201
|
Zhao P, Yang W, Xiao H, Zhang S, Gao C, Piao H, Liu L, Li S. Vitamin K2 protects mice against non-alcoholic fatty liver disease induced by high-fat diet. Sci Rep 2024; 14:3075. [PMID: 38321064 PMCID: PMC10847165 DOI: 10.1038/s41598-024-53644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/03/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.
Collapse
Affiliation(s)
- Peizuo Zhao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Weidong Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shuaishuai Zhang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Chuanzhou Gao
- Central Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Hua Piao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lihong Liu
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
202
|
Thilakarathna WPDW, Rupasinghe HPV. Proanthocyanidins-Based Synbiotics as a Novel Strategy for Nonalcoholic Fatty Liver Disease (NAFLD) Risk Reduction. Molecules 2024; 29:709. [PMID: 38338453 PMCID: PMC10856248 DOI: 10.3390/molecules29030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid β-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.
Collapse
Affiliation(s)
- Wasitha P. D. W. Thilakarathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
203
|
Kim SJ, Hyun J. Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD. Mol Cells 2024; 47:100010. [PMID: 38237744 PMCID: PMC10960132 DOI: 10.1016/j.mocell.2024.100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 02/12/2024] Open
Abstract
Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.
Collapse
Affiliation(s)
- So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
204
|
Chen Z, Wang S, Pottekat A, Duffey A, Jang I, Chang BH, Cho J, Finck BN, Davidson NO, Kaufman RJ. Conditional hepatocyte ablation of PDIA1 uncovers indispensable roles in both APOB and MTTP folding to support VLDL secretion. Mol Metab 2024; 80:101874. [PMID: 38211723 PMCID: PMC10832468 DOI: 10.1016/j.molmet.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES The assembly and secretion of hepatic very low-density lipoprotein (VLDL) plays pivotal roles in hepatic and plasma lipid homeostasis. Protein disulfide isomerase A1 (PDIA1/P4HB) is a molecular chaperone whose functions are essential for protein folding in the endoplasmic reticulum. Here we investigated the physiological requirement in vivo for PDIA1 in maintaining VLDL assembly and secretion. METHODS Pdia1/P4hb was conditionally deleted in adult mouse hepatocytes and the phenotypes characterized. Mechanistic analyses in primary hepatocytes determined how PDIA1 ablation alters MTTP synthesis and degradation as well as altering synthesis and secretion of Apolipoprotein B (APOB), along with complementary expression of intact PDIA1 vs a catalytically inactivated PDIA1 mutant. RESULTS Hepatocyte-specific deletion of Pdia1/P4hb inhibited hepatic MTTP expression and dramatically reduced VLDL production, leading to severe hepatic steatosis and hypolipidemia. Pdia1-deletion did not affect mRNA expression or protein stability of MTTP but rather prevented Mttp mRNA translation. We demonstrate an essential role for PDIA1 in MTTP synthesis and function and show that PDIA1 interacts with APOB in an MTTP-independent manner via its molecular chaperone function to support APOB folding and secretion. CONCLUSIONS PDIA1 plays indispensable roles in APOB folding, MTTP synthesis and activity to support VLDL assembly. Thus, like APOB and MTTP, PDIA1 is an obligatory component of hepatic VLDL production.
Collapse
Affiliation(s)
- Zhouji Chen
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA.
| | - Shiyu Wang
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Anita Pottekat
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Alec Duffey
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Insook Jang
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaehyung Cho
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetics and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla CA 92037, USA.
| |
Collapse
|
205
|
Hwang J, Park S. Korean Nationwide Exploration of Sarcopenia Prevalence and Risk Factors in Late Middle-Aged Women. Healthcare (Basel) 2024; 12:362. [PMID: 38338247 PMCID: PMC10855089 DOI: 10.3390/healthcare12030362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This study examined specific clinical risk factors for age-related loss of skeletal muscle mass in late middle-aged women with sarcopenia. This Korean nationwide cross-sectional study analyzed data from 2814 community-dwelling women aged from 50 to 64 years old and screened them for sarcopenia. This study examined various risk factors such as age; height; weight; body mass index; waist circumference; skeletal muscle mass index; systolic and diastolic blood pressure; smoking and drinking habits; fasting glucose levels; triglyceride; and cholesterol levels. Complex sampling analysis was used for the data set. Prevalence of sarcopenia with a weighted prevalence of 13.43% (95% confidence interval: 2.15-15.78). The risk factors for sarcopenia were height, body mass index, waist circumference, skeletal muscle mass index, systolic blood pressure, diastolic blood pressure, triglyceride level, and total cholesterol level (p < 0.05). Weight, fasting glucose level, drinking status, and smoking status were not significant (p > 0.05). These results are expected to contribute to the existing literature on sarcopenia and identify potential risk factors associated with the development of sarcopenia in late middle-aged females. By acknowledging prevalence and recognized risk factors, healthcare professionals may augment their proficiency in recognizing and discerning potential instances of sarcopenia in female patients.
Collapse
Affiliation(s)
- Jongseok Hwang
- Institute of Human Ecology, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
| | - Soonjee Park
- Department of Clothing and Fashion, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
206
|
Li Z, Wu X, Chen Z, Wei X, Chen W. Association between low-normal thyroid function and advanced liver fibrosis in metabolic dysfunction-associated fatty liver disease patients: a retrospective cohort study. Gastroenterol Rep (Oxf) 2024; 12:goad076. [PMID: 38264763 PMCID: PMC10805339 DOI: 10.1093/gastro/goad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 01/25/2024] Open
Abstract
Background Recent studies have found that thyroid function may be associated with the occurrence and development of advanced liver fibrosis in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). However, the majority of such research has consisted of cross-sectional studies. This retrospective cohort study aimed to investigate the effect of low-normal thyroid function on advanced liver fibrosis in MAFLD patients over a 5-year period. Methods This retrospective cohort study enrolled 825 outpatients and inpatients with MAFLD who attended the Third Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) between January 2011 and December 2018. Based on plasma thyroid hormone and thyroid-stimulating hormone levels, these patients were divided into two groups, namely a low-normal thyroid function group and a strict-normal thyroid function group. The fibrosis-4 score was used to assess advanced liver fibrosis. A chi-square test was conducted to compare the occurrence of advanced fibrosis between the groups. Results Among the 825 MAFLD patients, 117 and 708 were defined as having low-normal thyroid function and strict-normal thyroid function, respectively. Follow-up data were available for 767 patients (93.0%) during a 5-year period. Eight (7.5%) MAFLD patients with low-normal thyroid function and 26 (3.9%) with strict-normal thyroid function developed advanced liver fibrosis and the cumulative incidence was not significantly different (P = 0.163). Stratification analysis showed that the lean MAFLD patients (body mass index ≤ 23 kg/m2) with low-normal thyroid function had a higher risk of advanced liver fibrosis than the lean MAFLD patients with strict-normal thyroid function (P < 0.05). Conclusion Low-normal thyroid function is associated with advanced liver fibrosis among lean MAFLD patients.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zebin Chen
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiuqing Wei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
207
|
Luo M, Wang Y, Ma Y, Li J, Wang J, Liu C. Celastrol Stabilizes Glycolipid Metabolism in Hepatic Steatosis by Binding and Regulating the Peroxisome Proliferator-Activated Receptor γ Signaling Pathway. Metabolites 2024; 14:64. [PMID: 38276299 PMCID: PMC10818689 DOI: 10.3390/metabo14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing. Obesity, insulin resistance, and lipid metabolic dysfunction are always accompanied by NAFLD. Celastrol modulates the Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) signaling pathways, thereby promoting lipolysis in 3T3-L1 adipocytes. In the present study, oleic-acid-induced NAFLD and differentiated 3T3-L1 preadipocytes were used as models of NAFLD and obesity to investigate the protective effect of celastrol. We investigated the impact of celastrol on hepatic steatosis caused by oleic acid (OA), as well as the associated underlying molecular pathways. To address the aforementioned questions, we used a cellular approach to analyze the signaling effects of celastrol on various aspects. These factors include the improvement in fatty liver in HepG2 cells, the differentiation of 3T3-L1 preadipocytes, glucose uptake, and the modulation of key transcriptional pathways associated with PPARγ. The administration of celastrol effectively mitigated lipid accumulation caused by OA in HepG2 cells, thereby ameliorating fatty liver conditions. Furthermore, celastrol suppressed the impacts on adipocyte differentiation in 3T3-L1 adipocytes. Additionally, celastrol exhibited the ability to bind to PPARγ and modulate its transcriptional activity. Notably, the ameliorative effects of celastrol on hepatic steatosis were reversed by rosiglitazone. According to our preliminary findings from in vitro celastrol signaling studies, PPARγ is likely to be the direct target of celastrol in regulating hepatic steatosis in HepG2 cells and adipocyte differentiation in 3T3-L1 cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (M.L.); (Y.W.); (Y.M.); (J.L.); (J.W.)
| |
Collapse
|
208
|
Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci 2024; 25:1109. [PMID: 38256181 PMCID: PMC10815951 DOI: 10.3390/ijms25021109] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
209
|
Yan Z, Liu Z, Yang B, Zhu X, Song E, Song Y. Long-term pulmonary iron oxide nanoparticles exposure disrupts hepatic iron-lipid homeostasis and increases plaque vulnerability in ApoE -/- mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122905. [PMID: 37951529 DOI: 10.1016/j.envpol.2023.122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have attracted great attention due to their extensive applications, which warranted their environmental concerns. Although recent advances have proposed the relevance of Fe3O4 NPs to cardiovascular disease, the intrinsic mechanisms underlying the effects of NPs remain indistinct. ApoE-/- mice were chosen as a long-term exposure model to explore the immanent association between respiratory exposure to Fe3O4 NPs and the development of cardiovascular diseases. Pulmonary exposure to 20 nm and 200 nm Fe3O4 NPS resulted in significant lung injury, and pulmonary histopathological examination displayed inflammatory cell infiltration, septal thickening and alveolar congestion. Intriguingly, liver iron deposition and variations in the hepatic lipid homeostasis were found in Fe3O4 NPs-exposed mice, eventually leading to dyslipidemia, hinting the potential cardiovascular toxicity of Fe3O4 NPs. In addition, we not only found that Fe3O4 NPs exposure increased aortic plaque area, but also increased M1 macrophages in the plaque, which yielding plaque vulnerability in ApoE-/- mice Of note, 20 nm Fe3O4 NPs showed enhanced capability on the progression of atherosclerosis than 200 nm Fe3O4 NPs. This study may propose the potential mechanism for adverse cardiovascular disease induced by Fe3O4 NPs and provide convincing evidence for the safety evaluation of Fe3O4 NPs.
