201
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
202
|
Ortega F, Gascón S, Masserdotti G, Deshpande A, Simon C, Fischer J, Dimou L, Chichung Lie D, Schroeder T, Berninger B. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 2013; 15:602-13. [PMID: 23644466 DOI: 10.1038/ncb2736] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 03/14/2013] [Indexed: 01/07/2023]
Abstract
The adult mouse subependymal zone (SEZ) harbours adult neural stem cells (aNSCs) that give rise to neuronal and oligodendroglial progeny. However it is not known whether the same aNSC can give rise to neuronal and oligodendroglial progeny or whether these distinct progenies constitute entirely separate lineages. Continuous live imaging and single-cell tracking of aNSCs and their progeny isolated from the mouse SEZ revealed that aNSCs exclusively generate oligodendroglia or neurons, but never both within a single lineage. Moreover, activation of canonical Wnt signalling selectively stimulated proliferation within the oligodendrogliogenic lineage, resulting in a massive increase in oligodendrogliogenesis without changing lineage choice or proliferation within neurogenic clones. In vivo activation or inhibition of canonical Wnt signalling respectively increased or decreased the number of Olig2 and PDGFR- α positive cells, suggesting that this pathway contributes to the fine tuning of oligodendrogliogenesis in the adult SEZ.
Collapse
Affiliation(s)
- Felipe Ortega
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Tuoc TC, Boretius S, Sansom SN, Pitulescu ME, Frahm J, Livesey FJ, Stoykova A. Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev Cell 2013; 25:256-69. [PMID: 23643363 DOI: 10.1016/j.devcel.2013.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 02/21/2013] [Accepted: 04/07/2013] [Indexed: 11/26/2022]
Abstract
Increased cortical size is essential to the enhanced intellectual capacity of primates during mammalian evolution. The mechanisms that control cortical size are largely unknown. Here, we show that mammalian BAF170, a subunit of the chromatin remodeling complex mSWI/SNF, is an intrinsic factor that controls cortical size. We find that conditional deletion of BAF170 promotes indirect neurogenesis by increasing the pool of intermediate progenitors (IPs) and results in an enlarged cortex, whereas cortex-specific BAF170 overexpression results in the opposite phenotype. Mechanistically, BAF170 competes with BAF155 subunit in the BAF complex, affecting euchromatin structure and thereby modulating the binding efficiency of the Pax6/REST-corepressor complex to Pax6 target genes that regulate the generation of IPs and late cortical progenitors. Our findings reveal a molecular mechanism mediated by the mSWI/SNF chromatin-remodeling complex that controls cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Research Group of Molecular Developmental Neurobiology, Department of Molecular Cell Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
204
|
Tbr2 expression in Cajal-Retzius cells and intermediate neuronal progenitors is required for morphogenesis of the dentate gyrus. J Neurosci 2013; 33:4165-80. [PMID: 23447624 DOI: 10.1523/jneurosci.4185-12.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus (DG) is a unique cortical region whose protracted development spans the embryonic and early postnatal periods. DG development involves large-scale reorganization of progenitor cell populations, ultimately leading to the establishment of the subgranular zone neurogenic niche. In the developing DG, the T-box transcription factor Tbr2 is expressed in both Cajal-Retzius cells derived from the cortical hem that guide migration of progenitors and neurons to the DG, and intermediate neuronal progenitors born in the dentate neuroepithelium that give rise to granule neurons. Here we show that in mice Tbr2 is required for proper migration of Cajal-Retzius cells to the DG; and, in the absence of Tbr2, formation of the hippocampal fissure is abnormal, leading to aberrant development of the transhilar radial glial scaffold and impaired migration of progenitors and neuroblasts to the developing DG. Furthermore, loss of Tbr2 results in decreased expression of Cxcr4 in migrating cells, leading to a premature burst of granule neurogenesis during early embryonic development accompanied by increased cell death in mutant animals. Formation of the transient subpial neurogenic zone was abnormal in Tbr2 conditional knock-outs, and the stem cell population in the DG was depleted before proper establishment of the subgranular zone. These studies indicate that Tbr2 is explicitly required for morphogenesis of the DG and participates in multiple aspects of the intricate developmental process of this structure.
Collapse
|
205
|
Boisvert EM, Denton K, Lei L, Li XJ. The specification of telencephalic glutamatergic neurons from human pluripotent stem cells. J Vis Exp 2013. [PMID: 23603787 DOI: 10.3791/50321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here, a stepwise procedure for efficiently generating telencephalic glutamatergic neurons from human pluripotent stem cells (PSCs) has been described. The differentiation process is initiated by breaking the human PSCs into clumps which round up to form aggregates when the cells are placed in a suspension culture. The aggregates are then grown in hESC medium from days 1-4 to allow for spontaneous differentiation. During this time, the cells have the capacity to become any of the three germ layers. From days 5-8, the cells are placed in a neural induction medium to push them into the neural lineage. Around day 8, the cells are allowed to attach onto 6 well plates and differentiate during which time the neuroepithelial cells form. These neuroepithelial cells can be isolated at day 17. The cells can then be kept as neurospheres until they are ready to be plated onto coverslips. Using a basic medium without any caudalizing factors, neuroepithelial cells are specified into telencephalic precursors, which can then be further differentiated into dorsal telencephalic progenitors and glutamatergic neurons efficiently. Overall, our system provides a tool to generate human glutamatergic neurons for researchers to study the development of these neurons and the diseases which affect them.
Collapse
Affiliation(s)
- Erin M Boisvert
- Department of Genetics and Developmental Biology, The University of Connecticut Health Center, USA
| | | | | | | |
Collapse
|
206
|
Ladewig J, Koch P, Brüstle O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol 2013; 14:225-36. [PMID: 23486282 DOI: 10.1038/nrm3543] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For decades, Waddington's concept of the 'epigenetic landscape' has served as an educative hierarchical model to illustrate the progressive restriction of cell differentiation potential during normal development. While still being highly valuable in the context of normal development, the Waddington model falls short of accommodating recent breakthroughs in cell programming. The advent of induced pluripotent stem (iPS) cells and advances in direct cell fate conversion (also known as transdifferentiation) suggest that somatic and pluripotent cell fates can be interconverted without transiting through distinct hierarchies. We propose a non-hierarchical 'epigenetic disc' model to explain such cell fate transitions, which provides an alternative landscape for modelling cell programming and reprogramming.
