201
|
Pramparo T, Youn YH, Yingling J, Hirotsune S, Wynshaw-Boris A. Novel embryonic neuronal migration and proliferation defects in Dcx mutant mice are exacerbated by Lis1 reduction. J Neurosci 2010; 30:3002-12. [PMID: 20181597 PMCID: PMC2861429 DOI: 10.1523/jneurosci.4851-09.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/10/2009] [Accepted: 01/04/2010] [Indexed: 11/21/2022] Open
Abstract
Heterozygous LIS1 mutations and males with loss of the X-linked DCX result in lissencephaly, a neuronal migration defect. LIS1 regulates nuclear translocation and mitotic division of neural progenitor cells, while the role of DCX in cortical development remains poorly understood. Here, we uncovered novel neuronal migration and proliferation defects in the Dcx mutant embryonic brains. Although cortical organization was fairly well preserved, Dcx(ko/Y) neurons displayed defective migration velocities similar to Lis1(+/ko) neurons when characterized by time-lapse video-microscopy of embryonic cortical slices. Dcx(ko/Y) migrating neurons displayed novel multidirectional movements with abnormal morphology and increased branching. Surprisingly, Dcx(ko/Y) radial glial cells displayed spindle orientation abnormalities similar to Lis1(+/ko) cells that in turn lead to moderate proliferation defects both in vivo and in vitro. We found functional genetic interaction of the two genes, with the combined effects of Lis1 haploinsufficiency and Dcx knock-out leading to more severe neuronal migration and proliferation phenotypes in the Lis1(+/ko);Dcx(ko/Y) male double mutant compared with the single mutants, resulting in cortical disorganization and depletion of the progenitor pool. Thus, we provide definitive evidence for a critical role for Dcx in neuronal migration and neurogenesis, as well as for the in vivo genetic interaction of the two genes most commonly involved in human neuronal migration defects.
Collapse
Affiliation(s)
- Tiziano Pramparo
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, School of Medicine, San Francisco, California 94143-0794
| | - Yong Ha Youn
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, School of Medicine, San Francisco, California 94143-0794
| | - Jessica Yingling
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, University of California, San Diego, School of Medicine, La Jolla, California 92098-0627, and
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Anthony Wynshaw-Boris
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, School of Medicine, San Francisco, California 94143-0794
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, University of California, San Diego, School of Medicine, La Jolla, California 92098-0627, and
| |
Collapse
|
202
|
Embryonic exposure to ethanol disturbs regulation of mitotic spindle orientation via GABA(A) receptors in neural progenitors in ventricular zone of developing neocortex. Neurosci Lett 2010; 472:128-32. [PMID: 20138119 DOI: 10.1016/j.neulet.2010.01.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/12/2010] [Accepted: 01/27/2010] [Indexed: 11/20/2022]
Abstract
Neural progenitors in the ventricular zone of the developing neocortex divide oriented either parallel or perpendicular to the ventricular surface based on their mitotic spindle orientation. It has been shown that the cleavage plane orientation is developmentally regulated and plays a crucial role in cell fate determination of neural progenitors or the maintenance of the proliferative ventricular zone during neocortical development. We tested if fetal exposure to ethanol, the most widely used psychoactive agent and a potent teratogen that may cause malformation in the central nervous system, alters mitotic cleavage orientation of the neural progenitors at the apical surface of the ventricular zone in the developing neocortex. Fetal exposure to ethanol on E10.5 and 11.5 increased the occurrence frequency of a horizontal cleavage plane that is parallel to the ventricular surface on E 12.5. Administration of picrotoxin, a GABA(A) receptor antagonist, prior to ethanol administration canceled the effect of ethanol with the frequency of horizontal division similar to the control level, although picrotoxin itself did not show any effect on cleavage plane orientation. Phenobarbital, a GABA(A) receptor agonist, induced horizontal cleavage to an extent similar to that induced by ethanol administration. (+)MK801, an antagonist of NMDA receptor that is another major target of ethanol in neural cells, did not affect the cleavage plane of dividing progenitors. These results suggest that fetal ethanol exposure induced alterations in the cleavage plane orientation of neural progenitors in the ventricular zone of the neocortex via the enhancement of the function of GABA(A) receptors.
Collapse
|
203
|
Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 2010; 29:15520-30. [PMID: 20007476 DOI: 10.1523/jneurosci.4630-09.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Haploinsufficiency of LIS1 results in lissencephaly, a human neuronal migration disorder. LIS1 is a microtubule- (MT) and centrosome- [microtubule organizing center (MTOC)] associated protein that regulates nucleokinesis via the regulation of dynein motor function and localization. NDEL1 (NudE isoform, NudE like) interacts with LIS1/dynein complex, and is phosphorylated by CDK5/P35. Previous reports using siRNA-mediated knock-down demonstrated similar critical roles for LIS1 and NDEL1 during neuronal migration, but neuronal migration has not been studied in genetic mutants for Lis1 and Ndel1 where protein levels are uniform in all cells. Brains from mice with complete loss of Lis1 and Ndel1 displayed severe cortical layering and hippocampal defects, but Lis1 mutants had more severe defects. Neuronal migration speed was reduced and neurite lengths were elongated in proportion to the reduction of LIS1 and NDEL1 protein levels in embryonic day 14.5 mutant cortical slices compared to wild type, using two-photon confocal time lapse videomicroscopy. Additionally, mice with 35% of wild-type NDEL1 levels displayed diverse branched migration modes with multiple leading processes, suggesting defects in adhesion and/or polarity. Complete loss of Lis1 or Ndel1 resulted in the total inhibition of nuclear movement in cortical slice assays, and in neurosphere assays, the percentage of migrating neurons with correctly polarized MTOC location was significantly reduced while nuclear-centrosomal distance was extended. Neurite lengths were increased after complete loss Ndel1 but reduced after complete loss of Lis1. Thus, Lis1 and Ndel1 are essential for normal cortical neuronal migration, neurite outgrowth, and function of the MTOC in a dose-dependent manner.
Collapse
|
204
|
Crespi B, Summers K, Dorus S. Evolutionary genomics of human intellectual disability. Evol Appl 2010; 3:52-63. [PMID: 25567903 PMCID: PMC3352458 DOI: 10.1111/j.1752-4571.2009.00098.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/28/2009] [Indexed: 01/28/2023] Open
Abstract
Previous studies have postulated that X-linked and autosomal genes underlying human intellectual disability may have also mediated the evolution of human cognition. We have conducted the first comprehensive assessment of the extent and patterns of positive Darwinian selection on intellectual disability genes in humans. We report three main findings. First, as noted in some previous reports, intellectual disability genes with primary functions in the central nervous system exhibit a significant concentration to the X chromosome. Second, there was no evidence for a higher incidence of recent positive selection on X-linked than autosomal intellectual disability genes, nor was there a higher incidence of selection on such genes overall, compared to sets of control genes. However, the X-linked intellectual disability genes inferred to be subject to recent positive selection were concentrated in the Rho GTP-ase pathway, a key signaling pathway in neural development and function. Third, among all intellectual disability genes, there was evidence for a higher incidence of recent positive selection on genes involved in DNA repair, but not for genes involved in other functions. These results provide evidence that alterations to genes in the Rho GTP-ase and DNA-repair pathways may play especially-important roles in the evolution of human cognition and vulnerability to genetically-based intellectual disability.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Kyle Summers
- Department of Biology, East Carolina UniversityGreenville, NC, USA
| | - Steve Dorus
- Department of Biology and Biochemistry, University of BathBath, UK
| |
Collapse
|
205
|
Abstract
Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
Collapse
|
206
|
Shmueli A, Segal M, Sapir T, Tsutsumi R, Noritake J, Bar A, Sapoznik S, Fukata Y, Orr I, Fukata M, Reiner O. Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity. EMBO J 2009; 29:107-19. [PMID: 19927128 DOI: 10.1038/emboj.2009.325] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 10/09/2009] [Indexed: 11/09/2022] Open
Abstract
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1-Ndel1-Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine-tuning the activity of the retrograde motor cytoplasmic dynein.