Collapse
Affiliation(s)
- Ziyi Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zixuan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
210
|
Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, Jiang H, Xiao P, Hu M. Mesenchymal Stem Cell-Derived Exosomes in Various Chronic Liver Diseases: Hype or Hope? J Inflamm Res 2024; 17:171-189. [PMID: 38223423 PMCID: PMC10788055 DOI: 10.2147/jir.s439974] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Chronic liver conditions are associated with high mortality rates and have a large adverse effect on human well-being as well as a significant financial burden. Currently, the only effective treatment available for the effects of liver failure and cirrhosis resulting from the progression of several chronic liver diseases is liver transplantation carried out at the original location. This implies that developing novel and effective treatments is imperative. Regenerative medicine has long been associated with stem cell therapy. Mesenchymal stem cells (MSCs), a type of cell with great differentiation potential, have become the preferred source for stem cell therapy. According to recent studies, MSCs' paracrine products-rather than their capacity for differentiation-play a significant therapeutic effect. MSC exosomes, a type of extracellular vesicle (MSC-EV), came into view as the paracrine substances of MSCs. According to research, MSC exosomes can maintain tissue homeostasis, which is necessary for healthy tissue function. All tissues contain them, and they take part in a variety of biological activities that support cellular activity and tissue regeneration in order to preserve tissue homeostasis. The outcomes support the use of MSCs and the exosomes they produce as a therapeutic option for a range of diseases. This review provides a brief overview of the source of MSC-EVs and outlines their physiological roles and biochemical capabilities. The elucidation of the role of MSC-EVs in the recovery and repair of hepatic tissues, as well as their contribution to maintaining tissue homeostasis, is discussed in relation to different chronic liver diseases. This review aims to provide new insights into the unique roles that MSC-EVs play in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Peiguang Xiao
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
211
|
Jiang X, Tang N, Liu Y, Wang Z, Chen J, Liu F, Zhang P, Sui M, Xu W. Integrating network analysis and pharmacokinetics to investigate the mechanisms of Danzhi Tiaozhi Decoction in metabolic-associated fatty liver disease (MAFLD). JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117008. [PMID: 37549861 DOI: 10.1016/j.jep.2023.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on ancient classics, Danzhi Tiaozhi Decoction has been successfully used to treat nonalcoholic fatty liver disease for decades. However, its therapeutic mechanisms remain unclear. AIM OF THE STUDY This study aimed to investigate the effects of Danzhi Tiaozhi Decoction (DZTZD) on metabolic-associated fatty liver disease (MAFLD). MATERIALS AND METHODS First, we identified the active ingredients of DZTZD and their potential targets in the Traditional Chinese Medicine System Pharmacology database. Using the overlapped genes, we selected the key MAFLD-associated genes, then conducted GO and KEGG pathway enrichment analyses. Furthermore, DZTZD was administered orally to rats, and their serum and liver tissues were examined for absorbed compounds using pharmacochemistry. UPLC-Q-Exactive Orbitrap/MS was used to determine the main compounds. Then, we validated the binding association of the key targets with their active compounds with AutoDock Tools and other software. Finally, the predicted hub targets were experimentally validated. RESULTS We found 254 active compounds in DZTZD corresponding to 208 targets. Sixteen key genes were identified, and the enrichment analysis revealed multiple signaling pathways, including the AGE-RAGE pathway in diabetic complications and the lipid and atherosclerosis signaling pathway. Next, 160 absorbed components and metabolites were characterized in vivo, and 53 absorbed components and metabolites were characterized in liver tissue. Thirteen parent compounds were identified, including coptisine, quercetin, luteolin, and aloe-emodin. The molecular docking data demonstrated the strongest binding between the active compounds and the core proteins. Moreover, the animal experiments showed that DZTZD decreased body weight, liver weight, lipid accumulation, and ALT, AST, CRP, FFA, IL-6, PEPCK, G6P, TG, TC, and LDL-c serum levels, and increased serum HDL-c levels compared to high-fat induced rats. Besides, the RT-PCR and Western blot showed that DZTZD inhibited the SREBP1c and FAS and increased hyperlipidemia-induced CPT-1A levels. In the high-fat group, JNK phosphorylation increased, and AKT protein phosphorylation decreased, while DZTZD reversed these effects. CONCLUSION Based on the pharmacological network analysis, pharmacochemistry, and experimental validation, DZTZD can potentially improve MAFLD via the JNK/AKT pathway.
Collapse
Affiliation(s)
- Xiaofei Jiang
- Department of Gynecology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Nannan Tang
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, 230000, Anhui, China
| | - Yuyu Liu
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, 230000, Anhui, China
| | - Zhiming Wang
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Jun Chen
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Fang Liu
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Ping Zhang
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China
| | - Miao Sui
- Department of Endocrinology, Xuzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, 221003, Jiangsu, China.
| | - Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, 221003, Jiangsu, China.
| |
Collapse
|
212
|
Yang CR, Lin WJ, Shen PC, Liao PY, Dai YC, Hung YC, Lai HC, Mehmood S, Cheng WC, Ma WL. Phenotypic and metabolomic characteristics of mouse models of metabolic associated steatohepatitis. Biomark Res 2024; 12:6. [PMID: 38195587 PMCID: PMC10777576 DOI: 10.1186/s40364-023-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) is metabolic disease that may progress to cirrhosis and hepatocellular carcinoma. Mouse models of diet-induced MASH, which is characterized by the high levels of fats, sugars, and cholesterol in diets, are commonly used in research. However, mouse models accurately reflecting the progression of MASH in humans remain to be established. Studies have explored the potential use of serological metabolites as biomarkers of MASH severity in relation to human MASH. METHODS We performed a comparative analysis of three mouse models of diet-induced MASH in terms of phenotypic and metabolomic characteristics; MASH was induced using different diets: a high-fat diet; a Western diet; and a high-fat, high-cholesterol diet. Liver cirrhosis was diagnosed using standard clinical approaches (e.g., METAVIR score, hyaluronan level, and collagen deposition level). Mouse serum samples were subjected to nuclear magnetic resonance spectroscopy-based metabolomic profiling followed by bioinformatic analyses. Metabolomic analysis of a retrospective cohort of patients with hepatocellular carcinoma was performed; the corresponding cirrhosis scores were also evaluated. RESULTS Using clinically relevant quantitative diagnostic methods, the severity of MASH was evaluated. Regarding metabolomics, the number of lipoprotein metabolites increased with both diet and MASH progression. Notably, the levels of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) significantly increased with fibrosis progression. During the development of diet-induced MASH in mice, the strongest upregulation of expression was noted for VLDL receptor. Metabolomic analysis of a retrospective cohort of patients with cirrhosis indicated lipoproteins (e.g., VLDL and LDL) as predominant biomarkers of cirrhosis. CONCLUSIONS Our findings provide insight into the pathophysiology and metabolomics of experimental MASH and its relevance to human MASH. The observed upregulation of lipoprotein expression reveals a feedforward mechanism for MASH development that may be targeted for the development of noninvasive diagnosis.
Collapse
Affiliation(s)
- Cian-Ru Yang
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Jen Lin
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Shen
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chang Dai
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Yao-Ching Hung
- Department of Gynecology and Obstetrics, Asia University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shiraz Mehmood
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Wen-Lung Ma
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
213
|
Hlušička J, Žák A. Dyslipidaemia in Liver Diseases. Folia Biol (Praha) 2024; 70:239-247. [PMID: 39889216 DOI: 10.14712/fb2024070050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
The liver is the central organ in lipid metabolism and plays a key role in a variety of biochemical processes. It is involved in lipoprotein synthesis, fatty acid beta oxidation, ketone body production, cholesterol synthesis, bile production, and storage and mobilization of lipids. Metabolic diseases such as obesity, type 2 diabetes mellitus and certain dyslipidaemias can lead to chronic liver conditions, especially non-alcoholic fatty liver disease. Conversely, chronic liver diseases such as liver cirrhosis and chronic cholestasis can induce dyslipidaemias. This review provides a comprehensive biochemical and clinical overview of the intricate relationship between the lipid-lipoprotein metabolism and chronic liver diseases, including non-alcoholic fatty liver disease, cholestasis, alcohol-related liver disease, viral hepatitis and cirrhosis, all of which have been selected due to their importance in current clinical practice. These conditions not only affect liver function but also have widespread metabolic implications critical for patient management and therapeutic strategies. In addition to discussing the clinical manifestations and pathophysiology of liver diseases, this review delves into the genetic and non-genetic factors that influence their development and progression. By bridging clinical observations with biochemical me-chanisms, this review aims to improve the understan-ding of how lipid metabolism disorders contribute to chronic liver diseases and to identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jiří Hlušička
- 4th Department of Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University and General University Hospital Prague, Prague, Czech Republic.
| | - Aleš Žák
- 4th Department of Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University and General University Hospital Prague, Prague, Czech Republic
| |
Collapse
|
214
|
Liu Q, Fan G, Bi J, Qin X, Fang Q, Wu M, Mei S, Wan Z, Lv Y, Song L, Wang Y. Associations of polychlorinated biphenyls and organochlorine pesticides with metabolic dysfunction-associated fatty liver disease among Chinese adults: Effect modification by lifestyle. ENVIRONMENTAL RESEARCH 2024; 240:117507. [PMID: 37918764 DOI: 10.1016/j.envres.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Exposure to environmental pollutants and unhealthy lifestyles are key risk factors for metabolic dysfunction-associated fatty liver disease (MAFLD). While previous studies have suggested links between exposure to organochlorine pesticides (PCBs) and organochlorine pesticides (OCPs) and MAFLD, the results have been inconsistent. Furthermore, the combined effects of PCBs and OCPs on MAFLD and whether lifestyle factors can modify the associations remain unknown. Therefore, this study aimed to investigate the individual and joint effects of PCBs and OCPs on MAFLD and explore the potential modifying role of lifestyle. The study included 1923 participants from Wuhan, China. MAFLD was diagnosed based on ultrasonically diagnosed hepatic steatosis and the presence of overweight/obese, diabetes mellitus, or metabolic dysregulation. Healthy lifestyle score was determined by smoking, alcohol consumption, physical activity, and diet. Logistic regression and weighted quantile sum (WQS) were used to assess associations of individual and mixture of PCBs/OCPs with MAFLD. To explore the potential lifestyle modification, joint associations of PCBs/OCPs and lifestyle on MAFLD were conducted. Single-pollutant analysis showed positive associations of p,p'-DDE, β-HCH, PCB-153, and PCB-180 with MAFLD, with ORs (95% CIs) of 1.18 (1.05, 1.33), 1.57 (1.20, 2.05), 1.45 (1.14, 1.83), and 1.42 (1.12, 1.80), respectively. WQS regression demonstrated a harmful effect of PCBs/OCPs mixture on MAFLD (OR = 1.73, 95% CI = 1.24, 2.43), with β-HCH, p,p'-DDE, and PCB-180 being the major contributors. In the joint association analysis, participants with both high PCBs/OCPs exposure and unhealthy lifestyle have the highest odds of MAFLD. In conclusion, exposure to the mixture of PCBs and OCPs was positively correlated with MAFLD, and adopting a healthy lifestyle can mitigate the adverse impact.
