201
|
Manieri TM, Takata DY, Targino RC, Quintilio W, Batalha-Carvalho JV, da Silva CML, Moro AM. Characterization of Neutralizing Human Anti-Tetanus Monoclonal Antibodies Produced by Stable Cell Lines. Pharmaceutics 2022; 14:1985. [PMID: 36297421 PMCID: PMC9611486 DOI: 10.3390/pharmaceutics14101985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 10/12/2023] Open
Abstract
Tetanus toxin (TeNT) is produced by C. tetani, a spore-forming bacillus broadly spread in the environment. Although an inexpensive and safe vaccine is available, tetanus persists because of a lack of booster shots and variable responses to vaccines due to immunocompromised status or age-decreased immune surveillance. Tetanus is most prevalent in low- and medium-income countries, where it remains a health problem. Neutralizing monoclonal antibodies (mAbs) can prevent the severity of illness and death caused by C. tetani infection. We identified a panel of mAbs that bind to TeNT, some of which were investigated in a preclinical assay, showing that a trio of mAbs that bind to different sites of TeNT can neutralize the toxin and prevent symptoms and death in mice. We also identified two mAbs that can impair the binding of TeNT to the GT1b ganglioside receptor in neurons. In this work, to generate a series of cell lines, we constructed vectors containing sequences encoding heavy and light constant regions that can receive the paired variable regions resulting from PCRs of human B cells. In this way, we generated stable cell lines for five mAbs and compared and characterized the antibody produced in large quantities, enabling the characterization experiments. We present the results regarding the cell growth and viability in a fed-batch culture, titer measurement, and specific productivity estimation. The affinity of purified mAbs was analyzed by kinetics and under steady-state conditions, as three mAbs could not dissociate from TeNT within 36,000 s. The binding of mAbs to TeNT was confirmed by ELISA and inhibition of toxin binding to GT1b. The use of the mAbs mixture confirmed the individual mAb contribution to inhibition. We also analyzed the binding of mAbs to FcγR by surface plasmon resonance (SPR) and the glycan composition. Molecular docking analyses showed the binding site of an anti-tetanus mAb.
Collapse
Affiliation(s)
- Tania Maria Manieri
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo 05503-900, Brazil
| | - Daniela Yumi Takata
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo 05503-900, Brazil
- Interunits Graduate Program in Biotechnology, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Wagner Quintilio
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo 05503-900, Brazil
| | - João Victor Batalha-Carvalho
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo 05503-900, Brazil
- Graduate Program in Immunology, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Ana Maria Moro
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo 05503-900, Brazil
- Center for Research and Development in Immunobiologicals (CeRDI), Butantan Institute, Sao Paulo 05503-900, Brazil
- National Institute for Science and Technology (INCT/iii), University of Sao Paulo, Sao Paulo 05403-900, Brazil
| |
Collapse
|
202
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
203
|
Gruell H, Vanshylla K, Korenkov M, Tober-Lau P, Zehner M, Münn F, Janicki H, Augustin M, Schommers P, Sander LE, Kurth F, Kreer C, Klein F. SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host Microbe 2022; 30:1231-1241.e6. [PMID: 35921836 PMCID: PMC9260412 DOI: 10.1016/j.chom.2022.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
SARS-CoV-2 neutralizing antibodies play a critical role in COVID-19 prevention and treatment but are challenged by viral evolution and the emergence of novel escape variants. Importantly, the recently identified Omicron sublineages BA.2.12.1 and BA.4/5 are rapidly becoming predominant in various countries. By determining polyclonal serum activity of 50 convalescent or vaccinated individuals against BA.1, BA.1.1, BA.2, BA.2.12.1, and BA.4/5, we reveal a further reduction in BA.4/5 susceptibility to vaccinee sera. Most notably, delineation of sensitivity to an extended 163-antibody panel demonstrates pronounced antigenic differences with distinct escape patterns among Omicron sublineages. Antigenic distance and/or higher resistance may therefore favor immune-escape-mediated BA.4/5 expansion after the first Omicron wave. Finally, while most clinical-stage monoclonal antibodies are inactive against Omicron sublineages, we identify promising antibodies with high pan-SARS-CoV-2 neutralizing potency. Our study provides a detailed understanding of Omicron-sublineage antibody escape that can inform on effective strategies against COVID-19.
Collapse
Affiliation(s)
- Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Friederike Münn
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max Augustin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and Department of Medicine I, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
204
|
Scheepers C, Kgagudi P, Mzindle N, Gray ES, Moyo-Gwete T, Lambson BE, Oosthuysen B, Mabvakure B, Garrett NJ, Abdool Karim SS, Morris L, Moore PL. Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies. PLoS Pathog 2022; 18:e1010450. [PMID: 36054228 PMCID: PMC9477419 DOI: 10.1371/journal.ppat.1010450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/15/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5–3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope. Germline-targeting immunogens are a promising HIV vaccine design strategy. This approach is reliant on the identification of broadly neutralizing antibody (bNAb) classes, which use the same germline antibody genes to target the same viral epitopes. Here, we compare four HIV Envelope MPER-directed antibodies (4E10, VRC42.01, PGZL1 and CAP206-CH12) that despite having shared antibody genes, show distinct neutralization profiles. We show that CAP206-CH12 is dependent on a highly variable residue in the MPER, which results in low neutralization breadth. In contrast, the 4E10, PGZL1 and VRC42.01 mAbs are dependent on highly conserved residues in the MPER, resulting in exceptional neutralization breadth. Our data suggest that while shared germline genes within bNAb epitope classes are required, in some cases these are not sufficient to produce neutralization breadth, and MPER immunogens will need to trigger responses to conserved sites.
Collapse
Affiliation(s)
- Cathrine Scheepers
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Elin S. Gray
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwen E. Lambson
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Brent Oosthuysen
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Batsirai Mabvakure
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel J. Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa
- Department of Epidemiology, Columbia University, New York City, New York, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa
- * E-mail: (LM); (PLM)
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail: (LM); (PLM)
| |
Collapse
|
205
|
Double and Triple Combinations of Broadly Neutralizing Antibodies Provide Efficient Neutralization of All HIV-1 Strains from the Global Panel. Viruses 2022; 14:v14091910. [PMID: 36146719 PMCID: PMC9503787 DOI: 10.3390/v14091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
The use of broadly neutralizing antibodies (bNAbs) is a promising approach to HIV-1 treatment. In this work, we evaluate the neutralizing activity of the following HIV-1 bNAbs: VCR07-523, N6, PGDM1400, CAP256-VRC26.25, 10-1074, PGT128, 10E8, and DH511.11P, which are directed to different Env surface epitopes. We used the global panel of HIV-1 pseudoviruses to analyze the bNAbs’ potency and chose the most potent ones. To achieve maximum neutralization breadth and minimum IC50 concentration, the most effective antibodies were tested in double and triple combinations. Among the doubles, the combinations of N6+PGDM1400 and N6+PGT128 with IC50 ≤ 0.3 µg/mL proved to be the most effective. The most effective triple combination was N6+PGDM1400+PGT128. Our data demonstrate that this combination neutralizes pseudoviruses of the global HIV-1 panel with IC50 ≤ 0.11 µg/mL and IC80 ≤ 0.25 µg/mL.
Collapse
|
206
|
Dacon C, Tucker C, Peng L, Lee CCD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo CW, Kosik I, Hu Z, Zhao M, Mohan D, Cooper AJR, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Drawbaugh D, Eaton B, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan J. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 2022; 377:728-735. [PMID: 35857439 PMCID: PMC9348754 DOI: 10.1126/science.abq3773] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.
Collapse
Affiliation(s)
- Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Cong
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20852, USA
| | - Divya Mohan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrew J. R. Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Saurabh Dixit
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin Kollins
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Louis Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Donna Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Russell Byrum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sanae Lembirik
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Drawbaugh
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Brett Eaton
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rona S. Weinberg
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- B Cell Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connie Schmaljohn
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael R. Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
207
|
Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D, Cassotta A, Foglierini M, Mele F, Abdelnabi R, Weynand B, Noack J, Montiel-Ruiz M, Bianchi S, Benigni F, Sprugasci N, Joshi A, Bowen JE, Stewart C, Rexhepaj M, Walls AC, Jarrossay D, Morone D, Paparoditis P, Garzoni C, Ferrari P, Ceschi A, Neyts J, Purcell LA, Snell G, Corti D, Lanzavecchia A, Veesler D, Sallusto F. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 2022; 377:735-742. [PMID: 35857703 PMCID: PMC9348755 DOI: 10.1126/science.abq2679] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
Collapse
Affiliation(s)
- Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | | | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dora Pinto
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, B-3000 Leuven, Belgium
| | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Siro Bianchi
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
- Global Virus Network, Baltimore, MD 21201, USA
| | | | | | - Davide Corti
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
- National Institute of Molecular Genetics, 20122 Milano, Italy
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
208
|
He WT, Yuan M, Callaghan S, Musharrafieh R, Song G, Silva M, Beutler N, Lee WH, Yong P, Torres JL, Melo M, Zhou P, Zhao F, Zhu X, Peng L, Huang D, Anzanello F, Ricketts J, Parren M, Garcia E, Ferguson M, Rinaldi W, Rawlings SA, Nemazee D, Smith DM, Briney B, Safonova Y, Rogers TF, Dan JM, Zhang Z, Weiskopf D, Sette A, Crotty S, Irvine DJ, Ward AB, Wilson IA, Burton DR, Andrabi R. Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques. Sci Transl Med 2022; 14:eabl9605. [PMID: 35947674 PMCID: PMC10069796 DOI: 10.1126/scitranslmed.abl9605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.