Collapse
Affiliation(s)
- Anat Shmueli
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009; 64:173-87. [PMID: 19874786 PMCID: PMC2788510 DOI: 10.1016/j.neuron.2009.08.018] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/19/2009] [Accepted: 08/21/2009] [Indexed: 11/20/2022]
Abstract
Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lis1, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the nuclear envelope (NE) remain to be determined. We report here that the SUN-domain proteins SUN1 and SUN2 and the KASH-domain proteins Syne-1/Nesprin-1 and Syne-2/Nesprin-2 play critical roles in neurogenesis and neuronal migration in mice. We show that SUN1 and SUN2 redundantly form complexes with Syne-2 to mediate the centrosome-nucleus coupling during both INM and radial neuronal migration in the cerebral cortex. Syne-2 is connected to the centrosome through interactions with both dynein/dynactin and kinesin complexes. Syne-2 mutants also display severe defects in learning and memory. These results fill an important gap in our understanding of the mechanism of nuclear movement during brain development.
Collapse
|
208
|
Weimer JM, Yokota Y, Stanco A, Stumpo DJ, Blackshear PJ, Anton ES. MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development 2009; 136:2965-75. [PMID: 19666823 DOI: 10.1242/dev.036616] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The radial glial cells serve as neural progenitors and as a migratory guide for newborn neurons in the developing cerebral cortex. These functions require appropriate organization and proliferation of the polarized radial glial scaffold. Here, we demonstrate in mice that the myristoylated alanine-rich C-kinase substrate protein (MARCKS), a prominent cellular substrate for PKC, modulates radial glial placement and expansion. Loss of MARCKS results in ectopic collection of mitotically active radial progenitors away from the ventricular zone (VZ) in the upper cerebral wall. Apical restriction of key polarity complexes [CDC42, beta-catenin (CTNNB1), N-cadherin (CDH2), myosin IIB (MYOIIB), aPKCzeta, LGL, PAR3, pericentrin, PROM1] is lost. Furthermore, the radial glial scaffold in Marcks null cortex is compromised, with discontinuous, non-radial processes apparent throughout the cerebral wall and deformed, bulbous, unbranched end-feet at the basal ends. Further, the density of radial processes within the cerebral cortex is reduced. These deficits in radial glial development culminate in aberrant positioning of neurons and disrupted cortical lamination. Genetic rescue experiments demonstrate, surprisingly, that phosphorylation of MARCKS by PKC is not essential for the role of MARCKS in radial glial cell development. By contrast, the myristoylation domain of MARCKS needed for membrane association is essential for MARCKS function in radial glia. The membrane-associated targeting of MARCKS and the resultant polarized distribution of signaling complexes essential for apicobasal polarity may constitute a critical event in the appropriate placement, proliferation and organization of polarized radial glial scaffold in the developing cerebral cortex.
Collapse
Affiliation(s)
- Jill M Weimer
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
209
|
|
210
|
de Nijs L, Léon C, Nguyen L, Loturco JJ, Delgado-Escueta AV, Grisar T, Lakaye B. EFHC1 interacts with microtubules to regulate cell division and cortical development. Nat Neurosci 2009; 12:1266-74. [PMID: 19734894 DOI: 10.1038/nn.2390] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/04/2009] [Indexed: 12/29/2022]
Abstract
Mutations in the EFHC1 gene are linked to juvenile myoclonic epilepsy (JME), one of the most frequent forms of idiopathic generalized epilepsies. JME is associated with subtle alterations of cortical and subcortical architecture, but the underlying pathological mechanism remains unknown. We found that EFHC1 is a microtubule-associated protein involved in the regulation of cell division. In vitro, EFHC1 loss of function disrupted mitotic spindle organization, impaired M phase progression, induced microtubule bundling and increased apoptosis. EFHC1 impairment in the rat developing neocortex by ex vivo and in utero electroporation caused a marked disruption of radial migration. We found that this effect was a result of cortical progenitors failing to exit the cell cycle and defects in the radial glia scaffold organization and in the locomotion of postmitotic neurons. Therefore, we propose that EFHC1 is a regulator of cell division and neuronal migration during cortical development and that disruption of its functions leads to JME.
Collapse
|
211
|
Loulier K, Lathia JD, Marthiens V, Relucio J, Mughal MR, Tang SC, Coksaygan T, Hall PE, Chigurupati S, Patton B, Colognato H, Rao MS, Mattson MP, Haydar TF, ffrench-Constant C. beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol 2009; 7:e1000176. [PMID: 19688041 PMCID: PMC2720642 DOI: 10.1371/journal.pbio.1000176] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 07/09/2009] [Indexed: 01/09/2023] Open
Abstract
During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin alpha2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.
Collapse
Affiliation(s)
- Karine Loulier
- Center for Neuroscience, Children's National Medical Center, Washington, D.C., United States of America
| | - Justin D. Lathia
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Laboratory of Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Veronique Marthiens
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jenne Relucio
- Department of Pharmacology, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Mohamed R. Mughal
- Laboratory of Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Sung-Chun Tang
- Laboratory of Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Turhan Coksaygan
- School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Peter E. Hall
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Srinivasulu Chigurupati
- Laboratory of Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Bruce Patton
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Holly Colognato
- Department of Pharmacology, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Mahendra S. Rao
- Corporate Research Laboratories, Invitrogen Corporation, Carlsbad, California, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mark P. Mattson
- Laboratory of Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tarik F. Haydar
- Center for Neuroscience, Children's National Medical Center, Washington, D.C., United States of America
| | | |
Collapse
|
212
|
Chan YW, Fava LL, Uldschmid A, Schmitz MHA, Gerlich DW, Nigg EA, Santamaria A. Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. ACTA ACUST UNITED AC 2009; 185:859-74. [PMID: 19468067 PMCID: PMC2711594 DOI: 10.1083/jcb.200812167] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitotic spindle formation and chromosome segregation depend critically on kinetochore-microtubule (KT-MT) interactions. A new protein, termed Spindly in Drosophila and SPDL-1 in C. elegans, was recently shown to regulate KT localization of dynein, but depletion phenotypes revealed striking differences, suggesting evolutionarily diverse roles of mitotic dynein. By characterizing the function of Spindly in human cells, we identify specific functions for KT dynein. We show that localization of human Spindly (hSpindly) to KTs is controlled by the Rod/Zw10/Zwilch (RZZ) complex and Aurora B. hSpindly depletion results in reduced inter-KT tension, unstable KT fibers, an extensive prometaphase delay, and severe chromosome misalignment. Moreover, depletion of hSpindly induces a striking spindle rotation, which can be rescued by co-depletion of dynein. However, in contrast to Drosophila, hSpindly depletion does not abolish the removal of MAD2 and ZW10 from KTs. Collectively, our data reveal hSpindly-mediated dynein functions and highlight a critical role of KT dynein in spindle orientation.