Collapse
Affiliation(s)
- Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
215
|
Colaci C, Gambardella ML, Maria Scarlata GG, Boccuto L, Colica C, Luzza F, Scarpellini E, Mendez-Sanchez N, Abenavoli L. Dysmetabolic comorbidities and non-alcoholic fatty liver disease: a stairway to metabolic dysfunction-associated steatotic liver disease. HEPATOMA RESEARCH 2024; 10:16. [DOI: 10.20517/2394-5079.2023.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. This term does not describe the pathogenetic mechanisms and complications associated with NAFLD. The new definition, Metabolic Dysfunction-associated Steatotic Liver disease (MASLD), emphasizes the relationship between NAFLD and cardiometabolic comorbidities. Cardiovascular disease features, such as arterial hypertension and atherosclerosis, are frequently associated with patients with MASLD. Furthermore, these patients have a high risk of developing neoplastic diseases, primarily hepatocellular carcinoma, but also extrahepatic tumors, such as esophageal, gastric, and pancreatic cancers. Moreover, several studies showed the correlation between MASLD and endocrine disease. The imbalance of the gut microbiota, systemic inflammation, obesity, and insulin resistance play a key role in the development of these complications. This narrative review aims to clarify the evolution from NAFLD to the new nomenclature MASLD and evaluate its complications.
Collapse
|
216
|
Liu L, Wang C, Hu Z, Deng S, Yang S, Zhu X, Deng Y, Wang Y. Not only baseline but cumulative exposure of remnant cholesterol predicts the development of nonalcoholic fatty liver disease: a cohort study. Environ Health Prev Med 2024; 29:5. [PMID: 38325840 PMCID: PMC10853394 DOI: 10.1265/ehpm.23-00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/30/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND AND AIM Remnant cholesterol (remnant-C) mediates the progression of major adverse cardiovascular events. It is unclear whether remnant-C, and particularly cumulative exposure to remnant-C, is associated with nonalcoholic fatty liver disease (NAFLD). This study aimed to explore whether remnant-C, not only baseline but cumulative exposure, can be used to independently evaluate the risk of NAFLD. METHODS This study included 1 cohort totaling 21,958 subjects without NAFLD at baseline who underwent at least 2 repeated health checkups and 1 sub-cohort totaling 2,649 subjects restricted to those individuals with at least 4 examinations and no history of NAFLD until Exam 3. Cumulative remnant-C was calculated as a timeweighted model for each examination multiplied by the time between the 2 examinations divided the whole duration. Cox regression models were performed to estimate the association between baseline and cumulative exposure to remnant-C and incident NAFLD. RESULTS After multivariable adjustment, compared with the quintile 1 of baseline remnant-C, individuals with higher quintiles demonstrated significantly higher risks for NAFLD (hazard ratio [HR] 1.48, 95%CI 1.31-1.67 for quintile 2; HR 2.07, 95%CI 1.85-2.33 for quintile 3; HR 2.55, 95%CI 2.27-2.88 for quintile 4). Similarly, high cumulative remnant-C quintiles were significantly associated with higher risks for NAFLD (HR 3.43, 95%CI 1.95-6.05 for quintile 2; HR 4.25, 95%CI 2.44-7.40 for quintile 3; HR 6.29, 95%CI 3.59-10.99 for quintile 4), compared with the quintile 1. CONCLUSION Elevated levels of baseline and cumulative remnant-C were independently associated with incident NAFLD. Monitoring immediate levels and longitudinal trends of remnant-C may need to be emphasized in adults as part of NAFLD prevention strategy.
Collapse
Affiliation(s)
- Lei Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Changfa Wang
- General Surgery Department, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Zhongyang Hu
- Department of Neurology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Shuwen Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Saiqi Yang
- Health Management Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Xiaoling Zhu
- Health Management Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Yuling Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, China, 410013
| |
Collapse
|
217
|
Liu Y, Zhao Y, Liu Q, Li B, Daniel PV, Chen B, Wu Z. Effects of apolipoprotein H downregulation on lipid metabolism, fatty liver disease, and gut microbiota dysbiosis. J Lipid Res 2024; 65:100483. [PMID: 38101620 PMCID: PMC10818206 DOI: 10.1016/j.jlr.2023.100483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Apolipoprotein H (APOH) downregulation can cause hepatic steatosis and gut microbiota dysbiosis. However, the mechanism by which APOH-regulated lipid metabolism contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) remains undetermined. Herein, we aim to explore the regulatory effect of APOH, mediated through various pathways, on metabolic homeostasis and MASLD pathogenesis. We analyzed serum marker levels, liver histopathology, and cholesterol metabolism-related gene expression in global ApoH-/- C57BL/6 male mice. We used RNA sequencing and metabolomic techniques to investigate the association between liver metabolism and bacterial composition. Fifty-two differentially expressed genes were identified between ApoH-/- and WT mice. The mRNA levels of de novo lipogenesis genes were highly upregulated in ApoH-/- mice than in WT mice. Fatty acid, glycerophospholipid, sterol lipid, and triglyceride levels were elevated, while hyodeoxycholic acid levels were significantly reduced in the liver tissues of ApoH-/- mice than in those of WT mice. Microbial beta diversity was lower in ApoH-/- mice than in WT mice, and gut microbiota metabolic functions were activated in ApoH-/- mice. Moreover, ApoH transcripts were downregulated in patients with MASLD, and APOH-related differential genes were enriched in lipid metabolism. Open-source transcript-level data from human metabolic dysfunction-associated steatohepatitis livers reinforced a significant association between metabolic dysfunction-associated steatohepatitis and APOH downregulation. In conclusion, our studies demonstrated that APOH downregulation aggravates fatty liver and induces gut microbiota dysbiosis by dysregulating bile acids. Our findings offer a novel perspective on APOH-mediated lipid metabolic dysbiosis and provide a valuable framework for deciphering the role of APOH in fatty liver disease.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China.
| | - Yiqun Zhao
- Department of Gastroenterology and Hepatology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China
| | - Qiusong Liu
- Department of Tumor and Vascular Interventional Radiology, Xiamen University Zhongshan Hospital, Xiamen, FJ, China
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - P Vineeth Daniel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Binbin Chen
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, FJ, China
| | - Zeyi Wu
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
218
|
Chen YF, Fan ZK, Gao X, Zhou F, Guo XF, Sinclair AJ, Li D. n-3 polyunsaturated fatty acids in phospholipid or triacylglycerol form attenuate nonalcoholic fatty liver disease via mediating cannabinoid receptor 1/adiponectin/ceramide pathway. J Nutr Biochem 2024; 123:109484. [PMID: 37866428 DOI: 10.1016/j.jnutbio.2023.109484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
n-3 polyunsaturated fatty acids (PUFA) have shown to exert beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Supplements of n-3 PUFA occur in either phospholipid or triacylglycerol form. The present study aimed to compare whether the different n-3 PUFA of marine-origin, namely krill oil, DHA/EPA-phospholipid (PL), and EPA/DHA-triacylglycerol (TAG) forms had differential abilities to ameliorate NAFLD. The NAFLD model was established in mice fed a high-fat and high-cholesterol diet (HFD). The mice showed evidence of weight gain, dyslipidemia, insulin resistance and hepatic steatosis after 9 weeks of HFD, while the three forms of the n-3 PUFA reduced hepatic TAG accumulation, fatty liver and improved insulin instance, and hepatic biomarkers after 9 weeks of intervention. Of these, krill oil intervention significantly reduced adipocyte hypertrophy and hepatic steatosis in comparison with DHA/EPA-PL and EPA/DHA-TAG groups. Importantly, only krill oil intervention significantly reduced serum alanine transaminase, aspartate transaminase concentrations and low-density lipoprotein-cholesterol, compared with the HFD group. Supplemental n-3 PUFA lowered circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations, compared with the HFD group, which was associated with down-regulating CB1 and upregulating adiponectin expressions in adipose tissue. Besides, targeted lipidomic analyses indicated that the increased adiponectin levels were accompanied by reductions in hepatic ceramide levels. The reduced ceramide levels were associated with inhibiting lipid synthesis and increasing fatty acid β-oxidation, finally inhibiting TAG accumulation in the liver. Through mediating CB1/adiponectin/ceramide pathway, the present study suggested that administration of krill oil had superior health effects in the therapy of NAFLD in comparison with DHA/EPA-PL and EPA/DHA-TAG.
