201
|
Mechanisms of anti-D action in the prevention of hemolytic disease of the fetus and newborn: what can we learn from rodent models? Curr Opin Hematol 2010; 16:488-96. [PMID: 19730101 DOI: 10.1097/moh.0b013e32833199ed] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Hemolytic disease of the fetus and newborn can be effectively prevented by administration of anti-D to the mother. In this setting, the IgG purified from the plasma of D-alloimmunized donors prevents the maternal immune response to D-positive red blood cells (RBC). Several monoclonal anti-D antibodies have recently been developed for potential use in the setting of hemolytic disease of the fetus and newborn; the functional assays used to assess the potential success of these antibodies have often assumed antigen clearance as the predominant mechanism of anti-D. Unfortunately, the in-vivo success of these monoclonal antibodies has thus far been limited. A similar inhibitory effect of IgG has been observed in animal models with a vast array of different antigens, referred to as antibody-mediated immune suppression (AMIS). Here, studies of AMIS are reviewed and the relevance of these findings for anti-D-mediated immunoprophylaxis is discussed. RECENT FINDINGS In animal models of AMIS, IgG-mediated antigen clearance was not sufficient for prevention of the antibody response to RBC. Furthermore, anti-RBC IgG inhibited B-cell priming to foreign RBC, but failed to prevent a T-cell response and immunological memory. SUMMARY The applicability of AMIS models for determining the true mechanism of anti-D, though uncertain, may nevertheless provide knowledge as to potential mechanisms of action of anti-RBC antibodies.
Collapse
|
202
|
Abstract
The past 20 years have seen a growing interest over the control of adaptive immune responses by the innate immune system. In particular, considerable attention has been paid to the mechanisms by which antigen-primed dendritic cells orchestrate the differentiation of T cells. Additional studies have elucidated the pathways followed by T cells to initiate immunoglobulin responses in B cells. In this review, we discuss recent advances on the mechanisms by which intestinal bacteria, epithelial cells, dendritic cells, and macrophages cross talk with intestinal T cells and B cells to induce frontline immunoglobulin A class switching and production.
Collapse
Affiliation(s)
- Alejo Chorny
- Department of Medicine, The Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
203
|
Baldazzi V, Paci P, Bernaschi M, Castiglione F. Modeling lymphocyte homing and encounters in lymph nodes. BMC Bioinformatics 2009; 10:387. [PMID: 19939270 PMCID: PMC2790470 DOI: 10.1186/1471-2105-10-387] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 11/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The efficiency of lymph nodes depends on tissue structure and organization, which allow the coordination of lymphocyte traffic. Despite their essential role, our understanding of lymph node specific mechanisms is still incomplete and currently a topic of intense research. RESULTS In this paper, we present a hybrid discrete/continuous model of the lymph node, accounting for differences in cell velocity and chemotactic response, influenced by the spatial compartmentalization of the lymph node and the regulation of cells migration, encounter, and antigen presentation during the inflammation process. CONCLUSION Our model reproduces the correct timing of an immune response, including the observed time delay between duplication of T helper cells and duplication of B cells in response to antigen exposure. Furthermore, we investigate the consequences of the absence of dendritic cells at different times during infection, and the dependence of system dynamics on the regulation of lymphocyte exit from lymph nodes. In both cases, the model predicts the emergence of an impaired immune response, i.e., the response is significantly reduced in magnitude. Dendritic cell removal is also shown to delay the response time with respect to normal conditions.
Collapse
Affiliation(s)
- Valentina Baldazzi
- Istituto per le Applicazioni del Calcolo M, Picone, Consiglio Nazionale delle Ricerche (CNR), c/o IASI-CNR, V,le Manzoni 30, 00185 - Rome, Italy.
| | | | | | | |
Collapse
|
204
|
Flores M, Desai DD, Downie M, Liang B, Reilly MP, McKenzie SE, Clynes R. Dominant expression of the inhibitory FcgammaRIIB prevents antigen presentation by murine plasmacytoid dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:7129-39. [PMID: 19917701 DOI: 10.4049/jimmunol.0901169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are key regulators of the innate immune response, yet their direct role as APCs in the adaptive immune response is unclear. We found that unlike conventional DCs, immune complex (IC) exposed murine pDCs neither up-regulated costimulatory molecules nor activated Ag-specific CD4(+) and CD8(+) T cells. The inability of murine pDCs to promote T cell activation was due to inefficient proteolytic processing of internalized ICs. This defect in the IC processing capacity of pDCs results from a lack of activating FcgammaR expression (FcgammaRI, III, IV) and the dominant expression of the inhibitory receptor FcgammaRIIB. Consistent with this idea, transgenic expression of the activating human FcgammaRIIA gene, not present in the mouse genome, recapitulated the human situation and rescued IC antigenic presentation capacity by murine pDCs. The selective expression of FcgammaRIIB by murine pDCs was not strain dependent and was maintained even following stimulation with TLR ligands and inflammatory cytokines. The unexpected difference between the mouse and human in the expression of activating/inhibitory FcgammaRs has implications for the role of pDCs in Ab-modulated autoimmunity and anti-viral immunity.
Collapse
Affiliation(s)
- Marcella Flores
- Department of Medicine and Microbiology, Columbia-Presbyterian Medical Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Banchereau J, Klechevsky E, Schmitt N, Morita R, Palucka K, Ueno H. Harnessing human dendritic cell subsets to design novel vaccines. Ann N Y Acad Sci 2009; 1174:24-32. [PMID: 19769733 DOI: 10.1111/j.1749-6632.2009.04999.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DCs) orchestrate a repertoire of immune responses that endow resistance to infection and tolerance to self. DC plasticity and subsets are prominent determinants of the quality of elicited immune responses. Different DC subsets display different receptors and surface molecules and express different sets of cytokines/chemokines, all of which lead to distinct immunological outcomes. Recent findings on human DC subsets and their functional specialization have provided insights for the design of novel human vaccines.
Collapse
|
206
|
Abstract
In this review, we focus on the function of CD40-CD40L (CD154) interactions in the regulation of dendritic cell (DC)-T cell and DC-B cell crosstalk. In addition, we examine differences and similarities between the CD40 signaling pathway in DCs and other innate immune cell receptors, and how these pathways integrate DC functions. As research into DC vaccines and immunotherapies progresses, further understanding of CD40 and DC function will advance the applicability of DCs in immunotherapy for human diseases.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Immunology, 1959 NE Pacific Street, Health Sciences Building, Box 357650, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
207
|
Activating systemic autoimmunity: B's, T's, and tolls. Curr Opin Immunol 2009; 21:626-33. [PMID: 19800208 DOI: 10.1016/j.coi.2009.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 08/24/2009] [Indexed: 01/05/2023]
Abstract
A recent advance in the treatment and understanding of autoimmune disease has been the efficacy of B-cell-targeted therapy. Such therapies are effective for several such diseases, with systemic autoimmunity being a prototypical example. The mechanism of action is not fully defined, but blocking B cell Ag presentation to T cells is likely to be important. T-B interactions probably engender a positive feedback loop that amplifies and sustains autoimmunity. But how is self-tolerance first broken to initiate this loop? I propose, based on recent data, a model in which autoreactive B cells are activated first, independent of T cells, but dependent upon BCR and TLR signals. These activated B cells then break T cell tolerance, resulting in full-blown autoimmunity.