Collapse
Affiliation(s)
- Ying Wai Chan
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
213
|
Chittka A, Volff J, Wizenmann A. Identification of genes differentially expressed in dorsal and ventral chick midbrain during early development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:29. [PMID: 19397791 PMCID: PMC2686707 DOI: 10.1186/1471-213x-9-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 04/27/2009] [Indexed: 11/20/2022]
Abstract
Background During the development of the central nervous system (CNS), patterning processes along the dorsoventral (DV) axis of the neural tube generate different neuronal subtypes. As development progresses these neurons are arranged into functional units with varying cytoarchitecture, such as laminae or nuclei for efficient relaying of information. Early in development ventral and dorsal regions are similar in size and structure. Different proliferation rates and cell migration patterns are likely to result in the formation of laminae or nuclei, eventually. However, the underlying molecular mechanisms that establish these different structural arrangements are not well understood. We undertook a differential display polymerase chain reaction (DD-PCR) screen to identify genes with distinct expression patterns between dorsal and ventral regions of the chick midbrain in order to identify genes which regulate the sculpturing of such divergent neuronal organisation. We focused on the DV axis of the early chick midbrain since mesencephalic alar plate and basal plate develop into laminae and nuclei, respectively. Results We identified 53 differentially expressed bands in our initial screen. Twenty-six of these could be assigned to specific genes and we could unambiguously show the differential expression of five of the isolated cDNAs in vivo by in situ mRNA expression analysis. Additionally, we verified differential levels of expression of a selected number of genes by using reverse transcriptase (RT) PCR method with gene-specific primers. One of these genes, QR1, has been previously cloned and we present here a detailed study of its early developmental time course and pattern of expression providing some insights into its possible function. Our phylogenetic analysis of QR1 shows that it is the chick orthologue of Sparc-like 1/Hevin/Mast9 gene in mice, rats, dogs and humans, a protein involved in cell adhesion. Conclusion This study reveals some possible networks, which might be involved in directing the difference in neuronal specification and cytoarchitecture observed in the brain.
Collapse
Affiliation(s)
- A Chittka
- Junior Research Group, Biozentrum, Am Hubland, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
214
|
Abstract
Development of a multicellular organism from a fertilized egg depends on a precise balance between symmetric cell divisions to expand the pool of similar cells, and asymmetric cell divisions to create cell-type diversity. Spindle orientation can influence the generation of symmetric or asymmetric cell fates depending on how it is coupled to cell-intrinsic polarity cues, or how it is positioned relative to cell-extrinsic cues such as niche-derived signals. In this review, we describe the mechanism of spindle orientation in budding yeast, Drosophila melanogaster, Caenorhabditis elegans and mammalian neural progenitors, with the goal of highlighting conserved mechanisms and indicating open questions for the future.
Collapse
|
215
|
Shioi G, Konno D, Shitamukai A, Matsuzaki F. Structural basis for self-renewal of neural progenitors in cortical neurogenesis. Cereb Cortex 2009; 19 Suppl 1:i55-61. [PMID: 19363147 PMCID: PMC2693538 DOI: 10.1093/cercor/bhp042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In mammalian brain development, neuroepithelial cells act as progenitors that produce self-renewing and differentiating cells. Recent technical advances in live imaging and gene manipulation now enable us to investigate how neural progenitors generate the 2 different types of cells with unprecedented accuracy and resolution, shedding new light on the roles of epithelial structure in cell fate decisions and also on the plasticity of neurogenesis.
Collapse
Affiliation(s)
- Go Shioi
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | | | | | | |
Collapse
|
216
|
Reiner O, Sapir T. Polarity regulation in migrating neurons in the cortex. Mol Neurobiol 2009; 40:1-14. [PMID: 19330467 DOI: 10.1007/s12035-009-8065-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
The formation of the cerebral cortex requires migration of billions of cells from their birth position to their final destination. A motile cell must have internal polarity in order to move in a specified direction. Locomotory polarity requires the coordinated polymerization of cytoskeletal elements such as microtubules and actin combined with regulated activities of the associated molecular motors. This review is focused on migrating neurons in the developing cerebral cortex, which need to attain internal polarity in order to reach their proper target. The position and dynamics of the centrosome plays an important function in this directed motility. We highlight recent interesting findings connecting polarity proteins with neuronal migration events regulated by the microtubule-associated molecular motor, cytoplasmic dynein.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
217
|
Ma L, Tsai MY, Wang S, Lu B, Chen R, Yates JR, Zhu X, Zheng Y. Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nat Cell Biol 2009; 11:247-56. [PMID: 19198602 PMCID: PMC2699591 DOI: 10.1038/ncb1832] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/19/2008] [Indexed: 01/14/2023]
Abstract
The small guanosine triphosphatase Ran loaded with GTP (RanGTP) can stimulate assembly of the type V intermediate filament protein lamin B into a membranous lamin B spindle matrix, which is required for proper microtubule organization during spindle assembly. Microtubules in turn enhance assembly of the matrix. Here we report that the isolated matrix contains known spindle assembly factors such as dynein and Nudel. Using spindle assembly assays in Xenopus egg extracts, we show that Nudel regulates microtubule organization during spindle assembly independently of its function at kinetochores. Importantly, Nudel interacts directly with lamin B to facilitate the accumulation and assembly of lamin-B-containing matrix on microtubules in a dynein-dependent manner. Perturbing either Nudel or dynein inhibited the assembly of lamin B matrix. However, depleting lamin B still allowed the formation of matrices containing dynein and Nudel. Therefore, dynein and Nudel regulate assembly of the lamin B matrix. Interestingly, we found that whereas depleting lamin B resulted in disorganized spindle and spindle poles, disrupting the function of Nudel or dynein caused a complete lack of spindle pole focusing. We suggest that Nudel regulates microtubule organization in part by facilitating assembly of the lamin B spindle matrix in a dynein-dependent manner.
Collapse
Affiliation(s)
- Li Ma
- Laboratory of Molecular Cell Biology and Center of Cell Signaling, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Embryology, Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Ming-Ying Tsai
- Department of Embryology, Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shusheng Wang
- Department of Embryology, Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Bingwen Lu
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rong Chen
- Department of Embryology, Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Xueliang Zhu
- Laboratory of Molecular Cell Biology and Center of Cell Signaling, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixian Zheng
- Laboratory of Molecular Cell Biology and Center of Cell Signaling, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Embryology, Carnegie Institution for Science and Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
218
|
Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U S A 2009; 106:4507-12. [PMID: 19240213 DOI: 10.1073/pnas.0900355106] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuregulin-1 (NRG1) and its ErbB2/B4 receptors are encoded by candidate susceptibility genes for schizophrenia, yet the essential functions of NRG1 signaling in the CNS are still unclear. Using CRE/LOX technology, we have inactivated ErbB2/B4-mediated NRG1 signaling specifically in the CNS. In contrast to expectations, cell layers in the cerebral cortex, hippocampus, and cerebellum develop normally in the mutant mice. Instead, loss of ErbB2/B4 impairs dendritic spine maturation and perturbs interactions of postsynaptic scaffold proteins with glutamate receptors. Conversely, increased NRG1 levels promote spine maturation. ErbB2/B4-deficient mice show increased aggression and reduced prepulse inhibition. Treatment with the antipsychotic drug clozapine reverses the behavioral and spine defects. We conclude that ErbB2/B4-mediated NRG1 signaling modulates dendritic spine maturation, and that defects at glutamatergic synapses likely contribute to the behavioral abnormalities in ErbB2/B4-deficient mice.