Collapse
Affiliation(s)
- Julia Ladewig
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn, Sigmund Freud Straße 25, 53127 Bonn, Germany
| | | | | |
Collapse
|
207
|
Quadrato G, Di Giovanni S. Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. Cell Mol Life Sci 2013; 70:993-1007. [PMID: 22899311 PMCID: PMC11113138 DOI: 10.1007/s00018-012-1099-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
In the last several years, relevant progress has been made in our understanding of the transcriptional machinery regulating CNS repair after acute injury, such as following trauma or stroke. In order to survive and functionally reconnect to the synaptic network, injured neurons activate an intrinsic rescue program aimed to increase their plasticity. Perhaps, in the attempt to switch back to a plastic and growth-competent state, post-mitotic neurons wake up and re-express a set of transcription factors that are also critical for the regulation of their younger brothers, the neural stem cells. Here, we review and discuss the transcriptional pathways regulating both axonal regeneration and neurogenesis highlighting the connection between the two. Clarification of their common molecular substrate may help simultaneous targeting of both neurogenesis and axonal regeneration with the hope to enhance functional recovery following CNS injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
208
|
Itoh Y, Moriyama Y, Hasegawa T, Endo TA, Toyoda T, Gotoh Y. Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition-like mechanism. Nat Neurosci 2013; 16:416-25. [PMID: 23434913 DOI: 10.1038/nn.3336] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/23/2013] [Indexed: 12/15/2022]
Abstract
During neocortical development, the neuroepithelial or neural precursor cells that commit to neuronal fate need to delaminate and start migration toward the pial surface. However, the mechanism that couples neuronal fate commitment to detachment from the neuroepithelium remains largely unknown. Here we show that Scratch1 and Scratch2, members of the Snail superfamily of transcription factors, are expressed upon neuronal fate commitment under the control of proneural genes and promote apical process detachment and radial migration in the developing mouse neocortex. Scratch-induced delamination from the apical surface was mediated by transcriptional repression of the adhesion molecule E-cadherin. These findings suggest that Scratch proteins constitute a molecular link between neuronal fate commitment and the onset of neuronal migration. On the basis of their similarity to proteins involved in the epithelial-mesenchymal transition (EMT), we propose that Scratch proteins mediate the conversion of neuroepithelial cells to migrating neurons or intermediate neuronal progenitors through an EMT-related mechanism.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
209
|
Ohtaka-Maruyama C, Hirai S, Miwa A, Heng JIT, Shitara H, Ishii R, Taya C, Kawano H, Kasai M, Nakajima K, Okado H. RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep 2013; 3:458-71. [PMID: 23395638 DOI: 10.1016/j.celrep.2013.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/16/2012] [Accepted: 01/14/2013] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence suggests that many brain diseases are associated with defects in neuronal migration, suggesting that this step of neurogenesis is critical for brain organization. However, the molecular mechanisms underlying neuronal migration remain largely unknown. Here, we identified the zinc-finger transcriptional repressor RP58 as a key regulator of neuronal migration via multipolar-to-bipolar transition. RP58(-/-) neurons exhibited severe defects in the formation of leading processes and never shifted to the locomotion mode. Cre-mediated deletion of RP58 using in utero electroporation in RP58(flox/flox) mice revealed that RP58 functions in cell-autonomous multipolar-to-bipolar transition, independent of cell-cycle exit. Finally, we found that RP58 represses Ngn2 transcription to regulate the Ngn2-Rnd2 pathway; Ngn2 knockdown rescued migration defects of the RP58(-/-) neurons. Our findings highlight the critical role of RP58 in multipolar-to-bipolar transition via suppression of the Ngn2-Rnd2 pathway in the developing cerebral cortex.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Department of Brain Development and Neural Regeneration, Neural Development Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc Natl Acad Sci U S A 2013; 110:4081-6. [PMID: 23431145 DOI: 10.1073/pnas.1209076110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a "protomap" in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The "intermediate map" in the SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 → Eomes → Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.
Collapse
|
211
|
Song M, Mohamad O, Chen D, Yu SP. Coordinated development of voltage-gated Na+ and K+ currents regulates functional maturation of forebrain neurons derived from human induced pluripotent stem cells. Stem Cells Dev 2013; 22:1551-63. [PMID: 23259973 DOI: 10.1089/scd.2012.0556] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Like embryonic stem (ES) cells, human induced pluripotent stem (hiPS) cells can differentiate into neuronal cells. However, it is unclear how their exquisite neuronal function is electrophysiologically coordinated during differentiation and whether they are functionally identical to human ES cell-derived neurons. In this study, we differentiated hiPS and ES cells into pyramidal-like neurons and conducted electrophysiological characterization over the 4-week terminal differentiation period. The human neuron-like cells express forebrain pyramidal cell markers NeuN, neurofilament, the microtubule-associated protein 2 (MAP2), the paired box protein Pax-6 (PAX6), Tuj1, and the forkhead box protein G1 (FoxG1). The size of developing neurons increased continuously during the 4-week culture, and cell-resting membrane potentials (RMPs) underwent a negative shift from -40 to -70 mV. Expression of the muscarinic receptor-modulated K(+) currents (IM) participated in the development of cell RMPs and controlled excitability. Immature neurons at week 1 could only fire abortive action potentials (APs) and the frequency of AP firing progressively increased with neuronal maturation. Interestingly, the developmental change of voltage-gated Na(+) current (INa) did not correlate with the change in the AP firing frequency. On the other hand, the transient outward K(+) current (IA), but not the delayed rectifier current (IK) contributed to the high frequency firing of APs. Synaptic activities were observed throughout the 4-week development. These morphological and electrophysiological features were almost identical between iPS and ES cell-derived neurons. This is the first systematic investigation showing functional evidence that hiPS cell-derived neurons possess similar neuronal activities as ES cell-derived neurons. These data support that iPS cell-derived neural progenitor cells have the potential for replacing lost neurons in cell-based therapy.
Collapse
Affiliation(s)
- Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
212
|
Cushion TD, Dobyns WB, Mullins JGL, Stoodley N, Chung SK, Fry AE, Hehr U, Gunny R, Aylsworth AS, Prabhakar P, Uyanik G, Rankin J, Rees MI, Pilz DT. Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. ACTA ACUST UNITED AC 2013; 136:536-48. [PMID: 23361065 DOI: 10.1093/brain/aws338] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymicrogyria and lissencephaly are causally heterogeneous disorders of cortical brain development, with distinct neuropathological and neuroimaging patterns. They can be associated with additional structural cerebral anomalies, and recurrent phenotypic patterns have led to identification of recognizable syndromes. The lissencephalies are usually single-gene disorders affecting neuronal migration during cerebral cortical development. Polymicrogyria has been associated with genetic and environmental causes and is considered a malformation secondary to abnormal post-migrational development. However, the aetiology in many individuals with these cortical malformations is still unknown. During the past few years, mutations in a number of neuron-specific α- and β-tubulin genes have been identified in both lissencephaly and polymicrogyria, usually associated with additional cerebral anomalies including callosal hypoplasia or agenesis, abnormal basal ganglia and cerebellar hypoplasia. The tubulin proteins form heterodimers that incorporate into microtubules, cytoskeletal structures essential for cell motility and function. In this study, we sequenced the TUBB2B and TUBA1A coding regions in 47 patients with a diagnosis of polymicrogyria and five with an atypical lissencephaly on neuroimaging. We identified four β-tubulin and two α-tubulin mutations in patients with a spectrum of cortical and extra-cortical anomalies. Dysmorphic basal ganglia with an abnormal internal capsule were the most consistent feature. One of the patients with a TUBB2B mutation had a lissencephalic phenotype, similar to that previously associated with a TUBA1A mutation. The remainder had a polymicrogyria-like cortical dysplasia, but the grey matter malformation was not typical of that seen in 'classical' polymicrogyria. We propose that the cortical malformations associated with these genes represent a recognizable tubulinopathy-associated spectrum that ranges from lissencephalic to polymicrogyric cortical dysplasias, suggesting shared pathogenic mechanisms in terms of microtubular function and interaction with microtubule-associated proteins.
Collapse
Affiliation(s)
- Thomas D Cushion
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Nomura T, Kawaguchi M, Ono K, Murakami Y. Reptiles: a new model for brain evo-devo research. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:57-73. [PMID: 23319423 DOI: 10.1002/jez.b.22484] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/05/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022]
Abstract
Vertebrate brains exhibit vast amounts of anatomical diversity. In particular, the elaborate and complex nervous system of amniotes is correlated with the size of their behavioral repertoire. However, the evolutionary mechanisms underlying species-specific brain morphogenesis remain elusive. In this review we introduce reptiles as a new model organism for understanding brain evolution. These animal groups inherited ancestral traits of brain architectures. We will describe several unique aspects of the reptilian nervous system with a special focus on the telencephalon, and discuss the genetic mechanisms underlying reptile-specific brain morphology. The establishment of experimental evo-devo approaches to studying reptiles will help to shed light on the origin of the amniote brains.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Taisyogun, Kitaku, Kyoto, Japan.