Collapse
Affiliation(s)
- Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Murillo Silva
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Ricketts
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | - Stephen A. Rawlings
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Jennifer M. Dan
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zeli Zhang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Darrell J. Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
209
|
Moyo-Gwete T, Madzivhandila M, Mkhize NN, Kgagudi P, Ayres F, Lambson BE, Manamela NP, Richardson SI, Makhado Z, van der Mescht MA, de Beer Z, de Villiers TR, Burgers WA, Ntusi NAB, Rossouw T, Ueckermann V, Boswell MT, Moore PL. Shared N417-Dependent Epitope on the SARS-CoV-2 Omicron, Beta, and Delta Plus Variants. J Virol 2022; 96:e0055822. [PMID: 35867572 PMCID: PMC9364786 DOI: 10.1128/jvi.00558-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.
Collapse
Affiliation(s)
- Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mashudu Madzivhandila
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N. Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwen E. Lambson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I. Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A. B. Ntusi
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Theresa Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
210
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502576. [PMID: 35982676 PMCID: PMC9387122 DOI: 10.1101/2022.08.02.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from human convalescent plasma, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
211
|
Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the HIV-1 envelope glycoprotein. Nat Commun 2022; 13:4515. [PMID: 35922441 PMCID: PMC9349188 DOI: 10.1038/s41467-022-32208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
A major goal of current HIV-1 vaccine design efforts is to induce broadly neutralizing antibodies (bNAbs). The VH1-2-derived bNAb IOMA directed to the CD4-binding site of the HIV-1 envelope glycoprotein is of interest because, unlike the better-known VH1-2-derived VRC01-class bNAbs, it does not require a rare short light chain complementarity-determining region 3 (CDRL3). Here, we describe three IOMA-class NAbs, ACS101-103, with up to 37% breadth, that share many characteristics with IOMA, including an average-length CDRL3. Cryo-electron microscopy revealed that ACS101 shares interactions with those observed with other VH1-2 and VH1-46-class bNAbs, but exhibits a unique binding mode to residues in loop D. Analysis of longitudinal sequences from the patient suggests that a transmitter/founder-virus lacking the N276 glycan might have initiated the development of these NAbs. Together these data strengthen the rationale for germline-targeting vaccination strategies to induce IOMA-class bNAbs and provide a wealth of sequence and structural information to support such strategies.
Collapse
|
212
|
Caraballo Galva LD, Jiang X, Hussein MS, Zhang H, Mao R, Brody P, Peng Y, He AR, Kehinde-Ige M, Sadek R, Qiu X, Shi H, He Y. Novel low-avidity glypican-3 specific CARTs resist exhaustion and mediate durable antitumor effects against HCC. Hepatology 2022; 76:330-344. [PMID: 34897774 PMCID: PMC10568540 DOI: 10.1002/hep.32279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chimeric antigen receptor engineered T cells (CARTs) for HCC and other solid tumors are not as effective as they are for blood cancers. CARTs may lose function inside tumors due to persistent antigen engagement. The aims of this study are to develop low-affinity monoclonal antibodies (mAbs) and low-avidity CARTs for HCC and to test the hypothesis that low-avidity CARTs can resist exhaustion and maintain functions in solid tumors, generating durable antitumor effects. METHODS AND RESULTS New human glypican-3 (hGPC3) mAbs were developed from immunized mice. We obtained three hGPC3-specific mAbs that stained HCC tumors, but not the adjacent normal liver tissues. One of them, 8F8, bound an epitope close to that of GC33, the frequently used high-affinity mAb, but with approximately 17-fold lower affinity. We then compared the 8F8 CARTs to GC33 CARTs for their in vitro function and in vivo antitumor effects. In vitro, low-avidity 8F8 CARTs killed both hGPC3high and hGPC3low HCC tumor cells to the same extent as high-avidity GC33 CARTs. 8F8 CARTs expanded and persisted to a greater extent than GC33 CARTs, resulting in durable responses against HCC xenografts. Importantly, compared with GC33 CARTs, there were 5-fold more of 8F8-BBz CARTs in the tumor mass for a longer period of time. Remarkably, the tumor-infiltrating 8F8 CARTs were less exhausted and apoptotic, and more functional than GC33 CARTs. CONCLUSION The low-avidity 8F8-BBz CART resists exhaustion and apoptosis inside tumor lesions, demonstrating a greater therapeutic potential than high-avidity CARTs.
Collapse
Affiliation(s)
| | - Xiaotao Jiang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mohamed S. Hussein
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Huajun Zhang
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rui Mao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Pierce Brody
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yibing Peng
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Aiwu Ruth He
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Mercy Kehinde-Ige
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ramses Sadek
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xiangguo Qiu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
213
|
Callegari I, Schneider M, Berloffa G, Mühlethaler T, Holdermann S, Galli E, Roloff T, Boss R, Infanti L, Khanna N, Egli A, Buser A, Zimmer G, Derfuss T, Sanderson NSR. Potent neutralization by monoclonal human IgM against SARS-CoV-2 is impaired by class switch. EMBO Rep 2022; 23:e53956. [PMID: 35548920 PMCID: PMC9253785 DOI: 10.15252/embr.202153956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023] Open
Abstract
To investigate the class‐dependent properties of anti‐viral IgM antibodies, we use membrane antigen capture activated cell sorting to isolate spike‐protein‐specific B cells from donors recently infected with SARS‐CoV‐2, allowing production of recombinant antibodies. We isolate 20, spike‐protein‐specific antibodies of classes IgM, IgG, and IgA, none of which shows any antigen‐independent binding to human cells. Two antibodies of class IgM mediate virus neutralization at picomolar concentrations, but this potency is lost following artificial switch to IgG. Although, as expected, the IgG versions of the antibodies appear to have lower avidity than their IgM parents, this is not sufficient to explain the loss of potency.