Collapse
|
219
|
Bradshaw NJ, Christie S, Soares DC, Carlyle BC, Porteous DJ, Millar JK. NDE1 and NDEL1: multimerisation, alternate splicing and DISC1 interaction. Neurosci Lett 2009; 449:228-33. [PMID: 19000741 PMCID: PMC2631193 DOI: 10.1016/j.neulet.2008.10.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/01/2008] [Accepted: 10/21/2008] [Indexed: 01/15/2023]
Abstract
Nuclear Distribution Factor E Homolog 1 (NDE1) and NDE-Like 1 (NDEL1) are highly homologous mammalian proteins. However, whereas NDEL1 is well studied, there is remarkably little known about NDE1. We demonstrate the presence of multiple isoforms of both NDE1 and NDEL1 in the brain, showing that NDE1 binds directly to multiple isoforms of Disrupted in Schizophrenia 1 (DISC1), and to itself. We also show that NDE1 can complex with NDEL1. Together these results predict a high degree of complexity of DISC1-mediated regulation of neuronal activity.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Kirsty Millar
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
220
|
Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E, Attardo A, Mora-Bermúdez F, Arii T, Clarke JDW, Huttner WB. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 2008; 27:3151-63. [PMID: 18971946 PMCID: PMC2599871 DOI: 10.1038/emboj.2008.227] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 10/02/2008] [Indexed: 11/09/2022] Open
Abstract
Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP-anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kazunori Toida
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Veronique Dubreuil
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Paula Alexandre
- Anatomy and Developmental Biology, University College London, London, UK
| | - Judith Schenk
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Emi Kiyokage
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Alessio Attardo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Tatsuo Arii
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jon D W Clarke
- Anatomy and Developmental Biology, University College London, London, UK
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
221
|
Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 2008; 28:10893-904. [PMID: 18945897 DOI: 10.1523/jneurosci.3299-08.2008] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1(tr) transgenic mice expressing 2 copies of truncated Disc1 encoding the first 8 exons using a bacterial artificial chromosome (BAC). With this partial simulation of the human situation, we have discovered a range of phenotypes including a series of novel features not previously reported. Disc1(tr) transgenic mice display enlarged lateral ventricles, reduced cerebral cortex, partial agenesis of the corpus callosum, and thinning of layers II/III with reduced neural proliferation at midneurogenesis. Parvalbumin GABAergic neurons are reduced in the hippocampus and medial prefrontal cortex, and displaced in the dorsolateral frontal cortex. In culture, transgenic neurons grow fewer and shorter neurites. Behaviorally, transgenic mice exhibit increased immobility and reduced vocalization in depression-related tests, and impairment in conditioning of latent inhibition. These abnormalities in Disc1(tr) transgenic mice are consistent with findings in severe schizophrenia.
Collapse
|
222
|
Métin C, Vallee RB, Rakic P, Bhide PG. Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 2008; 28:11746-52. [PMID: 19005035 PMCID: PMC2713018 DOI: 10.1523/jneurosci.3860-08.2008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 11/21/2022] Open
Abstract
The ability of neurons to migrate to their appropriate positions in the developing brain is critical to brain architecture and function. Recent research has elucidated different modes of neuronal migration and the involvement of a host of signaling factors in orchestrating the migration, as well as vulnerabilities of this process to environmental and genetic factors. Here we discuss the role of cytoskeleton, motor proteins, and mechanisms of nuclear translocation in radial and tangential migration of neurons. We will also discuss how these and other events essential for normal migration of neurons can be disrupted by genetic and environmental factors that contribute to neurological disease in humans.
Collapse
Affiliation(s)
- Christine Métin
- Institut du Fer à Moulin, Inserm Unité Mixte de Recherche-S 839, 75005 Paris, France
| | - Richard B. Vallee
- Department of Pathology, Columbia University, New York, New York 10032
| | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8001, and
| | - Pradeep G. Bhide
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| |
Collapse
|
223
|
Fish JL, Dehay C, Kennedy H, Huttner WB. Making bigger brains-the evolution of neural-progenitor-cell division. J Cell Sci 2008; 121:2783-93. [PMID: 18716282 DOI: 10.1242/jcs.023465] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relative brain size differs markedly between species. This variation might ultimately result from differences in the cell biology of neural progenitors, which might underlie their different proliferative potential. On the basis of the cell-biological properties of neural progenitors of animals of varying brain size and complexity (namely, Drosophila melanogaster, rodents and primates), we hypothesize that the evolution of four related cell-biological features has contributed to increases in neuron number. Three of these features-the pseudostratification of the progenitor layer, the loss of (Inscuteable-mediated) mitotic-spindle rotation and the evolution of proteins (such as Aspm) that maintain the precision of symmetric progenitor division-affect the mode of cell division in the apically dividing progenitors of the ventricular zone. The fourth feature, however, concerns the evolution of the basally dividing progenitors of the subventricular zone. In rodents, these basal (or intermediate) progenitors lack cell polarity, whereas in primates a subpopulation of radial, presumably polarized, progenitors has evolved (outer-subventricular-zone progenitors). These cells undergo basal mitoses and are thought to retain epithelial characteristics. We propose the epithelial-progenitor hypothesis, which argues that evolutionary changes that promote the maintenance of epithelial features in neural progenitors, including outer-subventricular-zone progenitors, have been instrumental in the expansion of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Jennifer L Fish
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
224
|
Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ, Bader DM. Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 2008; 121:3413-21. [PMID: 18827011 PMCID: PMC2849733 DOI: 10.1242/jcs.032847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Syntaxin 4 is a component of the SNARE complex that regulates membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between syntaxin 4 and cytoplasmic murine CENPF, a protein previously demonstrated to associate with the microtubule network and SNAP-25. The binding domain for syntaxin 4 in CENPF was defined by yeast two-hybrid assay and co-immunoprecipitation. Confocal analyses in cell culture reveal a high degree of colocalization between endogenously expressed proteins in interphase cells. Additionally, the endogenous SNARE proteins can be isolated as a complex with CENPF in immunoprecipitation experiments. Further analyses demonstrate that murine CENPF and syntaxin 4 colocalize with components of plasma membrane recycling: SNAP-25 and VAMP2. Depletion of endogenous CENPF disrupts GLUT4 trafficking whereas expression of a dominant-negative form of CENPF inhibits cell coupling. Taken together, these studies demonstrate that CENPF provides a direct link between proteins of the SNARE system and the microtubule network and indicate a diverse role for murine CENPF in vesicular transport.
Collapse
Affiliation(s)
- Ryan D. Pooley
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | - Katherine L. Moynihan
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | - Victor Soukoulis
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | - Samyukta Reddy
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | - Richard Francis
- Laboratory for Developmental Biology, NIHLBI, Bethesda, MD 20892-1583, USA
| | - Cecilia Lo
- Laboratory for Developmental Biology, NIHLBI, Bethesda, MD 20892-1583, USA
| | - Li-Jun Ma
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-2561, USA
| | - David M. Bader
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| |
Collapse
|
225
|
Lectin panning method: the prospective isolation of mouse neural progenitor cells by the attachment of cell surface N-glycans to Phaseolus vulgaris erythroagglutinating lectin-coated dishes. Neuroscience 2008; 157:762-71. [PMID: 18952155 DOI: 10.1016/j.neuroscience.2008.09.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 02/05/2023]
Abstract
Retrospective isolation of neural progenitor cells (NPCs) may cause deterioration of the phenotype during the long-term cultivation. Therefore, prospective isolation is essential for understanding the exact characteristics of intact NPCs in the brain. However, few suitable specific cell surface antigens on NPCs that could be used for their prospective isolation are available. The present study demonstrated that within 60 min after initial plating, embryonic day 12 (E12) brain cells firmly attach to several types of lectin-coated culture wells, including Phaseolus vulgaris erythroagglutinating lectin (E-PHA), concanavalin A (Con A) and wheat germ agglutinin (WGA). Approximately 80% of the cells isolated from E-PHA-coated wells expressed the nestin antigen, which is a specific intracellular marker for NPCs and the ratio of 5-bromo-2'-deoxyuridine (BrdU)-positive/nestin-positive cells to the cells attached on the E-PHA-coated wells was significantly higher than that of the cells attached on the wells coated with other adhesive substrates. The cells that were isolated from the E-PHA-coated wells continued to attach to the well for 1 week, while those isolated from Con A- and WGA-coated wells lost their attachment after 6 days and 1 day, respectively. Furthermore, the cells isolated from the E-PHA-coated wells grew quite satisfactorily and formed numerous attached neurospheres. Their growth rate was almost equal to that observed in suspension cultures. These results indicate that the lectin panning method enables the prospective, quick and easy isolation of mouse NPCs without requiring a fluorescence-activated cell sorter (FACS) system.
