201
|
Herbst U, Toborek M, Kaiser S, Mattson MP, Hennig B. 4-Hydroxynonenal induces dysfunction and apoptosis of cultured endothelial cells. J Cell Physiol 1999; 181:295-303. [PMID: 10497308 DOI: 10.1002/(sici)1097-4652(199911)181:2<295::aid-jcp11>3.0.co;2-i] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lipolytic products of triglyceride-rich lipoproteins, i.e., free fatty acids, may cause activation and dysfunction of the vascular endothelium. Mechanisms of these effects may include lipid peroxidation. One of the major and biologically active products of peroxidation of n-6 fatty acids, such as linoleic acid or arachidonic acid, is the aldehyde 4-hydroxynonenal (HNE). To study the hypothesis that HNE may be a critical factor in endothelial cell dysfunction caused by free fatty acids, human umbilical endothelial cells (HUVEC) were treated with up to160 microM of linoleic or arachidonic acid. HNE formation was detected by immunocytochemistry in cells treated for 24 h with either fatty acid, but more markedly with arachidonic acid. To study the cellulareffects of HNE, HUVEC were treated with different concentrations of this aldehyde, and several markers of endothelial cell dysfunction were determined. Exposure to HNE for 6 and 9 h resulted in increased cellular oxidative stress. However, short time treatment with HNE did not cause activation of nuclear factor-kappaB (NF-kappaB). In addition, HUVEC exposure to HNE caused a dose-dependent decrease in production of both interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1). On the other hand, HNE exerted prominent cytotoxic effects in cultured HUVEC, manifested by morphological changes, diminished cellular viability, and impaired endothelial barrier function. Furthermore, HNE treatment induced apoptosis of HUVEC. These data provide evidence that HNE does not contribute to NF-kappaB-related mechanisms of the inflammatory response in HUVEC, but rather to endothelial dysfunction, cytotoxicity, and apoptotic cell death.
Collapse
Affiliation(s)
- U Herbst
- Department of Nutrition, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
202
|
Culmsee C, Vedder H, Ravati A, Junker V, Otto D, Ahlemeyer B, Krieg JC, Krieglstein J. Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons: evidence for a receptor-independent antioxidative mechanism. J Cereb Blood Flow Metab 1999; 19:1263-9. [PMID: 10566973 DOI: 10.1097/00004647-199911000-00011] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Estrogens have been suggested for the treatment of neurodegenerative disorders, including stroke, because of their neuroprotective activities against various neurotoxic stimuli such as glutamate, glucose deprivation, iron, or beta-amyloid. Here, the authors report that 17beta-estradiol (0.3 to 30 mg/kg) and 2-OH-estradiol (0.003 to 30 mg/kg) reduced brain tissue damage after permanent occlusion of the middle cerebral artery in male NMRI mice. In vitro, 17beta-estradiol (1 to 10 micromol/L) and 2-OH-estradiol (0.01 to 1 micromol/L) reduced the percentage of damaged chick embryonic neurons treated with FeSO4. In these primary neurons exposed to FeSO4, the authors also found reactive oxygen species to be diminished after treatment with 17beta-estradiol (1 to 10 micromol/L) or 2-OH-estradiol (0.01 to 10 micromol/L), suggesting a strong antioxidant activity of the estrogens that were used. Neither the neuroprotective effect nor the free radical scavenging properties of the estrogens were influenced by the estrogen receptor antagonist tamoxifen. The authors conclude that estrogens protect neurons against damage by radical scavenging rather than through estrogen receptor activation.
Collapse
Affiliation(s)
- C Culmsee
- Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie der Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Sullivan PG, Thompson MB, Scheff SW. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 1999; 160:226-34. [PMID: 10630207 DOI: 10.1006/exnr.1999.7197] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental traumatic brain injury (TBI) results in a rapid and significant necrosis of cortical tissue at the site of injury. In the ensuring hours and days, secondary injury exacerbates the primary damage, resulting in significant neurological dysfunction. Recent reports from our lab and others have demonstrated that the immunosuppressant cyclosporin A (CsA) is neuroprotective following TBI. The opening of the mitochondrial permeability transition pore (MPTP) is inhibited by CsA, thereby maintaining the mitochondrial membrane potential and calcium homeostasis in isolated mitochondrial. In the present study we utilized a unilateral controlled cortical impact model of TBI to assess mitochondrial dysfunction in both isolated mitochondria and synaptosomes to elucidate the neuroprotective role of CsA. The results demonstrate that administration of CsA 15 min postinjury significantly attenuates mitochondrial dysfunction as measured using several biochemical assays of mitochondria integrity and energetics. Following TBI, mitochondria isolated from the injured cortex of animals treated with CsA demonstrate a significant increase in mitochondria membrane potential and are resistant to the induction of mitochondrial permeability transition compared to vehicle-treated animals. Similarly, synaptosomes isolated from CsA-treated animals demonstrate a significant increase in mitochondria membrane potential, accompanied by lower levels of intramitochondrial Ca2+ and reactive oxygen species production than seen in vehicle-treated animals. These results suggest that the neuroprotective properties of CsA are mediated through modulation of the MPTP and maintenance of mitochondria homeostasis. Amelioration of cortical damage with CsA indicates that pharmacological therapies can be devised which will significantly alter neurological outcome after injury.
Collapse
Affiliation(s)
- P G Sullivan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | | | |
Collapse
|
204
|
Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci 1999. [PMID: 10436064 DOI: 10.1523/jneurosci.19-16-07100.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apolipoprotein E (apoE)-related synthetic peptides, the 22 kDa N-terminal thrombin-cleavage fragment of apoE (truncated apoE), and full-length apoE have all been shown to exhibit neurotoxic activity under certain culture conditions. In the present study, protease inhibitors reduced the neurotoxicity and proteolysis of full-length apoE but did not block the toxicity of truncated apoE or a synthetic apoE peptide, suggesting that fragments of apoE may account for its toxicity. Additional experiments demonstrated that both truncated apoE and the apoE peptide elicit an increase in intracellular calcium levels and subsequent death of embryonic rat hippocampal neurons in culture. Similar effects on calcium were found when the apoE peptide was applied to chick sympathetic neurons. The rise in intracellular calcium and the hippocampal cell death caused by the apoE peptide were significantly reduced by receptor-associated protein, removal of extracellular calcium, or administration of the specific NMDA glutamate receptor antagonist MK-801. These results suggest that apoE may be a source of both neurotoxicity and calcium influx that involves cell surface receptors. Such findings strengthen the hypothesis that apoE plays a direct role in the pathology of Alzheimer's disease.
Collapse
|
205
|
Quintero JE, McMahon DG. Serotonin modulates glutamate responses in isolated suprachiasmatic nucleus neurons. J Neurophysiol 1999; 82:533-9. [PMID: 10444653 DOI: 10.1152/jn.1999.82.2.533] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two input pathways to the suprachiasmatic nucleus (SCN) of the hypothalamus are the glutamatergic retinohypothalamic tract and the serotonergic afferent from the midbrain raphe nucleus. To determine whether these two temporal signaling pathways can converge at the cellular level, we have investigated the effects of serotonin on glutamate-induced calcium responses of individual SCN neurons isolated in cell culture. Dispersed cultures were formed from the SCN of neonatal rats. The calcium indicator Fura-2 acetoxymethyl ester was used to assess the changes in [Ca(2+)](i) by recording the 340-nm/380-nm excitation ratio. Application of glutamate (5 microM) to the culture caused a rapid (within 10 s) increase in the fluorescence ratio of neurons indicating a marked increase in the concentration of intracellular free calcium. However, when 5-hydroxytryptamine (5-HT; 5 microM) was coapplied with glutamate, 31% of neurons showed an overall 61% reduction in the peak of the glutamate-induced calcium increase. Application of the 5-HT(7/1A) receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin [(+/-)-8-OH-DPAT] (1 microM), also reduced the calcium elevation this time by 80% in 18% of the neurons tested. When the 5-HT(7/2/1C) receptor antagonist, ritanserin (800 nM), was coapplied with serotonin, it blocked modulation of the glutamate responses. Further support for the involvement of the 5-HT(7) receptor was provided by the ability of the adenylate cyclase activator, forskolin (10 microM), and the cAMP analogue, 8-Br cAMP (0.5 mM), to mimic the suppressive effect of serotonin. Blocking spike-mediated cell communication with tetrodotoxin (1 microM) did not prevent the serotonergic suppression of glutamate-induced responses. These results support the hypothesis that the serotonergic modulation of photic entraining signals can occur in SCN neurons.