Collapse
Affiliation(s)
- Ilaria Callegari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,MS Center, Neurologic Clinic and Policlinic, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mika Schneider
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Tobias Mühlethaler
- Biophysics Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Sebastian Holdermann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,MS Center, Neurologic Clinic and Policlinic, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Edoardo Galli
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,MS Center, Neurologic Clinic and Policlinic, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Renate Boss
- Federal Food Safety and Veterinary Office, Bern, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| | - Nina Khanna
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Andreas Buser
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Derfuss
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,MS Center, Neurologic Clinic and Policlinic, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.,MS Center, Neurologic Clinic and Policlinic, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
214
|
Planchais C, Fernández I, Bruel T, de Melo GD, Prot M, Beretta M, Guardado-Calvo P, Dufloo J, Molinos-Albert LM, Backovic M, Chiaravalli J, Giraud E, Vesin B, Conquet L, Grzelak L, Planas D, Staropoli I, Guivel-Benhassine F, Hieu T, Boullé M, Cervantes-Gonzalez M, Ungeheuer MN, Charneau P, van der Werf S, Agou F, Dimitrov JD, Simon-Lorière E, Bourhy H, Montagutelli X, Rey FA, Schwartz O, Mouquet H. Potent human broadly SARS-CoV-2-neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. J Exp Med 2022; 219:e20220638. [PMID: 35704748 PMCID: PMC9206116 DOI: 10.1084/jem.20220638] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/11/2022] Open
Abstract
Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Cyril Planchais
- Institut Pasteur, Université Paris Cité, Laboratory of Humoral Immunology, Paris, France
- INSERM U1222, Paris, France
| | - Ignacio Fernández
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, Paris, France
- CNRS UMR3569, Paris, France
| | - Timothée Bruel
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Matthieu Prot
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, Paris, France
| | - Maxime Beretta
- Institut Pasteur, Université Paris Cité, Laboratory of Humoral Immunology, Paris, France
- INSERM U1222, Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, Paris, France
- CNRS UMR3569, Paris, France
| | - Jérémy Dufloo
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Luis M. Molinos-Albert
- Institut Pasteur, Université Paris Cité, Laboratory of Humoral Immunology, Paris, France
- INSERM U1222, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, Paris, France
- CNRS UMR3569, Paris, France
| | - Jeanne Chiaravalli
- Institut Pasteur, Université Paris Cité, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Emilie Giraud
- Institut Pasteur, Université Paris Cité, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Benjamin Vesin
- Pasteur-TheraVectys, Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Virology & Vaccinology Unit, Paris, France
| | - Laurine Conquet
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Ludivine Grzelak
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Delphine Planas
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Isabelle Staropoli
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Florence Guivel-Benhassine
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Thierry Hieu
- Institut Pasteur, Université Paris Cité, Functional Genetics of Infectious Diseases Unit, Paris, France
| | - Mikaël Boullé
- Institut Pasteur, Université Paris Cité, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Minerva Cervantes-Gonzalez
- Department of Epidemiology, Biostatistics and Clinical Research, Assistance Publique-Hôpitaux de Paris, Bichat Claude Bernard University Hospital, INSERM CIC-EC 1425, Paris, France
| | - Marie-Noëlle Ungeheuer
- Institut Pasteur, Université Paris Cité, Investigation Clinique et Accès aux Ressources Biologiques, Center for Translational Research, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys, Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Virology & Vaccinology Unit, Paris, France
| | - Sylvie van der Werf
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA Viruses, Paris, France
- Université de Paris, Paris, France
| | - Fabrice Agou
- Institut Pasteur, Université Paris Cité, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Etienne Simon-Lorière
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, Paris, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Félix A. Rey
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, Paris, France
- CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- CNRS UMR3569, Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, Laboratory of Humoral Immunology, Paris, France
- INSERM U1222, Paris, France
| |
Collapse
|
215
|
Hazebrouck S, Patil SU, Guillon B, Lahood N, Dreskin SC, Adel-Patient K, Bernard H. Immunodominant conformational and linear IgE epitopes lie in a single segment of Ara h 2. J Allergy Clin Immunol 2022; 150:131-139. [PMID: 35150723 PMCID: PMC10440805 DOI: 10.1016/j.jaci.2021.12.796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Contribution of conformational epitopes to the IgE reactivity of peanut allergens Ara h 2 and Ara h 6 is at least as important as that of the linear epitopes. However, little is known about these conformational IgE-binding epitopes. OBJECTIVE We investigated the distribution of conformational epitopes on chimeric 2S-albumins. METHODS Recombinant chimeras were generated by exchanging structural segments between Ara h 2 and Ara h 6. Well-refolded chimeras, as verified by circular dichroism analysis, were then used to determine the epitope specificity of mAbs by performing competitive inhibition of IgG binding. Furthermore, we delineated the contribution of each segment to the overall IgE reactivity of both 2S-albumins by measuring the chimeras' IgE-binding capacity with sera from 21 patients allergic to peanut. We finally assessed chimeras' capacity to trigger mast cell degranulation. RESULTS Configuration of the conformational epitopes was preserved in the chimeras. Mouse IgG mAbs, raised against natural Ara h 6, and polyclonal human IgE antibodies recognized different conformational epitopes distributed all along Ara h 6. In contrast, we identified human IgG mAbs specific to different Ara h 2 linear or conformational epitopes located in all segments except the C-terminal one. The major conformational IgE-binding epitope of Ara h 2 was located in a segment located between residues 33 and 81 that also contains the major linear hydroxyproline-containing epitope. Accordingly, this segment is critical for the capacity of Ara h 2 to induce mast cell degranulation. CONCLUSIONS Chimeric 2S-albumins provide new insights on the conformational IgE-binding epitopes of Ara h 2 and Ara h 6. Proximity of the immunodominant linear and conformational IgE-binding epitopes probably contributes to the high allergenic potency of Ara h 2.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France.
| | - Sarita U Patil
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, the Food Allergy Center, Massachusetts General Hospital for Children, and Harvard Medical School, Boston, Mass
| | - Blanche Guillon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Nicole Lahood
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, the Food Allergy Center, Massachusetts General Hospital for Children, and Harvard Medical School, Boston, Mass
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado-Denver, Aurora, Colo
| | - Karine Adel-Patient
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Hervé Bernard
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| |
Collapse
|
216
|
Prashar P, Swain S, Adhikari N, Aryan P, Singh A, Kwatra M, B P. A novel high-throughput single B-cell cloning platform for isolation and characterization of high-affinity and potent SARS-CoV-2 neutralizing antibodies. Antiviral Res 2022; 203:105349. [PMID: 35640847 PMCID: PMC9142369 DOI: 10.1016/j.antiviral.2022.105349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022]
Abstract
Monoclonal antibodies (mAbs) that are specific to SARS-CoV-2 can be useful in diagnosing, preventing, and treating the coronavirus (COVID-19) illness. Strategies for the high-throughput and rapid isolation of these potent neutralizing antibodies are critical toward the development of therapeutically targeting COVID-19 as well as other infectious diseases. In the present study, a single B-cell cloning method was used to screen the Wuhan-Hu-1 strain of SARS-CoV-2 receptor-binding domain (RBD) specific, high affinity, and neutralizing mAbs from patients' blood samples. An RBD-specific antibody, SAR03, was discovered that showed high binding (ELISA and SPR) and neutralizing activity (competitive ELISA and pseudovirus-based reporter assay) against the Wuhan-Hu-1 strain of SARS-CoV-2. Mechanistic studies on human cells revealed that SAR03 competes with the ACE-2 receptor for binding with the RBD domain (S1 subunit) present in the spike protein of SARS-CoV-2. This study highlights the potential of the single B cell cloning method for the rapid and efficient screening of high-affinity and effective neutralizing antibodies for SARS-CoV-2 and other emerging infectious diseases.
Collapse
Affiliation(s)
- Paritosh Prashar
- Sarsuag Discovery Private Limited, Bengaluru, Karnataka, 560100, India.
| | - Sonali Swain
- Sarsuag Discovery Private Limited, Bengaluru, Karnataka, 560100, India
| | - Nisha Adhikari
- Sarsuag Discovery Private Limited, Bengaluru, Karnataka, 560100, India
| | - Punit Aryan
- Sarsuag Discovery Private Limited, Bengaluru, Karnataka, 560100, India
| | - Anupama Singh
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Mohit Kwatra
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Prabhakar B
- Sarsuag Discovery Private Limited, Bengaluru, Karnataka, 560100, India
| |
Collapse
|
217
|
Khatri K, Richardson CM, Glesner J, Kapingidza AB, Mueller GA, Zhang J, Dolamore C, Vailes LD, Wünschmann S, Peebles RS, Chapman MD, Smith SA, Chruszcz M, Pomés A. Human IgE monoclonal antibody recognition of mite allergen Der p 2 defines structural basis of an epitope for IgE cross-linking and anaphylaxis in vivo. PNAS NEXUS 2022; 1:pgac054. [PMID: 35799831 PMCID: PMC9248284 DOI: 10.1093/pnasnexus/pgac054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/24/2022] [Indexed: 01/28/2023]
Abstract
Immunoglobulin E (IgE) antibody is a critical effector molecule for adaptive allergen-induced immune responses, which affect up to 40% of the population worldwide. Allergens are usually innocuous molecules but induce IgE antibody production in allergic subjects. Allergen cross-linking of IgE bound to its high affinity receptor (FcεRI) on mast cells and basophils triggers release of histamine and other mediators that cause allergic symptoms. Little is known about the direct allergen-IgE antibody interaction due to the polyclonal nature of serum IgE and the low frequency of IgE-producing B cells in blood. Here, we report the X-ray crystal structure of a house dust mite allergen, Der p 2, in complex with Fab of a human IgE monoclonal antibody (mAb) isolated by hybridoma technology using human B cells from an allergic subject. This IgE mAb, 2F10, has the correct pairing of heavy and light chains as it occurs in vivo. Key amino acids forming the IgE epitope on Der p 2 were identified. Mutation of these residues ablated their functional ability to cross-link IgE in a mouse model of passive systemic anaphylaxis. These analyses revealed an important conformational epitope associated with the IgE antibody repertoire to a major mite allergen.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | - Anyway Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cole Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | - R Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
218
|
Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts. Nat Immunol 2022; 23:1076-1085. [PMID: 35761085 PMCID: PMC9276532 DOI: 10.1038/s41590-022-01230-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022]
Abstract
Memory B cells persist for a lifetime and rapidly differentiate into antibody-producing plasmablasts and plasma cells upon antigen re-encounter. The clonal relationship and evolution of memory B cells and circulating plasmablasts is not well understood. Using single-cell sequencing combined with isolation of specific antibodies, we found that in two healthy donors, the memory B cell repertoire was dominated by large IgM, IgA and IgG2 clonal families, whereas IgG1 families, including those specific for recall antigens, were of small size. Analysis of multiyear samples demonstrated stability of memory B cell clonal families and revealed that a large fraction of recently generated plasmablasts was derived from long-term memory B cell families and was found recurrently. Collectively, this study provides a systematic description of the structure, stability and dynamics of the human memory B cell pool and suggests that memory B cells may be active at any time point in the generation of plasmablasts.