Collapse
|
208
|
Fahlén-Yrlid L, Gustafsson T, Westlund J, Holmberg A, Strömbeck A, Blomquist M, MacPherson GG, Holmgren J, Yrlid U. CD11c(high )dendritic cells are essential for activation of CD4+ T cells and generation of specific antibodies following mucosal immunization. THE JOURNAL OF IMMUNOLOGY 2009; 183:5032-41. [PMID: 19786541 DOI: 10.4049/jimmunol.0803992] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To generate vaccines that protect mucosal surfaces, a better understanding of the cells required in vivo for activation of the adaptive immune response following mucosal immunization is required. CD11c(high) conventional dendritic cells (cDCs) have been shown to be necessary for activation of naive CD8(+) T cells in vivo, but the role of cDCs in CD4(+) T cell activation is still unclear, especially at mucosal surfaces. The activation of naive Ag-specific CD4(+) T cells and the generation of Abs following mucosal administration of Ag with or without the potent mucosal adjuvant cholera toxin were therefore analyzed in mice depleted of CD11c(high) cDCs. Our results show that cDCs are absolutely required for activation of CD4(+) T cells after oral and nasal immunization. Ag-specific IgG titers in serum, as well as Ag-specific intestinal IgA, were completely abrogated after feeding mice OVA and cholera toxin. However, giving a very high dose of Ag, 30-fold more than required to detect T cell proliferation, to cDC-ablated mice resulted in proliferation of Ag-specific CD4(+) T cells. This proliferation was not inhibited by additional depletion of plasmacytoid DCs or in cDC-depleted mice whose B cells were MHC-II deficient. This study therefore demonstrates that cDCs are required for successful mucosal immunization, unless a very high dose of Ag is administered.
Collapse
Affiliation(s)
- Linda Fahlén-Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, The Mucosal Immunobiology and Vaccine Center, University of Gothenburg Vaccine Research Institute, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
The complexity and number of antigens (Ags) seen during an immune response has hampered the development of malaria vaccines. Antibodies (Abs) play an important role in immunity to malaria and their passive administration is effective at controlling the disease. Abs represent approximately 25% of all proteins undergoing clinical trials, and these 'smart biologicals' have undergone a major revival with the realization that Abs lie at the interface between innate and adaptive immunity. At least 18 Abs have FDA approval for clinical use and approximately 150 are in clinical trials, the majority for the treatment of cancer, allograft rejection or autoimmune disease. Despite these triumphs none are in development for malaria, principally because they are perceived as being too expensive for a disease mainly afflicting poor and marginalized populations. Although unlikely, at least in the foreseeable future, that Ab-based prophylaxis will be made available to the millions of people at risk from malaria, they may be incorporated into current vaccine approaches, since Abs act as correlates of protection in studies aimed at defining the best Ags to include in vaccines. Abs may also form the basis for novel vaccination strategies by targeting Ags to appropriate antigen presenting cells. Therefore, to develop the most efficacious vaccines it will be necessary to fully understand which Abs and Fc-receptors (FcRs) are best engaged for a positive outcome.
Collapse
Affiliation(s)
- R J Pleass
- Institute of Genetics, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
210
|
Sarav M, Wang Y, Hack BK, Chang A, Jensen M, Bao L, Quigg RJ. Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol 2009; 20:1941-52. [PMID: 19661163 DOI: 10.1681/asn.2008090976] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The widely distributed neonatal Fc receptor (FcRn) contributes to maintaining serum levels of albumin and IgG in adults. In the kidney, FcRn is expressed on the podocytes and the brush border of the proximal tubular epithelium. Here, we evaluated the role of renal FcRn in albumin and IgG metabolism. Compared with wild-type controls, FcRn(-/-) mice had a lower t((1/2)) for albumin (28.7 versus 39.9 h) and IgG (29.5 versus 66.1 h). Renal loss of albumin could account for the former, suggested by the progressive development of hypoalbuminemia in wild-type mice transplanted with FcRn-deficient kidneys. Furthermore, serum albumin levels returned to normal in FcRn(-/-) recipients of wild-type kidneys after removing the native FcRn-deficient kidneys. In contrast, renal loss could not account for the enhanced elimination of IgG in FcRn(-/-) mice. These mice had minimal urinary excretion of native and labeled IgG, which increased to wild-type levels in FcRn(-/-) recipients of a single FcRn-sufficient kidney (t((1/2)) of IgG was 21.7 h). Taken together, these data suggest that renal FcRn reclaims albumin, thereby maintaining the serum concentration of albumin, but facilitates the loss of IgG from plasma protein pools.
Collapse
Affiliation(s)
- Menaka Sarav
- Section of Nephrology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Hannestad K, Scott H. The MHC haplotype H2b converts two pure nonlupus mouse strains to producers of antinuclear antibodies. THE JOURNAL OF IMMUNOLOGY 2009; 183:3542-50. [PMID: 19657088 DOI: 10.4049/jimmunol.0900579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies of mouse lupus models have linked the MHC H2(b) haplotype with the earlier appearance of antinuclear autoantibodies and the worsening of nephritis. However, it is unknown whether H2(b) by itself, in the context of pure nonlupus strains, is "silent" or sufficient with regard to loss of tolerance to chromatin (nucleosomes). In this study we show that, beginning approximately 6-9 mo of age, H2(b)-congenic BALB/c (denoted BALB.B) mice, unlike BALB/c (H2(d)) and H2(k)-congenic BALB/c (denoted BALB.K) mice, develop strikingly increased serum levels of anti-chromatin Ab dominated by the IgG2a subclass, along with minor increase of Abs to DNA and moderately increased total serum IgG2a. The BALB.B mice did not have glomerulonephritis or an increased mortality rate. H2(b)-congenic C3H/He mice (designated C3.SW mice), unlike C3H/He (H2(k)) mice, showed low but measurable serum levels of chromatin-reactive IgG2a Abs and minor but significant hypergammaglobulinemia. By immunofluorescence, IgG2a of sera from both H2(b)-congenic strains stained HEp-2 cell nuclei, confirming the presence of antinuclear autoantibodies. Thus, in the context of two pure nonlupus genomes, the MHC H2(b) haplotype in homozygous form is sufficient to induce loss of tolerance to chromatin.
Collapse
Affiliation(s)
- Kristian Hannestad
- Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | |
Collapse
|
212
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229:152-72. [PMID: 19426221 DOI: 10.1111/j.1600-065x.2009.00782.x] [Citation(s) in RCA: 1123] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School and The Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
213
|
Tse KWK, Dang-Lawson M, Lee RL, Vong D, Bulic A, Buckbinder L, Gold MR. B cell receptor-induced phosphorylation of Pyk2 and focal adhesion kinase involves integrins and the Rap GTPases and is required for B cell spreading. J Biol Chem 2009; 284:22865-77. [PMID: 19561089 DOI: 10.1074/jbc.m109.013169] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling by the B cell receptor (BCR) promotes integrin-mediated adhesion and cytoskeletal reorganization. This results in B cell spreading, which enhances the ability of B cells to bind antigens and become activated. Proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK) are related cytoplasmic tyrosine kinases that regulate cell adhesion, cell morphology, and cell migration. In this report we show that BCR signaling and integrin signaling collaborate to induce the phosphorylation of Pyk2 and FAK on key tyrosine residues, a modification that increases the kinase activity of Pyk2 and FAK. Activation of the Rap GTPases is critical for BCR-induced integrin activation as well as for BCR- and integrin-induced reorganization of the actin cytoskeleton. We now show that Rap activation is essential for BCR-induced phosphorylation of Pyk2 and for integrin-induced phosphorylation of Pyk2 and FAK. Moreover Rap-dependent phosphorylation of Pyk2 and FAK required an intact actin cytoskeleton as well as actin dynamics, suggesting that Rap regulates Pyk2 and FAK via its effects on the actin cytoskeleton. Importantly B cell spreading induced by BCR/integrin co-stimulation or by integrin engagement was inhibited by short hairpin RNA-mediated knockdown of either Pyk2 or FAK expression and by treatment with PF-431396, a chemical inhibitor that blocks the kinase activities of both Pyk2 and FAK. Thus Pyk2 and FAK are downstream targets of the Rap GTPases that play a key role in regulating B cell morphology.