Collapse
|
226
|
Burdick KE, Kamiya A, Hodgkinson CA, Lencz T, DeRosse P, Ishizuka K, Elashvili S, Arai H, Goldman D, Sawa A, Malhotra AK. Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet 2008; 17:2462-73. [PMID: 18469341 PMCID: PMC2486442 DOI: 10.1093/hmg/ddn146] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/07/2008] [Indexed: 11/13/2022] Open
Abstract
DISC1 influences susceptibility to psychiatric disease and related phenotypes. Intact functions of DISC1 and its binding partners, NDEL1 and NDE1, are critical to neurodevelopmental processes aberrant in schizophrenia (SZ). Despite evidence of an NDEL1-DISC1 protein interaction, there have been no investigations of the NDEL1 gene or the relationship between NDEL1 and DISC1 in SZ. We genotyped six NDEL1 single-nucleotide polymorphisms (SNPs) in 275 Caucasian SZ patients and 200 controls and tested for association and interaction between the functional SNP Ser704Cys in DISC1 and NDEL1. We also evaluated the relationship between NDE1 and DISC1 genotype and SZ. Finally, in a series of in vitro assays, we determined the binding profiles of NDEL1 and NDE1, in relation to DISC1 Ser704Cys. We observed a single haplotype block within NDEL1; the majority of variation was captured by NDEL1 rs1391768. We observed a significant interaction between rs1391768 and DISC1 Ser704Cys, with the effect of NDEL1 on SZ evident only against the background of DISC1 Ser704 homozygosity. Secondary analyses revealed no direct relationship between NDE1 genotype and SZ; however, there was an opposite pattern of risk for NDE1 genotype when conditioned on DISC1 Ser704Cys, with NDE1 rs3784859 imparting a significant effect but only in the context of a Cys-carrying background. In addition, we report opposing binding patterns of NDEL1 and NDE1 to Ser704 versus Cys704, at the same DISC1 binding domain. These data suggest that NDEL1 significantly influences risk for SZ via an interaction with DISC1. We propose a model where NDEL1 and NDE1 compete for binding with DISC1.
Collapse
Affiliation(s)
- Katherine E Burdick
- Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY 11004, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
BACKGROUND Malformations of cortical development (MCD) are increasingly recognized as an important cause of epilepsy and developmental delay. MCD encompass a wide spectrum of disorders with various underlying genetic etiologies and clinical manifestations. High resolution imaging has dramatically improved our recognition of MCD. REVIEW SUMMARY This review will provide a brief overview of the stages of normal cortical development, including neuronal proliferation, neuroblast migration, and neuronal organization. Disruptions at various stages lead to characteristic MCD. Disorders of neurogenesis give rise to microcephaly (small brain) or macrocephaly (large brain). Disorders of early neuroblast migration give rise to periventricular heterotopia (neurons located along the ventricles), whereas abnormalities later in migration lead to lissencephaly (smooth brain) or subcortical band heterotopia (smooth brain with a band of heterotopic neurons under the cortex). Abnormal neuronal migration arrest give rise to over migration of neurons in cobblestone lissencephaly. Lastly, disorders of neuronal organization cause polymicrogyria (abnormally small gyri and sulci). This review will also discuss the known genetic mutations and potential mechanisms that contribute to these syndromes. CONCLUSION Identification of various gene mutations has not only given us greater insight into some of the pathophysiologic basis of MCD, but also an understanding of the processes involved in normal cortical development.
Collapse
|
228
|
Hannes FD, Sharp AJ, Mefford HC, de Ravel T, Ruivenkamp CA, Breuning MH, Fryns JP, Devriendt K, Van Buggenhout G, Vogels A, Stewart H, Hennekam RC, Cooper GM, Regan R, Knight SJL, Eichler EE, Vermeesch JR. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant. J Med Genet 2008; 46:223-32. [PMID: 18550696 PMCID: PMC2658752 DOI: 10.1136/jmg.2007.055202] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. METHODS AND RESULTS A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five with apparently reciprocal duplications of 16p13 covering 1.65 Mb, including 15 RefSeq genes. In addition, three atypical rearrangements overlapping or flanking this region were found. Fine mapping by high-resolution oligonucleotide arrays suggests that these deletions and duplications result from non-allelic homologous recombination (NAHR) between distinct LCR16 subunits with >99% sequence identity. Deletions and duplications were either de novo or inherited from unaffected parents. To determine whether these imbalances are associated with the MR/MCA phenotype or whether they might be benign variants, a population of 2014 normal controls was screened. The absence of deletions in the control population showed that 16p13.11 deletions are significantly associated with MR/MCA (p = 0.0048). Despite phenotypic variability, common features were identified: three patients with deletions presented with MR, microcephaly and epilepsy (two of these had also short stature), and two other deletion carriers ascertained prenatally presented with cleft lip and midline defects. In contrast to its previous association with autism, the duplication seems to be a common variant in the population (5/1682, 0.29%). CONCLUSION These findings indicate that deletions inherited from clinically normal parents are likely to be causal for the patients' phenotype whereas the role of duplications (de novo or inherited) in the phenotype remains uncertain. This difference in knowledge regarding the clinical relevance of the deletion and the duplication causes a paradigm shift in (cyto)genetic counselling.
Collapse
Affiliation(s)
- F D Hannes
- Center for Human Genetics, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X. GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 2008; 28:5817-26. [PMID: 18509043 PMCID: PMC2504715 DOI: 10.1523/jneurosci.0853-08.2008] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/15/2008] [Accepted: 04/20/2008] [Indexed: 12/22/2022] Open
Abstract
GPR56 is a member of the family of adhesion G-protein-coupled receptors that have a large extracellular region containing a GPS (G-protein proteolytic site) domain. Loss-of-function mutations in the GPR56 gene cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). BFPP is a radiological diagnosis and its histopathology remains unclear. This study demonstrates that loss of the mouse Gpr56 gene leads to neuronal ectopia in the cerebral cortex, a cobblestone-like cortical malformation. There are four crucial events in the development of cobblestone cortex, namely defective pial basement membrane (BM), abnormal anchorage of radial glial endfeet, mislocalized Cajal-Retzius cells, and neuronal overmigration. By detailed time course analysis, we reveal that the leading causal events are likely the breaches in the pial BM. We show further that GPR56 is present in abundance in radial glial endfeet. Furthermore, a putative ligand of GPR56 is localized in the marginal zone or overlying extracellular matrix. These observations provide compelling evidence that GPR56 functions in regulating pial BM integrity during cortical development.