Collapse
Affiliation(s)
- J E Quintero
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
206
|
Toborek M, Malecki A, Garrido R, Mattson MP, Hennig B, Young B. Arachidonic acid-induced oxidative injury to cultured spinal cord neurons. J Neurochem 1999; 73:684-92. [PMID: 10428065 DOI: 10.1046/j.1471-4159.1999.0730684.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal cord trauma can cause a marked release of free fatty acids, in particular, arachidonic acid (AA), from cell membranes. Free fatty acids, and AA by itself, may lead to secondary damage to spinal cord neurons. To study this hypothesis, cultured spinal cord neurons were exposed to increasing concentrations of AA (0.01-10 microM). AA-induced injury to spinal cord neurons was assessed by measurements of cellular oxidative stress, intracellular calcium levels, activation of nuclear factor-KB (NF-kappaB), and cell viability. AA treatment increased intracellular calcium concentrations and decreased cell viability. Oxidative stress increased significantly in neurons exposed to 1 and 10 microM AA. In addition, AA treatment activated NF-kappaB and decreased levels of the inhibitory subunit, IKB. It is interesting that manganese superoxide dismutase protein levels and levels of intracellular total glutathione increased in neurons exposed to this fatty acid for 24 h, consistent with a compensatory response to increased oxidative stress. These results strongly support the hypothesis that free fatty acids contribute to the tissue injury observed following spinal cord trauma.
Collapse
Affiliation(s)
- M Toborek
- Department of Surgery, University of Kentucky, Lexington, USA
| | | | | | | | | | | |
Collapse
|
207
|
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 1999; 57:195-206. [PMID: 10398297 DOI: 10.1002/(sici)1097-4547(19990715)57:2<195::aid-jnr5>3.0.co;2-p] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is an age-related disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and corresponding motor deficits. Oxidative stress and mitochondrial dysfunction are implicated in the neurodegenerative process in PD. Although dietary restriction (DR) extends lifespan and reduces levels of cellular oxidative stress in several different organ systems, the impact of DR on age-related neurodegenerative disorders is unknown. We report that DR in adult mice results in resistance of dopaminergic neurons in the SN to the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-induced loss of dopaminergic neurons and deficits in motor function were ameliorated in DR rats. To mimic the beneficial effect of DR on dopaminergic neurons, we administered 2-deoxy-D-glucose (2-DG; a nonmetabolizable analogue of glucose) to mice fed ad libitum. Mice receiving 2-DG exhibited reduced damage to dopaminergic neurons in the SN and improved behavioral outcome following MPTP treatment. The 2-DG treatment suppressed oxidative stress, preserved mitochondrial function, and attenuated cell death in cultured dopaminergic cells exposed to the complex I inhibitor rotenone or Fe2+. 2-DG and DR induced expression of the stress proteins heat-shock protein 70 and glucose-regulated protein 78 in dopaminergic cells, suggesting involvement of these cytoprotective proteins in the neuroprotective actions of 2-DG and DR. The striking beneficial effects of DR and 2-DG in models of PD, when considered in light of recent epidemiological data, suggest that DR may prove beneficial in reducing the incidence of PD in humans.
Collapse
Affiliation(s)
- W Duan
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
208
|
Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 1999; 57:48-61. [PMID: 10397635 DOI: 10.1002/(sici)1097-4547(19990701)57:1<48::aid-jnr6>3.0.co;2-l] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food restriction can extend life span in rodents and was recently reported to increase the resistance of neurons in the brain to excitotoxic and metabolic insults. In principle, administration to ad libitum fed rodents of an agent that reduces glucose availability to cells should mimick certain aspects of food restriction. We now report that administration of 2-deoxy-D-glucose (2DG), a non-metabolizable analog of glucose, to adult rats results in a highly significant reduction in seizure-induced spatial memory deficits and hippocampal neuron loss. Pretreatment of rat hippocampal cell cultures with 2DG decreases the vulnerability of neurons to excitotoxic (glutamate) and oxidative (Fe2+) insults. The protective action of 2DG is associated with decreased levels of cellular oxidative stress and enhanced calcium homeostasis. 2DG treatment increased levels of the stress-responsive proteins GRP78 and HSP70 in hippocampal neurons, without affecting levels of Bcl-2 or GRP75, suggesting that mild reductions in glucose availability can increase neuronal resistance to oxidative and metabolic insults by a mechanism involving induction of stress proteins. Our findings establish cell culture and in vivo models of "chemical food restriction" which may prove useful in elucidating mechanisms of neuroprotection and in developing preventive approaches for neurodegenerative disorders that involve oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- J Lee
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
209
|
Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido J. Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett 1999; 453:260-4. [PMID: 10405156 DOI: 10.1016/s0014-5793(99)00685-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deposition of beta-amyloid peptide (A beta), the hyperphosphorylation of tau protein and the death of neurons in certain brain regions are characteristic features of Alzheimer's disease. It has been proposed that the accumulation of aggregates of A beta is the trigger of neurodegeneration in this disease. In support of this view, several studies have demonstrated that the treatment of cultured neurons with A beta leads to the hyperphosphorylation of tau protein and neuronal cell death. Here we report that lithium prevents the enhanced phosphorylation of tau protein at the sites recognized by antibodies Tau-1 and PHF-1 which occurs when cultured rat cortical neurons are incubated with A beta. Interestingly, lithium also significantly protects cultured neurons from A beta-induced cell death. These results raise the possibility of using chronic lithium treatment for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- G Alvarez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
210
|
Keller JN, Hanni KB, Markesbery WR. Oxidized low-density lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J Neurochem 1999; 72:2601-9. [PMID: 10349872 DOI: 10.1046/j.1471-4159.1999.0722601.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-density lipoprotein (LDL) exists within the brain and is highly vulnerable to oxidative modifications. Once formed, oxidized LDL (oxLDL) is capable of eliciting cytotoxicity, differentiation, and inflammation in nonneuronal cells. Although oxLDL has been studied primarily for its role in the development of atherosclerosis, recent studies have identified a possible role for it in neurological disorders associated with oxidative stress. In the present study application of oxLDL, but not LDL, resulted in a dose- and time-dependent death of cultured rat embryonic neurons. Studies using pharmacological inhibitors implicate the involvement of calcium, reactive oxygen species, and caspases in oxLDL-induced neuronal death. Coapplication of oxLDL with either amyloid beta-peptide or glutamate, agents that enhance oxidative stress, resulted in increased neuronal death. Taken together, these data demonstrate that oxLDL induces neuronal death and implicate a possible role for oxLDL in conditions associated with increased levels of reactive oxygen species, including Alzheimer's disease.
Collapse
Affiliation(s)
- J N Keller
- Sanders-Brown Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | | | |
Collapse
|
211
|
Sato N, Hori O, Yamaguchi A, Lambert JC, Chartier-Harlin MC, Robinson PA, Delacourte A, Schmidt AM, Furuyama T, Imaizumi K, Tohyama M, Takagi T. A novel presenilin-2 splice variant in human Alzheimer's disease brain tissue. J Neurochem 1999; 72:2498-505. [PMID: 10349860 DOI: 10.1046/j.1471-4159.1999.0722498.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD.