Collapse
Affiliation(s)
- Kathy W K Tse
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
214
|
Phan TG, Gray EE, Cyster JG. The microanatomy of B cell activation. Curr Opin Immunol 2009; 21:258-65. [PMID: 19481917 PMCID: PMC3736860 DOI: 10.1016/j.coi.2009.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
Abstract
The logistic problem of B cell antigen encounter in the lymph node has recently been studied by dynamic imaging using two-photon microscopy. These studies combined with the early studies of antigen transport have yielded a more complete picture of the orchestration of B cell activation in vivo. Here we summarize the recent advances and focus on the specialized macrophages that are critical to this process and the role of B cells themselves as antigen transporting cells.
Collapse
Affiliation(s)
- Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, Sydney NSW 2010, Australia
| | - Elizabeth E. Gray
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California at San Francisco, 513 Parnassus Ave San Francisco CA 94143, United States of America
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California at San Francisco, 513 Parnassus Ave San Francisco CA 94143, United States of America
| |
Collapse
|
215
|
Ellsworth JL, Hamacher N, Harder B, Bannink K, Bukowski TR, Byrnes-Blake K, Underwood S, Oliver C, Waggie KS, Noriega C, Hebb L, Rixon MW, Lewis KE. Recombinant Soluble Human FcγR1A (CD64A) Reduces Inflammation in Murine Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2009; 182:7272-9. [DOI: 10.4049/jimmunol.0803497] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
216
|
Abstract
Monoclonal antibodies are effective treatments for many malignant diseases. However, the ability of antibodies to initiate tumour-antigen-specific immune responses has received less attention than have other mechanisms of antibody action. We describe the rationale and evidence for the development of antibodies that can stimulate host tumour-antigen-specific immune responses. Such responses can be induced through the induction of antibody-dependent cellular cytotoxicity, promotion of antibody-targeted cross-presentation of tumour antigens, or by triggering of the idiotypic network. Future treatment modifications or combinations might be able to prolong, amplify, and shape these immune responses to increase the clinical benefits of antibody therapy for human cancer.
Collapse
Affiliation(s)
- Louis M. Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20016
| | - Madhav V. Dhodapkar
- Section of Hematology, Yale University, New Haven, CT 06510; Lab of Tumor Immunology and Immunotherapy, The Rockefeller university, New York, NY 10065
| | - Soldano Ferrone
- University of Pittsburgh Cancer Institute, Departments of Surgery, Pathology and Immunology, Pittsburgh, PA
| |
Collapse
|
217
|
Chattopadhyay G, Chen Q, Colino J, Lees A, Snapper CM. Intact bacteria inhibit the induction of humoral immune responses to bacterial-derived and heterologous soluble T cell-dependent antigens. THE JOURNAL OF IMMUNOLOGY 2009; 182:2011-9. [PMID: 19201854 DOI: 10.4049/jimmunol.0802615] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During infections with extracellular bacteria, such as Streptococcus pneumoniae (Pn), the immune system likely encounters bacterial components in soluble form, as well as those associated with the intact bacterium. The potential cross-regulatory effects on humoral immunity in response to these two forms of Ag are unknown. We thus investigated the immunologic consequences of coimmunization with intact Pn and soluble conjugates of Pn-derived proteins and polysaccharides (PS) as a model. Coimmunization of mice with Pn and conjugate resulted in marked inhibition of conjugate-induced PS-specific memory, as well as primary and memory anti-protein Ig responses. Inhibition occurred with unencapsulated Pn, encapsulated Pn expressing different capsular types of PS than that present in the conjugate, and with conjugate containing protein not expressed by Pn, but not with 1-microm latex beads in adjuvant. Inhibition was long-lasting and occurred only during the early phase of the immune response, but it was not associated with tolerance. Pn inhibited the trafficking of conjugate from the splenic marginal zone to the B cell follicle and T cell area, strongly suggesting a potential mechanism for inhibition. These data suggest that during infection, bacterial-associated Ags are the preferential immunogen for antibacterial Ig responses.
Collapse
Affiliation(s)
- Gouri Chattopadhyay
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
218
|
Gohlke P, Williams J, Vilen B, Dillon S, Tisch R, Matsushima G. The receptor tyrosine kinase MerTK regulates dendritic cell production of BAFF. Autoimmunity 2009; 42:183-97. [PMID: 19301199 PMCID: PMC2892231 DOI: 10.1080/08916930802668586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The MerTK receptor tyrosine kinase is an important negative regulator of dendritic cell function and is required to prevent B cell autoimmunity in vivo. It is not currently known however, if any causal relationship exists between these two aspects of MerTK function. We sought to determine if dendritic cells (DC) from mice lacking MerTK (mertk(- / - ) mice) have characteristics that may aid in the development of B cell autoimmunity. Specifically, we found that mertk(- / - ) mice contain an elevated number of splenic DC, and this population contains an elevated proportion of cells secreting the critical B cell pro-survival factor, B cell activating factor (BAFF). Elevated numbers of BAFF-secreting cells were also detected among mertk(- / - ) bone marrow-derived dendritic cell (BMDC) populations. This was observed in both resting BMDC, and BMDC stimulated with lipopolysaccharide (LPS) or treated with exogenous apoptotic cells. We also found that DC in general have a pro-survival effect on resting B cells in co-culture. However, despite containing more BAFF-secreting cells, mertk(- / - ) BMDC were not superior to C57BL/6 or baff-deficient BMDC at promoting B cell survival. Furthermore, using decoy receptors, we show that DC may promote B cell survival and autoimmunity through a BAFF-and a proliferation-inducing ligand-independent mechanism.
Collapse
Affiliation(s)
- P.R. Gohlke
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
| | - J.C. Williams
- Department of Oral Biology, University of North Carolina-CH, Chapel Hill, NC 27599
| | - B.J. Vilen
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
| | | | - R. Tisch
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
| | - G.K. Matsushima
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
- Program for Molecular Biology and Biotechnology, University of North Carolina-CH, Chapel Hill, NC 27599
| |
Collapse
|
219
|
Gerner MY, Mescher MF. Antigen processing and MHC-II presentation by dermal and tumor-infiltrating dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2726-37. [PMID: 19234167 PMCID: PMC2712950 DOI: 10.4049/jimmunol.0803479] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MHC-II presentation by dendritic cells (DC) is necessary both for initial priming of CD4 T cells and for induction of peripheral effector function. Although CD4 T cells can be critical for competent immunization-mediated cancer immunosurveillance, unmanipulated CD4 T cell responses to poorly immunogenic tumors result in either complete ignorance or tolerance induction, suggesting inadequate DC function. In this study, we investigated the phenotype, Ag uptake, and MHC-II presentation capacity of normal dermal DC and tumor-infiltrating DC (TIDC) in both lymphoid and peripheral sites. We found that murine tumors were extensively infiltrated by partially activated TIDC that closely resembled dermal DC by surface marker expression. However, in contrast to dermal DC, TIDC were inefficient at MHC-II presentation due to poor intrinsic protein uptake capability. This resulted in both inferior initiation of T cell responses in the draining lymph node and poor peripheral effector cell accumulation. In addition, TLR stimulation selectively enhanced MHC-II presentation of Ag by dermal DC, but not TIDC in the draining lymph node, and did not affect overall peripheral Ag uptake of either. These results show that TIDC are functionally distinct from normal interstitial DC, thus indicating that neoplastic tissues can evade effector CD4 T cells through modification of DC competence.