Collapse
Affiliation(s)
- Shihong Li
- Division of Newborn Medicine, Department of Medicine
| | - Zhaohui Jin
- Division of Newborn Medicine, Department of Medicine
| | - Samir Koirala
- Neurobiology Program, Children's Hospital Boston, Harvard Medical School
| | - Lihong Bu
- Division of Newborn Medicine, Department of Medicine
| | - Lei Xu
- Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Richard O. Hynes
- Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Christopher A. Walsh
- Department of Neurology, Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Gabriel Corfas
- Neurobiology Program, Children's Hospital Boston, Harvard Medical School
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine
| |
Collapse
|
230
|
Pawlisz AS, Mutch C, Wynshaw-Boris A, Chenn A, Walsh CA, Feng Y. Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Hum Mol Genet 2008; 17:2441-55. [PMID: 18469343 PMCID: PMC2486443 DOI: 10.1093/hmg/ddn144] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurons in the cerebral cortex originate predominantly from asymmetrical divisions of polarized radial glial or neuroepithelial cells. Fate control of neural progenitors through regulating cell division asymmetry determines the final cortical neuronal number and organization. Haploinsufficiency of human LIS1 results in type I lissencephaly (smooth brain) with severely reduced surface area and laminar organization of the cerebral cortex. Here we show that LIS1 and its binding protein Nde1 (mNudE) regulate the fate of radial glial progenitors collaboratively. Mice with an allelic series of Lis1 and Nde1 double mutations displayed a striking dose-dependent size reduction and de-lamination of the cerebral cortex. The neocortex of the Lis1–Nde1 double mutant mice showed over 80% reduction in surface area and inverted neuronal layers. Dramatically increased neuronal differentiation at the onset of corticogenesis in the mutant led to overproduction and abnormal development of earliest-born preplate neurons and Cajal–Retzius cells at the expense of progenitors. While both Lis1 and Nde1 are known to regulate the mitotic spindle orientation, only a moderate alteration in mitotic cleavage orientation was detected in the Lis1–Nde1 double deficient progenitors. Instead, a striking change in the morphology of metaphase progenitors with reduced apical attachment to the ventricular surface and weakened lateral contacts to neighboring cells appear to hinder the accurate control of cell division asymmetry and underlie the dramatically increased neuronal differentiation. Our data suggest that maintaining the shape and cell–cell interactions of radial glial neuroepithelial progenitors by the Lis1–Nde1 complex is essential for their self renewal during the early phase of corticogenesis.
Collapse
Affiliation(s)
- Ashley S Pawlisz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
231
|
Abstract
Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Chris Q Doe
- Howard Hughes Medical Institute, Institute of Neuroscience, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
232
|
Xie Z, Chin LS. Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurg Focus 2008; 24:E25. [DOI: 10.3171/foc/2008/24/3-4/e24] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
✓ The results of studies conducted in the past several years have suggested that malignant brain tumors may harbor a small fraction of tumor-initiating cells that are likely to cause tumor recurrence. These cells are known as brain tumor stem cells (BTSCs) because of their multilineage potential and their ability to self-renew in vitro and to recapitulate original tumors in vivo. The understanding of BTSCs has been greatly advanced by knowledge of neural progenitor/stem cells (NPSCs), which are multipotent and self-renewing precursor cells for neurons and glia. In this article, the authors summarize evidence that genetic mutations that deregulate asymmetric cell division by affecting cell polarity, spindle orientation, or cell fate determinants may result in the conversion of NPSCs to BTSCs. In addition, they review evidence that BTSCs and normal NPSCs may reside in similar vascularized microenvironments, where similar evolutionarily conserved signaling pathways control their proliferation. Finally, they discuss preliminary evidence that mechanisms of BTSC-associated infiltrativeness may be similar to those underlying the migration of NPSCs and neurons.
Collapse
Affiliation(s)
- Zhigang Xie
- 1Departments of Neurosurgery and
- 2Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
233
|
Yingling J, Youn YH, Darling D, Toyo-oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 2008; 132:474-86. [PMID: 18267077 PMCID: PMC2265303 DOI: 10.1016/j.cell.2008.01.026] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 11/15/2007] [Accepted: 01/03/2008] [Indexed: 11/19/2022]
Abstract
Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.
Collapse
Affiliation(s)
- Jessica Yingling
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
- Biomedical Science Graduate Program, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
| | - Yong Ha Youn
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
| | - Dawn Darling
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
| | - Kazuhito Toyo-oka
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka 545-8586, Japan
| | - Tiziano Pramparo
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka 545-8586, Japan
| | - Anthony Wynshaw-Boris
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92098-0627
| |
Collapse
|
234
|
Abstract
Disrupted in schizophrenia 1 (DISC1) is emerging in the eyes of many as the most promising candidate of all the schizophrenia risk genes. This viewpoint is derived from the combination of genetic, clinical, imaging and rapidly advancing cell biology data around this gene. All of these areas have been reviewed extensively recently and this review will point you towards some of these excellent papers. My own personal view of the potential importance of DISC1 was echoed in a recent review which suggested that DISC1 may be a 'Rosetta Stone' for schizophrenia research [Ross, Margolis, Reading, Pletnikov and Coyle (2006) Neuron 52, 139-153]. Our own efforts to try to understand the function of DISC1 were through identification of its protein-binding partners. Through an extensive Y2H (yeast two-hybrid) and bioinformatics effort we generated the 'DISC1-Interactome', a comprehensive network of protein-protein interactions around DISC1. In two excellent industry-academia collaborations we focused on two main interacting partners: Ndel1 (nudE nuclear distribution gene E homologue-like 1), an enigmatic protein which may have diverse functions as both a cysteine protease and a key centrosomal structural protein; and PDE4B, a cAMP-specific phosphodiesterase. I will review the work around these two protein complexes in detail.
Collapse
|
235
|
Numata S, Ueno SI, Iga JI, Nakataki M, Ohmori T, Tanahashi T, Itakura M, Sano A, Ohi K, Hashimoto R, Takeda M. No association between the NDE1 gene and schizophrenia in the Japanese population. Schizophr Res 2008; 99:367-9. [PMID: 18178387 DOI: 10.1016/j.schres.2007.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/15/2007] [Accepted: 10/25/2007] [Indexed: 12/24/2022]
|
236
|
Toyoshima F, Nishida E. Spindle orientation in animal cell mitosis: roles of integrin in the control of spindle axis. J Cell Physiol 2008; 213:407-11. [PMID: 17654475 DOI: 10.1002/jcp.21227] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The orientation of mitotic spindles, which determines the plane of cell division, is tightly regulated in polarized cells such as epithelial cells, but it has been unclear whether there is a mechanism regulating spindle orientation in non-polarized cultured cells. In adherent cultured cells, spindles are positioned at the center of the cells and the axis of the spindle lies in the longest axis of the cell. Thus, cell geometry is thought to be one of cues for spindle orientation and positioning in cultured cells because this defines the center and the long axis of the cell. Recent work provides a new insight into the spindle orientation in cultured cells; spindles are aligned along the axis parallel to the cell-substrate adhesion plane. Concomitantly, integrin-mediated cell adhesion to the extracellular matrix (ECM), rather than gravitation, cell-cell adhesion or cell geometry, has shown to be essential for this mechanism of spindle orientation. Several independent lines of evidence confirm the involvement of cell-ECM adhesion in spindle orientation in both cultured cells and in developing organisms. The important future challenge is to identify a molecular mechanism(s) that links integrin and spindles in the control of spindle axis.
Collapse
Affiliation(s)
- Fumiko Toyoshima
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
237
|
Reiner O, Sapoznik S, Sapir T. Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med 2008; 8:547-65. [PMID: 17028375 DOI: 10.1385/nmm:8:4:547] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 12/11/2022]
Abstract
Lissencephaly 1 (LIS1) was the first gene implicated in the pathogenesis of type-1 lissencephaly. More than a decade of research by multiple laboratories has revealed that LIS1 is a key node protein, which participates in several pathways, including association with the molecular motor cytoplasmic dynein, the reelin signaling pathway, and the platelet-activating factor pathway. Mutations in LIS1-interacting proteins, either in human, or in mouse models has suggested that LIS1 might play a role in the pathogenesis of numerous diseases such as male sterility, schizophrenia, neuronal degeneration, and viral infections.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|
238
|
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13:36-64. [PMID: 17912248 DOI: 10.1038/sj.mp.4002106] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
239
|
Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 2007; 10:93-101. [PMID: 18084280 DOI: 10.1038/ncb1673] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 11/30/2007] [Indexed: 01/08/2023]
Abstract
During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in maintaining the population of neuroepithelial cells, but dispensable for the decision to either proliferate or differentiate. Knocking out LGN, (the G protein regulator), randomized the orientation of normally planar neuroepithelial divisions. The resultant loss of the apical membrane from daughter cells frequently converted them into abnormally localized progenitors without affecting neuronal production rate. Furthermore, overexpression of Inscuteable to induce vertical neuroepithelial divisions shifted the fate of daughter cells. Our results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.