Collapse
|
219
|
Banerjee A, Huang J, Rush SA, Murray J, Gingerich AD, Royer F, Hsieh CL, Tripp RA, McLellan JS, Mousa JJ. Structural basis for ultrapotent antibody-mediated neutralization of human metapneumovirus. Proc Natl Acad Sci U S A 2022; 119:e2203326119. [PMID: 35696580 PMCID: PMC9231621 DOI: 10.1073/pnas.2203326119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/therapeutic use
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Cryoelectron Microscopy
- Epitopes/immunology
- Humans
- Metapneumovirus/immunology
- Mice
- Paramyxoviridae Infections/prevention & control
- Primary Prevention
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- Avik Banerjee
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jiachen Huang
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Fredejah Royer
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602
| |
Collapse
|
220
|
Abstract
We present a protocol to localize T cell receptor clones using the Visium spatial transcriptomics platform. This approach permits simultaneous localization of both gene expression and T cell clonotypes in situ within tissue sections. T cell receptor sequences identified by this protocol are readily recapitulated by single-cell sequencing. This technique enables detailed studies of the spatial organization of the human T cell repertoire, such as the localization of infiltrating T cell clones within the tumor microenvironment. For complete details on the use and execution of this protocol, please refer to Sudmeier et al. (2022).
Collapse
Affiliation(s)
- William H. Hudson
- Emory Vaccine Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lisa J. Sudmeier
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
221
|
Rituximab abrogates aquaporin-4-specific germinal center activity in patients with neuromyelitis optica spectrum disorders. Proc Natl Acad Sci U S A 2022; 119:e2121804119. [PMID: 35666871 PMCID: PMC9214492 DOI: 10.1073/pnas.2121804119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By studying paired blood and deep cervical lymph node samples from patients with neuromyelitis optica spectrum disorders, our data provide evidence for a germinal center–based generation of aquaporin-4 antibodies. Frequent serum aquaporin-4 immunoglobulin Ms (IgMs) and shifts in IgG subclasses were observed alongside preferential synthesis of aquaporin-4 IgGs and aquaporin-4–reactive B cells within lymph nodes. Both intranodal synthesis of aquaporin-4 antibodies and intranodal aquaporin-4–reactive B cells were robustly eliminated with rituximab administration. This study systematically explores lymph nodes that drain the central nervous system (CNS) in patients with CNS autoimmunity and offers a potential explanation as to why rituximab is clinically highly efficacious in autoantibody-mediated diseases despite no accompanying reduction in serum autoantibody levels. Neuromyelitis optica spectrum disorders (NMOSDs) are caused by immunoglobulin G (IgG) autoantibodies directed against the water channel aquaporin-4 (AQP4). In NMOSDs, discrete clinical relapses lead to disability and are robustly prevented by the anti-CD20 therapeutic rituximab; however, its mechanism of action in autoantibody-mediated disorders remains poorly understood. We hypothesized that AQP4-IgG production in germinal centers (GCs) was a core feature of NMOSDs and could be terminated by rituximab. To investigate this directly, deep cervical lymph node (dCLN) aspirates (n = 36) and blood (n = 406) were studied in a total of 63 NMOSD patients. Clinical relapses were associated with AQP4-IgM generation or shifts in AQP4-IgG subclasses (odds ratio = 6.0; range of 3.3 to 10.8; P < 0.0001), features consistent with GC activity. From seven dCLN aspirates of patients not administered rituximab, AQP4-IgGs were detected alongside specific intranodal synthesis of AQP4-IgG. AQP4-reactive B cells were isolated from unmutated naive and mutated memory populations in both blood and dCLNs. After rituximab administration, fewer clinical relapses (annual relapse rate of 0.79 to 0; P < 0.001) were accompanied by marked reductions in both AQP4-IgG (fourfold; P = 0.004) and intranodal B cells (430-fold; P < 0.0001) from 11 dCLNs. Our findings implicate ongoing GC activity as a rituximab-sensitive driver of AQP4 antibody production. They may explain rituximab’s clinical efficacy in several autoantibody-mediated diseases and highlight the potential value of direct GC measurements across autoimmune conditions.
Collapse
|
222
|
Andreano E, Paciello I, Marchese S, Donnici L, Pierleoni G, Piccini G, Manganaro N, Pantano E, Abbiento V, Pileri P, Benincasa L, Giglioli G, Leonardi M, Maes P, De Santi C, Sala C, Montomoli E, De Francesco R, Rappuoli R. Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees. Nat Commun 2022; 13:3375. [PMID: 35697673 PMCID: PMC9189263 DOI: 10.1038/s41467-022-31115-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses. To answer this question, 276 neutralizing monoclonal antibodies (nAbs), previously isolated from seronegative and seropositive donors vaccinated with BNT162b2 mRNA vaccine, were tested for neutralization against the Omicron BA.1 and BA.2 variants, and SARS-CoV-1 virus. Only 14.2, 19.9 and 4.0% of tested antibodies neutralize BA.1, BA.2, and SARS-CoV-1 respectively. These nAbs recognize mainly the SARS-CoV-2 receptor binding domain (RBD) and target Class 3 and Class 4 epitope regions on the SARS-CoV-2 spike protein. Interestingly, around 50% of BA.2 nAbs did not neutralize BA.1 and among these, several targeted the NTD. Cross-protective antibodies derive from a variety of germlines, the most frequents of which were the IGHV1-58;IGHJ3-1, IGHV2-5;IGHJ4-1 and IGHV1-69;IGHV4-1. Only 15.6, 20.3 and 7.8% of predominant gene-derived nAbs elicited against the original Wuhan virus cross-neutralize Omicron BA.1, BA.2 and SARS-CoV-1 respectively. Our data provide evidence, at molecular level, of the presence of cross-neutralizing antibodies induced by vaccination and map conserved epitopes on the S protein that can inform vaccine design.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Giulio Pierleoni
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
| | | | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | - Piet Maes
- KU Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Emanuele Montomoli
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Raffaele De Francesco
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| |
Collapse
|
223
|
Gadush MV, Sautto GA, Chandrasekaran H, Bensussan A, Ross TM, Ippolito GC, Person MD. Template-Assisted De Novo Sequencing of SARS-CoV-2 and Influenza Monoclonal Antibodies by Mass Spectrometry. J Proteome Res 2022; 21:1616-1627. [PMID: 35653804 DOI: 10.1021/acs.jproteome.1c00913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.
Collapse
Affiliation(s)
- Michelle V Gadush
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
| | - Hamssika Chandrasekaran
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alena Bensussan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maria D Person
- Center for Biomedical Research Support, Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
224
|
He WT, Musharrafieh R, Song G, Dueker K, Tse LV, Martinez DR, Schäfer A, Callaghan S, Yong P, Beutler N, Torres JL, Volk RM, Zhou P, Yuan M, Liu H, Anzanello F, Capozzola T, Parren M, Garcia E, Rawlings SA, Smith DM, Wilson IA, Safonova Y, Ward AB, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nat Immunol 2022; 23:960-970. [PMID: 35654851 PMCID: PMC10083051 DOI: 10.1038/s41590-022-01222-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Reid M Volk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephen A Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Departments of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
225
|
Yélamos J. Current innovative engineered antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:1-43. [PMID: 35777861 DOI: 10.1016/bs.ircmb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibody engineering has developed very intensively since the invention of the hybridoma technology in 1975, and it now can generate therapeutic agents with high specificity and reduced adverse effects. Indeed, antibodies have become one of the most innovative therapeutic agents in recent years, with some landing in the top 10 bestselling pharmaceutical drugs. New antibodies are being approved every year, in different formats and for treating various illnesses, including cancer, autoimmune inflammatory diseases, metabolic diseases and infectious diseases. In this review, I summarize current progress in innovative engineered antibodies. Overall, this progress has led to the approval by regulatory authorities of more than 100 antibody-based molecules, with many others at various stages of clinical development, indicating the high growth potential of the field.