| | | | | | | |
Collapse
|
214
|
Kwan KY. Transcriptional dysregulation of neocortical circuit assembly in ASD. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:167-205. [PMID: 24290386 DOI: 10.1016/b978-0-12-418700-9.00006-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASDs) impair social cognition and communication, key higher-order functions centered in the human neocortex. The assembly of neocortical circuitry is a precisely regulated developmental process susceptible to genetic alterations that can ultimately affect cognitive abilities. Because ASD is an early onset neurodevelopmental disorder that disrupts functions executed by the neocortex, miswiring of neocortical circuits has been hypothesized to be an underlying mechanism of ASD. This possibility is supported by emerging genetic findings and data from imaging studies. Recent research on neocortical development has identified transcription factors as key determinants of neocortical circuit assembly, mediating diverse processes including neuronal specification, migration, and wiring. Many of these TFs (TBR1, SOX5, FEZF2, and SATB2) have been implicated in ASD. Here, I will discuss the functional roles of these transcriptional programs in neocortical circuit development and their neurobiological implications for the emerging etiology of ASD.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Human Genetics, Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
215
|
Transcriptional Regulation and Specification of Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:129-55. [DOI: 10.1007/978-94-007-6621-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
216
|
Kozlova EN, Berens C. Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplant 2012; 21:2537-54. [DOI: 10.3727/096368911x637407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of stem or progenitor cells is an attractive strategy for cell replacement therapy. However, poor long-term survival and insufficiently reproducible differentiation to functionally appropriate cells in vivo still present major obstacles for translation of this methodology to clinical applications. Numerous experimental studies have revealed that the expression of just a few transcription factors can be sufficient to drive stem cell differentiation toward a specific cell type, to transdifferentiate cells from one fate to another, or to dedifferentiate mature cells to pluripotent stem/progenitor cells (iPSCs). We thus propose here to apply the strategy of expressing the relevant key transcription factors to guide the differentiation of transplanted cells to the desired cell fate in vivo. To achieve this requires tools allowing us to control the expression of these genes in the transplant. Here, we describe drug-inducible systems that allow us to sequentially and timely activate gene expression from the outside, with a particular emphasis on the Tet system, which has been widely and successfully used in stem cells. These regulatory systems offer a tool for strictly limiting gene expression to the respective optimal stage after transplantation. This approach will direct the differentiation of the immature stem/progenitor cells in vivo to the desired cell type.
Collapse
Affiliation(s)
- Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
217
|
Paul V, Tonchev AB, Henningfeld KA, Pavlakis E, Rust B, Pieler T, Stoykova A. Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex. ACTA ACUST UNITED AC 2012. [PMID: 23180754 DOI: 10.1093/cercor/bhs356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Scratch genes (Scrt) are neural-specific zinc-finger transcription factors (TFs) with an unknown function in the developing brain. Here, we show that, in addition to the reported expression of mammalian Scrt2 in postmitotic differentiating and mature neurons in the developing and early postnatal brain, Scrt2 is also localized in subsets of mitotic and neurogenic radial glial (RGP) and intermediate (IP) progenitors, as well as in their descendants-postmitotic IPs and differentiating neurons at the border subventricular/intermediate zone. Conditional activation of transgenic Scrt2 in cortical progenitors in mice promotes neuronal differentiation by favoring the direct mode of neurogenesis of RGPs at the onset of neurogenesis, at the expense of IP generation. Neuronal amplification via indirect IP neurogenesis is thereby extenuated, leading to a mild postnatal reduction of cortical thickness. Forced in vivo overexpression of Scrt2 suppressed the generation of IPs from RGPs and caused a delay in the radial migration of upper layer neurons toward the cortical plate. Mechanistically, our results indicate that Scrt2 negatively regulates the transcriptional activation of the basic helix loop helix TFs Ngn2/NeuroD1 on E-box containing common target genes, including Rnd2, a well-known major effector for migrational defects in developing cortex. Altogether, these findings reveal a modulatory role of Scrt2 protein in cortical neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Vanessa Paul
- Research Group Molecular Developmental Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
218
|
Matsumata M, Sakayori N, Maekawa M, Owada Y, Yoshikawa T, Osumi N. The effects of Fabp7 and Fabp5 on postnatal hippocampal neurogenesis in the mouse. Stem Cells 2012; 30:1532-43. [PMID: 22581784 DOI: 10.1002/stem.1124] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
New neurons are continually produced after birth from neural stem/progenitor cells (NSCs/NPCs) in the hippocampal dentate gyrus (DG). Recent studies have reported that fatty acid binding protein 7 (Fabp7/brain lipid binding protein (BLBP)) is required for the maintenance of embryonic NSCs/NPCs and have identified an association between the Fabp7 gene and behavioral paradigms that correlate with hippocampal functions. However, the specific roles of Fabps in postnatal neurogenesis remain unknown. Herein, we demonstrate the effects of Fabp7, and another Fabp, Fabp5, on postnatal neurogenesis. Fabp7 and Fabp5 were detected in the subgranular zone (SGZ) of the DG, and Fabp7+ cells were less differentiated than Fabp5+ cells. We analyzed the differentiation state of NSCs/NPCs in the SGZ of 4-week-old (4w) Fabp7 knockout (7KO), Fabp5 KO (5KO), and Fabp7/Fabp5 double KO (7/5KO) mice and found that the number of NSCs/NPCs was dramatically reduced compared with wild-type mice. Although the uptake of BrdU 1 day after injection was decreased in all KO mice, the survival of BrdU+ cells 1 month after injection was increased in the 7/5KO mice compared to other three genotypes. We also observed an enhancement of neuronal differentiation in all Fabp KO mice. In addition, the proliferation and survival of NSCs/NPCs differed along the anterior-posterior axis (A-P axis). A greater number of newborn cells in the posterior region became extinct, but this tendency was not apparent in the Fabps KO mice. These data suggest that Fabp7 and Fabp5 have differential roles for proliferation and survival of the NSCs/NPCs during postnatal DG neurogenesis.
Collapse
Affiliation(s)
- Miho Matsumata
- Division of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
219
|
Sakayori N, Kikkawa T, Osumi N. Reduced proliferation and excess astrogenesis of Pax6 heterozygous neural stem/progenitor cells. Neurosci Res 2012; 74:116-21. [DOI: 10.1016/j.neures.2012.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
|
220
|
Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene 2012; 511:427-36. [PMID: 23000064 DOI: 10.1016/j.gene.2012.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 01/13/2023]
Abstract
Since numerous diseases affect the central nervous system and it has limited self-repair capability, a great interest in using stem cells as an alternative cell source is generated. Previous reports have shown the differentiation of adipose-derived stem cells in neuron-like cells and it has also been proved that the expression pattern of patterning, proneural, and neural factors, such as Pax6, Mash1, Ngn2, NeuroD1, Tbr2 and Tbr1, regulates and defines adult neurogenesis. Regarding this, we hypothesize that a functional parallelism between adult neurogenesis and neuronal differentiation of human adipose-derived stem cells exists. In this study we differentiate human adipose-derived stem cells into neuron-like cells and analyze the expression pattern of different patterning, proneural, neural and neurotransmitter genes, before and after neuronal differentiation. The neuron-like cells expressed neuronal markers, patterning and proneural factors characteristics of intermediate stages of neuronal differentiation. Thus we demonstrated that it is possible to differentiate adipose-derived stem cells in vitro into immature neuron-like cells and that this process is regulated in a similar way to adult neurogenesis. This may contribute to elucidate molecular mechanisms involved in neuronal differentiation of adult human non-neural cells, in aid of the development of potential therapeutic tools for diseases of the nervous system.
Collapse
|
221
|
Miyoshi G, Fishell G. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron 2012; 74:1045-58. [PMID: 22726835 DOI: 10.1016/j.neuron.2012.04.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 01/20/2023]
Abstract
Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is dynamically regulated during this transitional period. By utilizing conditional genetic strategies, we show that the downregulation of FoxG1 at the beginning of the multipolar cell phase induces Unc5D expression, the timing of which ultimately determines the laminar identity of pyramidal neurons. In addition, we demonstrate that the re-expression of FoxG1 is required for cells to transit out of the multipolar cell phase and to enter into the cortical plate. Thus, the dynamic expression of FoxG1 during migration within the intermediate zone is essential for the proper assembly of the cerebral cortex.