Collapse
Affiliation(s)
- Yan-Fang Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Ze-Kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Fang Zhou
- Qingdao University Function Center of Medical Nutrition, Qingdao, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Australia
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; Qingdao University Function Center of Medical Nutrition, Qingdao, China
| |
Collapse
|
219
|
Zhu JY, Tang M, Li H, Shi YL, Li YM, Li YH, Ma XC, Duan QL, Mei YH, He HW, Zhang N, Peng ZG, Song DQ. Design, synthesis and triglyceride-lowering activity of tricyclic matrine derivatives for the intervention of non-alcoholic fatty liver disease. Bioorg Chem 2024; 142:106925. [PMID: 37890213 DOI: 10.1016/j.bioorg.2023.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Thirty new tricyclicmatrinic derivatives were successively synthesized and evaluated for their inhibitory activity on the accumulation of triglycerides (TG) in AML12 cells, using 12 N-m-trifluoromethylbenzenesulfonyl matrine (1) as the hit compound. Among the analogues, compound 7n possessing 11-trimethylbutylamine quaternary exerted the highest in vitro TG-lowering potency, as well as a good safety profile. 7n significantly attenuated the hepatic injury and steatosis, and ameliorated dyslipidemia and dysglycemia in the mice with non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet. Primary mechanism study revealed that upregulation of peroxisome proliferator-activated receptors α (PPARα)-carnitine palmitoyltransferase 1A (CPT1A) pathway mediated the efficacy of 7n. Our study provides powerful information for developing this kind of compound into a new class of anti-NAFLD candidates, and compound 7n is worthy of further investigation as an ideal lead compound.
Collapse
Affiliation(s)
- Jing-Yang Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Long Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi-Ming Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying-Hong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xi-Can Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiong-Lu Duan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Heng Mei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-Wei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
220
|
Fan C, Ling-Hu A, Sun D, Gao W, Zhang C, Duan X, Li H, Tian W, Yu Q, Ke Z. Nobiletin Ameliorates Hepatic Lipid Deposition, Oxidative Stress, and Inflammation by Mechanisms That Involve the Nrf2/NF-κB Axis in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20105-20117. [PMID: 38073108 DOI: 10.1021/acs.jafc.3c06498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nobiletin (NOB), a flavonoid with significant antioxidant potential, holds promise for treating nonalcoholic fatty liver disease (NAFLD). In this work, we aim to assess the effects and investigate the molecular mechanisms of NOB on NAFLD. After using a methionine choline-deficient diet to induce C57BL/6J mice, as well as oleic acid to induce HepG2 and L02 cells, we administered NOB as an intervention. The results indicated that the NOB significantly ameliorated lipid deposition, oxidative stress, and inflammation in NAFLD in both models. Its mechanism may involve the Nrf2, SREBP-1c, and NF-κB signaling pathways. Furthermore, Nrf2 is not only a direct target for NOB to improve oxidative damage but also indirectly involved in lipid-lowering and anti-inflammatory processes in NAFLD. By inhibiting Nrf2, we found that the regulatory role of Nrf2 in lipid metabolism is not related to SREBP-1c but is closely associated with NF-κB in terms of inflammation. Our results suggest that Nrf2 is one of the most critical targets for NOB against NAFLD in multiple aspects.
Collapse
Affiliation(s)
- Chaowen Fan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Anli Ling-Hu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Dali Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Weiman Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Chenfang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xueqing Duan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Haiyang Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Qi Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Zunli Ke
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
221
|
Han X, Guo B, Wang L, Chen K, Zhou H, Huang S, Xu H, Pan X, Chen J, Gao X, Wang Z, Yang L, Laba C, Meng Q, Guo Y, Chen G, Hong F, Zhao X. The mediation role of blood lipids on the path from air pollution exposure to MAFLD: A longitudinal cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166347. [PMID: 37591384 DOI: 10.1016/j.scitotenv.2023.166347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND & AIMS Recent cross-sectional studies found that exposure to ambient air pollution (AP) was associated with an increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD). The alternation of blood lipids may explain the association, but epidemiological evidence is lacking. We aimed to examine whether and to what extent the association between long-term exposure to AP and incident MAFLD is mediated by blood lipids and dyslipidemia in a prospective cohort. METHODS We included 6350 participants from the China Multi-Ethnic Cohort (CMEC, baseline 2018-2019, follow-up 2020-2021). Three-year average (2016-2018) of AP (PM1, PM2.5, PM10, NO2), blood lipids (TC, LDL-C, HDL-C, TG with their combinations) and incident MAFLD for each individual were assessed chronologically. Linear and logistic regression was used to assess the associations among AP, blood lipids, and MAFLD, and the potential mediation effects of blood lipids were evaluated using causal mediation analysis. RESULTS A total of 744 participants were newly diagnosed with MAFLD at follow-up. The odds ratios of MAFLD associated with a 10 μm increase in PM1, PM2.5, and NO2 were 1.35 (95 % CI: 1.14, 1.58), 1.34 (1.10, 1.65) and 1.28 (1.14, 1.44), respectively. Blood lipids are important mediators between AP and incident MAFLD. LDL-C (Proportion Mediated: 6.9 %), non-HDL (13.4 %), HDL-C (20.7 %), LDL/HDL (30.1 %), and dyslipidemia (6.5 %) significantly mediated the association between PM2.5 and MAFLD. For PM1, the indirect effects were similar to those for PM2.5, with a larger value for the direct effect, and the mediation proportion by blood lipids was less for NO2. CONCLUSION Blood lipids are important mediators between AP and MAFLD, and can explain 5 %-30 % of the association between AP and incident MAFLD, particularly cholesterol-related variables, indicating that AP could lead to MAFLD through the alternation of blood lipids. These findings provided mechanical evidence of AP leading to MAFLD in epidemiological studies.
Collapse
Affiliation(s)
- Xinyu Han
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejun Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Xianmou Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Zhenghong Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - La Yang
- Tibet University, Lhasa, Tibet, China
| | - Ciren Laba
- Tibet Center for Disease Control and Prevention CN, Lhasa, Tibet, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Feng Hong
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
222
|
Chen X, Peng R, Peng D, Xiao J, Liu D, Li R. An update: is there a relationship between H. pylori infection and nonalcoholic fatty liver disease? why is this subject of interest? Front Cell Infect Microbiol 2023; 13:1282956. [PMID: 38145041 PMCID: PMC10739327 DOI: 10.3389/fcimb.2023.1282956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is thought to impact various extragastric diseases, including nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease. Meanwhile, the pathogenesis of NAFLD needs further research, and effective treatment for this disease remains elusive. In this mini-review, we enumerate and ponder on the evidence demonstrating an association between H. pylori infection and NAFLD. Primarily, we delve into high-quality meta-analyses and clinical randomized controlled trials focusing on the association studies between the two. We also discuss clinical studies that present opposite conclusions. In addition, we propose a mechanism through which H. pylori infection aggravates NAFLD: inflammatory cytokines and adipocytokines, insulin resistance, lipid metabolism, intestinal barrier and microbiota, H. pylori outer membrane vesicles and H. pylori-infected cell-extracellular vesicles. This mini-review aims to further explore NAFLD pathogenesis and extragastric disease mechanisms caused by H. pylori infection.
Collapse
Affiliation(s)
- Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Jia Xiao
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Digestive Diseases, Central South University, Changsha, Hunan, China
- Clinical Research Center, Digestive Diseases of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
223
|
Luo P, Li S, Jing W, Tu J, Long X. N 6-methyladenosine RNA modification in nonalcoholic fatty liver disease. Trends Endocrinol Metab 2023; 34:838-848. [PMID: 37758602 DOI: 10.1016/j.tem.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, influencing numerous regulatory axes and extrahepatic vital organs. The molecular mechanisms that lead to the progression of NAFLD remain unclear and knowledge on the pathways causing hepatocellular damage followed by lipid accumulation is limited. Recently, a number of studies have shown that mRNA N6-methyladenosine (m6A) modification contributes to the progression of NAFLD. In this review, we summarize current knowledge on m6A modification in the metabolic processes associated with NAFLD and discuss the challenges of and prospects for therapeutic avenues based on m6A regulation for the treatment of liver disease.
Collapse
Affiliation(s)
- Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jing
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan, Zhengzhou, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
224
|
Gu D, Lu Y, Xu B, Tang X. Sex-Specific Contribution of Cardiometabolic Index in Predicting Metabolic Dysfunction-Associated Fatty Liver Disease: Insights from a General Population. Diabetes Metab Syndr Obes 2023; 16:3871-3883. [PMID: 38054037 PMCID: PMC10695138 DOI: 10.2147/dmso.s437413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Background and Objective Evidence suggests that cardiometabolic index (CMI) has been identified as a novel obesity-related index associated with diabetes, hypertension, and cardiovascular disease. Current evidence suggests that the differences in sex hormones and regional fat distribution in both sexes are directly correlated with metabolic dysfunction-associated fatty liver disease (MAFLD) risk. This study aimed to investigate the diagnostic value of CMI in MAFLD in both sexes. Methods This retrospective study included 6107 subjects who underwent annual health check-ups from March 2021 to January 2022. CMI was calculated by multiplying the ratio of triglycerides and high-density lipoprotein cholesterol (TG/HDL-C) by waist-to-height ratio (WHtR). Multivariable logistic regression analysis and restricted cubic spline were used to investigate the association of CMI and MAFLD risk. Receiver operating characteristic curve analysis was conducted for the exploration of the diagnostic accuracies of obesity-related indicators. Areas under the curves (AUCs) with 95% CIs were calculated. Results Prevalence of MAFLD increased with elevated quartiles of CMI in both sexes. The median (IQR) age was 46.00 (18.00) years. Multivariate logistic regression analyses showed that higher CMI was independently associated with MAFLD, in which every additional standard deviation (SD) of CMI increased the risk of MAFLD (OR=2.72, 95% CI:2.35-3.15 for males; OR=3.26, 95% CI:2.36-4.51 for females). Subjects in the fourth quartile of CMI had the highest odds of MAFLD for males (OR=15.82, 95% CI:11.84-21.14) and females (OR=22.60, 95% CI:9.52-53.65)(all P for trend<0.001). Besides, CMI had a non-linearity association with MAFLD (all P for non-linearity<0.001). Furthermore, CMI exhibited the largest AUC compared to other obesity-related indexes in terms of discriminating MAFLD in males (AUC=0.796, 95% CI:0.782-0.810) and females (AUC=0.853, 95% CI:0.834-0.872). Conclusion CMI was a convenient indicator for the screening of MAFLD among Chinese adults. Females with high CMI had a better diagnostic value for MAFLD than males.