Collapse
Affiliation(s)
- N Sato
- Tanabe Seiyaku Co., Ltd., Department of Anatomy and Neuroscience, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Pereira C, Santos MS, Oliveira C. Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: protection by antioxidants. Neurobiol Dis 1999; 6:209-19. [PMID: 10408810 DOI: 10.1006/nbdi.1999.0241] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of amyloid beta-peptide (A beta) aggregates. In this study, the involvement of oxidative stress on A beta-induced energy metabolism dysfunction was evaluated on PC12 cells. It was shown that A beta peptides (A beta25-35 and A beta1-40) induce a concentration-dependent accumulation of reactive oxygen species (ROS), decrease the cellular redox activity, and lead to the depletion of ATP levels. The observed inhibition by A beta of mitochondrial function and of glycolysis is blocked by the antioxidants vitamin E, idebenone, and GSH ethyl ester. Taken together, these data suggest that exposure of PC12 cells to A beta results in an impairment of energy metabolism, leading to a deficit in ATP levels and to the compromise of cellular viability. Furthermore, the generation of ROS seems to be a crucial event responsible for the energetic metabolic dysfunction induced by A beta.
Collapse
Affiliation(s)
- C Pereira
- Faculty of Medicine, University of Coimbra, Portugal
| | | | | |
Collapse
|
213
|
Keller JN, Hanni KB, Gabbita SP, Friebe V, Mattson MP, Kindy MS. Oxidized lipoproteins increase reactive oxygen species formation in microglia and astrocyte cell lines. Brain Res 1999; 830:10-5. [PMID: 10350554 DOI: 10.1016/s0006-8993(99)01272-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipoproteins exist in the central nervous system and surrounding vasculature possibly mediating effects upon cells in the brain during times of oxidative stress or compromised blood-brain barrier. The focus of the present study was to determine the effect of unmodified and oxidatively modified lipoproteins on astrocytes and microglia. Application of oxidized low-density lipoprotein resulted in an increase in DCF fluorescence, which was inhibited by pretreatment with antioxidants, consistent with the formation of reactive oxygen species (ROS). Low-density at concentrations below 20 microg/ml likewise increased ROS formation. Because ROS are associated with numerous astrocyte and microglia activities including proliferation, activation, and cytokine production it is possible that lipoproteins may mediate such effects on glial cells in the central nervous system.
Collapse
Affiliation(s)
- J N Keller
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Building, Lexington, KY, 40536-0230, USA.
| | | | | | | | | | | |
Collapse
|
214
|
Ravati A, Junker V, Kouklei M, Ahlemeyer B, Culmsee C, Krieglstein J. Enalapril and moexipril protect from free radical-induced neuronal damage in vitro and reduce ischemic brain injury in mice and rats. Eur J Pharmacol 1999; 373:21-33. [PMID: 10408248 DOI: 10.1016/s0014-2999(99)00211-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin-converting enzyme inhibitors have been demonstrated to protect spontaneously hypertensive rats from cerebral ischemia. The present study investigated the protective effect of enalapril and moexipril in models of permanent focal cerebral ischemia in normotensive mice and rats. To elucidate the mechanism of neuroprotection the influence of these angiotensin-converting enzyme inhibitors on glutamate-, staurosporine- or Fe2+/3+-induced generation of reactive oxygen species and neuronal cell death in primary cultures from chick embryo telencephalons was studied. Treatment with moexipril or enalapril dose-dependently reduced the percentage of damaged neurons, as well as mitochondrial reactive oxygen species generation induced by glutamate, staurosporine or Fe2+/3+. Furthermore, moexipril and enalapril attenuated staurosporine-induced neuronal apoptosis as determined by nuclear staining with Hoechst 33258. In mice, 1 h pretreatment with enalapril (0.03 mg/kg) or moexipril (0.3 mg/kg) significantly reduced brain damage after focal ischemia as compared to control animals. Additionally, moexipril (0.01 mg/kg) was able to reduce the infarct volume in the rat model after focal cerebral ischemia. The results of the present study indicate that the angiotensin-converting enzyme inhibitors enalapril and moexipril promote neuronal survival due to radical scavenging properties.
Collapse
Affiliation(s)
- A Ravati
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
215
|
Keller JN, Hanni KB, Pedersen WA, Cashman NR, Mattson MP, Gabbita SP, Friebe V, Markesbery WR. Opposing actions of native and oxidized lipoprotein on motor neuron-like cells. Exp Neurol 1999; 157:202-10. [PMID: 10222123 DOI: 10.1006/exnr.1999.7043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lipoproteins are present in the central nervous system and surrounding vasculature and possibly mediate effects relevant to neuronal physiology and pathology. To determine the effects of lipoproteins on motor neurons, native low density lipoproteins (LDL) and oxidized LDL (oxLDL) were applied to a motor neuron cell line. Oxidized LDL, but not native LDL, resulted in a dose- and time-dependent increase in reactive oxygen species and neuron death. Oxidized LDL-induced toxicity was attenuated by a calcium chelator, antioxidants, caspase inhibitors, and inhibitors of macromolecular synthesis. In addition to being nontoxic, application of native LDL attenuated reactive oxygen species formation and neuron loss following glucose deprivation injury. Together, these data demonstrate a possible neuroprotective role for unmodified lipoproteins and suggest oxidized lipoproteins may amplify oxidative stress and neuron loss.
Collapse
Affiliation(s)
- J N Keller
- Departments of Neurology and Pathology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
An early and essential step in the formation of functional neuronal circuits is the establishment of cell polarity, a process involving the morphological and functional differentiation of the axon (axonogenesis). We now report that treatment of cultured embryonic hippocampal neurons with ethidium bromide (EtBr; an agent that depletes mitochondrial DNA), prior to the establishment of cell polarity, prevents axon formation while permitting outgrowth of minor processes. The polarity-suppressing action of EtBr occurs under conditions of maintained cellular ATP levels, and is not mimicked by ATP-depleting agents (iodoacetate, p-(trifluoromethyoxy)phenylhydrazone [FCCP], and cyanide). Levels of tau, a microtubule-associated protein involved in axonogenesis, were not decreased in neurons treated with EtBr. Electron and confocal microscope analyses showed that EtBr treatment altered mitochondrial ultrastructure and subcellular localization. Basal levels of intracellular calcium were elevated 2- to 3-fold, intramitochondrial calcium levels were greatly increased, and mitochondrial transmembrane potential was decreased in EtBr-treated neurons. Exposure of neurons to a calcium ionophore prevented axonogenesis. Confocal images of intracellular calcium levels and mitochondrial localization in the same cells revealed congregations of mitochondria at the base of the axon associated with local reductions of intracellular calcium levels. When taken together with previous data indicating important roles for calcium in regulating neurite outgrowth, the present findings suggest critical roles for mitochondrial function and modulation of calcium homeostasis in the establishment of neuronal polarity.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536-0230, USA.
| | | |
Collapse
|
217
|
Barger SW. Complex influence of the L-type calcium-channel agonist BayK8644(+/-) on N-methyl-D-aspartate responses and neuronal survival. Neuroscience 1999; 89:101-8. [PMID: 10051220 DOI: 10.1016/s0306-4522(98)00312-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Past studies have implicated calcium influx through the N-methyl-D-aspartate class of ionotropic glutamate receptors as a key factor in excitotoxicity. Here, primary cultures of hippocampal neurons were exposed to N-methyl-D-aspartate with or without the L-type calcium channel agonist BayK8644(+/-). Calcium influxes were monitored with Fura-2 microfluorescent imaging and 45Ca measurements, and survival was assayed through cell counts. While 100 microM BayK8644 alone evoked a moderate elevation of intraneuronal calcium concentrations ([Ca2+]i), it dramatically attenuated the larger calcium influxes triggered by 500 microM N-methyl-D-aspartate. This attenuation was non-competitive and reversible; it was not inhibited by charybdotoxin or cyclosporin A. In spite of this attenuation of [Ca2+]i responses, 5-min exposures to BayK8644 produced much greater neurotoxicity 24 h later than did doses of N-methyl-D-aspartate evoking larger [Ca2+]i increases. This neurotoxicity was not observed with potassium-mediated depolarization or cobalt; indeed, both reversed the neurotoxicity of BayK8644. The relevant conclusions are two-fold: BayK8644 inhibits influx of calcium through a ligand-gated glutamate receptor, and BayK8644 exhibits considerable neurotoxicity. The former effect does not appear to depend upon the major metabolic pathways that modulate N-methyl-D-aspartate channels and thus may involve a direct allosteric interaction with the N-methyl-D-aspartate receptor. The toxicity of BayK8644 depends, at least partially, upon its activation of voltage-gated (cobalt-sensitive) calcium channels. However, the reversal of this toxicity by depolarization suggests that depolarization can be beneficial to neuronal survival through mechanisms other than calcium influx through voltage-gated calcium channels.