Collapse
Affiliation(s)
- Michael Y Gerner
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
220
|
Summerfield A, McCullough KC. The porcine dendritic cell family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:299-309. [PMID: 18582937 PMCID: PMC7103208 DOI: 10.1016/j.dci.2008.05.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 05/07/2023]
Abstract
Considering the pivotal roles played by dendritic cells (DCs) in both innate and adaptive immune responses, advances in the field of porcine immunology DC biology have recently progressed rapidly. As with the more extensively studied murine and human DCs, porcine DC can be generated from bone marrow haematopoietic cells or monocytes, and have been analysed in various immunological and non-immunological tissues. Both conventional DC (cDC) and plasmacytoid DC (pDC) have been characterized. The function of porcine monocyte-derived DC has not only been characterized in terms of antigen presentation and lymphocyte activation, but also their response to various ligands of pattern recognition receptors. These have been characterized in terms of the induction of DC maturation and pro-inflammatory, Th1-like or Th2-like cytokines secretion. Porcine pDC most effectively sense virus infections and are characterized by their capacity to produce large quantities of IFN-alpha and the pro-inflammatory cytokines TNF-alpha, IL-6 and IL-12. As such, the DC family as a whole is a powerful ally in the host battle against pathogen attack. Nevertheless, DC in particular tissue environments or under particular stimuli can down-regulate immune response development. This is not only important for preventing over-activation of the immune system and also for ensuring tolerance against self or "friendly" substances including food components, but may also be used as a mechanism of pathogens to evade immune responses.
Collapse
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
221
|
Browne EP, Littman DR. Myd88 is required for an antibody response to retroviral infection. PLoS Pathog 2009; 5:e1000298. [PMID: 19214214 PMCID: PMC2633609 DOI: 10.1371/journal.ppat.1000298] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/14/2009] [Indexed: 12/21/2022] Open
Abstract
Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c+ dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (107 foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8+ T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c+ DCs as playing critical roles in the humoral response to retroviruses. Efforts to develop vaccines against the retrovirus HIV by inducing immune responses involving antibodies or T cells have been unsuccessful. Although antibodies can be generated against HIV, they fail to neutralize the virus. Thus, a more fundamental understanding of how neutralizing antibody responses to retroviral pathogens are generated is required. We have used a mouse retrovirus to demonstrate that Myd88, a molecule centrally involved in innate immune system signaling, is required to generate an antibody response during retroviral infection. Myd88 also contributed to, but was not strictly required for, the T cell response. Myd88 is known to participate in a signaling pathway that activates inflammation in response to microbial molecules. Understanding how this pathway contributes to anti-retroviral antibody responses may be useful for the development of a vaccine that can effectively block HIV.
Collapse
Affiliation(s)
- Edward P. Browne
- The Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
- Departments of Pathology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Dan R. Littman
- The Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
- Departments of Pathology and Microbiology, New York University School of Medicine, New York, New York, United States of America
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
222
|
Douagi I, Gujer C, Sundling C, Adams WC, Smed-Sörensen A, Seder RA, Karlsson Hedestam GB, Loré K. Human B Cell Responses to TLR Ligands Are Differentially Modulated by Myeloid and Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:1991-2001. [DOI: 10.4049/jimmunol.0802257] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
223
|
Mora JR, von Andrian UH. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin Immunol 2009; 21:28-35. [PMID: 18804386 PMCID: PMC2663412 DOI: 10.1016/j.smim.2008.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 08/07/2008] [Accepted: 08/09/2008] [Indexed: 12/20/2022]
Abstract
Antibody-secreting cells (ASCs) lodging in the mucosa of the small intestine are derived from activated B cells that are thought to arise in gut-associated lymphoid tissues (GALT). Upon leaving the GALT, B cells return to the blood where they must express the gut-homing receptors alpha4beta7 and CCR9 in order to emigrate into the small bowel. Recent evidence indicates that gut-associated dendritic cells (DCs) in GALT induce gut-homing receptors on B cells via a mechanism that depends on the vitamin A metabolite retinoic acid (RA). In addition, although ASC associated with other mucosal tissues secrete IgA in an RA-independent fashion, the presence of high levels of RA in intestine and GALT can promote B cell class switching to IgA and thus, boost the production of IgA in the intestinal mucosa. Here, we discuss the role of RA in the imprinting of gut-homing ASC and the evidence linking RA with the generation of intestinal IgA-ASCs.
Collapse
Affiliation(s)
- J. Rodrigo Mora
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., GRJ-815, Boston, MA 02114, USA
| | - Ulrich H. von Andrian
- Immune Disease Institute & Department of Pathology, Harvard Medical School, 77 Ave. Louis Pasteur, Room 836, Boston, MA 02115, USA
| |
Collapse
|
224
|
Abstract
Exosomes are nanovesicles harboring proteins important for antigen presentation. We compared the potency of differently loaded exosomes, directly loaded with OVA(323-339) peptide (Pep-Exo) or exosomes from OVA-pulsed DCs (OVA-Exo), for their ability to induce specific T-cell proliferation in vitro and in vivo. Both Pep-Exo and OVA-Exo elicited specific transgenic T-cell proliferation in vitro, with the Pep-Exo being more efficient. In contrast, only OVA-Exo induced specific T-cell responses in vivo highlighting the importance of indirect loading strategies in clinical applications. Coadministration of whole OVA overcame the unresponsiveness with Pep-Exo but still elicited a lower response compared with OVA-Exo. In parallel, we found that OVA-Exo not only augmented the specific T-cell response but also gave a Th1-type shift and an antibody response even in the absence of whole OVA. We detected IgG2a and interferon-gamma production from splenocytes showing the capability of exosomes to provide antigen for B-cell activation. Furthermore, we found that B cells are needed for exosomal T-cell stimulation because Bruton tyrosine kinase-deficient mice showed abrogated B- and T-cell responses after OVA-Exo immunization. These findings reveal that exosomes are potent immune regulators and are relevant for the design of vaccine adjuvants and therapeutic intervention strategies to modulate immune responses.
Collapse
|
225
|
Abstract
Dendritic cells (DCs) show a Janus-like functional behavior. They help us by their orchestration of numerous immune responses to defend our body against invading pathogenic micro-organisms and also induce regulatory T cells to inhibit immune reactions against autoantigens as well as diverse harmless environmental antigens. However, DCs can also be of harm to us when misguided by their microenvironment as in allergic and autoimmune diseases or when DCs are targeted and exploited by microbes and cancer cells to evade the immune defense. This huge and diverse functional repertoire of DCs requires complex decision-making processes and the integration of multiple stimulatory and inhibitory signals. Although a given DC type has an extensive functionally plasticity, DCs are heterogeneous and individual DC subtypes are differentially distributed in tissues, express distinct sets of pattern recognition receptors and differ in their capacity to program naive T cells. With the help of transgenic mouse models and selective ablation of individual DC subtypes, we are just at the beginning of understanding the DC system in its complexity. Obtaining a more detailed knowledge of the DC system in mice and men holds strong promise for the successful induction of immunity and tolerance in therapeutic trials. This review presents the recent advances in the understanding of DC biology and discusses why and how DC can help and hurt us.