Collapse
Affiliation(s)
- Goichi Miyoshi
- NYU Neuroscience Institute, Department of Physiology and Neuroscience, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
222
|
Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice. J Neurosci 2012; 32:8930-9. [PMID: 22745493 DOI: 10.1523/jneurosci.1398-12.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes. In the current study, we demonstrate that environmental enrichment significantly enhances behavioral and neurobiological recovery from perinatal hypoxic injury. Using a genetic fate-mapping model that allows us to trace the progeny of GFAP+ astroglial cells, we show that hypoxic injury increases the proportion of astroglial cells that attain a neuronal fate. In contrast, environmental enrichment increases the stem cell pool, both through increased stem cell proliferation and stem cell survival. In mice subjected to hypoxia and subsequent enrichment there is an additive effect of both conditions on hippocampal neurogenesis from astroglia, resulting in a robust increase in the number of neurons arising from GFAP+ cells by the time these mice reach full adulthood.
Collapse
|
223
|
Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb. J Neurosci 2012; 32:8831-44. [PMID: 22745484 DOI: 10.1523/jneurosci.5746-11.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory-inhibitory balance crucial for odor information processing.
Collapse
|
224
|
Traylor RN, Dobyns WB, Rosenfeld JA, Wheeler P, Spence JE, Bandholz AM, Bawle EV, Carmany EP, Powell CM, Hudson B, Schultz RA, Shaffer LG, Ballif BC. Investigation of TBR1 Hemizygosity: Four Individuals with 2q24 Microdeletions. Mol Syndromol 2012; 3:102-112. [PMID: 23112752 DOI: 10.1159/000342008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2012] [Indexed: 12/19/2022] Open
Abstract
TBR1 encodes a transcription factor with critical roles in corticogenesis, including cortical neuron migration and axon pathfinding, establishment of regional and laminar identity of cortical neurons, and control of glutamatergic neuronal cell fate. Based upon TBR1's role in cortical development, we sought to investigate TBR1 hemizygosity in individuals referred for genetic evaluation of intellectual disability and developmental delay. We describe 4 patients with microdeletions identified by molecular cytogenetic techniques, encompassing TBR1 and spanning 2q24.1q31.1, ranging in size from 2.17 to 12.34 Mb. Only the patient with the largest deletion had a possible cortical malformation. Mild ventriculomegaly is the only common brain anomaly, present in all patients; a Chiari I malformation is seen in 2 patients, and mega cisterna magna is seen in a third. Our findings are consistent with Tbr1 mouse models showing that hemizygosity of the gene requires additional genetic factors for the manifestation of severe structural brain malformations. Other syndromic features are present in these patients, including autism spectrum disorders, ocular colobomas, and craniosynostosis, features that are likely affected by the deletion of genes other than TBR1.
Collapse
Affiliation(s)
- R N Traylor
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Wash., USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci 2012; 32:6275-87. [PMID: 22553033 DOI: 10.1523/jneurosci.0532-12.2012] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis in the dentate gyrus has been implicated in cognitive functions, including learning and memory, and may be abnormal in major neuropsychiatric disorders, such as depression. Dentate neurogenesis is regulated by interactions between extrinsic factors and intrinsic transcriptional cascades that are currently not well understood. Here we show that Tbr2 (also known as Eomes), a T-box transcription factor expressed by intermediate neuronal progenitors (INPs), is critically required for neurogenesis in the dentate gyrus of developing and adult mice. In the absence of Tbr2, INPs are depleted despite augmented neural stem cell (NSC) proliferation, and neurogenesis is halted as the result of failed neuronal differentiation. Interestingly, we find that Tbr2 likely promotes lineage progression from NSC to neuronal-specified INP in part by repression of Sox2, a key determinant of NSC identity. These findings suggest that Tbr2 expression in INPs is critical for neuronal differentiation in the dentate gyrus and that INPs are an essential stage in the lineage from NSCs to new granule neurons in the dentate gyrus.
Collapse
|
226
|
Zheng H, Law PY, Loh HH. Non-Coding RNAs Regulating Morphine Function: With Emphasis on the In vivo and In vitro Functions of miR-190. Front Genet 2012; 3:113. [PMID: 22715342 PMCID: PMC3375446 DOI: 10.3389/fgene.2012.00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs, are reported to be involved in a variety of biological processes, including several processes related to drug addiction. It has been suggested that the biological functions of opioids, one typical type of addictive drugs, are regulated by ncRNAs. In the current review, we examine a variety of mechanisms through which ncRNAs could regulate μ-opioid receptor (OPRM1) activities and thereby contribute to the development of opioid addiction. Using miR-23b as an example, we present the possible ways in which ncRNA-mediated regulation of OPRM1 expression could impact opioid addiction. Using miR-190 as an example, we demonstrate the critical roles played by ncRNAs in the signal cascade from receptor to systemic responses, including the possible modulation of adult neurogenesis and in vivo contextual memory. After discussing the possible targets of ncRNAs involved in the development of opioid addiction, we summarize the mechanisms underlying the interaction between ncRNAs and opioid addiction and present suggestions for further study.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, China
| | | | | |
Collapse
|
227
|
Klempin F, Marr RA, Peterson DA. Modification of pax6 and olig2 expression in adult hippocampal neurogenesis selectively induces stem cell fate and alters both neuronal and glial populations. Stem Cells 2012; 30:500-9. [PMID: 22162276 DOI: 10.1002/stem.1005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The generation of new neurons in the mammalian hippocampus continues throughout life, and lineage progression is regulated by transcription factors, local cues, and environmental influences. The ability to direct stem/progenitor cell fate in situ may have therapeutic potential. Using an in vivo retroviral delivery and lineage tracing approach, we compare the lineage-instruction factors, Pax6 and Olig2, and demonstrate that both participate in regulation of adult hippocampal neurogenesis in adult rats. We show that overexpression of the proneuronal factor Pax6 pushes neuronal precursor cells to early maturation and increases the frequency of neuronal phenotypes. However, Pax6 overexpression results in no net increase in neurogenesis at 3 weeks. Blocking of Olig2 function reduces and slows neuronal commitment and differentiation and decreases net neurogenesis. Altering expression of both factors also changes gliogenesis. Our results establish that Pax6 decreases the number of Neuron-Glia 2 progenitor cells and prevents oligodendrocytic lineage commitment, while repression of Olig2 results in an expanded astrocytic lineage. We conclude that selectively modifying transcriptional cues within hippocampal progenitor cells is sufficient to induce a cell fate switch, thus altering the neurogenesis-gliogenesis ratio. In addition, our data show the competence of multiple progenitor lineages to respond divergently to the same signal. Therefore, directing instructive cues to select phenotype and developmental stage could be critical to achieve precise outcomes in cell genesis. Further understanding the regulation of lineage progression in all progenitor populations within the target region will be important for developing therapeutic strategies to direct cell fate for brain repair.
Collapse
Affiliation(s)
- Friederike Klempin
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | |
Collapse
|
228
|
Oxidative Stress Induced NMDA Receptor Alteration Leads to Spatial Memory Deficits in Temporal Lobe Epilepsy: Ameliorative Effects of Withania somnifera and Withanolide A. Neurochem Res 2012; 37:1915-27. [DOI: 10.1007/s11064-012-0810-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/11/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
|
229
|
Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012; 139:1535-46. [PMID: 22492350 DOI: 10.1242/dev.069963] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
230
|
März M, Schmidt R, Rastegar S, Strähle U. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 2012; 240:2221-31. [PMID: 22016188 DOI: 10.1002/dvdy.22710] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to mammals, the brain of the adult zebrafish has a remarkable ability to regenerate. In mammals, injuries induce proliferation of astrocytes and oligodendrocyte progenitors contributing to the formation of a glial scar. We analyzed the proliferation of glial cells and microglia in response to stab injury in the adult zebrafish telencephalon: Radial glial markers were up-regulated at the ventricle and co-expressed the proliferation nuclear antigen (PCNA). Microglia and oligodendrocyte progenitors accumulated transiently at the site of lesion. However, we could not find evidence of permanent scar formation. Parenchymal proliferation was almost negligible in comparison to the increase in proliferation at the ventricular zone. This suggests that most of the cellular material for regeneration is derived from regions of constitutive neurogenesis. Remarkably, the proliferative response is almost completely restricted to the lesioned hemisphere indicating that signals inducing regeneration remain mainly confined within the lesioned half of the telencephalon.