Collapse
Affiliation(s)
- S W Barger
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences, McClellan Veterans Affairs Medical Center, Little Rock, AR 72205, USA
| |
Collapse
|
218
|
Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and anti-excitotoxic action. J Neurosci 1999. [PMID: 9870945 DOI: 10.1523/jneurosci.19-01-00133.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), an EGF receptor ligand, was investigated in rat forebrain under basal conditions and after kainate-induced excitotoxic seizures. In addition, a potential neuroprotective role for HB-EGF was assessed in hippocampal cultures. In situ hybridization analysis of HB-EGF mRNA in developing rat hippocampus revealed its expression in all principle cell layers of hippocampus from birth to postnatal day (P) 7, whereas from P14 through adulthood, expression decreased in the pyramidal cell layer versus the dentate gyrus granule cells. After kainate-induced excitotoxic seizures, levels of HB-EGF mRNA increased markedly in the hippocampus, as well as in several other cortical and limbic forebrain regions. In the hippocampus, HB-EGF mRNA expression increased within 3 hr after kainate treatment, continued to increase until 24 hr, and then decreased; increases occurred in the dentate gyrus granule cells, in the molecular layer of the dentate gyrus, and in and around hippocampal pyramidal CA3 and CA1 neurons. At 48 hr after kainate treatment, HB-EGF mRNA remained elevated in vulnerable brain regions of the hippocampus and amygdaloid complex. Western blot analysis revealed increased levels of HB-EGF protein in the hippocampus after kainate administration, with a peak at 24 hr. Pretreatment of embryonic hippocampal cell cultures with HB-EGF protected neurons against kainate toxicity. The kainate-induced elevation of [Ca2+]i in hippocampal neurons was not altered in cultures pretreated with HB-EGF, suggesting an excitoprotective mechanism different from that of previously characterized excitoprotective growth factors. Taken together, these results suggest that HB-EGF may function as an endogenous neuroprotective agent after seizure-induced neural activity/injury.
Collapse
|
219
|
Toborek M, Hennig B. The role of linoleic acid in endothelial cell gene expression. Relationship to atherosclerosis. Subcell Biochem 1999; 30:415-36. [PMID: 9932524 DOI: 10.1007/978-1-4899-1789-8_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There is evidence that linoleic acid plays a critical role in gene expression and vascular function as it relates to the pathogenesis of atherosclerosis. The lipid environment, particularly linoleic acid and its derivatives, of the vascular endothelium may profoundly influence the inflammatory response mediated by cytokines. Modulations in the level of activity of a select set of endothelial transcription factors appear to provide a mechanism for linking lipid/cytokine-mediated vessel wall dysfunction, including endothelial cell activation, altered proteoglycan metabolism, and endothelial barrier dysfunction, with the onset of atherosclerotic lesion formation. The activity of endothelial transcription factors is in part regulated by the balance of cellular oxidative stress and antioxidant status. Our data suggest that linoleic acid can activate the vascular endothelium and may thus be an atherogenic fatty acid. Furthermore, nutrients/chemicals with antioxidant properties can protect endothelial cells against lipid-mediated cell injury, suggesting that oxidative stress is a critical component in linoleic acid-mediated gene expression. Our discoveries that linoleic acid can influence significantly the cytokine-mediated inflammatory response may open new fields in dietary intervention of atherosclerosis.
Collapse
Affiliation(s)
- M Toborek
- Department of Surgery, University of Kentucky Medical Center, Lexington 40536, USA
| | | |
Collapse
|
220
|
Endres M, Fink K, Zhu J, Stagliano NE, Bondada V, Geddes JW, Azuma T, Mattson MP, Kwiatkowski DJ, Moskowitz MA. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest 1999; 103:347-54. [PMID: 9927495 PMCID: PMC407902 DOI: 10.1172/jci4953] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 12/10/1998] [Indexed: 11/17/2022] Open
Abstract
Increased Ca2+ influx through activated N-methyl-D-aspartate (NMDA) receptors and voltage-dependent Ca2+ channels (VDCC) is a major determinant of cell injury following brain ischemia. The activity of these channels is modulated by dynamic changes in the actin cytoskeleton, which may occur, in part, through the actions of the actin filament-severing protein gelsolin. We show that gelsolin-null neurons have enhanced cell death and rapid, sustained elevation of Ca2+ levels following glucose/oxygen deprivation, as well as augmented cytosolic Ca2+ levels in nerve terminals following depolarization in vitro. Moreover, major increases in infarct size are seen in gelsolin-null mice after reversible middle cerebral artery occlusion, compared with controls. In addition, treatment with cytochalasin D, a fungal toxin that depolymerizes actin filaments, reduced the infarct size of both gelsolin-null and control mice to the same final volume. Hence, enhancement or mimicry of gelsolin activity may be neuroprotective during stroke.
Collapse
Affiliation(s)
- M Endres
- Stroke and Neurovascular Regulation, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 1999; 155:302-14. [PMID: 10072306 DOI: 10.1006/exnr.1998.7002] [Citation(s) in RCA: 350] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 78-kDa glucose-regulated protein (GRP78) is localized in the endoplasmic reticulum (ER), and its expression is increased by environmental stressors in many types of nonneuronal cells. We report that levels of GRP78 are increased in cultured rat hippocampal neurons exposed to glutamate and oxidative insults (Fe2+ and amyloid beta-peptide) and that treatment of cultures with a GRP78 antisense oligodeoxynucleotide increases neuronal death following exposure to each insult. GRP78 antisense treatment enhanced apoptosis of differentiated PC12 cells following NGF withdrawal or exposure to staurosporine. Pretreatment of hippocampal cells with 2-deoxy-d-glucose, a potent inducer of GRP78 expression, protected neurons against excitotoxic and oxidative injury. GRP78 expression may function to suppress oxidative stress and stabilize calcium homeostasis because treatment with GRP78 antisense resulted in increased levels of reactive oxygen species and intracellular calcium following exposure to glutamate and oxidative insults in hippocampal neurons. Dantrolene (a blocker of ER calcium release), uric acid (an antioxidant), and zVAD-fmk (a caspase inhibitor) each protected neurons against the death-enhancing action of GRP78 antisense. The data suggest that ER stress plays a role in neuronal cell death induced by an array of insults and that GRP78 serves a neuroprotective function.