Collapse
Affiliation(s)
- Dongxing Gu
- Health Examination Center, Huadong Sanatorium, Wuxi, People’s Republic of China
| | - Yayun Lu
- Health Examination Center, Huadong Sanatorium, Wuxi, People’s Republic of China
| | - Baiqing Xu
- Health Examination Center, Huadong Sanatorium, Wuxi, People’s Republic of China
| | - Xuefeng Tang
- Department of Health Nursing, Huadong Sanatorium, Wuxi, People’s Republic of China
| |
Collapse
|
225
|
Gabbia D, De Martin S. Targeting the Adipose Tissue-Liver-Gut Microbiota Crosstalk to Cure MASLD. BIOLOGY 2023; 12:1471. [PMID: 38132297 PMCID: PMC10741127 DOI: 10.3390/biology12121471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota is a complex system, playing a peculiar role in regulating innate and systemic immunity. Increasing evidence links dysfunctional gut microbiota to metabolic dysfunction-associated steatotic liver disease (MASLD) due to the activation of multiple pathways in the gut and in the liver, including those mediated by Toll-like receptors (TLRs), that sustain hepatic inflammation. Thus, many efforts have been made to unravel the role of microbiota-associated dysfunction in MASLD, with the final aim of finding novel strategies to improve liver steatosis and function. Moreover, recent evidence underlines the role of adipose tissue in sustaining hepatic inflammation during MASLD development. In this review, we focus on the recently discovered strategies proposed to improve the alteration of gut microbiota observed in MASLD patients, with a particular insight into those known to modulate gut microbiota-associated dysfunction and to affect the complex crosstalk between the gut, the adipose tissue, and the liver.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy;
| | | |
Collapse
|
226
|
Hou JZ, Wu QW, Zhang L. Association between micronutrients intake and metabolic-associated fatty liver disease: a cross-sectional study based on the National Health and Nutrition Examination Survey. J Nutr Sci 2023; 12:e117. [PMID: 38033509 PMCID: PMC10685258 DOI: 10.1017/jns.2023.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) has been proposed to replace the term non-alcoholic fatty liver disease (NAFLD) in 2020. The association between micronutrients and MAFLD has not been reported. Therefore, this study aims to explore the association between micronutrients intake and MAFLD. This was a cross-section study based on the National Health and Nutrition Examination Survey (NHANES). The dietary intake of copper, zinc, iron, and selenium was evaluated using the 24-h dietary recall interview. Logistic regression analysis was used to explore the association between micronutrients and MAFLD, and the results were shown as odds ratio (OR) with 95 % confidence intervals (CIs). A total of 5976 participants were finally included for analysis, with 3437 participants in the MAFLD group. After adjusting potential confounders, copper intake at quartile Q3 (OR = 0⋅68, 95 % CI 0⋅50, 0⋅93) and Q4 (OR = 0⋅60, 95 % CI 0⋅45, 0⋅80) was found to be associated with lower odds of MAFLD. Iron intake at Q2 (OR = 0⋅64, 95 % CI 0⋅45, 0⋅92) and Q3 (OR = 0⋅61, 95 % CI 0⋅41, 0⋅91) was associated with the lower odds of MAFLD. Our findings found that high intake of copper and adequate intake of iron were associated with MAFLD, which may provide guidance for the management of MAFLD.
Collapse
Affiliation(s)
- Jun-zhen Hou
- Department of Gastroenterology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Qi-wei Wu
- Department of Gastroenterology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Li Zhang
- Department of Gastroenterology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
227
|
Wu YJ, Wang L, Wang KX, Du JR, Long FY. Modulation of Xiongdanjiuxin pills on the gut-liver axis in high-fat diet rats. Life Sci 2023; 333:122134. [PMID: 37778415 DOI: 10.1016/j.lfs.2023.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIM Xiongdanjiuxin pill (XP) is a traditional Chinese medicine formula for the prevention and treatment of hyperlipidemia (HLP) and related complications. In this study, the gut-liver axis was used as the breakthrough point to analyze the therapeutic effect and potential mechanism of XP on HLP model rats and related complications. MAIN METHODS We used high-fat diet (HFD) to establish the HLP model of rats and treated them with XP. The 16S rRNA sequencing method was used to explore the effect of XP on the gut microbiota of HFD rats, and the effects of XP on ileum pathology, intestinal barrier and circulatory inflammation in HFD rats were also investigated. We further explored the molecular mechanism of XP treating liver inflammation in rats with HFD by regulating toll-like receptor 4 (TLR4) signaling. KEY FINDINGS We found that XP could regulate the imbalance of gut microbiota in HFD rats, and up-regulate the expression of tight junction protein in intestinal epithelium of HFD rats, thereby improving the intestinal barrier damage and intestinal inflammatory response. In addition, XP could significantly reduce the levels of inflammatory cytokines in HFD rats, and inhibit TLR4 signaling pathway, thereby reducing liver inflammation in HFD rats. SIGNIFICANCE XP can effectively improve the imbalance of gut-liver axis in hyperlipidemic rats and alleviate the inflammatory damage of liver. Its mechanism may be related to regulating the disorder of gut microbiota and inhibiting TLR4 signal pathway, so as to achieve the therapeutic effect on hyperlipidemic fatty liver in rats.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Liu Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Ke-Xin Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
228
|
Rodrigues Albuquerque E, Ratti da Silva G, de Abreu Braga F, Pelegrini Silva E, Sposito Negrini K, Rodrigues Fracasso JA, Pires Guarnier L, Jacomassi E, Ribeiro-Paes JT, da Silva Gomes R, Gasparotto Junior A, Lívero FADR. Bridging the Gap: Exploring the Preclinical Potential of Pereskia grandifolia in Metabolic-Associated Fatty Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8840427. [PMID: 38026733 PMCID: PMC10653969 DOI: 10.1155/2023/8840427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a complex condition characterized by steatosis and metabolic disturbances. Risk factors such as diabetes, cigarette smoking, and dyslipidaemia contribute to its development and progression. Effective and safe therapies for MAFLD are urgently needed. Pereskia grandifolia has shown potential as an alternative treatment, but its effectiveness against liver disease remains unexplored. This research aims to determine the hepatoprotective properties of P. grandifolia using a model of MAFLD. The study was carried out through various phases to assess the safety and efficacy of the ethanol-soluble fraction of P. grandifolia. Initially, an in vitro assay was performed to assess cell viability. This was followed by an acute toxicity test conducted in rats to determine the safety profile of the extract. Subsequently, the anti-inflammatory properties of P. grandifolia were examined in macrophages. For the MAFLD study, diabetic Wistar rats were made diabetic and exposed to a high fat diet and cigarette smoke, for 4 weeks. During the last 2 weeks, the rats were orally given either the vehicle (negative control group; C-), P. grandifolia (30, 100, and 300 mg/kg), or insulin in addition to simvastatin. A basal group of rats not exposed to these risk factors was also assessed. Blood samples were collected to measure cholesterol, triglycerides, glucose, ALT, and AST levels. Liver was assessed for lipid and oxidative markers, and liver histopathology was examined. P. grandifolia showed no signs of toxicity. It demonstrated anti-inflammatory effects by inhibiting phagocytosis and macrophage spreading. The MAFLD model induced liver abnormalities, including increased AST, ALT, disrupted lipid profile, oxidative stress, and significant hepatic damage. However, P. grandifolia effectively reversed these changes, highlighting its potential as a therapeutic agent. These findings emphasize the significance of P. grandifolia in mitigating hepatic consequences associated with various risk factors.
Collapse
Affiliation(s)
- Edilson Rodrigues Albuquerque
- Laboratory of Preclinical Research of Natural Products, Post Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Post Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Fernanda de Abreu Braga
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Ester Pelegrini Silva
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | - Karina Sposito Negrini
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
| | | | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Post Graduate Program in Medicinal Plants and Phytotherapeutics in Basic Attention, Paranaense University, Umuarama, Brazil
| | | | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, USA
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Francislaine Aparecida dos Reis Lívero
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, Brazil
- Laboratory of Cardiometabolic Pharmacology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
229
|
Zhu N, Song Y, Zhang C, Wang K, Han J. Association between the peripheral neutrophil-to-lymphocyte ratio and metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes. Front Med (Lausanne) 2023; 10:1294425. [PMID: 38020132 PMCID: PMC10657835 DOI: 10.3389/fmed.2023.1294425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes frequently co-occur, imposing a tremendous medical burden. A convenient and effective MASLD indicator will be beneficial to the early diagnosis of disease. In the clinical laboratory, the neutrophil-to-lymphocyte ratio (NLR) is a readily accessible hematological marker. This study designed to determine the relation between the NLR and MASLD in type 2 diabetes patients. Methods Data from 1,151 type 2 diabetes inpatients without infections, malignancy or hematological diseases who were recruited from 2016 through 2022 were analyzed in the retrospective study. The patients were stratified into NLR tertiles (total population: high NLR level > 2.18; middle NLR level: 1.58-2.18; low NLR level < 1.58), with additional subgroup stratification by sex (men: high NLR level > 2.21; middle NLR level: 1.60-2.21; and low NLR level < 1.60; women: high NLR level > 2.12; middle NLR level: 1.53-2.12; and low NLR level < 1.53). After adjusting for confounders (age, sex, weight, Glu, ALT and TG) associated with MASLD, the odds ratio (OR) and the corresponding 95% confidence interval (CI) of the NLR were obtained by using a binary logistic regression analysis to verify the correlation between the NLR and MASLD. Results Compared to non-MASLD patients, MASLD patients had higher weight, blood glucose, insulin and C-peptide, worse liver function (higher ALT and GGT), lower HDL (all p < 0.05), and lower NLR (p < 0.001). The prevalence of MASLD was 43.75% (high NLR level), 55.21% (middle NLR level) and 52.22% (low NLR level) (p < 0.05). Compared to those of the high NLR level, the adjusted ORs and 95% CIs of the middle and low NLR levels were 1.624 (95% CI: 1.141-2.311) and 1.456 (95% CI: 1.025-2.068), for all subjects, while they were 1.640 (95% CI: 1.000-2.689) and 1.685 (95% CI: 1.026-2.766), for men. Conclusion A low NLR is associated with a greater risk of MASLD.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Kai Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
230
|
van Zwol W, Rimbert A, Wolters JC, Smit M, Bloks VW, Kloosterhuis NJ, Huijkman NCA, Koster MH, Tharehalli U, de Neck SM, Bournez C, Fuh MM, Kuipers J, Rajan S, de Bruin A, Ginsberg HN, van Westen GJP, Hussain MM, Scheja L, Heeren J, Zimmerman P, van de Sluis B, Kuivenhoven JA. Loss of hepatic SMLR1 causes hepatosteatosis and protects against atherosclerosis due to decreased hepatic VLDL secretion. Hepatology 2023; 78:1418-1432. [PMID: 36053190 PMCID: PMC10581432 DOI: 10.1002/hep.32709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Justina C. Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marieke Smit
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels J. Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicolette C. A. Huijkman
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mirjam H. Koster
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Umesh Tharehalli
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Simon M. de Neck
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Colin Bournez
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marceline M. Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sujith Rajan
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Alain de Bruin
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gerard J. P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | | | - Bart van de Sluis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
231
|
Li M, Wang H, Zhang XJ, Cai J, Li H. NAFLD: An Emerging Causal Factor for Cardiovascular Disease. Physiology (Bethesda) 2023; 38:0. [PMID: 37431986 DOI: 10.1152/physiol.00013.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide that poses a significant threat to human health. Cardiovascular disease (CVD) is the leading cause of mortality in NAFLD patients. NAFLD and CVD share risk factors such as obesity, insulin resistance, and type 2 diabetes. However, whether NAFLD is a causal risk factor for CVD remains a matter of debate. This review summarizes the evidence from prospective clinical and Mendelian randomization studies that underscore the potential causal relationship between NAFLD and CVD. The mechanisms of NAFLD contributing to the development of CVD and the necessity of addressing CVD risk while managing NAFLD in clinical practice are also discussed.
