrRbohD, BrRbohD2 and BrRbohE) were significantly inhibited by melatonin treatment. Melatonin-treated cabbages also showed higher O2•-, OH• and DPPH radical scavenging capacity and enhanced activities of peroxidase (POD), superoxide dismutase (SOD) and their gene expressions. Up-regulation of key components of ascorbate-glutathione (AsA-GSH) cycle, the metabolic pathway that detoxify H2O2, was also observed in melatonin-treated cabbages. These findings suggest that melatonin-delayed postharvest leaf senescence of postharvest Chinese flowering cabbage may be mediated, at least in part, by maintaining ROS homeostasis through restraining RBOHs-catalyzed ROS production and enhancing the activity of ROS-scavenging system including major antioxidant enzymes and AsA-GSH cycle.
Collapse
Affiliation(s)
- Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China; School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ya-Ting Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Xin-Guo Su
- Guangdong AIB Polytechnic, Guangzhou, 510507, China.
| | - Neng-Guo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing 400715, China; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, QLD, St Lucia 4072, Australia
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
247
|
Cheng Y, Li C, Hou J, Li Y, Jiang C, Ge Y. Mitogen-Activated Protein Kinase Cascade and Reactive Oxygen Species Metabolism are Involved in Acibenzolar-S-Methyl-Induced Disease Resistance in Apples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10928-10936. [PMID: 32902967 DOI: 10.1021/acs.jafc.0c04257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apple fruits were subjected to dipping treatment to explore the effects of acibenzolar-S-methyl (ASM) and the mitogen-activated protein kinase (MAPK) inhibitor PD98059 on lesion growth in fruits inoculated with Penicillium expansum. We investigated the roles of the MAPK cascade and reactive oxygen species metabolism in disease resistance in apples. ASM treatment inhibited lesion growth; suppressed catalase (CAT) activity; increased H2O2 content; reduced glutathione and ascorbic acid contents; and increased glutathione reductase, ascorbate peroxidase, peroxidase, superoxide dismutase, and NADPH oxidase activities. Moreover, ASM upregulated MdSOD, MdPOD, MdGR, MdAPX, MdMAPK4, MdMAPK2, and MdMAPKK1 expressions and downregulated MdCAT and MdMAPK3 expressions. PD98059 + ASM treatment increased CAT activity and MdCAT and MdMAPK3 expressions; inhibited MdSOD, MdPOD, MdGR, MdAPX, MdMAPK4, MdMAPK2, and MdMAPKK1 expressions; reduced superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase activities; and reduced glutathione content in apples. These findings indicate that ASM induces disease resistance in apples by regulating the expressions of key genes involved in reactive oxygen species metabolism and the MAPK cascade.
Collapse
Affiliation(s)
- Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yihan Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Chaonan Jiang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| |
Collapse
|
248
|
Karlusich JJP, Arce RC, Shahinnia F, Sonnewald S, Sonnewald U, Zurbriggen MD, Hajirezaei MR, Carrillo N. Transcriptional and Metabolic Profiling of Potato Plants Expressing a Plastid-Targeted Electron Shuttle Reveal Modulation of Genes Associated to Drought Tolerance by Chloroplast Redox Poise. Int J Mol Sci 2020; 21:E7199. [PMID: 33003500 PMCID: PMC7582712 DOI: 10.3390/ijms21197199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative electron transport sinks has been shown to increase plant tolerance to multiple environmental challenges including hydric stress, suggesting that a similar strategy could be used to improve drought tolerance in crops. We show herein that the expression of the cyanobacterial electron shuttle flavodoxin in potato chloroplasts protected photosynthetic activities even at a pre-symptomatic stage of drought. Transcriptional and metabolic profiling revealed an attenuated response to the adverse condition in flavodoxin-expressing plants, correlating with their increased stress tolerance. Interestingly, 5-6% of leaf-expressed genes were affected by flavodoxin in the absence of drought, representing pathways modulated by chloroplast redox status during normal growth. About 300 of these genes potentially contribute to stress acclimation as their modulation by flavodoxin proceeds in the same direction as their drought response in wild-type plants. Tuber yield losses under chronic water limitation were mitigated in flavodoxin-expressing plants, indicating that the flavoprotein has the potential to improve major agronomic traits in potato.