Collapse
Affiliation(s)
- Z Yu
- Department of Anatomy & Neurobiology, University of Kentucky, Lexington, Kentucky, 40536, USA
| | | | | | | |
Collapse
|
222
|
Wernyj RP, Mattson MP, Christakos S. Expression of calbindin-D28k in C6 glial cells stabilizes intracellular calcium levels and protects against apoptosis induced by calcium ionophore and amyloid beta-peptide. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 64:69-79. [PMID: 9889325 DOI: 10.1016/s0169-328x(98)00307-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The calcium binding protein, calbindin-D28k is normally present in neurons. Recently we reported that brain injury and tumor necrosis factors (TNFs) induce calbindin-D28k in astrocytes. TNF-treated calbindin expressing astrocytes were resistant to acidosis and calcium ionophore toxicity, suggesting that calbindin may have a cytoprotective role in astrocytes in the injured brain (M.P. Mattson, B. Cheng, S.A. Baldwin, V.L. Smith-Swintosky, J. Keller, J. Geddes, Scheff, J.W., Christakos, S., Brain injury and tumor necrosis factors induce calbindin-D28k in astrocytes: evidence for a cytoprotective response, J. Neurosci. Res., 42 (1995) 257). In order to obtain direct evidence for a role of calbindin, using the eukaryotic expression vector pREP4, rat calbindin-D28k was stably expressed in C6 rat astocytoma glial cells. Cytotoxicity in response to calcium ionophore or amyloid beta-peptide (which accumulates in the brain in Alzheimer's disease and has been reported to be neurotoxic) was measured by MTT reduction in vector transfected cells and in calbindin transfected clones. Stably expressed calbindin resulted in increased cell survival in the presence of calcium ionophore (1-10 microM) or amyloid beta-peptide (10-100 microM). In addition, the calcium ionophore or amyloid beta-peptide mediated rise in intracellular calcium in vector transfected cells was significantly attenuated in calbindin expressing cells. Apoptotic cell death was detected by the Hoechst method in vector transfected C6 glial cells treated with calcium ionophore or beta-amyloid (34-36% apoptotic cells/culture). The number of apoptotic nuclei was significantly attenuated in similarly treated calbindin-D28k transfected clones (10-13% apoptotic cells/culture; p<0.01). Our results support the involvement of calcium fluxes in apoptosis and suggest that calbindin-D28k, by buffering calcium, can suppress death in apoptosis susceptible cells in the central nervous system.
Collapse
Affiliation(s)
- R P Wernyj
- Departments of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical and Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, NJ 07103-2714, USA
| | | | | |
Collapse
|
223
|
Pedersen WA, Cashman NR, Mattson MP. The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp Neurol 1999; 155:1-10. [PMID: 9918699 DOI: 10.1006/exnr.1998.6890] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both oxidative stress and excitotoxicity are implicated in the pathogenesis of a number of neurodegenerative disorders, such as amyotrophic lateral sclerosis. We previously reported increased modification of proteins by 4-hydroxynonenal (HNE), a product of membrane lipid peroxidation, in the spinal cords of patients with amyotrophic lateral sclerosis relative to controls. In the current study, we examined the functional consequences of protein modification by HNE in a cell line with a motor neuron phenotype, NSC-19. Treatment of NSC-19 cells with FeSO4, which catalyzes lipid peroxidation, or HNE induced concentration-dependent decreases in glucose and glutamate transport. Vitamin E and propyl gallate blocked the impairment of glucose and glutamate transport caused by FeSO4 in these cells, but not that caused by HNE, whereas glutathione blocked the effects of FeSO4 as well as HNE. Both FeSO4 and HNE caused an increase in the number of apoptotic nuclei in NSC-19 cultures, but this occurred subsequent to the impairment of glucose and glutamate transport. Reductions in choline acetyltransferase activity were also observed in FeSO4- or HNE-treated NSC-19 cells before induction of apoptosis. Our results suggest that, prior to cell death, oxidative stress and HNE down-regulate cholinergic markers and impair glucose and glutamate transport in motor neurons, the latter of which may lead to excitotoxic degeneration of the cells.
Collapse
Affiliation(s)
- W A Pedersen
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, 40536, USA
| | | | | |
Collapse
|
224
|
Xie C, Lovell MA, Markesbery WR. Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radic Biol Med 1998; 25:979-88. [PMID: 9840744 DOI: 10.1016/s0891-5849(98)00186-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxidation of polyunsaturated fatty acids (PUFA), particularly arachidonic acid, leads to the generation of reactive aldehydes, including 4-hydroxynonenal (HNE). Recent studies have demonstrated an increase in lipid peroxidation, a decline in PUFA, as well as an increase in HNE, and a decrease in glutathione transferase (GST) in the brain in Alzheimer's disease. Four-hydroxynonenal is toxic to cultured neurons and to the brain of experimental animals. Although glutathione (GSH) has been shown to offer protection against HNE, no enzymatic system has been described which serves to detoxify these reactive species in neuronal cultures. Here, we describe the use of GST in the protection of neuronal cultures against HNE toxicity. Glutathione transferases are a superfamily of enzymes functioning to catalyze the nucleophilic attack of GSH on electrophilic groups on a second substrate. These enzymes function efficiently with 4-hydroxyalkenals, particularly HNE, as substrates. To investigate the protective effects of GST against HNE, primary hippocampal cultures were pretreated with GST before exposure to toxic doses of HNE which led to a statistically significant enhancement in cell survival. Pretreatment of cultures with equivalent levels of heat inactivated GST or antibody against GST did not offer protection against HNE. Control cultures pretreated with GST also demonstrated enhanced survival compared with control cells receiving no pretreatment. These data suggest that GST may be an important source of protection against the toxic effects of HNE.
Collapse
Affiliation(s)
- C Xie
- Sanders-Brown Center on Aging, University of Kentucky, Lexington 40536-0230, USA
| | | | | |
Collapse
|
225
|
Altered Ca2+ signaling and mitochondrial deficiencies in hippocampal neurons of trisomy 16 mice: a model of Down's syndrome. J Neurosci 1998. [PMID: 9736644 DOI: 10.1523/jneurosci.18-18-07216.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been suggested that augmented nerve cell death in neurodegenerative diseases might result from an impairment of mitochondrial function. To test this hypothesis, we investigated age-dependent changes in neuronal survival and glutamate effects on Ca2+ homeostasis and mitochondrial energy metabolism in cultured hippocampal neurons from diploid and trisomy 16 (Ts16) mice, a model of Down's syndrome. Microfluorometric techniques were used to measure survival rate, [Ca2+]i level, mitochondrial membrane potential, and NAD(P)H autofluorescence. We found that Ts16 neurons die more than twice as fast as diploid neurons under otherwise identical culture conditions. Basal [Ca2+]i levels were elevated in Ts16 neurons. Moreover, in comparison to diploid neurons, Ts16 neurons showed a prolonged recovery of [Ca2+]i and mitochondrial membrane potential after brief glutamate application. Glutamate evoked an initial NAD(P)H decrease that was found to be extended in Ts16 neurons in comparison to diploid neurons. Furthermore, for all age groups tested, glutamate failed to cause a subsequent NAD(P)H overshoot in Ts16 cultures in contrast to diploid cultures. In the presence of cyclosporin A, an inhibitor of the mitochondrial membrane permeability transition, NAD(P)H increase was observed in both diploid and Ts16 neurons. The results support the hypothesis that Ca2+ impairs mitochondrial energy metabolism and may play a role in the pathogenesis of neurodegenerative changes in neurons from Ts16 mice.
Collapse
|
226
|
Sullivan PG, Keller JN, Mattson MP, Scheff SW. Traumatic brain injury alters synaptic homeostasis: implications for impaired mitochondrial and transport function. J Neurotrauma 1998; 15:789-98. [PMID: 9814635 DOI: 10.1089/neu.1998.15.789] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study utilized a unilateral controlled cortical impact model of traumatic brain injury to assess disruptions of synaptic homeostasis following trauma. Adult rats were subjected to a moderate (2 mm) cortical deformation and synaptosomes were prepared from the entire ipsilateral (injured) hemisphere or dissected into different regions (hippocampus, injured cortical area including penumbra, residual hemisphere) at various times postinjury (10 and 30 min, and 1, 6, and 24 h). Synaptosomes from the corresponding regions of the contralateral hemisphere were used as controls to assess alterations in synaptic ATP levels, lipid peroxidation, and glutamate and glucose transport. The results demonstrate significant time-dependent alterations in synaptic homeostasis, which included an immediate reduction in ATP levels, coupled with a significant increase in lipid peroxidation within 30 min postinjury. Lipid peroxidation demonstrated a biphasic response with elevations observed 24 h postinjury, a time at which decreases in glutamate and glucose transport occurred. These results suggest that disruption of synaptic homeostasis is an extremely early event following trauma that should be considered when designing pharmacological interventions.