Collapse
Affiliation(s)
- Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongmin Wang
- Department of Rehabilitation Medicine, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
232
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
233
|
Xing Y, Zhang P, Li X, Jin S, Xu M, Jia J, Wang HJ, Li L, Wang H. New predictive models and indices for screening MAFLD in school-aged overweight/obese children. Eur J Pediatr 2023; 182:5025-5036. [PMID: 37648793 DOI: 10.1007/s00431-023-05175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Currently, most predictions of metabolic-associated fatty liver disease (MAFLD) in school-aged children utilize indicators that usually predict nonalcoholic fatty liver disease (NAFLD). The present study aimed to develop new predictive models and predictors for children with MAFLD, which could enhance the feasibility of MAFLD screening programs in the future. A total of 331 school-aged overweight/obese children were recruited from six primary schools in Ningbo city, China. Hepatic steatosis and fibrosis were detected with controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively. Machine learning methods were adapted to build a set of variables to predict MAFLD in children. Then, the area under the curve (AUC) of multiple models and indices was compared to predict pediatric MAFLD. Compared with non-MAFLD children, children with MAFLD had more obvious metabolic disturbances, as they had higher anthropometric indicators, alanine aminotransferase, fasting plasma glucose, and inflammation indicators (white blood cell count, hemoglobin, neutrophil count) (all P < 0.05). The optimal variables for all subjects selected by random forest (RF) were alanine aminotransferase, uric acid, insulin, and BMI. The logistic regression (LR) model performed best, with AUC values of 0.758 for males and 0.642 for females in predicting MAFLD. LnAI-BMI, LnAI, and LnAL-WHtR were approving indices for predicting pediatric MAFLD in all participants, boys and girls individually. CONCLUSIONS This study developed LR models and sex-specific indices for predicting MAFLD in overweight/obese children that may be useful for widespread screening and identification of children at high risk of MAFLD for early treatment. WHAT IS KNOWN • Most of the indicators predicting pediatric MAFLD are derived from the predictive indicators for NAFLD, but the diagnostic criteria for MAFLD and NAFLD are not exactly the same. • The accuracy of predictors based on routine physical examination and blood biochemical indicators to diagnose MAFLD is limited. WHAT IS NEW • This study developed indicators based on routine examination parameters that have approving performance for MAFLD, with AUC values exceeding 0.70.
Collapse
Affiliation(s)
- Yunfei Xing
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - PingPing Zhang
- Ningbo Center for Healthy Lifestyle Research, Ningbo City First Hospital, Ningbo, Zhejiang Province, 315000, China
| | - Xueying Li
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shifeng Jin
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315000, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315000, China.
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
234
|
Zhang Y, Shi J, Ma Y, Yu N, Zheng P, Chen Z, Wang T, Jia G. Association between Air Pollution and Lipid Profiles. TOXICS 2023; 11:894. [PMID: 37999546 PMCID: PMC10675150 DOI: 10.3390/toxics11110894] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Dyslipidemia is a critical factor in the development of atherosclerosis and consequent cardiovascular disease. Numerous pieces of evidence demonstrate the association between air pollution and abnormal blood lipids. Although the results of epidemiological studies on the link between air pollution and blood lipids are unsettled due to different research methods and conditions, most of them corroborate the harmful effects of air pollution on blood lipids. Mechanism studies have revealed that air pollution may affect blood lipids via oxidative stress, inflammation, insulin resistance, mitochondrial dysfunction, and hypothalamic hormone and epigenetic changes. Moreover, there is a risk of metabolic diseases associated with air pollution, including fatty liver disease, diabetes mellitus, and obesity, which are often accompanied by dyslipidemia. Therefore, it is biologically plausible that air pollution affects blood lipids. The overall evidence supports that air pollution has a deleterious effect on blood lipid health. However, further research into susceptibility, indoor air pollution, and gaseous pollutants is required, and the issue of assessing the effects of mixtures of air pollutants remains an obstacle for the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
235
|
Wani K, Rahman S, Draz H. Editorial: Dysbiosis, obesity, and inflammation: interrelated phenomena causes or effects of metabolic syndrome? Front Endocrinol (Lausanne) 2023; 14:1265314. [PMID: 37916148 PMCID: PMC10616948 DOI: 10.3389/fendo.2023.1265314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Affiliation(s)
- Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hossam Draz
- Charles River Laboratories, Senneville, QC, Canada
| |
Collapse
|
236
|
Bae J, Lee BW. Association between Impaired Ketogenesis and Metabolic-Associated Fatty Liver Disease. Biomolecules 2023; 13:1506. [PMID: 37892188 PMCID: PMC10604525 DOI: 10.3390/biom13101506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is generally developed with excessive accumulation of lipids in the liver. Ketogenesis is an efficient pathway for the disposal of fatty acids in the liver and its metabolic benefits have been reported. In this review, we examined previous studies on the association between ketogenesis and MAFLD and reviewed the candidate mechanisms that can explain this association.
Collapse
Affiliation(s)
- Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
237
|
Yang R, Fan JG. Non-alcoholic fatty liver disease and risk of cardiovascular diseases: clinical association, pathophysiological mechanisms, and management. CARDIOLOGY PLUS 2023; 8:217-226. [DOI: 10.1097/cp9.0000000000000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a fatty liver disease associated with metabolic dysfunction in genetically susceptible individuals due to over-nutrition and lack of exercise. With the prevalence of obesity, metabolic syndrome, and type 2 diabetes mellitus, NAFLD has become the most common cause of chronic liver disease worldwide. NAFLD shares many risk factors with cardiovascular diseases (CVDs). NAFLD is associated with increased risk of major cardiovascular events and other cardiac complications even after adjustment for traditional cardiovascular risk factors. The primary pathology of NAFLD is within the liver, but the most common cause of deaths in patients with NAFLD is CVDs. This review summarizes the epidemiological evidence for the association between NAFLD and CVD risk and the pathophysiological mechanisms underlying this association. Current treatment strategies for NAFLD and their potential impact on CVD risk are also discussed.
Collapse
Affiliation(s)
- Rong Yang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
238
|
Martín-Grau M, Pardo-Tendero M, Casanova P, Dromant M, Marrachelli VG, Morales JM, Borrás C, Pisoni S, Maestrini S, Di Blasio AM, Monleon D. Altered Lipid Moieties and Carbonyls in a Wistar Rat Dietary Model of Subclinical Fatty Liver: Potential Sex-Specific Biomarkers of Early Fatty Liver Disease? Antioxidants (Basel) 2023; 12:1808. [PMID: 37891887 PMCID: PMC10604774 DOI: 10.3390/antiox12101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat builds up in the liver. To date, there is a lack of knowledge about the subtype of lipid structures affected in the early stages of NAFLD. The aim of this study was to analyze serum and liver lipid moieties, specifically unsaturations and carbonyls, by nuclear magnetic resonance (NMR) in a subclinical Wistar rat model of NAFLD for detecting early alterations and potential sex dimorphisms. Twelve weeks of a high-fat diet (HFD) induced fat accumulation in the liver to a similar extent in male and female Wistar rats. In addition to total liver fat accumulation, Wistar rats showed a shift in lipid subtype composition. HFD rats displayed increased lipid carbonyls in both liver and serum, and decreased in unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), with a much stronger effect in male than female animals. Our results revealed that the change in fat was not only quantitative but also qualitative, with dramatic shifts in relevant lipid structures. Finally, we compared the results found in Wistar rats with an analysis in a human patient cohort of extreme obesity. For the first time to our knowledge, lipid carbonyl levels and lipoproteins profiles were analyzed in the context of subclinical NAFLD. The association found between lipid carbonyls and alanine aminotransferase (ALT) in a human cohort of extremely obese individuals further supports the potential role of lipid moieties as biomarkers of early NAFLD.
Collapse
Affiliation(s)
- María Martín-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Mercedes Pardo-Tendero
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Pilar Casanova
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Mar Dromant
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Vannina G Marrachelli
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Jose Manuel Morales
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Consuelo Borrás
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Serena Pisoni
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Sabrina Maestrini
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy
| | - Anna M Di Blasio
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy
| | - Daniel Monleon
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- CIBERFES_ISCIII, 46010 Valencia, Spain
| |
Collapse
|
239
|
Huang J, Gao T, Zhang H, Wang X. Association of obesity profiles and metabolic health status with liver injury among US adult population in NHANES 1999-2016. Sci Rep 2023; 13:15958. [PMID: 37749307 PMCID: PMC10519960 DOI: 10.1038/s41598-023-43028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
The combined effect of obesity and metabolic abnormalities on liver injury is unclear. Aiming to address this knowledge gap, this cross-sectional study was conducted among 16,201 US adults. Multiple linear regression and logistic regression analyses were conducted to assess the associations of obesity profiles, metabolic health status, and weight change with the levels of liver enzymes. The analysis revealed that general obesity and abdominal obesity were positively associated with the levels of liver enzymes and the prevalence of abnormal liver enzymes (P and Ptrend < 0.05). The associations remained significant in both metabolically healthy and metabolically unhealthy subgroups. Additionally, the liver injury index levels of the metabolically unhealthy participants were higher than those of the metabolically healthy individuals within the non-obese, overweight/pre-abdominal obesity, and general/abdominal obesity subgroups (P and Ptrend < 0.05). Furthermore, the subgroup characterized by general/abdominal obesity and metabolic dysfunction exhibited the most robust association with the liver injury index compared to all other subgroups examined. In addition, positive associations were observed between the 1-year and 10-year weight changes and the levels of liver injury indicators (P and Ptrend < 0.05). In conclusion, this study demonstrates that both obesity and metabolic impairment are independently associated with liver injury, and their combined presence have an additional adverse effect on liver health. These findings underscore the importance of addressing both obesity and metabolic dysfunction in order to mitigate the risk of liver injury.