Collapse
Affiliation(s)
- José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Immunology Unit, Department of Pathology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
226
|
Wang S, Sun H, Zhang Y, Yuan L, Wang Y, Zhang T, Wang S, Zhang J, Yu H, Xiong H, Tang Z, Liu L, Huang Y, Chen X, Li T, Ying D, Liu C, Chen Z, Yuan Q, Zhang J, Cheng T, Li S, Guan Y, Zheng Q, Zheng Z, Xia N. Three SARS-CoV-2 antibodies provide broad and synergistic neutralization against variants of concern, including Omicron. Cell Rep 2022; 39:110862. [PMID: 35594869 PMCID: PMC9080080 DOI: 10.1016/j.celrep.2022.110862] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/05/2022] Open
Abstract
The rapidly spreading Omicron variant is highly resistant to vaccines, convalescent sera, and neutralizing antibodies (nAbs), highlighting the urgent need for potent therapeutic nAbs. Here, a panel of human nAbs from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients show diverse neutralization against Omicron, of which XMA01 and XMA04 maintain nanomolar affinities and excellent neutralization (half maximal inhibitory concentration [IC50]: ∼20 ng/mL). nAb XMA09 shows weak but unattenuated neutralization against all variants of concern (VOCs) as well as SARS-CoV. Structural analysis reveals that the above three antibodies could synergistically bind to the receptor-binding domains (RBDs) of both wild-type and Omicron spikes and defines the critical determinants for nAb-mediated broad neutralizations. Three nAbs confer synergistic neutralization against Omicron, resulting from the inter-antibody interaction between XMA04 and XMA01(or XMA09). Furthermore, the XMA01/XMA04 cocktail provides synergistic protection against Beta and Omicron variant infections in hamsters. In summary, our results provide insights for the rational design of antibody cocktail therapeutics or universal vaccines against Omicron.
Collapse
Affiliation(s)
- Siling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yizhen Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shaojuan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinlei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiuting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zihao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen 361102, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong 999077, China
- Joint Institute of Virology (Shantou University and University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou 515063, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen 361102, China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
227
|
de Rutte J, Dimatteo R, Archang MM, van Zee M, Koo D, Lee S, Sharrow AC, Krohl PJ, Mellody M, Zhu S, Eichenbaum JV, Kizerwetter M, Udani S, Ha K, Willson RC, Bertozzi AL, Spangler J, Damoiseaux R, Di Carlo D. Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting. ACS NANO 2022; 16:7242-7257. [PMID: 35324146 PMCID: PMC9869715 DOI: 10.1021/acsnano.1c11420] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Techniques to analyze and sort single cells based on functional outputs, such as secreted products, have the potential to transform our understanding of cellular biology as well as accelerate the development of next-generation cell and antibody therapies. However, secreted molecules rapidly diffuse away from cells, and analysis of these products requires specialized equipment and expertise to compartmentalize individual cells and capture their secretions. Herein, we describe methods to fabricate hydrogel-based chemically functionalized microcontainers, which we call nanovials, and demonstrate their use for sorting single viable cells based on their secreted products at high-throughput using only commonly accessible laboratory infrastructure. These nanovials act as solid supports that facilitate attachment of a variety of adherent and suspension cell types, partition uniform aqueous compartments, and capture secreted proteins. Solutions can be exchanged around nanovials to perform fluorescence immunoassays on secreted proteins. Using this platform and commercial flow sorters, we demonstrate high-throughput screening of stably and transiently transfected producer cells based on relative IgG production. Chinese hamster ovary cells sorted based on IgG production regrew and maintained a high secretion phenotype over at least a week, yielding >40% increase in bulk IgG production rates. We also sorted hybridomas and B lymphocytes based on antigen-specific antibody production. Hybridoma cells secreting an antihen egg lysozyme antibody were recovered from background cells, enriching a population of ∼4% prevalence to >90% following sorting. Leveraging the high-speed sorting capabilities of standard sorters, we sorted >1 million events in <1 h. IgG secreting mouse B cells were also sorted and enriched based on antigen-specific binding. Successful sorting of antibody-secreting B cells combined with the ability to perform single-cell RT-PCR to recover sequence information suggests the potential to perform antibody discovery workflows. The reported nanovials can be easily stored and distributed among researchers, democratizing access to high-throughput functional cell screening.
Collapse
Affiliation(s)
- Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Partillion Bioscience Corporation, Los Angeles, CA 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Maani M. Archang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Mark van Zee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Allison C. Sharrow
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Mellody
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sheldon Zhu
- Partillion Bioscience Corporation, Los Angeles, CA 90095, USA
| | - James V. Eichenbaum
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Monika Kizerwetter
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Kyung Ha
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Andrea L. Bertozzi
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
228
|
Casasnovas JM, Margolles Y, Noriega MA, Guzmán M, Arranz R, Melero R, Casanova M, Corbera JA, Jiménez-de-Oya N, Gastaminza P, Garaigorta U, Saiz JC, Martín-Acebes MÁ, Fernández LÁ. Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Front Immunol 2022; 13:863831. [PMID: 35547740 PMCID: PMC9082315 DOI: 10.3389/fimmu.2022.863831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.
Collapse
Affiliation(s)
- José M Casasnovas
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Yago Margolles
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - María A Noriega
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - María Guzmán
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Rocío Arranz
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Roberto Melero
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Mercedes Casanova
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Arucas, Arucas, Spain
| | - Nereida Jiménez-de-Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Pablo Gastaminza
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Urtzi Garaigorta
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Miguel Ángel Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA, CSIC), Madrid, Spain
| | - Luis Ángel Fernández
- Departments of Macromolecule Structure, Microbial Biotechnology, and Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
229
|
Heydarchi B, Fong DS, Gao H, Salazar-Quiroz NA, Edwards JM, Gonelli CA, Grimley S, Aktepe TE, Mackenzie C, Wales WJ, van Gils MJ, Cupo A, Rouiller I, Gooley PR, Moore JP, Sanders RW, Montefiori D, Sethi A, Purcell DFJ. Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Rep Med 2022; 3:100635. [PMID: 35584627 PMCID: PMC9133467 DOI: 10.1016/j.xcrm.2022.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccination of cows has elicited broadly neutralizing antibodies (bNAbs). In this study, monoclonal antibodies (mAbs) are isolated from a clade A (KNH1144 and BG505) vaccinated cow using a heterologous clade B antigen (AD8). CD4 binding site (CD4bs) bNAb (MEL-1872) is more potent than a majority of CD4bs bNAbs isolated so far. MEL-1872 mAb with CDRH3 of 57 amino acids shows more potency (geometric mean half-maximal inhibitory concentration [IC50]: 0.009 μg/mL; breadth: 66%) than VRC01 against clade B viruses (29-fold) and than CHO1-31 against tested clade A viruses (21-fold). It also shows more breadth and potency than NC-Cow1, the only other reported anti-HIV-1 bovine bNAb, which has 60% breadth with geometric mean IC50 of 0.090 μg/mL in this study. Using successive different stable-structured SOSIP trimers in bovines can elicit bNAbs focusing on epitopes ubiquitous across subtypes. Furthermore, the cross-clade selection strategy also results in ultra-potent bNAbs. Sequential vaccine with different SOSIP trimers could elicit bNAbs Cross-clade B-cell-sorting probe could select ultra-potent bNAbs Bovine CD4bs monoclonal antibody neutralizes HIV-1 isolates potently
Collapse
Affiliation(s)
- Behnaz Heydarchi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danielle S Fong
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Natalia A Salazar-Quiroz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jack M Edwards
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A Gonelli
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Samantha Grimley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Turgut E Aktepe
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - William J Wales
- Dairy Production Sciences, Victorian Department of Jobs, Precincts and Resources, Ellinbank, VIC, Australia; Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia; Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Parkville, VIC, Australia
| | - Paul R Gooley
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
230
|
Takano T, Morikawa M, Adachi Y, Kabasawa K, Sax N, Moriyama S, Sun L, Isogawa M, Nishiyama A, Onodera T, Terahara K, Tonouchi K, Nishimura M, Tomii K, Yamashita K, Matsumura T, Shinkai M, Takahashi Y. Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine. Cell Rep Med 2022; 3:100631. [PMID: 35545084 PMCID: PMC9023335 DOI: 10.1016/j.xcrm.2022.100631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.