Collapse
Affiliation(s)
- P G Sullivan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | | | | | | |
Collapse
|
227
|
Fu W, Luo H, Parthasarathy S, Mattson MP. Catecholamines potentiate amyloid beta-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 1998; 5:229-43. [PMID: 9848093 DOI: 10.1006/nbdi.1998.0192] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are implicated in the neuronal cell death that occurs in physiological settings and in neurodegenerative disorders. In Alzheimer's disease (AD) degenerating neurons are associated with deposits of amyloid beta-peptide (A beta), and there is evidence for increased membrane lipid peroxidation and protein oxidation in the degenerating neurons. Cell culture studies have shown that A beta can disrupt calcium homeostasis and induce apoptosis in neurons by a mechanism involving oxidative stress. We now report that catecholamines (norepinephrine, epinephrine, and dopamine) increase the vulnerability of cultured hippocampal neurons to A beta toxicity. The catecholamines were effective in potentiating A beta toxicity at concentrations of 10-200 microM, with the higher concentrations (100-200 microM) themselves inducing cell death. Serotonin and acetylcholine were not neurotoxic and did not modify A beta toxicity. Levels of membrane lipid peroxidation, and cytoplasmic and mitochondrial reactive oxygen species, were increased following exposure to neurons to A beta, and catecholamines exacerbated the oxidative stress. Subtoxic concentrations of catecholamines exacerbated decreases in mitochondrial energy charge and transmembrane potential caused by A beta, and higher concentrations of catecholamines alone induced mitochondrial dysfunction. Antioxidants (vitamin E, glutathione, and propyl gallate) protected neurons against the damaging effects of A beta and catecholamines, whereas the beta-adrenergic receptor antagonist propanolol and the dopamine (D1) receptor antagonist SCH23390 were ineffective. Measurements of intracellular free Ca2+ ([Ca2+]i) showed that A beta induced a slow elevation of [Ca2+]i which was greatly enhanced in cultures cotreated with catecholamines. Collectively, these data indicate a role for catecholamines in exacerbating A beta-mediated neuronal degeneration in AD and, when taken together with previous findings, suggest roles for oxidative stress induced by catecholamines in several different neurodegenerative conditions.
Collapse
Affiliation(s)
- W Fu
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
228
|
Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998. [PMID: 9614221 DOI: 10.1523/jneurosci.18-12-04439.1998] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many cases of autosomal dominant early onset Alzheimer's disease (AD) result from mutations in the gene encoding presenilin-1 (PS-1). PS-1 is an integral membrane protein expressed ubiquitously in neurons throughout the brain in which it is located primarily in endoplasmic reticulum (ER). Although the pathogenic mechanism of PS-1 mutations is unknown, recent findings suggest that PS mutations render neurons vulnerable to apoptosis. Because increasing evidence indicates that mitochondrial alterations contribute to neuronal death in AD, we tested the hypothesis that PS-1 mutations sensitize neurons to mitochondrial failure. PC12 cell lines expressing a PS-1 mutation (L286V) exhibited increased sensitivity to apoptosis induced by 3-nitropropionic acid (3-NP) and malonate, inhibitors of succinate dehydrogenase, compared with control cell lines and lines overexpressing wild-type PS-1. The apoptosis-enhancing action of mutant PS-1 was prevented by antioxidants (propyl gallate and glutathione), zVAD-fmk, and cyclosporin A, indicating requirements of reactive oxygen species (ROS), caspases, and mitochondrial permeability transition in the cell death process. 3-NP induced a rapid elevation of [Ca2+]i, which was followed by caspase activation, accumulation of ROS, and decreases in mitochondrial reducing potential and transmembrane potential in cells expressing mutant PS-1. The calcium chelator BAPTA AM and agents that block calcium release from ER and influx through voltage-dependent channels prevented mitochondrial ROS accumulation and membrane depolarization and apoptosis. Our data suggest that by perturbing subcellular calcium homeostasis presenilin mutations sensitize neurons to mitochondria-based forms of apoptosis that involve oxidative stress.
Collapse
|
229
|
Aziz SM, Yatin M, Worthen DR, Lipke DW, Crooks PA. A novel technique for visualizing the intracellular localization and distribution of transported polyamines in cultured pulmonary artery smooth muscle cells. J Pharm Biomed Anal 1998; 17:307-20. [PMID: 9638584 DOI: 10.1016/s0731-7085(98)00016-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of a combination of monofluorescein adducts of spermidine (FL-SPD) and spermine (FL-SPM) with confocal laser scanning microscopy (CLSM) provides a useful means for monitoring the fate and time-dependent changes in the distribution of transported polyamines within living cells. Polyamine-fluorescein adducts were synthesized from fluorescein isothiocyanate and the appropriate polyamine. Monofluorescein polyamine adducts (ratio 1:1) were isolated using thin layer chromatography, and the structure and molecular weight of the monofluorescein polyamine adducts were confirmed using NMR and mass spectroscopy, respectively. The covalent linkage of the fluorescent adduct moiety to SPD and SPM did not influence their rate of uptake by bovine pulmonary artery smooth muscle cells (PASMC). Similar to 14C-SPD and 14C-SPM, the rate of uptake of 14C-FL-SPD and 14C-FL-SPM in PASMC was temperature-dependent. Treatment for 24 h with difluoromethylornithine (DFMO), a selective blocker of the enzyme ornithine decarboxylase and an inducer of the polyamine transport system, significantly increased the cellular uptake of 14C-FL-SPD and 14C-FL-SPM compared to that of control cells. When compared to control cells, treatment of PASMC with the pyrrolizidine alkaloid monocrotaline for 24 h also significantly increased the cellular uptake of 14C-FL-SPD and 14C-FL-SPM. On the other hand, 24 h treatment of PASMC with a polymer of SPM, a selective blocker of the polyamine transport system, or with free spermine, markedly reduced the cellular accumulation of 14C-FL-SPD and 14C-FL-SPM. After a 20-min treatment of PASMC with FL-SPD or FL-SPM, CLSM revealed that adduct fluorescence was localized in the cytoplasm of living cells. Treatment with DFMO increased the cytoplasmic accumulation of both FL-SPD and FL-SPM. In addition, the fluorescence observed in the cytoplasm of chinese hamster ovary cells (CHO) was significantly higher than that detected in the cytoplasm of their polyamine transport deficient variants (CHOMGBG). The results of this study provide the first evidence of the utility of a novel method for visualizing the uptake, distribution, and cellular localization of transported polyamines in viable cultured mammalian cells.