Collapse
Affiliation(s)
- Juan J. Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (J.J.P.K.); (R.C.A.)
| | - Rocío C. Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (J.J.P.K.); (R.C.A.)
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany;
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nurenberg, 91058 Erlangen, Germany; (S.S.); (U.S.)
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nurenberg, 91058 Erlangen, Germany; (S.S.); (U.S.)
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätsstr, 1 40225 Düsseldorf, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany;
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina; (J.J.P.K.); (R.C.A.)
| |
Collapse
|
249
|
FMO1 Is Involved in Excess Light Stress-Induced Signal Transduction and Cell Death Signaling. Cells 2020; 9:cells9102163. [PMID: 32987853 PMCID: PMC7600522 DOI: 10.3390/cells9102163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Because of their sessile nature, plants evolved integrated defense and acclimation mechanisms to simultaneously cope with adverse biotic and abiotic conditions. Among these are systemic acquired resistance (SAR) and systemic acquired acclimation (SAA). Growing evidence suggests that SAR and SAA activate similar cellular mechanisms and employ common signaling pathways for the induction of acclimatory and defense responses. It is therefore possible to consider these processes together, rather than separately, as a common systemic acquired acclimation and resistance (SAAR) mechanism. Arabidopsis thaliana flavin-dependent monooxygenase 1 (FMO1) was previously described as a regulator of plant resistance in response to pathogens as an important component of SAR. In the current study, we investigated its role in SAA, induced by a partial exposure of Arabidopsis rosette to local excess light stress. We demonstrate here that FMO1 expression is induced in leaves directly exposed to excess light stress as well as in systemic leaves remaining in low light. We also show that FMO1 is required for the systemic induction of ASCORBATE PEROXIDASE 2 (APX2) and ZINC-FINGER OF ARABIDOPSIS 10 (ZAT10) expression and spread of the reactive oxygen species (ROS) systemic signal in response to a local application of excess light treatment. Additionally, our results demonstrate that FMO1 is involved in the regulation of excess light-triggered systemic cell death, which is under control of LESION SIMULATING DISEASE 1 (LSD1). Our study indicates therefore that FMO1 plays an important role in triggering SAA response, supporting the hypothesis that SAA and SAR are tightly connected and use the same signaling pathways.
Collapse
|
250
|
Ganther M, Yim B, Ibrahim Z, Bienert MD, Lippold E, Maccario L, Sørensen SJ, Bienert GP, Vetterlein D, Heintz-Buschart A, Blagodatskaya E, Smalla K, Tarkka MT. Compatibility of X-ray computed tomography with plant gene expression, rhizosphere bacterial communities and enzyme activities. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5603-5614. [PMID: 32463450 DOI: 10.1093/jxb/eraa262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/25/2020] [Indexed: 05/26/2023]
Abstract
Non-invasive X-ray computed tomography (XRCT) is increasingly used in rhizosphere research to visualize development of soil-root interfaces in situ. However, exposing living systems to X-rays can potentially impact their processes and metabolites. In order to evaluate these effects, we assessed the responses of rhizosphere processes 1 and 24 h after a low X-ray exposure (0.81 Gy). Changes in root gene expression patterns occurred 1 h after exposure with down-regulation of cell wall-, lipid metabolism-, and cell stress-related genes, but no differences remained after 24 h. At either time point, XRCT did not affect either root antioxidative enzyme activities or the composition of the rhizosphere bacterial microbiome and microbial growth parameters. The potential activities of leucine aminopeptidase and phosphomonoesterase were lower at 1 h, but did not differ from the control 24 h after exposure. A time delay of 24 h after a low X-ray exposure (0.81 Gy) was sufficient to reverse any effects on the observed rhizosphere systems. Our data suggest that before implementing novel experimental designs involving XRCT, a study on its impact on the investigated processes should be conducted.
Collapse
Affiliation(s)
- Minh Ganther
- Helmholtz Centre for Environmental Research, Halle, Germany
| | | | | | | | - Eva Lippold
- Helmholtz Centre for Environmental Research, Halle, Germany
| | - Lorrie Maccario
- Copenhagen University, Universitetsparken, Copenhagen, Denmark
| | | | - Gerd Patrick Bienert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Doris Vetterlein
- Helmholtz Centre for Environmental Research, Halle, Germany
- Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Mika T Tarkka
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|