Collapse
Affiliation(s)
- Knut Schäkel
- Department of Dermatology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
226
|
Tolar P, Hanna J, Krueger PD, Pierce SK. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 2009; 30:44-55. [PMID: 19135393 PMCID: PMC2656684 DOI: 10.1016/j.immuni.2008.11.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 09/12/2008] [Accepted: 11/04/2008] [Indexed: 11/20/2022]
Abstract
B cells are activated in vivo after the B cell receptors (BCRs) bind to antigens captured on the surfaces of antigen-presenting cells. Antigen binding results in BCR microclustering and signaling; however, the molecular nature of the signaling-active BCR clusters is not well understood. Using single-molecule imaging techniques, we provide evidence that within microclusters, the binding of monovalent membrane antigens results in the assembly of immobile signaling-active BCR oligomers. The oligomerization depends on interactions between the membrane-proximal Cmicro4 domains of the membrane immunoglobulin that are both necessary and sufficient for assembly. Antigen-bound BCRs that lacked the Cmicro4 domain failed to cluster and signal, and conversely, Cmicro4 domains alone clustered spontaneously and activated B cells. These results support a unique mechanism for the initiation of BCR signaling in which antigen binding induces a conformational change in the Fc portion of the BCR, revealing an interface that promotes BCR clustering.
Collapse
Affiliation(s)
- Pavel Tolar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Joseph Hanna
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Peter D. Krueger
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
227
|
Abstract
A functional immune system depends on the appropriate activation of lymphocytes following antigen encounter. In this Review, we summarize studies that have used high-resolution imaging approaches to visualize antigen presentation to B cells in secondary lymphoid organs. These studies illustrate that encounters of B cells with antigen in these organs can be facilitated by diffusion of the antigen or by the presentation of antigen by macrophages, dendritic cells and follicular dendritic cells. We describe cell-surface molecules that might be important in mediating antigen presentation to B cells and also highlight the key role of B cells themselves in antigen transport. Data obtained from the studies discussed here highlight the predominance, importance and variety of the cell-mediated processes that are involved in presenting antigen to B cells in vivo.
Collapse
|
228
|
Pierce SK. Understanding B cell activation: from single molecule tracking, through Tolls, to stalking memory in malaria. Immunol Res 2009; 43:85-97. [PMID: 18810335 PMCID: PMC2779777 DOI: 10.1007/s12026-008-8052-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
B lymphocyte activation is initiated by the binding of antigens to the clonally expressed B cell receptors (BCRs) triggering signaling cascades that lead to the transcription of a variety of genes associated with B cell activation. Provided with the appropriate T cell help and the microenvironment of germinal centers antigen drives B cells to proliferate and differentiate into long-lived plasma cells and memory B cells that together constitute immunological memory. Here I describe efforts in my laboratory to gain an understanding of the cellular and molecular mechanisms that underlie three processes central to B cell biology namely, the initiation of BCR signaling, the interactions of the BCR with the innate immune system Toll-like receptors, and the generation and maintenance of B cell memory. Such knowledge is likely to aid research efforts in two areas of high public health priority, namely, the development of new therapeutics to control B cell responses in autoimmune disease and the design of effective vaccines to control infectious diseases.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIAID/NIH/Twinbrook II, 12441 Parklawn Drive, Room 200B, MSC 8180, Rockville, MD 20852, USA.
| |
Collapse
|
229
|
Nakamura A, Kubo T, Takai T. Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:220-33. [PMID: 19065795 DOI: 10.1007/978-0-387-09789-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fc receptors (FcRs) play an important role in the maintenance of an adequate activation threshold of various cells in antibody-mediated immune responses. Analyses of murine models show that the inhibitory FcR, FcyRIIB plays a pivotal role in the suppression of antibody-mediated allergy and autoimmunity. On the other hand, the activating-type FcRs are essential for the development of these diseases, suggesting that regulation of inhibitory or activating FcR is an ideal target for a therapeutic agent. Recent experimental or clinical studies also indicate that FcRs function as key receptors in the treatment with monoclonal antibodies (mAbs) therapy. This review summarizes FcR functions and highlights possible FcR-targeting therapies including mAb therapies for allergy, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Experimental Immunology and CREST program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
230
|
Chen Q, Cannons JL, Paton JC, Akiba H, Schwartzberg PL, Snapper CM. A novel ICOS-independent, but CD28- and SAP-dependent, pathway of T cell-dependent, polysaccharide-specific humoral immunity in response to intact Streptococcus pneumoniae versus pneumococcal conjugate vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8258-66. [PMID: 19050242 PMCID: PMC2893027 DOI: 10.4049/jimmunol.181.12.8258] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polysaccharide (PS)- and protein-specific murine IgG responses to intact Streptococcus pneumoniae (Pn) are both dependent on CD4(+) T cell help, B7-dependent costimulation, and CD40/CD40 ligand interactions. However, the primary PS-specific, relative to protein-specific, IgG response terminates more rapidly, requires a shorter period of T cell help and B7-dependent costimulation, and fails to generate memory. In light of the critical role for ICOS/ICOS ligand interactions in sustaining T cell-dependent Ig responses and promoting germinal center reactions, we hypothesized that this interaction was nonessential for PS-specific IgG responses to Pn. We now demonstrate that ICOS(-/-), relative to wild-type, mice elicit a normal PS-specific IgG isotype response to Pn, despite marked inhibition of both the primary and secondary IgG anti-protein (i.e., PspA, PspC, and PsaA) response. A blocking anti-ICOS ligand mAb injected during primary Pn immunization inhibits both the primary anti-protein response and the generation of protein-specific memory, but has no effect when injected during secondary immunization. In contrast to Pn, both PS- and protein-specific IgG responses to a pneumococcal conjugate vaccine are inhibited in ICOS(-/-) mice. ICOS(-/-) mice immunized with intact Pn or conjugate exhibit nearly complete abrogation in germinal center formation. Finally, although mice that lack the adaptor molecule SAP (SLAM-associated protein) resemble ICOS(-/-) mice (and can exhibit decreased ICOS expression), we observe that the PS-specific, as well as protein-specific, IgG responses to both Pn and conjugate are markedly defective in SAP(-/-) mice. These data define a novel T cell-, SAP-, and B7-dependent, but ICOS-independent, extrafollicular pathway of Ig induction.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/metabolism
- Antibodies, Bacterial/physiology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/physiology
- Bacterial Capsules/administration & dosage
- Bacterial Capsules/immunology
- Bacterial Capsules/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- CD28 Antigens/genetics
- CD28 Antigens/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Inducible T-Cell Co-Stimulator Protein
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylcholine/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Associated Protein
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/metabolism
- Streptococcus pneumoniae/immunology
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/metabolism
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814
| | - James C. Paton
- School of Molecular and Biomedical Science, University of Adelaide, S. A. 5005 Australia
| | - Hisaya Akiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo 133-8421, Japan
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814
| | - Clifford M. Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
231
|
Mi W, Wanjie S, Lo ST, Gan Z, Pickl-Herk B, Ober RJ, Ward ES. Targeting the neonatal fc receptor for antigen delivery using engineered fc fragments. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7550-61. [PMID: 19017944 PMCID: PMC2738423 DOI: 10.4049/jimmunol.181.11.7550] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of approaches for Ag delivery to the appropriate subcellular compartments of APCs and the optimization of Ag persistence are both of central relevance for the induction of protective immunity or tolerance. The expression of the neonatal Fc receptor, FcRn, in APCs and its localization to the endosomal system suggest that it might serve as a target for Ag delivery using engineered Fc fragment-epitope fusions. The impact of FcRn binding characteristics of an Fc fragment on in vivo persistence allows this property to also be modulated. We have therefore generated recombinant Fc (mouse IgG1-derived) fusions containing the N-terminal epitope of myelin basic protein that is associated with experimental autoimmune encephalomyelitis in H-2(u) mice. The Fc fragments have distinct binding properties for FcRn that result in differences in intracellular trafficking and in vivo half-lives, allowing the impact of these characteristics on CD4(+) T cell responses to be evaluated. To dissect the relative roles of FcRn and the "classical" FcgammaRs in Ag delivery, analogous aglycosylated Fc-MBP fusions have been generated. We show that engineered Fc fragments with increased affinities for FcRn at pH 6.0-7.4 are more effective in delivering Ag to FcRn-expressing APCs in vitro relative to their lower affinity counterparts. However, higher affinity of the FcRn-Fc interaction at near neutral pH results in decreased in vivo persistence. The trade-off between improved FcRn targeting efficiency and lower half-life becomes apparent during analyses of T cell proliferative responses in mice, particularly when Fc-MBP fusions with both FcRn and FcgammaR binding activity are used.