Collapse
Affiliation(s)
- Jing Huang
- Department of Health and Management, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tian Gao
- Department of Health and Management, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Huinan Zhang
- Department of Health and Management, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xing Wang
- Department of Health and Management, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
240
|
Li Y, Zhang D, Gao Y, Wang P, Wang Z, Zhang B, Liu J, Ye D, Ma W, Lu S. METTL3 exacerbates insulin resistance in hepatocytes by regulating m 6A modification of cytochrome P450 2B6. Nutr Metab (Lond) 2023; 20:40. [PMID: 37710320 PMCID: PMC10502999 DOI: 10.1186/s12986-023-00762-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) in hepatocytes endangers human health, and frequently results in the development of non-alcoholic fatty liver disease (NAFLD). Research on m6A methylation of RNA molecules has gained popularity in recent years; however, the molecular mechanisms regulating the processes of m6A modification and IR are not known. The cytochrome P450 (CYP450) enzyme system, which is mainly found in the liver, is associated with the pathogenesis of NAFLD. However, few studies have been conducted on CYP450 related m6A methylation. Here, we investigated the role of the methyltransferase METTL3 in exacerbating IR in hepatocytes, mainly focusing on the regulation of m6A modifications in CYP2B6. METHODS AND RESULTS Analysis using dot blot and epitranscriptomic chips revealed that the m6A modification pattern of the transcriptome in high-fat diet (HFD)-induced fatty liver and free fatty acid (FFA)-induced fatty hepatocytes showed significant changes. CYP450 family members, especially Cyp2b10, whose homolog in humans is CYP2B6, led to a noticeable increase in m6A levels in HFD-induced mice livers. Application of the METTL3 methyltransferase inhibitor, STM2457, increased the level of insulin sensitivity in hepatocytes. We then analyzed the role of METTL3 in regulating m6A modification of CYP2B6 in hepatocytes. METTL3 regulated the m6A modification of CYP2B6, and a positive correlation was found between the levels of CYP2B6 translation and m6A modifications. Furthermore, interference with METTL3 expression and exposure to STM2457 inhibited METTL3 activity, which in turn interfered with the phosphorylated insulin receptor substrate (pIRS)-glucose transporter 2 (GLUT2) insulin signaling pathway; overexpression of CYP2B6 hindered IRS phosphorylation and translocation of GLUT2 to membranes, which ultimately exacerbated IR. CONCLUSION These findings offer unique insights into the role that METTL3-mediated m6A modifications of CYP2B6 play in regulating insulin sensitivity in hepatocytes and provide key information for the development of strategies to induce m6A modifications for the clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Dantong Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Yinan Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Peijun Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Zejun Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Bingyang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Junjun Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Diwen Ye
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261000, China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| |
Collapse
|
241
|
Suárez M, Martínez R, Torres AM, Ramón A, Blasco P, Mateo J. A Machine Learning-Based Method for Detecting Liver Fibrosis. Diagnostics (Basel) 2023; 13:2952. [PMID: 37761319 PMCID: PMC10529519 DOI: 10.3390/diagnostics13182952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cholecystectomy and Metabolic-associated steatotic liver disease (MASLD) are prevalent conditions in gastroenterology, frequently co-occurring in clinical practice. Cholecystectomy has been shown to have metabolic consequences, sharing similar pathological mechanisms with MASLD. A database of MASLD patients who underwent cholecystectomy was analysed. This study aimed to develop a tool to identify the risk of liver fibrosis after cholecystectomy. For this purpose, the extreme gradient boosting (XGB) algorithm was used to construct an effective predictive model. The factors associated with a better predictive method were platelet level, followed by dyslipidaemia and type-2 diabetes (T2DM). Compared to other ML methods, our proposed method, XGB, achieved higher accuracy values. The XGB method had the highest balanced accuracy (93.16%). XGB outperformed KNN in accuracy (93.16% vs. 84.45%) and AUC (0.92 vs. 0.84). These results demonstrate that the proposed XGB method can be used as an automatic diagnostic aid for MASLD patients based on machine-learning techniques.
Collapse
Affiliation(s)
- Miguel Suárez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Raquel Martínez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Antonio Ramón
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
242
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
243
|
Zou H, Ma X, Zhang F, Xie Y. Comparison of the diagnostic performance of twelve noninvasive scores of metabolic dysfunction-associated fatty liver disease. Lipids Health Dis 2023; 22:145. [PMID: 37674196 PMCID: PMC10481547 DOI: 10.1186/s12944-023-01902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The absence of distinct symptoms in the majority of individuals with metabolic dysfunction-associated fatty liver disease (MAFLD) poses challenges in identifying those at high risk, so we need simple, efficient and cost-effective noninvasive scores to aid healthcare professionals in patient identification. While most noninvasive scores were developed for the diagnosis of nonalcoholic fatty liver disease (NAFLD), consequently, the objective of this study was to systematically assess the diagnostic ability of 12 noninvasive scores (METS-IR/TyG/TyG-WC/TyG-BMI/TyG-WtHR/VAI/HSI/FLI/ZJU/FSI/K-NAFLD) for MAFLD. METHODS The study recruited eligible participants from two sources: the National Health and Nutrition Examination Survey (NHANES) 2017-2020.3 cycle and the database of the West China Hospital Health Management Center. The performance of the model was assessed using various metrics, including area under the receiver operating characteristic curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), decision curve analysis (DCA), and subgroup analysis. RESULTS A total of 7398 participants from the NHANES cohort and 4880 patients from the Western China cohort were included. TyG-WC had the best predictive power for MAFLD risk in the NHANES cohort (AUC 0.863, 95% CI 0.855-0.871), while TyG-BMI had the best predictive ability in the Western China cohort (AUC 0.903, 95% CI 0.895-0.911), outperforming other models, and in terms of IDI, NRI, DCA, and subgroup analysis combined, TyG-WC remained superior in the NAHANES cohort and TyG-BMI in the Western China cohort. CONCLUSIONS TyG-BMI demonstrated satisfactory diagnostic efficacy in identifying individuals at a heightened risk of MAFLD in Western China. Conversely, TyG-WC exhibited the best diagnostic performance for MAFLD risk recognition in the United States population. These findings suggest the necessity of selecting the most suitable predictive models based on regional and ethnic variations.
Collapse
Affiliation(s)
- Haoxuan Zou
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Xiaopu Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Fan Zhang
- Health Management Center, West China Hospital, General Practice Medical Center, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Yan Xie
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
244
|
Ruiz-Ojeda FJ, Anguita-Ruiz A, Rico MC, Leis R, Bueno G, Moreno LA, Gil-Campos M, Gil Á, Aguilera CM. Serum levels of the novel adipokine isthmin-1 are associated with obesity in pubertal boys. World J Pediatr 2023; 19:864-872. [PMID: 36595188 PMCID: PMC10423122 DOI: 10.1007/s12519-022-00665-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To evaluate whether there is an association between the serum levels of the novel insulin-like adipokine isthmin-1 (ISM1) and obesity-related phenotypes in a population of Spanish children and to investigate the plausible molecular alterations behind the alteration of the serum levels of this protein in children with obesity. METHODS The study population is a sub-cohort of the PUBMEP research project, consisting of a cross-sectional population of 119 pubertal children with overweight (17 boys, 19 girls), obesity (20 boys, 25 girls), and normal weight (17 boys, 21 girls). All subjects were classified into experimental groups according to their sex, obesity, and insulin resistance (IR) status. They were counted anthropometry, glucose and lipid metabolism, inflammation and cardiovascular biomarkers as well as isthmin-1 (ISM1) serum levels. This population was intended as a discovery population to elucidate the relationship between obesity and ISM1 levels in children. Furthermore, the study population had blood whole-genome DNA methylation examined, allowing deepening into the obesity-ISM1 molecular relationship. RESULTS Higher serum ISM1 levels were observed in boys with obesity than in normal weight (P = 0.004) and overweight (P = 0.007) boys. ISM1 serum levels were positively associated with body mass index (BMI) Z-score (P = 0.005) and fat mass (P = 0.058) and negatively associated with myeloperoxidase (MPO) (P = 0.043) in boys. Although we did not find associations between ISM1 serum levels and metabolic outcomes in girls, which may indicate a putative sexual dimorphism, fat mass was positively associated in all children, including boys and girls (P = 0.011). DNA methylation levels in two-enhancer-related CpG sites of ISM1 (cg03304641 and cg14269097) were associated with serum levels of ISM1 in children. CONCLUSIONS ISM1 is associated with obesity in boys at the pubertal stage, elucidating how this protein might be of special relevance as a new biomarker of obesity in children. Further studies including a longitudinal design during puberty are needed.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain.
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Munich, Germany.
| | - Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain.