Collapse
Affiliation(s)
- Martin März
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
231
|
Regulation of the FABP7 gene by PAX6 in malignant glioma cells. Biochem Biophys Res Commun 2012; 422:482-7. [PMID: 22583899 DOI: 10.1016/j.bbrc.2012.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 01/01/2023]
Abstract
Brain fatty acid-binding protein (FABP7) and PAX6 are both expressed in radial glial cells and have been implicated in neurogenesis and glial cell differentiation. FABP7 and PAX6 have also been postulated to play a role in malignant glioma cell growth and invasion. Here, we address the role of PAX6 in regulating FABP7 gene expression in malignant glioma cells. We report that PAX6 and FABP7 RNA are generally co-expressed in malignant glioma cell lines, tumors and tumor neurospheres. Using the CAT reporter gene assay, we show that FABP7 promoter activity is upregulated by PAX6. Sequential deletion analysis of the FABP7 promoter, combined with gel shift and supershift assays demonstrate the presence of a PAX6 responsive region located upstream of the FABP7 gene, at -862 to -1033 bp. Inclusion of sequences between -1.2 and -1.8 kb reduced CAT activity, suggesting the presence of a repressor element within this region. While PAX6 overexpression did not induce endogenous FABP7 expression in FABP7-negative cells, knock-down of PAX6 in PAX6-positive malignant glioma cells resulted in reduced FABP7 levels. These data provide the first evidence of direct transactivation of the FABP7 proximal promoter by PAX6 and suggest a synergistic mechanism for PAX6 and other co-factor(s) in regulating FABP7 expression in malignant glioma.
Collapse
|
232
|
Azim K, Zweifel S, Klaus F, Yoshikawa K, Amrein I, Raineteau O. Early Decline in Progenitor Diversity in the Marmoset Lateral Ventricle. Cereb Cortex 2012; 23:922-31. [DOI: 10.1093/cercor/bhs085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
233
|
Xiang C, Baubet V, Pal S, Holderbaum L, Tatard V, Jiang P, Davuluri RV, Dahmane N. RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ 2012; 19:692-702. [PMID: 22095278 PMCID: PMC3307985 DOI: 10.1038/cdd.2011.144] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 01/02/2023] Open
Abstract
Although neurogenic pathways have been described in the developing neocortex, less is known about mechanisms ensuring correct neuronal differentiation thus also preventing tumor growth. We have shown that RP58 (aka zfp238 or znf238) is highly expressed in differentiating neurons, that its expression is lost or diminished in brain tumors, and that its reintroduction blocks their proliferation. Mice with loss of RP58 die at birth with neocortical defects. Using a novel conditional RP58 allele here we show that its CNS-specific loss yields a novel postnatal phenotype: microencephaly, agenesis of the corpus callosum and cerebellar hypoplasia that resembles the chr1qter deletion microcephaly syndrome in human. RP58 mutant brains maintain precursor pools but have reduced neuronal and increased glial differentiation. Well-timed downregulation of pax6, ngn2 and neuroD1 depends on RP58 mediated transcriptional repression, ngn2 and neuroD1 being direct targets. Thus, RP58 may act to favor neuronal differentiation and brain growth by coherently repressing multiple proneurogenic genes in a timely manner.
Collapse
Affiliation(s)
- C Xiang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - V Baubet
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - S Pal
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - L Holderbaum
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - V Tatard
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - P Jiang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - R V Davuluri
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - N Dahmane
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
234
|
Xiang CX, Zhang KH, Johnson RL, Jacquin MF, Chen ZF. The transcription factor, Lmx1b, promotes a neuronal glutamate phenotype and suppresses a GABA one in the embryonic trigeminal brainstem complex. Somatosens Mot Res 2012; 29:1-12. [PMID: 22397680 DOI: 10.3109/08990220.2011.650869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Achieving an appropriate balance between inhibitory and excitatory neuronal fate is critical for development of effective synaptic transmission. However, the molecular mechanisms dictating such phenotypic outcomes are not well understood, especially in the whisker-to-barrel cortex neuraxis, an oft-used model system for revealing developmental mechanisms. In trigeminal nucleus principalis (PrV), the brainstem link in the whisker-barrel pathway, the transcription factor Lmx1b marks glutamatergic cells. In PrV of Lmx1b knockout mice (-/-), initial specification of glutamatergic vs. GABAergic cell fate is normal until embryonic day 14.5. Subsequently, until the day of birth, glutamatergic markers (e.g., VGLUT2) stain significantly fewer PrV neurons, whereas, GABAergic markers (Pax2 and Gad1) stain significantly more PrV cells, notably in Lmx1b null PrV cells. These changes also occurred in Lmx1b/Bax double-/- mice, where PrV cells are rescued from Lmx1b-/- induced apoptosis; thus, effects upon excitatory/inhibitory cell ratios do not reflect a cell death confound. Electroporation-induced ectopic expression of Lmx1b in an array of sites decreases numbers of neurons that express GABAergic markers, but increases VGLUT2+ cell numbers or stain intensity. Thus, Lmx1b is not involved in the initial specification of glutamatergic cell fate, but is essential for maintaining a glutamatergic phenotype. Other experiments suggest that Lmx1b acts to suppress Pax2, a promoter of GABAergic cell fate, in a cell-autonomous manner, which may be a mechanism for maintaining a functional balance of glutamatergic and GABAergic cell types in development.
Collapse
Affiliation(s)
- Chuan-Xi Xiang
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine Pain Center, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
235
|
Kosaka T, Kosaka K. Further characterization of the juxtaglomerular neurons in the mouse main olfactory bulb by transcription factors, Sp8 and Tbx21. Neurosci Res 2012; 73:24-31. [PMID: 22387948 DOI: 10.1016/j.neures.2012.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Juxtaglomerular neurons in the mouse main olfactory bulb consist of various types of neurons, especially classified by their chemical properties such as transmitter-related molecules and calcium binding proteins. In addition several transcription factors have been revealed to characterize neuronal subpopulations. In this study we examined the immunoreactivities of two transcription factors, Sp8 and Tbx21, in the juxtaglomerular neuronal subpopulations containing calretinin, calbindin, secretagogin, tyrosine hydroxylase (TH) and nitric oxide synthase (NOS). Both Sp8 and Tbx21 immunoreactivities were so diverse in their staining intensities. Almost all calretinin and secretagogin positive neurons were relatively strongly Sp8 positive, whereas none of calbindin positive neurons were Sp8 positive. TH positive neurons were also usually Sp8 positive, although some were faintly positive. These four types of interneurons were Tbx21 negative. On the other hand large faintly NOS positive external tufted cells were occasionally Tbx21 positive but always Sp8 negative, whereas small NOS positive periglomerular cells without distinctly stained dendrites were usually Sp8 positive and Tbx21 negative. Strangely, most of strongly NOS positive periglomerular cells with distinctly stained dendritic processes were Sp8 negative and Tbx21 negative. Thus Sp8 and Tbx21 immunoreactivities further characterized juxtaglomerular neurons and, especially confirmed the heterogeneity of NOS positive juxtaglomerular neurons.