Collapse
Affiliation(s)
- Wentao Mi
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
| | - Sylvia Wanjie
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
| | - Su-Tang Lo
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
| | - Zhuo Gan
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
| | - Beatrix Pickl-Herk
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
| | - Raimund J. Ober
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
- Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080
| | - E. Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9093
| |
Collapse
|
232
|
Littmann L, Rößner S, Kerek F, Steinkasserer A, Zinser E. Modulation of murine bone marrow-derived dendritic cells and B-cells by MCS-18 a natural product isolated from Helleborus purpurascens. Immunobiology 2008; 213:871-8. [DOI: 10.1016/j.imbio.2008.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 01/07/2023]
|
233
|
Dhodapkar MV, Dhodapkar KM, Li Z. Role of chaperones and FcgammaR in immunogenic death. Curr Opin Immunol 2008; 20:512-7. [PMID: 18572395 PMCID: PMC3224819 DOI: 10.1016/j.coi.2008.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 12/22/2022]
Abstract
Cell death under physiologic conditions does not lead to the induction of immunity. However recognition of stressed or opsonized cells can trigger immune responses. Recent studies have begun to illustrate the critical role of molecular chaperones such as inducible heat shock proteins in mediating immunogenicity of stressed cells. Immunity to opsonized cells depends in part on the engagement and the balance of activating and inhibitory FcgammaRs on antigen presenting dendritic cells. Understanding both these pathways of immunogenic cell death may yield novel approaches to regulate immunity.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Section of Hematology, Yale University, New Haven, CT
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY
| | - Kavita M. Dhodapkar
- Lab of Tumor Immunology and Immunotherapy, The Rockefeller University, New York, NY
| | - Zihai Li
- Center for Immunotherapy of Cancer and Infectious Diseases, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
234
|
Harvey BP, Quan TE, Rudenga BJ, Roman RM, Craft J, Mamula MJ. Editing antigen presentation: antigen transfer between human B lymphocytes and macrophages mediated by class A scavenger receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4043-51. [PMID: 18768860 PMCID: PMC2701691 DOI: 10.4049/jimmunol.181.6.4043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes can function independently as efficient APCs. However, our previous studies demonstrate that both dendritic cells and macrophages are necessary to propagate immune responses initiated by B cell APCs. This finding led us to identify a process in mice whereby Ag-specific B cells transfer Ag to other APCs. In this study, we report the ability and mechanism by which human B lymphocytes can transfer BCR-captured Ag to macrophages. The transfer of Ag involves direct contact between the two cells followed by the capture of B cell-derived membrane and/or intracellular components by the macrophage. These events are abrogated by blocking scavenger receptor A, a receptor involved in the exchange of membrane between APCs. Macrophages acquire greater amounts of Ag in the presence of specific B cells than in their absence. This mechanism allows B cells to amplify or edit the immune response to specific Ag by transferring BCR-captured Ag to other professional APCs, thereby increasing the frequency of its presentation. Ag transfer may perpetuate chronic autoimmune responses to specific self-proteins and help explain the efficacy of B cell-directed therapies in human disease.
Collapse
Affiliation(s)
- Bohdan P. Harvey
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Timothy E. Quan
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Benjamin J. Rudenga
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Robert M. Roman
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Joe Craft
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Mark J. Mamula
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
235
|
Abstract
B cells are induced to enter the cell cycle by stimuli including ligation of the B-cell receptor (BCR) complex and Toll-like receptor (TLR) agonists. This review discusses the contribution of several molecules, which act at distinct steps in B-cell activation. The adapter molecule Bam32 (B-lymphocyte adapter of 32 kDa) helps promote BCR-induced cell cycle entry, while the secondary messenger superoxide has the opposite effect. Bam32 and superoxide may fine tune BCR-induced activation by competing for the same limited resources, namely Rac1 and the plasma membrane phospholipid PI(3,4)P(2). The co-receptor CD22 can inhibit BCR-induced proliferation by binding to novel CD22 ligands. Finally, regulators of B-cell survival and death also play roles in B-cell transit through the cell cycle. Caspase 6 negatively regulates CD40- and TLR-dependent G(1) entry, while acting later in the cell cycle to promote S-phase entry. Caspase 6 deficiency predisposes B cells to differentiate rather than proliferate after stimulation. Bim, a pro-apoptotic Bcl-2 family member, exerts a positive regulatory effect on cell cycle entry, which is opposed by Bcl-2. New insights into what regulates B-cell transit through the cell cycle may lead to thoughtful design of highly selective drugs that target pathogenic B cells.
Collapse
Affiliation(s)
- Sabrina Richards
- Department of Immunology and Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
236
|
Chen JY, Wang CM, Ma CC, Hsu LA, Ho HH, Wu YJJ, Kuo SN, Wu J. A transmembrane polymorphism in FcgammaRIIb (FCGR2B) is associated with the production of anti-cyclic citrullinated peptide autoantibodies in Taiwanese RA. Genes Immun 2008; 9:680-8. [PMID: 18633424 DOI: 10.1038/gene.2008.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current study was to determine whether the FcgammaRIIb 187-Ile/Thr polymorphism is a predisposition factor for subtypes of RA defined by disease severity and production of autoantibodies against cyclic citrullinated peptides (anti-CCPs) in Taiwanese RA patients. Genotype distributions and allele frequencies of FcgammaRIIb 187-Ile/Thr were compared between 562 normal healthy controls and 640 RA patients as stratified by clinical parameters and autoantibodies. Significant enrichment of 187-Ile allele was observed in RA patients positive for anti-CCP antibodies as compared with the anti-CCP negative RA patients (P=0.001, OR 1.652 (95% CI 1.210-2.257)) or as compared with the normal controls (P=0.005, OR 1.348 (95% CI 1.092-1.664)). In addition, 187-Ile allele was found to be enriched in RA patients positive for rheumatoid factor (RF) compared to the RF negative RA patients (P=0.024, OR 1.562 (95% CI 1.059-2.303)). Furthermore, the homozygotes were enriched in destructive male RA patients (P=0.035; OR 2.038 (95% CI 1.046-3.973)) and the 187-Ile allele was associated with early-onset of RA in Taiwanese patients (P=0.045, OR 1.548 (95% CI 1.007-2.379)). Thus, FcgammaRIIb SNP 187-Ile/Thr may influence the RA phenotypes in Taiwanese RA.
Collapse
Affiliation(s)
- J-Y Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Qiao SW, Kobayashi K, Johansen FE, Sollid LM, Andersen JT, Milford E, Roopenian DC, Lencer WI, Blumberg RS. Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci U S A 2008; 105:9337-42. [PMID: 18599440 PMCID: PMC2453734 DOI: 10.1073/pnas.0801717105] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 12/13/2022] Open
Abstract
The neonatal Fc receptor for IgG (FcRn) is a distant member of the MHC class I protein family. It binds IgG and albumin in a pH-dependent manner and protects these from catabolism by diverting them from a degradative fate in lysosomes. In addition, FcRn-mediated IgG transport across epithelial barriers is responsible for the transmission of IgG from mother to infant and can also enhance IgG-mediated antigen uptake across mucosal epithelia. We now show a previously undescribed role for FcRn in mediating the presentation of antigens by dendritic cells when antigens are present as a complex with antibody by uniquely directing multimeric immune complexes, but not monomeric IgG, to lysosomes.