- Barcelona Institute for Global Health, ISGlobal, 08003, Barcelona, Spain.
| | - Maria C Rico
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain
| | - Rosaura Leis
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Unit of Investigation in Human Nutrition, Growth and Development of Galicia (GALINUT), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Pediatric Nutrition Research Group, Institute of Sanitary Research of Santiago de Compostela (IDIS) CHUS-USC, 15706, Santiago de Compostela, Spain
- Unit of Pediatric Gastroenterology, Hepatology and Nutritio, Pediatric Service, University Clinical Hospital of Santiago (CHUS), 15706, Santiago de Compostela, Spain
| | - Gloria Bueno
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- GENUD Research group, Institute of Sanitary Research of Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Unit of Pediatric Endocrinology, University Clinical Hospital Lozano Blesa, 50009, Zaragoza, Spain
| | - Luis A Moreno
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- GENUD Research group, Institute of Sanitary Research of Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Mercedes Gil-Campos
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimónides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Córdoba, 14071, Córdoba, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
245
|
Yang S, Zhang R, Deng W, Chang S, Li Y, Li S. Pirfenidone ameliorates liver steatosis by targeting the STAT3-SCD1 axis. Inflamm Res 2023; 72:1773-1787. [PMID: 37659014 DOI: 10.1007/s00011-023-01776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Previous studies reported that pirfenidone (PFD) is associated with liver disease. However, the effects of pirfenidone on energy metabolism and hepatic lipid accumulation are still poorly understood. METHODS In this study, C57BL/6J mice were randomly divided into two groups, and fed a normal chow diet (NCD) or a high-fat diet (HFD) for 16 weeks. At the end of the eighth week, half of the mice fed on both diets were treated with PFD. Biochemical and lipid metabolism-related indices were analyzed. Furthermore, Hepa 1-6 cells and mouse primary hepatocytes (MPHs) were incubated with PFD with or without free fatty acid (FFA) treatment. Then, stattic (a p-STAT3 inhibitor) or Ad-shSTAT3 was used to further elucidate the effects of Signal Transducer and Activator of Transcription 3 (STAT3) signaling on PFD regulation of hepatic steatosis. RESULTS PFD ameliorated obesity and hepatic lipid deposition in HFD mice by decreasing stearoyl-CoA desaturase 1 (SCD1) expression and upregulating p-STAT3 in the liver. In Hepa 1-6 cells and MPHs, PFD also down-regulated the expression of SCD1. STAT3 inhibition treatment eliminated the benefits of PFD on both SCD1 and hepatic steatosis. CONCLUSION In summary, our data reveal that PFD may play an important role in mitigating hepatic steatosis in a STAT3-SCD1-dependent manner.
Collapse
Affiliation(s)
- Shan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renzi Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhen Deng
- Department of Endocrinology, Qianjiang Central Hospital of Chongqing, Chongqing, 409000, China
| | - Shichuan Chang
- Oncology Department, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Yang Li
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
246
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
247
|
Wang X, Long D, Hu X, Guo N. Gentiopicroside modulates glucose homeostasis in high-fat-diet and streptozotocin-induced type 2 diabetic mice. Front Pharmacol 2023; 14:1172360. [PMID: 37601073 PMCID: PMC10438990 DOI: 10.3389/fphar.2023.1172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Gluconeogenesis is closely related to the occurrence and development of type 2 diabetes mellitus (T2DM). Gentiopicroside (GPS) is the main active secoiridoid glycoside in Gentiana manshurica Kitagawa, which can improve chronic complications associated with diabetes and regulate glucose metabolism. However, the effects and potential mechanisms by which GPS affects T2DM understudied and poorly understood. In this study, we systematically explored the pharmacological effects of GPS on T2DM induced by a high-fat diet (HFD) and streptozotocin (STZ) as well as explored its related mechanisms. The results showed that GPS supplementation discernibly decreased blood glucose levels, food intake and water consumption, ameliorated glucose intolerance, abnormal pyruvate tolerance, insulin resistance and dyslipidemia. Furthermore, GPS discernibly ameliorated pathological morphological abnormalities of the liver and pancreas, reduced hepatic steatosis and maintain the balance between α-cells and β-cells in pancreas. Moreover, GPS significantly inhibited gluconeogenesis, as evidenced by the suppressed protein expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) in the liver. Additionally, the results of Western blot analysis revealed that GPS increased p-PI3K, p-AKT, and p-FOXO1 expression levels, and decreased FOXO1 expression at protein level in the liver. Furthermore, the results of the immunostaining and Western blot analysis demonstrated that GPS supplementation increased the expression of zonula occludens-1 (ZO-1) and occludin in the ileum. Collectively, these results indicate that GPS may inhibit hepatic gluconeogenesis by regulating the PI3K/AKT/FOXO1 signaling pathway and maintain intestinal barrier integrity, and ultimately improve T2DM. Together, these findings indicate that GPS is a potential candidate drug for the prevention and treatment of T2DM, and the results of our study will provide experimental basis for further exploration of the possibility of GPS as a therapeutic agent for T2DM.
Collapse
Affiliation(s)
- Xing Wang
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dongmei Long
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Xianghong Hu
- Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
248
|
Katsuyama H, Yanai H, Adachi H, Hakoshima M. A Significant Effect of Pemafibrate on Hepatic Steatosis and Fibrosis Indexes in Patients With Hypertriglyceridemia. Gastroenterology Res 2023; 16:240-243. [PMID: 37691751 PMCID: PMC10482606 DOI: 10.14740/gr1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Background We previously reported that the selective peroxisome proliferator-activated receptor alpha modulator, pemafibrate, significantly reduced serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) and significantly increased serum albumin levels at 3, 6 and 12 months after the start of pemafibrate, with an improvement of atherogenic dyslipidemia, in patients with hypertriglyceridemia. Methods We performed a post hoc analysis of our previous data obtained from patients with hypertriglyceridemia who had been prescribed pemafibrate continuously for 1 year or longer. We compared the indexes for hepatic steatosis (hepatic steatosis index (HSI)) and fibrosis (nonalcoholic fatty liver disease (NAFLD) fibrosis score (NFS), AST to platelet ratio index (APRI) and FIB-4 index) at baseline with the data at 1 year after the start of pemafibrate. Results Pemafibrate significantly reduced HSI at 1 year after the start of pemafibrate. NFS did not show a significant change after 1 year. However, APRI was significantly reduced by pemafibrate after 1 year. FIB-4 index significantly decreased in patients with baseline FIB-4 index ≥ 1.45 at 1 year after the start of pemafibrate. HSI at baseline tended to be negatively correlated with change in HSI after 1 year. There was no significant correlation between NFS at baseline and change in this score after 1 year. APRI and FIB-4 index at baseline were significantly and negatively correlated with changes in APRI and FIB-4 index at 1 year after the start of pemafibrate. Conclusions The 1-year pemafibrate treatment improved hepatic steatosis and fibrosis indexes in patients with hypertriglyceridemia.
Collapse
Affiliation(s)
- Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
249
|
Hu W, Lyu X, Xu H, Guo X, Zhu H, Pan H, Wang L, Yang H, Gong F. Intragastric Safflower Yellow Alleviates HFD Induced Metabolic Dysfunction-Associated Fatty Liver Disease in Mice through Regulating Gut Microbiota and Liver Endoplasmic Reticulum Stress. Nutrients 2023; 15:2954. [PMID: 37447278 DOI: 10.3390/nu15132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota was reported to play a significant role in the progression of the metabolic associated fatty liver disease (MAFLD). Our recent study suggested that gastrointestinal tract and liver were important targets mediating the anti-obesity effects of intragastric safflower yellow (SY). Therefore, our present study aims to investigate the effect of intragastric SY on MAFLD and possible mechanism. DIO mice were treated with 125 mg/kg/d SY for 12 weeks by gavage. We found intragastric SY significantly slowed weight gain of body, reduced the food intake and liver weight, improved hepatic steatosis, liver function and glucose metabolism in DIO mice. The comparison between OGTT and IPGTT illustrated OGTT produced a better improvement of glucose tolerance after SY treatment. We also found intragastric SY significantly increased the energy expenditure and locomotor activity of DIO mice. SY obviously decreased the expression of lipogenesis-associated and ERS-related genes in liver of DIO mice and PA-induced MAFLD hepatocyte model. Gut microbiota analysis demonstrated intragastric SY apparently changed the diversity and composition of gut microbiota of DIO mice. Further function prediction analysis indicated that gut microbiotas in SY-treated mice was positively related with energy metabolism, lipid metabolism and endocrine system. Intragastric SY has a significant therapeutic effect on MAFLD, which is mediated partly by modulating gut microbiota and improving liver ERS.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
250
|
de Alteriis G, Pugliese G, Di Sarno A, Muscogiuri G, Barrea L, Cossiga V, Perruolo G, Di Tolla MF, Zumbolo F, Formisano P, Morisco F, Savastano S. Visceral Obesity and Cytokeratin-18 Antigens as Early Biomarkers of Liver Damage. Int J Mol Sci 2023; 24:10885. [PMID: 37446065 DOI: 10.3390/ijms241310885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Visceral obesity is linked to the progression of fatty liver to nonalcoholic steatohepatitis (NASH). Cytokeratin-18 (CK18) epitopes M30 (CK18M30) and M65 (CK18M65) represent accurate markers for detecting NASH. The aim of this study was to evaluate the association of CK18M30 and CK18M65 levels with anthropometric and metabolic characteristics, liver stiffness, and liver indices of steatosis and fibrosis in a cohort of subjects with visceral obesity; in this cross-sectional study, transient elastography (TE-Fibroscan®), anthropometric measurements, metabolic parameters, High Sensitivity C-Reactive Protein (hsCRP), and CK18M30 and CK18M65 levels (Apoptosense ELISA, PEVIVA, Germany) were evaluated. Fatty Liver Index (FLI), Fibrosis 4 (FIB-4), and Aspartate transaminase (AST)-platelet ratio index (APRI) were calculated; among 48 subjects, 47.2% presented metabolic syndrome, 93.8% hepatic steatosis, 60.4% high liver stiffness, and 14.6% hypertransminasemia, while FIB-4 and APRI were normal. CK18M30 and CK18M65 levels were significantly correlated with waist circumference, AST, ALT, HoMA-IR, liver stiffness, and APRI (p < 0.001). Subjects with CK18 fragments above the median values showed significantly higher waist circumference, HbA1c, AST, ALT, HoMA-IR, FLI, and APRI compared to those with values below the median; CK18M30 and CK18M65 levels correlated well with anthropometric and metabolic characteristics, representing good biomarkers for early identification of NASH in subjects with visceral obesity.
Collapse
Affiliation(s)
- Giulia de Alteriis
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonella Di Sarno
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Barrea
- Department of Humanities, Telematic University Pegaso, 80143 Naples, Italy
| | - Valentina Cossiga
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Francesca Zumbolo
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Filomena Morisco
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Silvia Savastano
- Endocrinology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|