Collapse
Affiliation(s)
- Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Nicolas Sax
- KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan; AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), Tokyo 152-8550, Japan
| | | | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
231
|
Hopp CS, Skinner J, Anzick SL, Tipton CM, Peterson ME, Li S, Doumbo S, Kayentao K, Ongoiba A, Martens C, Traore B, Crompton PD. Atypical B cells up-regulate costimulatory molecules during malaria and secrete antibodies with T follicular helper cell support. Sci Immunol 2022; 7:eabn1250. [PMID: 35559666 PMCID: PMC11132112 DOI: 10.1126/sciimmunol.abn1250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several infectious and autoimmune diseases are associated with an expansion of CD21-CD27- atypical B cells (atBCs) that up-regulate inhibitory receptors and exhibit altered B cell receptor (BCR) signaling. The function of atBCs remains unclear, and few studies have investigated the biology of pathogen-specific atBCs during acute infection. Here, we performed longitudinal flow cytometry analyses and RNA sequencing of Plasmodium falciparum (Pf)-specific B cells isolated from study participants before and shortly after febrile malaria, with simultaneous analysis of influenza hemagglutinin (HA)-specific B cells as a comparator. At the healthy baseline before the malaria season, individuals had similar frequencies of Pf- and HA-specific atBCs that did not differ proportionally from atBCs within the total B cell population. BCR sequencing identified clonal relationships between Pf-specific atBCs, activated B cells (actBCs), and classical memory B cells (MBCs) and revealed comparable degrees of somatic hypermutation. At the healthy baseline, Pf-specific atBCs were transcriptionally distinct from Pf-specific actBCs and classical MBCs. In response to acute febrile malaria, Pf-specific atBCs and actBCs up-regulated similar intracellular signaling cascades. Pf-specific atBCs showed activation of pathways involved in differentiation into antibody-secreting cells and up-regulation of molecules that mediate B-T cell interactions, suggesting that atBCs respond to T follicular helper (TFH) cells. In the presence of TFH cells and staphylococcal enterotoxin B, atBCs of malaria-exposed individuals differentiated into CD38+ antibody-secreting cells in vitro, suggesting that atBCs may actively contribute to humoral immunity to infectious pathogens.
Collapse
Affiliation(s)
- Christine S. Hopp
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Sarah L. Anzick
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Christopher M. Tipton
- Lowance Center for Human Immunology, Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Mary E. Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, USA
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| |
Collapse
|
232
|
Fox A, Liu X, Zolla-Pazner S, Powell RL. Impact of IgG Isotype on the Induction of Antibody-Dependent Cellular Phagocytosis of HIV by Human Milk Leukocytes. Front Immunol 2022; 13:831767. [PMID: 35592337 PMCID: PMC9110811 DOI: 10.3389/fimmu.2022.831767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 100,000 mother-to-child transmission (MTCT) events of HIV via human milk feeding occur each year. However, only about 15% of infants milk-fed by untreated HIV+ mothers become infected, suggesting a protective effect of the milk itself. Infants ingest 105-108 maternal leukocytes daily via milk, which remain functional beyond ingestion. Such function may be elicited by maternal milk antibody (Ab). Though IgA is dominant in milk, most HIV-specific milk Abs are of the IgG subclass, highlighting the importance of investigating the function of each IgG isotype in the milk context. Though Ab effector function mediated by the constant (Fc) domain via interaction with Fc Receptors (FcRs), such as Ab-dependent cellular phagocytosis (ADCP), are critical in protecting against HIV infection, ADCP is largely unexplored as it relates to mitigation of MTCT. Presently we report the ADCP activity of milk leukocytes against HIV particles and immune complexes (ICs), using 57 unique samples from 34 women, elicited by IgG1/2/3/4 of monoclonal (m)Ab 246-D. Granulocyte ADCP of HIV was most potent compared to other phagocytes when elicited by IgG1/3/4. IgG1/3 activated granulocytes similarly, exhibiting 1.6x-4.4x greater activity compared to IgG2/4, and a preference for virus compared to ICs. Notably, CD16- monocyte ADCP of a given target were unaffected by isotype, and CD16+ monocytes were poorly stimulated by IgG1. IgG2/4 elicited potent IC ADCP, and in terms of total leukocyte IC ADCP, IgG4 and IgG3 exhibited similar function, with IgG4 eliciting 1.6x-2.1x greater activity compared to IgG1/IgG2, and CD16+ monocytes most stimulated by IgG2. These data contribute to a more comprehensive understanding of Fc-mediated functionality of milk leukocytes, which is critical in order to develop therapeutic approaches to eliminating this route of MTCT, including mucosal administration of mAbs and/or a maternal vaccination aimed to elicit a potent milk Ab response.
Collapse
Affiliation(s)
| | | | | | - Rebecca L. Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
233
|
Seow J, Graham C, Hallett SR, Lechmere T, Maguire TJA, Huettner I, Cox D, Khan H, Pickering S, Roberts R, Waters A, Ward CC, Mant C, Pitcher MJ, Spencer J, Fox J, Malim MH, Doores KJ. ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Rep 2022; 39:110757. [PMID: 35477023 PMCID: PMC9010245 DOI: 10.1016/j.celrep.2022.110757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Furthermore, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha, Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2 infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors 1-2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited antibody response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sadie R Hallett
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Cox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Anele Waters
- Harrison Wing, Guy's and St Thomas' NHS Trust, London, UK
| | - Christopher C Ward
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Harrison Wing, Guy's and St Thomas' NHS Trust, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
234
|
Peter AS, Roth E, Schulz SR, Fraedrich K, Steinmetz T, Damm D, Hauke M, Richel E, Mueller‐Schmucker S, Habenicht K, Eberlein V, Issmail L, Uhlig N, Dolles S, Grüner E, Peterhoff D, Ciesek S, Hoffmann M, Pöhlmann S, McKay PF, Shattock RJ, Wölfel R, Socher E, Wagner R, Eichler J, Sticht H, Schuh W, Neipel F, Ensser A, Mielenz D, Tenbusch M, Winkler TH, Grunwald T, Überla K, Jäck H. A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS-CoV-2 infection model. Eur J Immunol 2022; 52:770-783. [PMID: 34355795 PMCID: PMC8420377 DOI: 10.1002/eji.202149374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.
Collapse
|
235
|
HIV-2 Neutralization Sensitivity in Relation to Co-Receptor Entry Pathways and Env Motifs. Int J Mol Sci 2022; 23:ijms23094766. [PMID: 35563157 PMCID: PMC9101540 DOI: 10.3390/ijms23094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-2, compared to HIV-1, elicits potent and broadly neutralizing antibodies, and uses a broad range of co-receptors. However, both sensitivity to neutralization and breadth of co-receptor use varies between HIV-2 isolates, and the molecular background is still not fully understood. Thus, in the current study, we have deciphered relationships between HIV-2 neutralization sensitivity, co-receptor use and viral envelope glycoprotein (Env) molecular motifs. A panel of primary HIV-2 isolates, with predefined use of co-receptors, was assessed for neutralization sensitivity using a set of HIV-2 Env-directed monoclonal antibodies and co-receptor indicator cell lines. Neutralization sensitivity of the isolates was analysed in relation target cell co-receptor expression, in addition to amino acid motifs and predicted structures of Env regions. Results showed that HIV-2 isolates were more resistant to neutralizing antibodies when entering target cells via the alternative co-receptor GPR15, as compared to CCR5. A similar pattern was noted for isolates using the alternative co-receptor CXCR6. Sensitivity to neutralizing antibodies appeared also to be linked to specific Env motifs in V1/V2 and C3 regions. Our findings suggest that HIV-2 sensitivity to neutralization depends both on which co-receptor is used for cell entry and on specific Env motifs. This study highlights the multifactorial mechanisms behind HIV-2 neutralization sensitivity.
Collapse
|
236
|
Du Y, Zhang S, Zhang Z, Miah KM, Wei P, Zhang L, Zhu Y, Li Z, Ye F, Gill DR, Hyde SC, Wang Y, Zhao J. Intranasal Lentiviral Vector-Mediated Antibody Delivery Confers Reduction of SARS-CoV-2 Infection in Elderly and Immunocompromised Mice. Front Immunol 2022; 13:819058. [PMID: 35529866 PMCID: PMC9072863 DOI: 10.3389/fimmu.2022.819058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/17/2022] [Indexed: 01/01/2023] Open
Abstract
Vaccines for COVID-19 are now a crucial public health need, but the degree of protection provided by conventional vaccinations for individuals with compromised immune systems is unclear. The use of viral vectors to express neutralizing monoclonal antibodies (mAbs) in the lung is an alternative approach that does not wholly depend on individuals having intact immune systems and responses. Here, we identified an anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibody, NC0321, which can efficiently neutralize a range of SARS-CoV-2 variants, including alpha, beta, delta, and eta. Both prophylactic and therapeutic NC0321 treatments effectively protected mice from SARS-CoV-2 infection. Notably, we adopted viral vector-mediated delivery of NC0321 IgG1 as an attractive approach to prevent SARS-CoV-2 infection. The NC0321 IgG1 expression in the proximal airway, expressed by a single direct in-vivo intranasal (I.N.) administration of a self-inactivating and recombinant lentiviral vector (rSIV.F/HN-NC0321), can protect young, elderly, and immunocompromised mice against mouse-adapted SARS-CoV-2 surrogate challenge. Long-term monitoring indicated that rSIV.F/HN-NC0321 mediated robust IgG expression throughout the airway of young and SCID mice, importantly, no statistical difference in the NC0321 expression between young and SCID mice was observed. A single I.N. dose of rSIV.F/HN-NC0321 30 or 180 days prior to SARS-CoV-2 challenge significantly reduced lung SARS-CoV-2 titers in an Ad5-hACE2-transduced mouse model, reconfirming that this vectored immunoprophylaxis strategy could be useful, especially for those individuals who cannot gain effective immunity from existing vaccines, and could potentially prevent clinical sequelae.