Collapse
Affiliation(s)
- Shuo-Wang Qiao
- *Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Rikshospitalet University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Kanna Kobayashi
- *Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Finn-Eirik Johansen
- Rikshospitalet University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Ludvig M. Sollid
- Rikshospitalet University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Jan Terje Andersen
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Edgar Milford
- *Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | | | - Wayne I. Lencer
- Children's Hospital and Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
238
|
Abstract
The appropriate activation of B cells is critical for the development and operation of immune responses and is dependent on the extensive coordination of intra- and intercellular communications in response to antigen stimulation. An accurate description of the B cell-activation process requires investigation of these interactions within their correct cellular context both at high resolution and in real time. Here, we discuss a number of recent studies that have offered insight into the early molecular events of B cell activation. We suggest that segregation within the B cell membrane triggers localized cytoskeleton reorganisation and signaling, allowing the formation of B cell receptor (BCR) microclusters. These BCR microclusters are the sites for the coordinated recruitment of the signalosome and are propagated during B cell spreading. We discuss the recent identification of a critical role for CD19 in the B cell response to membrane-bound antigen and suggest a mechanism involving BCR microclusters by which it mediates its stimulatory function. Finally, we consider research that has taken advantage of recent technological advances in multiphoton microscopy that have allowed its application to the investigation of the dynamics of membrane-bound antigen presentation and subsequent B cell activation in lymph nodes in vivo.
Collapse
Affiliation(s)
- Naomi E Harwood
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
239
|
Abstract
The gut mucosa is exposed to a large community of commensal bacteria that are required for the processing of nutrients and the education of the local immune system. Conversely, the gut immune system generates innate and adaptive responses that shape the composition of the local microbiota. One striking feature of intestinal adaptive immunity is its ability to generate massive amounts of noninflammatory immunoglobulin A (IgA) antibodies through multiple follicular and extrafollicular pathways that operate in the presence or absence of cognate T-B cell interactions. Here we discuss the role of intestinal IgA in host-commensal mutualism, immune protection, and tolerance and summarize recent advances on the role of innate immune cells in intestinal IgA production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, and Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Ripamonti 435, Milan 20141, Italy
| |
Collapse
|
240
|
Abstract
IgA class switching is the process whereby B cells acquire the expression of IgA, the most abundant antibody isotype in mucosal secretions. IgA class switching occurs via both T-cell-dependent and T-cell-independent pathways, and the antibody targets both pathogenic and commensal microorganisms. This Review describes recent advances indicating that innate immune recognition of microbial signatures at the epithelial-cell barrier is central to the selective induction of mucosal IgA class switching. In addition, the mechanisms of IgA class switching at follicular and extrafollicular sites within the mucosal environment are summarized. A better understanding of these mechanisms may help in the development of more effective mucosal vaccines.
Collapse
Affiliation(s)
- Andrea Cerutti
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, and Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
241
|
Hjelm F, Karlsson MCI, Heyman B. A Novel B Cell-Mediated Transport of IgE-Immune Complexes to the Follicle of the Spleen. THE JOURNAL OF IMMUNOLOGY 2008; 180:6604-10. [DOI: 10.4049/jimmunol.180.10.6604] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
242
|
Krawczyk M, Seguín-Estévez Q, Leimgruber E, Sperisen P, Schmid C, Bucher P, Reith W. Identification of CIITA regulated genetic module dedicated for antigen presentation. PLoS Genet 2008; 4:e1000058. [PMID: 18437201 PMCID: PMC2278383 DOI: 10.1371/journal.pgen.1000058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/21/2008] [Indexed: 11/24/2022] Open
Abstract
The class II trans-activator CIITA is a transcriptional co-activator required for the expression of Major Histocompatibility Complex (MHC) genes. Although the latter function is well established, the global target-gene specificity of CIITA had not been defined. We therefore generated a comprehensive list of its target genes by performing genome-wide scans employing four different approaches designed to identify promoters that are occupied by CIITA in two key antigen presenting cells, B cells and dendritic cells. Surprisingly, in addition to MHC genes, only nine new targets were identified and validated by extensive functional and expression analysis. Seven of these genes are known or likely to function in processes contributing to MHC-mediated antigen presentation. The remaining two are of unknown function. CIITA is thus uniquely dedicated for genes implicated in antigen presentation. The finding that CIITA regulates such a highly focused gene expression module sets it apart from all other transcription factors, for which large-scale binding-site mapping has indicated that they exert pleiotropic functions and regulate large numbers of genes. Most mammalian transcription factors and transcriptional co-activators are believed to regulate the activities of numerous genes fulfilling multiple functions. This pleiotropic role has recently been confirmed directly for several individual factors by large-scale mapping studies aimed at generating comprehensive catalogues of their binding sites in the genome. Until now, all transcription factors, for which such studies have been performed, were found to regulate hundreds or even thousands of genes. We demonstrate, here, that the transcriptional co-activator CIITA (class II transactivator) is an exception to this rule. CIITA is a key regulator of the immune system because it controls the transcription of genes coding for Major Histocompatibility Complex (MHC) class II molecules, which are cell-surface molecules that present peptide antigens to T lymphocytes. To address the possibility that CIITA might exert more widespread functions, we have performed extensive genome-wide searches to establish a comprehensive list of CIITA-regulated genes. Surprisingly, we found that CIITA regulates only a small number of genes, most of which code for proteins implicated directly or indirectly in MHC-mediated antigen presentation. CIITA is thus remarkably dedicated for the regulation of a unique set of functionally related genes constituting a genetic module devoted to a single biological process.
Collapse
Affiliation(s)
- Michal Krawczyk
- University of Geneva Medical School, CMU, Geneva, Switzerland
| | | | | | - Peter Sperisen
- Swiss Institute of Bioinformatics, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Christoph Schmid
- Swiss Institute of Bioinformatics, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Philipp Bucher
- Swiss Institute of Bioinformatics, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | - Walter Reith
- University of Geneva Medical School, CMU, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
243
|
Cavanagh LL, Weninger W. Dendritic cell behaviour
in vivo
: lessons learned from intravital two‐photon microscopy. Immunol Cell Biol 2008; 86:428-38. [DOI: 10.1038/icb.2008.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lois L Cavanagh
- Immune Imaging Program, Centenary Institute of Cancer Medicine and Cell BiologyNewtownNew South WalesAustralia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute of Cancer Medicine and Cell BiologyNewtownNew South WalesAustralia
- Discipline of Dermatology, University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
244
|
Santos L, Draves KE, Boton M, Grewal PK, Marth JD, Clark EA. Dendritic cell-dependent inhibition of B cell proliferation requires CD22. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4561-9. [PMID: 18354178 PMCID: PMC2728079 DOI: 10.4049/jimmunol.180.7.4561] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have shown that dendritic cells (DCs) regulate B cell functions. In this study, we report that bone marrow (BM)-derived immature DCs, but not mature DCs, can inhibit BCR-induced proliferation of B cells in a contact-dependent manner. This inhibition is overcome by treatment with BAFF and is dependent on the BCR coreceptor CD22; however, it is not dependent on expression of the CD22 glycan ligand(s) produced by ST6Gal-I sialyltransferase. We found that a second CD22 ligand (CD22L) is expressed on CD11c(+) splenic and BM-derived DCs, which does not contain ST6Gal-I-generated sialic acids and which, unlike the B cell-associated CD22L, is resistant to neuraminidase treatment and sodium metaperiodate oxidation. Examination of splenic and BM B cell subsets in CD22 and ST6Gal-I knockout mice revealed that ST6Gal-I-generated B cell CD22L plays a role in splenic B cell development, whereas the maintenance of long-lived mature BM B cells depends only on CD22 and not on alpha2,6-sialic acids produced by ST6Gal-I. We propose that the two distinct CD22L have different functions. The alpha2,6-sialic acid-containing glycoprotein is important for splenic B cell subset development, whereas the DC-associated ST6Gal-I-independent CD22L may be required for the maintenance of long-lived mature B cells in the BM.