Collapse
Affiliation(s)
- Daijiro Konno
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, and CREST, Japan Science and Technology Corporation, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
240
|
Derewenda U, Tarricone C, Choi WC, Cooper DR, Lukasik S, Perrina F, Tripathy A, Kim MH, Cafiso DS, Musacchio A, Derewenda ZS. The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller-Dieker lissencephaly. Structure 2007; 15:1467-81. [PMID: 17997972 DOI: 10.1016/j.str.2007.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 11/21/2022]
Abstract
Ndel1 and Nde1 are homologous and evolutionarily conserved proteins, with critical roles in cell division, neuronal migration, and other physiological phenomena. These functions are dependent on their interactions with the retrograde microtubule motor dynein and with its regulator Lis1--a product of the causal gene for isolated lissencephaly sequence (ILS) and Miller-Dieker lissencephaly. The molecular basis of the interactions of Ndel1 and Nde1 with Lis1 is not known. Here, we present a crystallographic study of two fragments of the coiled-coil domain of Ndel1, one of which reveals contiguous high-quality electron density for residues 10-166, the longest such structure reported by X-ray diffraction at high resolution. Together with complementary solution studies, our structures reveal how the Ndel1 coiled coil forms a stable parallel homodimer and suggest mechanisms by which the Lis1-interacting domain can be regulated to maintain a conformation in which two supercoiled alpha helices cooperatively bind to a Lis1 homodimer.
Collapse
Affiliation(s)
- Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 2007; 21:2347-57. [PMID: 17875668 PMCID: PMC1973148 DOI: 10.1101/gad.434307] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many neuronal disorders such as lissencephaly, epilepsy, and schizophrenia are caused by the abnormal migration of neurons in the developing brain. The role of the actin cytoskeleton in neuronal migration disorders has in large part remained elusive. Here we show that the F-actin depolymerizing factor n-cofilin controls cell migration and cell cycle progression in the cerebral cortex. Loss of n-cofilin impairs radial migration, resulting in the lack of intermediate cortical layers. Neuronal progenitors in the ventricular zone show increased cell cycle exit and exaggerated neuronal differentiation, leading to the depletion of the neuronal progenitor pool. These results demonstrate that mutations affecting regulators of the actin cytoskeleton contribute to the pathology of cortex development.
Collapse
Affiliation(s)
- Gian Carlo Bellenchi
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
- Department of Cell Biology and Neuroscience, Instituto Superiore di Sanità, 00161 Rome, Italy
| | - Christine B. Gurniak
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Emerald Perlas
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Silvia Middei
- Consiglio Nazionale delle Ricerche (CNR) Institute for Neuroscience, Santa Lucia Foundation, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- Consiglio Nazionale delle Ricerche (CNR) Institute for Neuroscience, Santa Lucia Foundation, 00143 Rome, Italy
| | - Walter Witke
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
- Corresponding author.E-MAIL ; FAX 0039-06-90091-272
| |
Collapse
|
242
|
Xie Z, Moy LY, Sanada K, Zhou Y, Buchman JJ, Tsai LH. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 2007; 56:79-93. [PMID: 17920017 PMCID: PMC2642594 DOI: 10.1016/j.neuron.2007.08.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/23/2007] [Accepted: 08/31/2007] [Indexed: 12/13/2022]
Abstract
Centrosome- and microtubule-associated proteins have been shown to be important for maintaining the neural progenitor pool during neocortical development by regulating the mitotic spindle. It remains unclear whether these proteins may control neurogenesis by regulating other microtubule-dependent processes such as nuclear migration. Here, we identify Cep120, a centrosomal protein preferentially expressed in neural progenitors during neocortical development. We demonstrate that silencing Cep120 in the developing neocortex impairs both interkinetic nuclear migration (INM), a characteristic pattern of nuclear movement in neural progenitors, and neural progenitor self-renewal. Furthermore, we show that Cep120 interacts with transforming acidic coiled-coil proteins (TACCs) and that silencing TACCs also causes defects in INM and neural progenitor self-renewal. Our data suggest a critical role for Cep120 and TACCs in both INM and neurogenesis. We propose that sustaining INM may be a mechanism by which microtubule-regulating proteins maintain the neural progenitor pool during neocortical development.
Collapse
Affiliation(s)
- Zhigang Xie
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Lily Y. Moy
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Kamon Sanada
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Ying Zhou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| | - Joshua J. Buchman
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 77 Massachusetts Avenue, Building 46, Room 4235A, Cambridge, MA 02139, USA
| |
Collapse
|
243
|
Wynshaw-Boris A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin Genet 2007; 72:296-304. [PMID: 17850624 DOI: 10.1111/j.1399-0004.2007.00888.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. LIS1 was first gene cloned in an organism important for neuronal migration, as it was deleted or mutated in patients with lissencephaly in a heterozygous fashion. Studies in model organisms, particularly Aspergillus nidulans, as well as those in the mouse, have uncovered an evolutionarily conserved pathway that involves LIS1 and cytoplasmic dynein. This pathway codes for proteins in a complex with cytoplasmic dynein and positively regulates its conserved function in nuclear migration. This complex appears to be important for proliferation and neuronal survival as well as neuronal migration. One of the components of this complex, NDEL1, is a phosphoprotein that is a substrate for CDK5 (or CDK2 in fibroblasts) and Aurora-A, two mitotic kinases. CDK5-phosphorylated NDEL1 binds to 14-3-3epsilon, which protects it from phosphatase attack. Interestingly, 14-3-3epsilon is located 1 Mb from LIS1 and is heterozygously deleted with LIS1 in patients with a severe form of lissencephaly, Miller-Dieker syndrome. Mouse models confirm that 14-3-3epsilon plays an important role in neuronal migration, and mice that are double heterozygotes for mutations in Lis1 and 14-3-3epsilon, display more severe neuronal migration defects. The identification of LIS1 as the first lissencephaly gene, and the first gene required for neuronal migration has revealed the importance of the regulation of cytoplasmic dynein in the control of neuronal migration by modulating nuclear migration in a pathway conserved in virtually all eukaryotes.
Collapse
Affiliation(s)
- A Wynshaw-Boris
- Departments of Pediatrics and Medicine, UCSD School of Medicine, University of California-San Diego, La Jolla, CA, USA.
| |
Collapse
|
244
|
Stehman SA, Chen Y, McKenney RJ, Vallee RB. NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. ACTA ACUST UNITED AC 2007; 178:583-94. [PMID: 17682047 PMCID: PMC2064466 DOI: 10.1083/jcb.200610112] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
NudE and NudEL are related proteins that interact with cytoplasmic dynein and LIS1. Their functional relationship and involvement in LIS1 and dynein regulation are not completely understood. We find that NudE and NudEL each localize to mitotic kinetochores before dynein, dynactin, ZW10, and LIS1 and exhibit additional temporal and spatial differences in distribution from the motor protein. Inhibition of NudE and NudEL caused metaphase arrest with misoriented chromosomes and defective microtubule attachment. Dynein and dynactin were both displaced from kinetochores by the injection of an anti-NudE/NudEL antibody. Dynein but not dynactin interacted with NudE surprisingly through the dynein intermediate and light chains but not the motor domain. Together, these results identify a common function for NudE and NudEL in mitotic progression and identify an alternative mechanism for dynein recruitment to and regulation at kinetochores.