Collapse
Affiliation(s)
- S M Aziz
- Department of Pharmacy Services, Henry Ford Hospital, Detroit, MI 48202-2689, USA
| | | | | | | | | |
Collapse
|
230
|
Hauser KF, Harris-White ME, Jackson JA, Opanashuk LA, Carney JM. Opioids disrupt Ca2+ homeostasis and induce carbonyl oxyradical production in mouse astrocytes in vitro: transient increases and adaptation to sustained exposure. Exp Neurol 1998; 151:70-6. [PMID: 9582255 DOI: 10.1006/exnr.1998.6788] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmacologically distinct subpopulations of astroglia express mu, delta, and/or kappa opioid receptors. Activation of mu, delta, or kappa opioid receptors can destabilize intracellular calcium ([Ca2+]i) in astrocytes leading to cellular hypertrophy and reactive injury. To assess whether acute or sustained opioid exposure might adversely affect astroglial function by disrupting Ca2+ homeostasis or by producing reactive oxygen species, fura-2 and a novel fluorescent-tagged biotin-4-amidobenzoic hydrazide reagent, respectively, were used to detect [Ca2+]i and carbonyl oxidation products within individual murine astrocytes. Acute (3 h) exposure to mu; (H-Tyr-Pro-Phe (N-Me) -D-Pro-NH2; PLO17), delta ([D-Pen2, D-Pen5]-enkephalin), and kappa (trans-(+/-)-3, 4-dichloro-N-methyl-N-[2-(1-pyrr olidinyl) cyclohexyl] benzeneacetamide methanesulfonate; U50,488H) opioid agonists caused significant mean increases in [Ca2+]i and in the levels of oxidative products in astrocytes. In contrast, following 72 h of continuous opioid exposure, [Ca2+]i and carbonyl levels returned to normal, irrespective of opioid treatment. These preliminary findings indicate that opioids initially destabilize [Ca2+]i and increase reactive oxygen species in astrocytes; however, astrocytes later recover and adapt to sustained opioid exposure.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Astrocytes/chemistry
- Astrocytes/drug effects
- Astrocytes/metabolism
- Calcium/metabolism
- Drug Tolerance
- Endorphins/pharmacology
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Homeostasis/drug effects
- Mice
- Mice, Inbred ICR
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/pharmacology
- Oxidative Stress/drug effects
- Reactive Oxygen Species/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
Collapse
Affiliation(s)
- K F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | | | | | | | |
Collapse
|
231
|
Affiliation(s)
- M Leist
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
232
|
Majima HJ, Oberley TD, Furukawa K, Mattson MP, Yen HC, Szweda LI, St Clair DK. Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 1998; 273:8217-24. [PMID: 9525927 DOI: 10.1074/jbc.273.14.8217] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alkalosis is a clinical complication resulting from various pathological and physiological conditions. Although it is well established that reducing the cellular proton concentration is lethal, the mechanism leading to cell death is unknown. Mitochondrial respiration generates a proton gradient and superoxide radicals, suggesting a possible link between oxidative stress, mitochondrial integrity, and alkaline-induced cell death. Manganese superoxide dismutase removes superoxide radicals in mitochondria, and thus protects mitochondria from oxidative injury. Cells cultured under alkaline conditions were found to exhibit elevated levels of mitochondrial membrane potential, reactive oxygen species, and calcium which was accompanied by mitochondrial damage, DNA fragmentation, and cell death. Overexpression of manganese superoxide dismutase reduced the levels of intracellular reactive oxygen species and calcium, restored mitochondrial transmembrane potential, and prevented cell death. The results suggest that mitochondria are the primary target for alkaline-induced cell death and that free radical generation is an important and early event conveying cell death signals under alkaline conditions.
Collapse
Affiliation(s)
- H J Majima
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
233
|
Rami A, Krieglstein J. Muscarinic-receptor antagonist scopolamine rescues hippocampal neurons from death induced by glutamate. Brain Res 1998; 788:323-6. [PMID: 9555079 DOI: 10.1016/s0006-8993(98)00041-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cultured hippocampal neurons were used to test the hypothesis that modulation of muscarine receptors can modify glutamate-induced neurodegeneration. Treatment of hippocampal cultures with scopolamine (1 nM to 1 mM) under glutamate incubation had beneficial effect on neuronal viability. Thus, blockade of muscarinic-receptor sites increased the threshold for glutamate neurotoxicity. These data show that interactions between the NMDA, muscarinic receptors and their corresponding neurotransmitter inputs to hippocampal neurons may play a crucial role in neurodegeneration.
Collapse
Affiliation(s)
- A Rami
- Center of Morphology, Department of Anatomy III, University-Clinic, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | |
Collapse
|
234
|
Abstract
Levels of dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEA-S) decline during aging and reach even lower levels in Alzheimer's disease (AD). Previously published effects of DHEA and DHEA-S on unchallenged neuronal survival led us to test them in an excitotoxicity paradigm. While DHEA-S protected hippocampal neurons against glutamate, little protection was observed with equivalent doses of DHEA itself. This differential neuroprotection was consistent with the ability of DHEA-S (but not DHEA) to elevate a kappaB-dependent transcription factor activity, a phenomenon we previously have connected with neuroprotection. Furthermore, suppression of kappaB DNA-binding by 'decoy' oligonucleotides blocked the neuroprotective activity of DHEA-S. These findings imply that age-related declines in the availability of DHEA-S could exacerbate neurotoxicity, and the data suggest that therapeutic gains may be obtained with pharmacological manipulation of kappaB-dependent transcription in neurons.
Collapse
Affiliation(s)
- X Mao
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|
235
|
Chen Q, Olney JW, Lukasiewicz PD, Almli T, Romano C. Ca2+-independent excitotoxic neurodegeneration in isolated retina, an intact neural net: a role for Cl- and inhibitory transmitters. Mol Pharmacol 1998; 53:564-72. [PMID: 9495825 DOI: 10.1124/mol.53.3.564] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapidly triggered excitotoxic cell death is widely thought to be due to excessive influx of extracellular Ca2+, primarily through the N-methyl-D-aspartate subtype of glutamate receptor. By devising conditions that permit the maintenance of isolated retina in the absence of Ca2+, it has become technically feasible to test the dependence of excitotoxic neurodegeneration in this intact neural system on extracellular Ca2+. Using biochemical, Ca2+ imaging, and electrophysiological techniques, we found that (1) rapidly triggered excitotoxic cell death in this system occurs independently of both extracellular Ca2+ and increases in intracellular Ca2+; (2) this cell death is highly dependent on extracellular Cl-; and (3) lethal Cl- entry occurs by multiple paths, but a significant fraction occurs through pathologically activated gamma-aminobutyric acid and glycine receptors. These results emphasize the importance of Ca2+-independent mechanisms and the role that local transmitter circuitry plays in excitotoxic cell death.
Collapse
Affiliation(s)
- Q Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
236
|
Furukawa K, Mattson MP. Secreted amyloid precursor protein alpha selectively suppresses N-methyl-D-aspartate currents in hippocampal neurons: involvement of cyclic GMP. Neuroscience 1998; 83:429-38. [PMID: 9460751 DOI: 10.1016/s0306-4522(97)00398-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The secreted form of beta-amyloid precursor protein (sAPP alpha) is released from neurons in an activity-dependent manner; data suggest sAPP alpha may play roles in regulating neuronal excitability, plasticity, and survival. In cultured hippocampal neurons sAPP alpha can suppress elevation of [Ca2+]i induced by glutamate and can protect neurons against excitotoxicity. We now report whole-cell patch-clamp data from studies of cultured embryonic rat hippocampal neurons which demonstrate that sAPP alpha selectively suppresses N-methyl-D-aspartate currents without affecting currents induced by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate or kainate. sAPP alpha suppressed N-methyl-D-aspartate current rapidly and reversibly at concentrations of 0.011 nM. Suppression of N-methyl-D-aspartate current by sAPP alpha is apparently mediated by cyclic guanosine monophosphate because 8-bromo-cyclic guanosine monophosphate suppressed N-methyl-D-aspartate current in a manner similar to sAPP alpha, and two different inhibitors of cyclic guanosine monophosphate-dependent protein kinase prevented sAPP alpha-induced suppression of N-methyl-D-aspartate current. In addition, okadaic acid prevented suppression of N-methyl-D-aspartate-induced current suggesting the involvement of a protein phosphatase in modulation of N-methyl-D-aspartate current by sAPP alpha. These data identify a mechanism whereby sAPP alpha can modulate cellular responses to glutamate, and suggest important roles for sAPP alpha in the various physiological and pathophysiological processes in which N-methyl-D-aspartate receptors participate.