Collapse
Affiliation(s)
- Yue Du
- Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kamran M. Miah
- Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, China
| | - Yuhui Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Deborah R. Gill
- Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen C. Hyde
- Gene Medicine Research Group, Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| |
Collapse
|
237
|
Cheung CSF, Gorman J, Andrews SF, Rawi R, Reveiz M, Shen CH, Wang Y, Harris DR, Nazzari AF, Olia AS, Raab J, Teng IT, Verardi R, Wang S, Yang Y, Chuang GY, McDermott AB, Zhou T, Kwong PD. Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure 2022; 30:993-1003.e6. [PMID: 35489332 DOI: 10.1016/j.str.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Several influenza antibodies with broad group 2 neutralization have recently been isolated. Here, we analyze the structure, class, and binding of one of these antibodies from an H7N9 vaccine trial, 315-19-1D12. The cryo-EM structure of 315-19-1D12 Fab in complex with the hemagglutinin (HA) trimer revealed the antibody to recognize the helix A region of the HA stem, at the supersite of vulnerability recognized by group 1-specific and by cross-group-neutralizing antibodies. 315-19-1D12 was derived from HV1-2 and KV2-28 genes and appeared to form a new antibody class. Bioinformatic analysis indicated its group 2 neutralization specificity to be a consequence of four key residue positions. We specifically tested the impact of the group 1-specific N33 glycan, which decreased but did not abolish group 2 binding of 315-19-1D12. Overall, this study highlights the recognition of a broad group 2-neutralizing antibody, revealing unexpected diversity in neutralization specificity for antibodies that recognize the HA stem supersite.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mateo Reveiz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
238
|
Dacon C, Tucker C, Peng L, Lee CCD, Lin TH, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo CW, Kosik I, Hu Z, Zhao M, Mohan D, Cooper A, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan J. Broadly neutralizing antibodies target the coronavirus fusion peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.11.487879. [PMID: 35441178 PMCID: PMC9016638 DOI: 10.1101/2022.04.11.487879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. Two antibodies, COV44-62 and COV44-79, broadly neutralize a range of alpha and beta coronaviruses, including SARS-CoV-2 Omicron subvariants BA.1 and BA.2, albeit with lower potency than RBD-specific antibodies. In crystal structures of Fabs COV44-62 and COV44-79 with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine at the S2' cleavage site. Importantly, COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings identify the fusion peptide as the target of the broadest neutralizing antibodies in an epitope-agnostic screen, highlighting this site as a candidate for next-generation coronavirus vaccine development. One-Sentence Summary Rare monoclonal antibodies from COVID-19 convalescent individuals broadly neutralize coronaviruses by targeting the fusion peptide.
Collapse
Affiliation(s)
- Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Cong
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Rockville, MD 20852, USA
| | - Divya Mohan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrew Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Saurabh Dixit
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin Kollins
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Louis Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Donna Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Russell Byrum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sanae Lembirik
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rona S. Weinberg
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- B Cell Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connie Schmaljohn
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael R. Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
239
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
240
|
Sokal A, Broketa M, Barba-Spaeth G, Meola A, Fernández I, Fourati S, Azzaoui I, de La Selle A, Vandenberghe A, Roeser A, Bouvier-Alias M, Crickx E, Languille L, Michel M, Godeau B, Gallien S, Melica G, Nguyen Y, Zarrouk V, Canoui-Poitrine F, Noizat-Pirenne F, Megret J, Pawlotsky JM, Fillatreau S, Simon-Lorière E, Weill JC, Reynaud CA, Rey FA, Bruhns P, Chappert P, Mahévas M. Analysis of mRNA vaccination-elicited RBD-specific memory B cells reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant. Immunity 2022; 55:1096-1104.e4. [PMID: 35483354 PMCID: PMC8986479 DOI: 10.1016/j.immuni.2022.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
The SARS-CoV-2 Omicron variant can escape neutralization by vaccine-elicited and convalescent antibodies. Memory B cells (MBCs) represent another layer of protection against SARS-CoV-2, as they persist after infection and vaccination and improve their affinity. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant remains unclear. We assessed the affinity and neutralization potency against the Omicron variant of several hundred naturally expressed MBC-derived monoclonal IgG antibodies from vaccinated COVID-19-recovered and -naive individuals. Compared with other variants of concern, Omicron evaded recognition by a larger proportion of MBC-derived antibodies, with only 30% retaining high affinity against the Omicron RBD, and the reduction in neutralization potency was even more pronounced. Nonetheless, neutralizing MBC clones could be found in all the analyzed individuals. Therefore, despite the strong immune escape potential of the Omicron variant, these results suggest that the MBC repertoire generated by mRNA vaccines still provides some protection against the Omicron variant in vaccinated individuals.
Collapse
|
241
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
242
|
Weinstein JB, Bates TA, Leier HC, McBride SK, Barklis E, Tafesse FG. A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants. iScience 2022; 25:103960. [PMID: 35224467 PMCID: PMC8863326 DOI: 10.1016/j.isci.2022.103960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
The spike glycoprotein of SARS-CoV-2 engages with human ACE 2 to facilitate infection. Here, we describe an alpaca-derived heavy chain antibody fragment (VHH), saRBD-1, that disrupts this interaction by competitively binding to the spike protein receptor-binding domain. We further generated an engineered bivalent nanobody construct engineered by a flexible linker and a dimeric Fc conjugated nanobody construct. Both multivalent nanobodies blocked infection at picomolar concentrations and demonstrated no loss of potency against emerging variants of concern including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Epsilon (B.1.427/429), and Delta (B.1.617.2). saRBD-1 tolerates elevated temperature, freeze-drying, and nebulization, making it an excellent candidate for further development into a therapeutic approach for COVID-19.
Collapse
Affiliation(s)
- Jules B. Weinstein
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Timothy A. Bates
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Hans C. Leier
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Savannah K. McBride
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Fikadu G. Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
243
|
Ercanoglu MS, Gieselmann L, Dähling S, Poopalasingam N, Detmer S, Koch M, Korenkov M, Halwe S, Klüver M, Di Cristanziano V, Janicki H, Schlotz M, Worczinski J, Gathof B, Gruell H, Zehner M, Becker S, Vanshylla K, Kreer C, Klein F. No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. iScience 2022; 25:103951. [PMID: 35224466 PMCID: PMC8857777 DOI: 10.1016/j.isci.2022.103951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Preexisting immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. The presence and clinical relevance of a preexisting B cell immunity remain to be fully elucidated. Here, we provide a detailed analysis of the B cell immunity to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated SARS-CoV-2 humoral immunity in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG samples for binding and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells at a single cell level and generated and tested 158 monoclonal antibodies. None of these antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of competent preexisting antibody and B cell immunity against SARS-CoV-2 in unexposed adults. Comprehensive analysis of the B cell response to SARS-CoV-2 in pre-pandemic samples No substantial plasma and IgG reactivity against SARS-CoV-2 MAbs isolated from pre-pandemic samples showed no SARS-CoV-2 neutralizing activity No indication of competent preexisting B cell immunity against SARS-CoV-2
Collapse
Affiliation(s)
- Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nareshkumar Poopalasingam
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Susanne Detmer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michael Klüver
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Veronica Di Cristanziano
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Johanna Worczinski
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35042 Marburg, Germany.,German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
244
|
Milligan JC, Davis CW, Yu X, Ilinykh PA, Huang K, Halfmann PJ, Cross RW, Borisevich V, Agans KN, Geisbert JB, Chennareddy C, Goff AJ, Piper AE, Hui S, Shaffer KCL, Buck T, Heinrich ML, Branco LM, Crozier I, Holbrook MR, Kuhn JH, Kawaoka Y, Glass PJ, Bukreyev A, Geisbert TW, Worwa G, Ahmed R, Saphire EO. Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell 2022; 185:995-1007.e18. [PMID: 35303429 PMCID: PMC10204903 DOI: 10.1016/j.cell.2022.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.