Collapse
Affiliation(s)
- Toshio Kosaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | |
Collapse
|
236
|
Ali H, Forraz N, McGuckin CP, Jurga M, Lindsay S, Ip BK, Trevelyan A, Basford C, Habibollah S, Ahmad S, Clowry GJ, Bayatti N. In vitro modelling of cortical neurogenesis by sequential induction of human umbilical cord blood stem cells. Stem Cell Rev Rep 2012; 8:210-23. [PMID: 21678036 DOI: 10.1007/s12015-011-9287-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurogenesis of excitatory neurons in the developing human cerebral neocortex is a complex and dynamic set of processes and the exact mechanisms controlling the specification of human neocortical neuron subtypes are poorly understood due to lack of relevant cell models available. It has been shown that the transcription factors Pax6, Tbr2 and Tbr1, which are sequentially expressed in the rodent neocortex, regulate and define corticogenesis of glutamatergic neocortical neurons. In humans the homologues of these genes are generally expressed in a similar pattern, but with some differences. In this study, we used purified human umbilical cord blood stem cells, expressing pluripotency marker genes (OCT4, SOX2 and NANOG), to model human neocortical neurogenesis in vitro. We analyzed the expression patterns of PAX6, TBR2 and TBR1, at both protein and mRNA levels, throughout the 24 days of a sequential neuronal induction protocol. Their expression patterns correlated with those found in the developing human neocortex where they define different developmental stages of neocortical neurons. The derived cord blood neuron-like cells expressed a number of neuronal markers. They also expressed components of glutamatergic neurotransmission including glutamate receptor subunits and transporters, and generated calcium influxes upon stimulation with glutamate. Thus we have demonstrated that it is possible to model neocortical neurogenesis using cord blood stem cells in vitro. This may allow detailed analysis of the molecular mechanisms regulating neocortical neuronal specification, thus aiding the development of potential therapeutic tools for diseases and injuries of the cerebral cortex.
Collapse
Affiliation(s)
- Hamad Ali
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Hatanaka Y, Yamauchi K. Excitatory cortical neurons with multipolar shape establish neuronal polarity by forming a tangentially oriented axon in the intermediate zone. ACTA ACUST UNITED AC 2012; 23:105-13. [PMID: 22267309 DOI: 10.1093/cercor/bhr383] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The formation of axon-dendrite polarity is crucial for neuron to make the proper information flow within the brain. Although the processes of neuronal polarity formation have been extensively studied using neurons in dissociated culture, the corresponding developmental processes in vivo are still unclear. Here, we illuminate the initial steps of morphological polarization of excitatory cortical neurons in situ, by sparsely labeling their neuroepithelial progenitors using in utero electroporation and then examining their neuronal progeny in brain sections and in slice cultures. Morphological analysis showed that an axon-like long tangential process formed in progeny cells in the intermediate zone (IZ). Time-lapse imaging analysis using slice culture revealed that progeny cells with multipolar shape, after alternately extending and retracting their short processes for several hours, suddenly elongated a long process tangentially. These cells then transformed into a bipolar shape, extending a pia-directed leading process, and migrated radially leaving the tangential process behind, which gave rise to an "L-shaped" axon. Our findings suggest that neuronal polarity in these cells is established de novo from a nonpolarized stage in vivo and indicate that excitatory cortical neurons with multipolar shape in the IZ initiate axon outgrowth before radial migration into the cortical plate.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | |
Collapse
|
238
|
Transcriptional control of glutamatergic differentiation during adult neurogenesis. Cell Mol Life Sci 2012; 69:2125-34. [PMID: 22249196 DOI: 10.1007/s00018-011-0916-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/26/2011] [Accepted: 12/29/2011] [Indexed: 12/17/2022]
Abstract
Neurogenesis, the production of new neurons, occurs in two specialized niches in the adult brain, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. In the SGZ, neural stem cells (NSCs) give rise to glutamatergic granule neurons that integrate into the granule cell layer. In the SVZ, NSCs generate a more diverse cohort of new neurons, including GABAergic, dopaminergic, and glutamatergic neurons, all of which migrate to the olfactory bulb through the rostral migratory stream. In both adult neurogenic niches, specific transcription factors have been shown to direct fate specification and lineage commitment. This review summarizes current progress on the transcriptional control of glutamatergic neurogenesis in the SGZ and SVZ, highlighting commonalities as well as differences in their transcriptional programs. In particular, we focus on work from our laboratory and others indicating that precise, sequential expression of transcription factors regulates the progression from NSC to lineage-committed progenitor, and ultimately regulates the production and differentiation of adult-born glutamatergic neurons.
Collapse
|
239
|
Ohtaka-Maruyama C, Hirai S, Miwa A, Takahashi A, Okado H. The 5'-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis. Neuroscience 2012; 201:67-84. [PMID: 22119643 DOI: 10.1016/j.neuroscience.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 12/21/2022]
Abstract
Pyramidal neurons of the neocortex are produced from progenitor cells located in the neocortical ventricular zone (VZ) and subventricular zone (SVZ) during embryogenesis. RP58 is a transcriptional repressor that is strongly expressed in the developing brain and plays an essential role in corticogenesis. The expression of RP58 is strictly regulated in a time-dependent and spatially restricted manner. It is maximally expressed in E15-16 embryonic cerebral cortex, localized specifically to the cortical plate and SVZ of the neocortex, hippocampus, and parts of amygdala during brain development, and found in glutamatergic but not GABAergic neurons. Identification of the promoter activity underlying specific expression patterns provides important clues to their mechanisms of action. Here, we show that the RP58 gene promoter is activated prominently in multipolar migrating cells, the first in vivo analysis of RP58 promoter activity in the brain. The 5.3 kb 5'-flanking genomic DNA of the RP58 coding region demonstrates promoter activity in neurons both in vitro and in vivo. This promoter is highly responsive to the transcription factor neurogenin2 (Ngn2), which is a direct upstream activator of RP58 expression. Using in utero electroporation, we demonstrate that RP58 gene promoter activity is first detected in a subpopulation of pin-like VZ cells, then prominently activated in migrating multipolar cells in the multipolar cell accumulation zone (MAZ) located just above the VZ. In dissociated primary cultured cortical neurons, RP58 promoter activity mimics in vivo expression patterns from a molecular standpoint that RP58 is expressed in a fraction of Sox2-positive progenitor cells, Ngn2-positive neuronal committed cells, and Tuj1-positive young neurons, but not in Dlx2-positive GABAergic neurons. Finally, we show that Cre recombinase expression under the control of the RP58 gene promoter is a feasible tool for conditional gene switching in post-mitotic multipolar migrating young neurons in the developing cerebral cortex.
Collapse
Affiliation(s)
- C Ohtaka-Maruyama
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
240
|
Abstract
Rodents and primates both show considerable variation in the overall size, the radial and tangential dimensions, folding and subdivisions into distinct areas of their cerebral cortex. Our current understanding of brain development is based on a handful of model systems. A detailed comparative analysis of the cellular and molecular mechanisms that regulate neural progenitor production, cell migration, and circuit assembly can provide much needed insights into the working of neocortical evolution. From the limited comparative data currently available, it is apparent that the emergence and variation of the neuronal progenitor cells have led to the production of increased neuronal populations and the evolution of the cortex. Further diversification and compartmentalization of the germinal zone together with changing proportions of radial glia in the ventricular zone and various intermediate progenitors in the subventricular zone may have been the driving force behind increased cell numbers in larger brains both in rodents and primates. Radial and tangential migratory patterns are both present in rodents and primates, but in different proportions. There are apparent differences between mouse and human in the generation and elaboration of the interneuronal subtypes and also in gene expression patterns associated with the appearance of distinct cortical areas. The increased cortical dimensions and the formation of a more elaborate cortical architecture in primates require a larger and more compartmentalized transient subplate zone during development. More comparative analysis in rodent and primate species with large, small, and smooth and folded brains is needed to reveal the biological significance of the alterations in these cortical developmental programs.
Collapse
|
241
|
Zgraggen E, Boitard M, Roman I, Kanemitsu M, Potter G, Salmon P, Vutskits L, Dayer AG, Kiss JZ. Early postnatal migration and development of layer II pyramidal neurons in the rodent cingulate/retrosplenial cortex. Cereb Cortex 2012; 22:144-57. [PMID: 21625013 DOI: 10.1093/cercor/bhr097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The cingulate and retrosplenial regions are major components of the dorsomedial (dm) limbic cortex and have been implicated in a range of cognitive functions such as emotion, attention, and spatial memory. While the structure and connectivity of these cortices are well characterized, little is known about their development. Notably, the timing and mode of migration that govern the appropriate positioning of late-born neurons remain unknown. Here, we analyzed migratory events during the early postnatal period from ventricular/subventricular zone (VZ/SVZ) to the cerebral cortex by transducing neuronal precursors in the VZ/SVZ of newborn rats/mice with Tomato/green fluorescent protein-encoding lentivectors. We have identified a pool of postmitotic pyramidal precursors in the dm part of the neonatal VZ/SVZ that migrate into the medial limbic cortex during the first postnatal week. Time-lapse imaging demonstrates that these cells migrate on radial glial fibers by locomotion and display morphological and behavioral changes as they travel through the white matter and enter into the cortical gray matter. In the granular retrosplenial cortex, these cells give rise to a Satb2+ pyramidal subtype and develop dendritic bundles in layer I. Our observations provide the first insight into the patterns and dynamics of cell migration into the medial limbic cortex.