Collapse
Affiliation(s)
- Lorna Santos
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
245
|
Lin KBL, Freeman SA, Zabetian S, Brugger H, Weber M, Lei V, Dang-Lawson M, Tse KWK, Santamaria R, Batista FD, Gold MR. The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands. Immunity 2008; 28:75-87. [PMID: 18191594 DOI: 10.1016/j.immuni.2007.11.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/19/2007] [Accepted: 11/19/2007] [Indexed: 01/17/2023]
Abstract
B lymphocytes spread and extend membrane processes when searching for antigens and form immune synapses upon contacting cells that display antigens on their surface. Although these dynamic morphological changes facilitate B cell activation, the signaling pathways underlying these processes are not fully understood. We found that activation of the Rap GTPases was essential for these changes in B cell morphology. Rap activation was important for B cell receptor (BCR)- and lymphocyte-function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune-synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane-process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens but not soluble antigens. Thus by controlling B cell morphology and cytoskeletal organization, Rap might play a key role in the activation of B cells by particulate and cell-associated antigens.
Collapse
Affiliation(s)
- Kevin B L Lin
- Department of Microbiology and Immunology, I3 and CELL Research Groups, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Bax M, García-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernández G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. THE JOURNAL OF IMMUNOLOGY 2008; 179:8216-24. [PMID: 18056365 DOI: 10.4049/jimmunol.179.12.8216] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic reprogramming. Glycosylation is the most common form of posttranslational modification of proteins and has been implicated in multiple aspects of the immune response. To investigate the involvement of glycosylation in the changes that occur during DC maturation, we have studied the differences in the glycan profile of iDC and mDC as well as their glycosylation machinery. For information relating to glycan biosynthesis, gene expression profiles of human monocyte-derived iDC and mDC were compared using a gene microarray and quantitative real-time PCR. This gene expression profiling showed a profound maturation-induced up-regulation of the glycosyltransferases involved in the expression of LacNAc, core 1 and sialylated structures and a down-regulation of genes involved in the synthesis of core 2 O-glycans. Glycosylation changes during DC maturation were corroborated by mass spectrometric analysis of N- and O-glycans and by flow cytometry using plant lectins and glycan-specific Abs. Interestingly, the binding of the LacNAc-specific lectins galectin-3 and -8 increased during maturation and up-regulation of sialic acid expression by mDC correlated with an increased binding of siglec-1, -2, and -7.
Collapse
Affiliation(s)
- Marieke Bax
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
Most antibody-secreting cells (ASCs) in mucosal tissues produce immunoglobulin A (IgA), the most abundant immunoglobulin in the body and the main class of antibody found in secretions. IgA-ASCs differentiate in the mucosal-associated lymphoid tissues and are usually considered as a homogeneous population of cells. However, IgA-ASCs that travel to the small intestine have unique characteristics in terms of their migratory requirements. These IgA-ASCs require the homing molecules alpha4beta7 and CCR9 to interact with their ligands, mucosal addressin cell adhesion molecule-1 and CCL25, which are constitutively expressed in the small intestine. Indeed, recent work has shown that IgA-ASCs specific for the small bowel are generated under different conditions as compared with IgA-ASCs in other mucosal compartments. Moreover, the mechanisms inducing IgA class switching may also vary according to the tissue where IgA-ASCs differentiate. Here we describe the mechanisms involved in the differentiation of IgA-ASCs in mucosal compartments, in particular those involved in the generation of gut-homing IgA-ASCs.
Collapse
|
248
|
Herlands RA, William J, Hershberg U, Shlomchik MJ. Anti-chromatin antibodies drive in vivo antigen-specific activation and somatic hypermutation of rheumatoid factor B cells at extrafollicular sites. Eur J Immunol 2008; 37:3339-51. [PMID: 18034429 DOI: 10.1002/eji.200737752] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dominant type of spontaneous autoreactive B cell activation in murine lupus is the extrafollicular generation of plasmablasts. The factors governing such activation have been difficult to identify due to the stochastic onset and chronic nature of the response. Thus, the ability to induce a similar autoreactive B cell response with a known autoantigen in vivo would be a powerful tool in deciphering how autoimmune responses are initiated. We report here the establishment and characterization of a system to initiate autoreactive extrafollicular B cell responses, using IgG anti-chromatin antibodies, that closely mirrors the spontaneous response. We demonstrate that exogenously administered anti-chromatin antibody, presumably by forming immune complexes with released nuclear material, drives activation of rheumatoid factor B cells in AM14 Tg mice. Anti-chromatin elicits autoreactive B cell activation and development into antibody-forming cells at the T zone/red pulp border. Plasmablast generation occurs equally in BALB/c, MRL/+ and MRL/lpr mice, indicating that an autoimmune-prone genetic background is not required for the induced response. Importantly, infused IgG anti-chromatin induces somatic hypermutation in the absence of a GC response, thus proving the extrafollicular somatic hypermutation pathway. This system provides a window on the initiation of an autoantibody response and reveals authentic initiators of it.
Collapse
Affiliation(s)
- Robin A Herlands
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | | | | | |
Collapse
|
249
|
Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 2008; 82:3939-51. [PMID: 18272578 DOI: 10.1128/jvi.02484-07] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dengue viruses (DV), composed of four distinct serotypes (DV1 to DV4), cause 50 to 100 million infections annually. Durable homotypic immunity follows infection but may predispose to severe subsequent heterotypic infections, a risk conferred in part by the immune response itself. Antibody-dependent enhancement (ADE), a process best described in vitro, is epidemiologically linked to complicated DV infections, especially in Southeast Asia. Here we report for the first time the ADE phenomenon in primary human dendritic cells (DC), early targets of DV infection, and human cell lines bearing Fc receptors. We show that ADE is inversely correlated with surface expression of DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) and requires Fc gamma receptor IIa (FcgammaRIIa). Mature DC exhibited ADE, whereas immature DC, expressing higher levels of DC-SIGN and similar FcgammaRIIa levels, did not undergo ADE. ADE results in increased intracellular de novo DV protein synthesis, increased viral RNA production and release, and increased infectivity of the supernatants in mature DC. Interestingly, tumor necrosis factor alpha and interleukin-6 (IL-6), but not IL-10 and gamma interferon, were released in the presence of dengue patient sera but generally only at enhancement titers, suggesting a signaling component of ADE. FcgammaRIIa inhibition with monoclonal antibodies abrogated ADE and associated downstream consequences. DV versatility in entry routes (FcgammaRIIa or DC-SIGN) in mature DC broadens target options and suggests additional ways for DC to contribute to the pathogenesis of severe DV infection. Studying the cellular targets of DV infection and their susceptibility to ADE will aid our understanding of complex disease and contribute to the field of vaccine development.
Collapse
|
250
|
Abstract
In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.
Collapse
|