Collapse
Affiliation(s)
- Stephanie A Stehman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
245
|
Ullmann R, Turner G, Kirchhoff M, Chen W, Tonge B, Rosenberg C, Field M, Vianna-Morgante AM, Christie L, Krepischi-Santos AC, Banna L, Brereton AV, Hill A, Bisgaard AM, Müller I, Hultschig C, Erdogan F, Wieczorek G, Ropers HH. Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Hum Mutat 2007; 28:674-82. [PMID: 17480035 DOI: 10.1002/humu.20546] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autism and mental retardation (MR) are often associated, suggesting that these conditions are etiologically related. Recently, array-based comparative genomic hybridization (array CGH) has identified submicroscopic deletions and duplications as a common cause of MR, prompting us to search for such genomic imbalances in autism. Here we describe a 1.5-Mb duplication on chromosome 16p13.1 that was found by high-resolution array CGH in four severe autistic male patients from three unrelated families. The same duplication was identified in several variably affected and unaffected relatives. A deletion of the same interval was detected in three unrelated patients with MR and other clinical abnormalities. In one patient we revealed a further rearrangement of the 16p13 imbalance that was not present in his unaffected mother. Duplications and deletions of this 1.5-Mb interval have not been described as copy number variants in the Database of Genomic Variants and have not been identified in >600 individuals from other cohorts examined by high-resolution array CGH in our laboratory. Thus we conclude that these aberrations represent recurrent genomic imbalances which predispose to autism and/or MR.
Collapse
|
246
|
Keays DA. Neuronal migration: unraveling the molecular pathway with humans, mice, and a fungus. Mamm Genome 2007; 18:425-30. [PMID: 17629745 PMCID: PMC1998879 DOI: 10.1007/s00335-007-9034-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/24/2007] [Indexed: 11/28/2022]
Abstract
This review highlights the utility of comparative genetics in understanding the molecular mechanisms that underlie neuronal migration. It is apparent from studies in humans, mice, and a fungus that nuclear migration is a key component of neuronal migration and that both are dependent on a dynamic microtubule network. In vertebrates regulation of this network involves a complex pathway that is dependent on extracellular guidance cues, membrane-bound receptors, intracellular signaling molecules, proteins associated with microtubules, and the components of microtubules themselves.
Collapse
Affiliation(s)
- David A Keays
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
247
|
Vergnolle MAS, Taylor SS. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 2007; 17:1173-9. [PMID: 17600710 DOI: 10.1016/j.cub.2007.05.077] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Cenp-F is a nuclear matrix component that localizes to kinetochores during mitosis and is then rapidly degraded after mitosis [1]. Unusually, both the localization and degradation of Cenp-F require it to be farnesylated [2]. Five studies recently demonstrated that Cenp-F is required for kinetochore-microtubule interactions and spindle checkpoint function [3-7]; however, the underlying molecular mechanisms have yet to be defined. Here, we show that Cenp-F interacts with Ndel1 and Nde1, two human NudE-related proteins implicated in regulating Lis1/Dynein motor complexes (reviewed in [8]). We show that Ndel1, Nde1, and Lis1 localize to kinetochores in a Cenp-F-dependent manner. In addition, Nde1, but not Ndel1, is required for kinetochore localization of Dynein. Accordingly, suppression of Nde1 inhibits metaphase chromosome alignment and activates the spindle checkpoint. By contrast, inhibition of Ndel1 results in malorientations that are not detected by the spindle checkpoint; Ndel1-deficient cells consequently enter anaphase in a timely manner but lagging chromosomes then manifest. A major function of Cenp-F, therefore, is to link the Ndel1/Nde1/Lis1/Dynein pathway to kinetochores. Furthermore, our data demonstrate that Ndel1 and Nde1 play distinct roles to ensure chromosome alignment and segregation.
Collapse
Affiliation(s)
- Maïlys A S Vergnolle
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester, UK
| | | |
Collapse
|
248
|
Buttner EA, Gil-Krzewska AJ, Rajpurohit AK, Hunter CP. Progression from mitotic catastrophe to germ cell death in Caenorhabditis elegans lis-1 mutants requires the spindle checkpoint. Dev Biol 2007; 305:397-410. [PMID: 17376425 PMCID: PMC2000799 DOI: 10.1016/j.ydbio.2007.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/23/2006] [Accepted: 02/16/2007] [Indexed: 01/31/2023]
Abstract
Deletion of the lissencephaly disease gene LIS-1 in humans causes an extreme disorganization of the brain associated with significant reduction in cortical neurons. Here we show that deletion or RNA interference (RNAi) of Caenorhabditis elegans lis-1 results in a reduction in germline nuclei and causes a variety of cellular, developmental, and neurological defects throughout development. Our analysis of the germline defects suggests that the reduction in nuclei number stems from dysfunctional mitotic spindles resulting in cell cycle arrest and eventually programmed cell death (apoptosis). Deletion of the spindle checkpoint gene mdf-1 blocks lis-1(lf)-induced cell cycle arrest and germline apoptosis, placing the spindle checkpoint pathway upstream of the programmed cell death pathway. These results suggest that apoptosis may contribute to the cell-sparse pathology of lissencephaly.
Collapse
Affiliation(s)
- Edgar A Buttner
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138-2020, USA.
| | | | | | | |
Collapse
|
249
|
Liang Y, Yu W, Li Y, Yu L, Zhang Q, Wang F, Yang Z, Du J, Huang Q, Yao X, Zhu X. Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol Biol Cell 2007; 18:2656-66. [PMID: 17494871 PMCID: PMC1924840 DOI: 10.1091/mbc.e06-04-0345] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly ( approximately 78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor.
Collapse
Affiliation(s)
- Yun Liang
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Wei Yu
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Yan Li
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Lihou Yu
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Qiangge Zhang
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Fubin Wang
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Zhenye Yang
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Juan Du
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Qiongping Huang
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Xuebiao Yao
- Hefei National Laboratory for Physical Sciences and the School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xueliang Zhu
- *Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| |
Collapse
|
250
|
Suzuki SO, McKenney RJ, Mawatari SY, Mizuguchi M, Mikami A, Iwaki T, Goldman JE, Canoll P, Vallee RB. Expression patterns of LIS1, dynein and their interaction partners dynactin, NudE, NudEL and NudC in human gliomas suggest roles in invasion and proliferation. Acta Neuropathol 2007; 113:591-9. [PMID: 17221205 DOI: 10.1007/s00401-006-0180-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/26/2006] [Accepted: 11/26/2006] [Indexed: 11/24/2022]
Abstract
Diffusely infiltrating gliomas are the most common type of primary intracranial neoplasm in humans. One of the major obstacles to the effective treatment of these tumors is their highly infiltrative growth. However, mechanisms controlling their migration and proliferation are poorly understood. Glioma cells resemble neural progenitors, and we hypothesize that gliomas recapitulate the capacity of migration and proliferation of progenitors that takes place during brain development. Based on recent evidence implicating cytoplasmic dynein and its regulatory proteins in neural progenitor migration and division, we conducted immunohistochemical evaluation of surgically resected human glioma samples for the presence and distribution of these proteins. We examined expression of LIS1, the gene responsible for type I lissencephaly, cytoplasmic dynein and the dynein- and LIS1-interacting factors dynactin, NudE/NudEL and NudC, which play significant roles in neural progenitor cell behavior. We found that each of these proteins is expressed in all histological types and grades of human neuroectodermal tumors examined. Immunohistochemical analysis revealed that the levels of expression varied from cell to cell within each tumor, ranging from very high to undetectable. This stands in contrast to the low levels of diffuse staining seen in non-neoplastic brain tissue. Of particular interest, we noted tumor cells infiltrating the white matter and tumor cells undergoing cell division amongst the cells with notably high expression levels. These findings are compatible with the idea that LIS1 and its interacting proteins play a role in glioma migration and proliferation analogous to their role during brain development.
Collapse
Affiliation(s)
- Satoshi O Suzuki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, 812-8582 Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|