Collapse
Affiliation(s)
- Eloisa Zgraggen
- Department of Neurosciences, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Stolp H, Neuhaus A, Sundramoorthi R, Molnár Z. The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease. Front Psychiatry 2012; 3:50. [PMID: 22701439 PMCID: PMC3372875 DOI: 10.3389/fpsyt.2012.00050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/01/2012] [Indexed: 01/21/2023] Open
Abstract
Cortical development is a complex amalgamation of proliferation, migration, differentiation, and circuit formation. These processes follow defined timescales and are controlled by a combination of intrinsic and extrinsic factors. It is currently unclear how robust and flexible these processes are and whether the developing brain has the capacity to recover from disruptions. What is clear is that there are a number of cognitive disorders or conditions that are elicited as a result of disrupted cortical development, although it may take a long time for the full pathophysiology of the conditions to be realized clinically. The critical window for the manifestation of a neurodevelopmental disorder is prolonged, and there is the potential for a complex interplay between genes and environment. While there have been extended investigations into the genetic basis of a number of neurological and mental disorders, limited definitive associations have been discovered. Many environmental factors, including inflammation and stress, have been linked to neurodevelopmental disorders, and it may be that a better understanding of the interplay between genes and environment will speed progress in this field. In particular, the development of the brain needs to be considered in the context of the whole materno-fetal unit as the degree of the metabolic, endocrine, or inflammatory responses, for example, will greatly influence the environment in which the brain develops. This review will emphasize the importance of extending neurodevelopmental studies to the contribution of the placenta, vasculature, cerebrospinal fluid, and to maternal and fetal immune response. These combined investigations are more likely to reveal genetic and environmental factors that influence the different stages of neuronal development and potentially lead to the better understanding of the etiology of neurological and mental disorders such as autism, epilepsy, cerebral palsy, and schizophrenia.
Collapse
Affiliation(s)
- Helen Stolp
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | |
Collapse
|
243
|
Wang L, Bluske KK, Dickel LK, Nakagawa Y. Basal progenitor cells in the embryonic mouse thalamus - their molecular characterization and the role of neurogenins and Pax6. Neural Dev 2011; 6:35. [PMID: 22077982 PMCID: PMC3234181 DOI: 10.1186/1749-8104-6-35] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 11/11/2011] [Indexed: 11/16/2022] Open
Abstract
Background The size and cell number of each brain region are influenced by the organization and behavior of neural progenitor cells during embryonic development. Recent studies on developing neocortex have revealed the presence of neural progenitor cells that divide away from the ventricular surface and undergo symmetric divisions to generate either two neurons or two progenitor cells. These 'basal' progenitor cells form the subventricular zone and are responsible for generating the majority of neocortical neurons. However, not much has been studied on similar types of progenitor cells in other brain regions. Results We have identified and characterized basal progenitor cells in the embryonic mouse thalamus. The progenitor domain that generates all of the cortex-projecting thalamic nuclei contained a remarkably high proportion of basally dividing cells. Fewer basal progenitor cells were found in other progenitor domains that generate non-cortex projecting nuclei. By using intracellular domain of Notch1 (NICD) as a marker for radial glial cells, we found that basally dividing cells extended outside the lateral limit of radial glial cells, indicating that, similar to the neocortex and ventral telencephalon, the thalamus has a distinct subventricular zone. Neocortical and thalamic basal progenitor cells shared expression of some molecular markers, including Insm1, Neurog1, Neurog2 and NeuroD1. Additionally, basal progenitor cells in each region also expressed exclusive markers, such as Tbr2 in the neocortex and Olig2 and Olig3 in the thalamus. In Neurog1/Neurog2 double mutant mice, the number of basally dividing progenitor cells in the thalamus was significantly reduced, which demonstrates the roles of neurogenins in the generation and/or maintenance of basal progenitor cells. In Pax6 mutant mice, the part of the thalamus that showed reduced Neurog1/2 expression also had reduced basal mitosis. Conclusions Our current study establishes the existence of a unique and significant population of basal progenitor cells in the thalamus and their dependence on neurogenins and Pax6. These progenitor cells may have important roles in enhancing the generation of neurons within the thalamus and may also be critical for generating neuronal diversity in this complex brain region.
Collapse
Affiliation(s)
- Lynn Wang
- Department of Neuroscience, Developmental Biology Center and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
244
|
Broccoli V, Caiazzo M, Dell'Anno MT. Setting a highway for converting skin into neurons. J Mol Cell Biol 2011; 3:322-3. [PMID: 22021656 DOI: 10.1093/jmcb/mjr029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Direct conversion of human skin fibroblasts into induced neuronal (iN) cells has been recently achieved by using different combinations of transcription factors eventually associated with microRNAs. These findings lay the ground for a straightforward and efficient generation of human neurons in vitro with elaborated functional properties instrumental for disease modeling and cell-based approaches of brain repair.
Collapse
Affiliation(s)
- Vania Broccoli
- San Raffaele Scientific Institute, Via Olgettina 58, Milan 20132, Italy.
| | | | | |
Collapse
|
245
|
Reillo I, Borrell V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. ACTA ACUST UNITED AC 2011; 22:2039-54. [PMID: 21988826 DOI: 10.1093/cercor/bhr284] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.
Collapse
Affiliation(s)
- Isabel Reillo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | | |
Collapse
|
246
|
García-Fuster MJ, Flagel SB, Mahmood ST, Mayo LM, Thompson RC, Watson SJ, Akil H. Decreased proliferation of adult hippocampal stem cells during cocaine withdrawal: possible role of the cell fate regulator FADD. Neuropsychopharmacology 2011; 36:2303-17. [PMID: 21796105 PMCID: PMC3176567 DOI: 10.1038/npp.2011.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 11/08/2022]
Abstract
The current study uses an extended access rat model of cocaine self-administration (5-h session per day, 14 days), which elicits several features manifested during the transition to human addiction, to study the neural adaptations associated with cocaine withdrawal. Given that the hippocampus is thought to have an important role in maintaining addictive behavior and appears to be especially relevant to mechanisms associated with withdrawal, this study attempted to understand how extended access to cocaine impacts the hippocampus at the cellular and molecular levels, and how these alterations change over the course of withdrawal (1, 14, and 28 days). Therefore, at the cellular level, we examined the effects of cocaine withdrawal on cell proliferation (Ki-67+ and NeuroD+ cells) in the DG. At the molecular level, we employed a 'discovery' approach with gene expression profiling in the DG to uncover novel molecules possibly implicated in the neural adaptations that take place during cocaine withdrawal. Our results suggest that decreased hippocampal cell proliferation might participate in the adaptations associated with drug removal and identifies 14 days as a critical time-point of cocaine withdrawal. At the 14-day time-point, gene expression profiling of the DG revealed the dysregulation of several genes associated with cell fate regulation, highlighting two new neurobiological correlates (Ascl-1 and Dnmt3b) that accompany cessation of drug exposure. Moreover, the results point to Fas-Associated protein with Death Domain (FADD), a molecular marker previously associated with the propensity to substance abuse and cocaine sensitization, as a key cell fate regulator during cocaine withdrawal. Identifying molecules that may have a role in the restructuring of the hippocampus following substance abuse provides a better understanding of the adaptations associated with cocaine withdrawal and identifies novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
247
|
Darland DC, Cain JT, Berosik MA, Saint-Geniez M, Odens PW, Schaubhut GJ, Frisch S, Stemmer-Rachamimov A, Darland T, D'Amore PA. Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development. Dev Biol 2011; 358:9-22. [PMID: 21803034 PMCID: PMC3189089 DOI: 10.1016/j.ydbio.2011.06.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 06/07/2011] [Accepted: 06/26/2011] [Indexed: 01/19/2023]
Abstract
This work was designed to determine the role of the vascular endothelial growth factor A (VEGF) isoforms during early neuroepithelial development in the mammalian central nervous system (CNS), specifically in the forebrain. An emerging model of interdependence between neural and vascular systems includes VEGF, with its dual roles as a potent angiogenesis factor and neural regulator. Although a number of studies have implicated VEGF in CNS development, little is known about the role that the different VEGF isoforms play in early neurogenesis. We used a mouse model of disrupted VEGF isoform expression that eliminates the predominant brain isoform, VEGF164, and expresses only the diffusible form, VEGF120. We tested the hypothesis that VEGF164 plays a key role in controlling neural precursor populations in developing cortex. We used microarray analysis to compare gene expression differences between wild type and VEGF120 mice at E9.5, the primitive stem cell stage of the neuroepithelium. We quantified changes in PHH3-positive nuclei, neural stem cell markers (Pax6 and nestin) and the Tbr2-positive intermediate progenitors at E11.5 when the neural precursor population is expanding rapidly. Absence of VEGF164 (and VEGF188) leads to reduced proliferation without an apparent effect on the number of Tbr2-positive cells. There is a corresponding reduction in the number of mitotic spindles that are oriented parallel to the ventricular surface relative to those with a vertical or oblique angle. These results support a role for the VEGF isoforms in supporting the neural precursor population of the early neuroepithelium.