Collapse
Affiliation(s)
- Jacob C Milligan
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Robert W Cross
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N Agans
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Arthur J Goff
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Sean Hui
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kelly C L Shaffer
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA; Department of Microbiology and Immunology, Division of Virology, Institute of Medical Science, Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Pamela J Glass
- Virology Division, United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD 21702, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, Galveston, TX, 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
245
|
Mittler E, Wec AZ, Tynell J, Guardado-Calvo P, Wigren-Byström J, Polanco LC, O’Brien CM, Slough MM, Abelson DM, Serris A, Sakharkar M, Pehau-Arnaudet G, Bakken RR, Geoghegan JC, Jangra RK, Keller M, Zeitlin L, Vapalahti O, Ulrich RG, Bornholdt ZA, Ahlm C, Rey FA, Dye JM, Bradfute SB, Strandin T, Herbert AS, Forsell MN, Walker LM, Chandran K. Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Sci Transl Med 2022; 14:eabl5399. [PMID: 35294259 PMCID: PMC9805701 DOI: 10.1126/scitranslmed.abl5399] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Janne Tynell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Alexandra Serris
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Gerard Pehau-Arnaudet
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - Russell R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc.; San Diego, CA 92121, USA
| | - Olli Vapalahti
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Veterinary Biosciences, Veterinary Faculty, University of Helsinki; Helsinki, Finland
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany.,Deutsches Zentrum für Infektionsforschung, Partner site Hamburg-Lübeck-Borstel-Riems; Greifswald-Insel Riems, Germany
| | | | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden
| | - Felix A. Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | - Steven B. Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal Medicine; Albuquerque, NM 87131, USA
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Mattias N.E. Forsell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Laura M. Walker
- Adimab, LLC; Lebanon, NH 03766, USA.,Adagio Therapeutics, Inc.; Waltham, MA 02451, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| |
Collapse
|
246
|
Development and Validation of a Competitive ELISA Based on Bovine Monoclonal Antibodies for the Detection of Neutralizing Antibodies against Foot-and-Mouth Disease Virus Serotype A. J Clin Microbiol 2022; 60:e0214221. [PMID: 35254106 DOI: 10.1128/jcm.02142-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of neutralizing antibodies in vaccinated animals is directly related to their level of protection against a virus challenge. The virus neutralization test (VNT) is a "gold standard" method for detecting neutralizing antibodies against foot-and-mouth disease virus (FMDV). However, VNT requires high-containment facilities that can handle live viruses and is not suitable for large-scale serological surveillance. In this study, a bovine broadly neutralizing monoclonal antibody (W145) against FMDV serotype A was successfully produced using fluorescence-based single-B-cell antibody technology. Using biotinylated W145 as a detector antibody and another bovine cross-reactive monoclonal antibody, E32, which was produced previously as a capture antibody, a competitive enzyme-linked immunosorbent assay for the detection of neutralizing antibodies (NAC-ELISA) against FMDV serotype A was developed. The specificity and sensitivity of the assay were evaluated to be 99.04% and 100%, respectively. A statistically significant correlation (r = 0.9334, P < 0.0001) was observed between the NAC-ELISA titers and the VNT titers, suggesting that the NAC-ELISA could detect neutralizing antibodies against FMDV serotype A and could be used to evaluate protective immunity.
Collapse
|
247
|
Lorin V, Fernández I, Masse-Ranson G, Bouvin-Pley M, Molinos-Albert LM, Planchais C, Hieu T, Péhau-Arnaudet G, Hrebík D, Girelli-Zubani G, Fiquet O, Guivel-Benhassine F, Sanders RW, Walker BD, Schwartz O, Scheid JF, Dimitrov JD, Plevka P, Braibant M, Seaman MS, Bontems F, Di Santo JP, Rey FA, Mouquet H. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. J Exp Med 2022; 219:213042. [PMID: 35230385 PMCID: PMC8932546 DOI: 10.1084/jem.20212045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.
Collapse
Affiliation(s)
- Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Ignacio Fernández
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Guillemette Masse-Ranson
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Mélanie Bouvin-Pley
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | - Luis M Molinos-Albert
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| | - Gérard Péhau-Arnaudet
- Imagopole, Plate-Forme de Microscopie Ultrastructurale and UMR 3528, Institut Pasteur, Paris, France
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Giulia Girelli-Zubani
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Oriane Fiquet
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Florence Guivel-Benhassine
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Olivier Schwartz
- Centre national de la recherche scientifique URA3015, Paris, France.,Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martine Braibant
- Université de Tours, Institut national de la santé et de la recherche médicale U1259, Tours, France
| | | | - François Bontems
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Institut de Chimie des Substances Naturelles, Centre national de la recherche scientifique, Université Paris Saclay, Gif-sur-Yvette, France
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1223, Paris, France
| | - Félix A Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France.,Centre national de la recherche scientifique URA3015, Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut national de la santé et de la recherche médicale U1222, Paris, France
| |
Collapse
|
248
|
Zhou P, Song G, He WT, Beutler N, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Yuan M, Liu H, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Wilson IA, Safonova Y, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.04.479488. [PMID: 35291291 PMCID: PMC8923106 DOI: 10.1101/2022.03.04.479488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G. Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
249
|
Tomris I, Bouwman KM, Adolfs Y, Noack D, van der Woude R, Kerster G, Herfst S, Sanders RW, van Gils MJ, Boons GJ, Haagmans BL, Pasterkamp RJ, Rockx B, de Vries RP. Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathog 2022; 18:e1010340. [PMID: 35255100 PMCID: PMC8930000 DOI: 10.1371/journal.ppat.1010340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/17/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRSS2) to facilitate viral-host membrane fusion. ACE2 and TMPRSS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq levels. However, transcriptomic data and actual protein validation convey conflicting information regarding the distribution of the biologically relevant protein receptor in whole tissues. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRSS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals was stained using antibodies against ACE2 and TMPRSS2, combined with SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize their expression and related infection patterns. The data demonstrate that infection is restricted to sites containing both ACE2 and TMPRSS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the bronchioles and alveoli. Conversely, infection completely overlaps where ACE2 and TMPRSS2 co-localize in the tertiary bronchi, bronchioles, and alveoli.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kim M. Bouwman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Danny Noack
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gius Kerster
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, Ney York City, New York, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- Department of Chemistry, University of Georgia, Athens, Georgia, United States of America
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
250
|
Elevated Cerebrospinal Fluid Anti-CD4 Autoantibody Levels in HIV Associate with Neuroinflammation. Microbiol Spectr 2022; 10:e0197521. [PMID: 34985329 PMCID: PMC8729763 DOI: 10.1128/spectrum.01975-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mechanisms of persistent central nervous system (CNS) inflammation in people with HIV (PWH) despite effective antiretroviral therapy (ART) are not fully understood. We have recently shown that plasma anti-CD4 IgGs contribute to poor CD4+ T cell recovery during suppressive ART via antibody-mediated cytotoxicity (ADCC) against CD4+ T cells, and that plasma anti-CD4 IgG levels are associated with worse cognitive performance and specific brain area atrophy. However, the role of anti-CD4 IgGs in neuroinflammation remains unclear. In the current study, plasma and cerebrospinal fluid (CSF) samples from 31 ART-naive and 26 treated, virologically suppressed PWH, along with 16 HIV-seronegative controls, were evaluated for CSF levels of anti-CD4 IgG, white blood cell (WBC) counts, soluble biomarkers of neuroinflammation, and neurofilament light chain (NfL). We found that 37% of the PWH exhibited elevated CSF anti-CD4 IgG levels, but few or none of the PWH were observed with elevated CSF anti-CD4 IgM, anti-CD8 IgG, or anti-double-strand DNA IgG. CSF anti-CD4 IgG levels in PWH were directly correlated with neuroinflammation (WBC counts, neopterin, and markers of myeloid cell activation), but not with CSF NfL levels. Using cells from one immune nonresponder to ART, we generated a pathogenic anti-CD4 monoclonal IgG (JF19) presenting with ADCC activity; JF19 induced the production of soluble CD14 (sCD14) and interleukin-8 (IL-8) in human primary monocyte-derived macrophages via CD4 binding in vitro. This study demonstrates for the first time that elevated CSF anti-CD4 IgG levels present in a subgroup of PWH which may play a role in neuroinflammation in HIV. IMPORTANCE This study reports that an autoantibody presents in the CNS of HIV patients and that its levels in the CSF correlate with some markers of neuroinflammation.
Collapse
|