Collapse
Affiliation(s)
- Diane C Darland
- University of North Dakota, Department of Biology, Grand Forks, ND 58202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Young A, Machacek DW, Dhara SK, MacLeish PR, Benveniste M, Dodla MC, Sturkie CD, Stice SL. Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience 2011; 192:793-805. [PMID: 21672611 PMCID: PMC3166353 DOI: 10.1016/j.neuroscience.2011.04.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/24/2022]
Abstract
Human neural progenitor cells differentiated from human embryonic stem cells offer a potential cell source for studying neurodegenerative diseases and for drug screening assays. Previously, we demonstrated that human neural progenitors could be maintained in a proliferative state with the addition of leukemia inhibitory factor and basic fibroblast growth factor. Here we demonstrate that 96 h after removal of basic fibroblast growth factor the neural progenitor cell culture was significantly altered and cell replication halted. Fourteen days after the removal of basic fibroblast growth factor, most cells expressed microtubule-associated protein 2 and TUJ1, markers characterizing a post-mitotic neuronal phenotype as well as neural developmental markers Cdh2 and Gbx2. Real-time PCR was performed to determine the ionotropic receptor subunit expression profile. Differentiated neural progenitors express subunits of glutamatergic, GABAergic, nicotinic, purinergic and transient receptor potential receptors. In addition, sodium and calcium channel subunits were also expressed. Functionally, virtually all the hNP cells tested under whole-cell voltage clamp exhibited delayed rectifier potassium channel currents and some differentiated cells exhibited tetrodotoxin-sensitive, voltage-dependent sodium channel current. Action potentials could also be elicited by currents injection under whole-cell current clamp in a minority of cells. These results indicate that removing basic fibroblast growth factor from the neural progenitor cell cultures leads to a post-mitotic state, and has the capability to produce excitable cells that can generate action potentials, a landmark characteristic of a neuronal phenotype. This is the first report of an efficient and simple means of generating human neuronal cells for ionotropic receptor assays and ultimately for electrically active human neural cell assays for drug discovery.
Collapse
Affiliation(s)
- Amber Young
- Regenerative Bioscience Center, 425 River Rd Room 450, Athens, GA 30602 USA
| | - Dave W. Machacek
- Aruna Biomedical, Athens, GA 30602, 425 River Rd Room 430, Athens, GA 30602 USA
| | - Sujoy K. Dhara
- Regenerative Bioscience Center, 425 River Rd Room 450, Athens, GA 30602 USA
| | - Peter R. MacLeish
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA 30310
| | - Morris Benveniste
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA 30310
| | - Mahesh C. Dodla
- Regenerative Bioscience Center, 425 River Rd Room 450, Athens, GA 30602 USA
| | - Carla D. Sturkie
- Regenerative Bioscience Center, 425 River Rd Room 450, Athens, GA 30602 USA
| | - Steven L. Stice
- Regenerative Bioscience Center, 425 River Rd Room 450, Athens, GA 30602 USA
- Aruna Biomedical, Athens, GA 30602, 425 River Rd Room 430, Athens, GA 30602 USA
| |
Collapse
|
249
|
Namba T, Mochizuki H, Suzuki R, Onodera M, Yamaguchi M, Namiki H, Shioda S, Seki T. Time-lapse imaging reveals symmetric neurogenic cell division of GFAP-expressing progenitors for expansion of postnatal dentate granule neurons. PLoS One 2011; 6:e25303. [PMID: 21966492 PMCID: PMC3179506 DOI: 10.1371/journal.pone.0025303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/31/2011] [Indexed: 01/19/2023] Open
Abstract
Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
- Integrative Bioscience and Biomedical Engineering, School of Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ryusuke Suzuki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Onodera
- Department of Hematology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Yamaguchi
- Departments of Otolaryngology and Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideo Namiki
- Integrative Bioscience and Biomedical Engineering, School of Science and Engineering, Waseda University, Tokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
250
|
Wang ZB, Boisvert E, Zhang X, Guo M, Fashoyin A, Du ZW, Zhang SC, Li XJ. Fezf2 regulates telencephalic precursor differentiation from mouse embryonic stem cells. Cereb Cortex 2011; 21:2177-86. [PMID: 21330470 PMCID: PMC3155607 DOI: 10.1093/cercor/bhr006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms by which transcription factors control stepwise lineage restriction during the specification of cortical neurons remain largely unknown. Here, we investigated the role of forebrain embryonic zinc finger like (Fezf2) in this process by generating Fezf2 knockdown and tetracycline-inducible Fezf2 overexpression mouse embryonic stem cell (mESC) lines. The overexpression of Fezf2 at early time points significantly increased the generation of rostral forebrain progenitors (Foxg1(+), Six3(+)) and inhibited the expression of transcription factors which are expressed by the midbrain and caudal diencephalon (En1(+), Irx(+)). This effect was partially achieved by the regulation of Wnt signaling during this critical early time window. The role of Fezf2 in regulating the rostrocaudal patterning was further confirmed by the significant decrease in the expression of Foxg1 and Six3 and the increase in the expression of En1 when Fezf2 was knocked down. In addition, Fezf2 overexpression at later time points had little effect on the expression of Foxg1 and Six3. Instead, Fezf2 promotes the generation of dorsal telencephalic progenitors and deep-layer cortical neurons at later stages. Collectively, our data suggest that Fezf2 controls the specification of telencephalic progenitors from mESCs through differentially regulating the expression of rostrocaudal and dorsoventral patterning genes.
Collapse
Affiliation(s)
| | - Erin Boisvert
- Department of Neuroscience
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Xiaoqing Zhang
- Department of Anatomy
- Department of Neurology
- Waisman Center, University of Wisconsin-Madison, WI 53705, USA
| | - Min Guo
- Department of Neuroscience
- Department of Geriatrics, Xiang-Ya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Adedayo Fashoyin
- Department of Neurology
- Waisman Center, University of Wisconsin-Madison, WI 53705, USA
| | - Zhong-Wei Du
- Department of Anatomy
- Department of Neurology
- Waisman Center, University of Wisconsin-Madison, WI 53705, USA
| | - Su-Chun Zhang
- Department of Anatomy
- Department of Neurology
- Waisman Center, University of Wisconsin-Madison, WI 53705, USA
| | - Xue-Jun Li
- Department of Neuroscience
- Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|