Collapse
Affiliation(s)
- K Furukawa
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | |
Collapse
|
237
|
Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 1998. [PMID: 9425011 DOI: 10.1523/jneurosci.18-02-00687.1998] [Citation(s) in RCA: 632] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is implicated in neuronal apoptosis that occurs in physiological settings and in neurodegenerative disorders. Superoxide anion radical, produced during mitochondrial respiration, is involved in the generation of several potentially damaging reactive oxygen species including peroxynitrite. To examine directly the role of superoxide and peroxynitrite in neuronal apoptosis, we generated neural cell lines and transgenic mice that overexpress human mitochondrial manganese superoxide dismutase (MnSOD). In cultured pheochromocytoma PC6 cells, overexpression of mitochondria-localized MnSOD prevented apoptosis induced by Fe2+, amyloid beta-peptide (Abeta), and nitric oxide-generating agents. Accumulations of peroxynitrite, nitrated proteins, and the membrane lipid peroxidation product 4-hydroxynonenal (HNE) after exposure to the apoptotic insults were markedly attenuated in cells expressing MnSOD. Glutathione peroxidase activity levels were increased in cells overexpressing MnSOD, suggesting a compensatory response to increased H2O2 levels. The peroxynitrite scavenger uric acid and the antioxidants propyl gallate and glutathione prevented apoptosis induced by each apoptotic insult, suggesting central roles for peroxynitrite and membrane lipid peroxidation in oxidative stress-induced apoptosis. Apoptotic insults decreased mitochondrial transmembrane potential and energy charge in control cells but not in cells overexpressing MnSOD, and cyclosporin A and caspase inhibitors protected cells against apoptosis, demonstrating roles for mitochondrial alterations and caspase activation in the apoptotic process. Membrane lipid peroxidation, protein nitration, and neuronal death after focal cerebral ischemia were significantly reduced in transgenic mice overexpressing human MnSOD. The data suggest that mitochondrial superoxide accumulation and consequent peroxynitrite production and mitochondrial dysfunction play pivotal roles in neuronal apoptosis induced by diverse insults in cell culture and in vivo.
Collapse
|
238
|
Rogove AD, Tsirka SE. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol 1998; 8:19-25. [PMID: 9427623 DOI: 10.1016/s0960-9822(98)70016-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Injury to the brain induces dramatic local changes in gene expression, cellular morphology and behavior. Activation of microglial cells occurs as an early event after central nervous system (CNS) injury, but it has not been determined whether such activation plays a causal role in neuronal death. We have investigated this question using an excitotoxin-mediated brain injury model system, in conjunction with an endogenous peptide factor (macrophage/microglial inhibiting factor, MIF) that ablates microglial contribution to the cascade. RESULTS Using MIF, we inhibited the microglial activation that normally follows excitotoxic injury. In cell culture studies, we found that such inhibition blocked the rapid release of microglia-derived tissue plasminogen activator (tPA), an extracellular serine protease made by both neurons and microglia, which we had previously identified as mediating a critical step in excitotoxin-induced neuronal death. Finally, infusion of MIF into the mouse brain prior to excitotoxic insult resulted in the protection of neurons from cell death. CONCLUSIONS Our results demonstrate that microglia undertake a neurotoxic role when excitotoxic injury occurs in the CNS. They also suggest that the tPA released from microglia has a critical role in triggering neurodegeneration.
Collapse
Affiliation(s)
- A D Rogove
- MSTP Program, University Medical Center at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
239
|
Camins A, Sureda FX, Gabriel C, Pallàs M, Escubedo E, Camarasa J. Modulation of neuronal mitochondrial membrane potential by the NMDA receptor: role of arachidonic acid. Brain Res 1997; 777:69-74. [PMID: 9449414 DOI: 10.1016/s0006-8993(97)00947-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of NMDA receptors in dissociated cerebellar granule cells reduced mitochondrial membrane potential (MMP), as measured by rhodamine 123 fluorescence in a flow cytometer. This effect was inhibited by several NMDA-receptor antagonists with the following rank order of potency: MK-801 > PCP > TCP > dextrorphan > dichlorokynurenic acid > D-AP5 > dextromethorphan. Neither spermine nor arcaine modified the NMDA-induced reduction in MMP, whereas ifenprodil and eliprodil inhibited this response in the micromolar range. The mechanism responsible for the alteration of MMP mediated by NMDA was studied. Mepacrine and dibucaine prevented the MMP reduction induced by NMDA, as did W13 (calmodulin antagonist). In contrast, this effect was not blocked by cyclooxygenase or lipooxygenase inhibitors, H7 (a protein kinase C inhibitor) or nitroarginine (nitric oxide synthase inhibitor). These data suggest a direct interaction between NMDA-receptor activation and arachidonic acid formation, and indicate that NMDA receptor-mediated effect on MMP could involve arachidonic acid.
Collapse
Affiliation(s)
- A Camins
- Facultat de Farmacia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Spain
| | | | | | | | | | | |
Collapse
|
240
|
The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 1997. [PMID: 9334393 DOI: 10.1523/jneurosci.17-21-08178.1997] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium influx through NMDA receptors and voltage-dependent calcium channels (VDCC) mediates an array of physiological processes in neurons and may also contribute to neuronal degeneration and death in neurodegenerative conditions such as stroke and severe epileptic seizures. Gelsolin is a Ca2+-activated actin-severing protein that is expressed in neurons, wherein it may mediate motility responses to Ca2+ influx. Primary hippocampal neurons cultured from mice lacking gelsolin exhibited decreased actin filament depolymerization and enhanced Ca2+ influx after exposure to glutamate. Whole-cell patch-clamp analyses showed that currents through NMDA receptors and VDCC were enhanced in hippocampal neurons lacking gelsolin, as a result of decreased current rundown; kainate-induced currents were similar in neurons containing and lacking gelsolin. Vulnerability of cultured hippocampal neurons to glutamate toxicity was greater in cells lacking gelsolin. Seizure-induced damage to hippocampal pyramidal neurons was exacerbated in adult gelsolin-deficient mice. These findings identify novel roles for gelsolin in controlling actin-mediated feedback regulation of Ca2+ influx and in neuronal injury responses. The data further suggest roles for gelsolin and the actin cytoskeleton in both physiological and pathophysiological events that involve activation of NMDA receptors and VDCC.
Collapse
|
241
|
Nicholas K, Toborek M, Slim R, Watkins BA, Chung B, Oeltgen PR, Hennig B. Dietary cholesterol supplementation protects against endothelial cell dysfunction mediated by native and lipolyzed lipoproteins derived from rabbits fed high-corn oil diets. J Nutr Biochem 1997. [DOI: 10.1016/s0955-2863(97)00090-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
242
|
Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, Uchida K, Waeg G, Mattson MP. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 1997; 80:685-96. [PMID: 9276486 DOI: 10.1016/s0306-4522(97)00065-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke, and Alzheimer's, Parkinson's and Huntington's diseases. Although cell culture data indicate that oxidative insults can impair key membrane regulatory systems including ion-motive ATPases and amino acid transport systems, the effects of oxidative stress on synapses, and the mechanisms that mediate such effects, are largely unknown. This study provides evidence that 4-hydroxynonenal, an aldehydic product of lipid peroxidation, mediates oxidation-induced impairment of glutamate transport and mitochondrial function in synapses. Exposure of rat cortical synaptosomes to 4-hydroxynonenal resulted in concentration- and time-dependent decreases in [3H]glutamate uptake, and mitochondrial function [assessed with the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)]. Other related aldehydes including malondialdehyde and hexanal had little or no effect on glutamate uptake or mitochondrial function. Exposure of synaptosomes to insults known to induce lipid peroxidation (FeSO4 and amyloid beta-peptide) also impaired glutamate uptake and mitochondrial function. The antioxidants propyl gallate and glutathione prevented impairment of glutamate uptake and MTT reduction induced by FeSO4 and amyloid beta-peptide, but not that induced by 4-hydroxynonenal. Western blot analyses using an antibody to 4-hydroxynonenal-conjugated proteins showed that 4-hydroxynonenal bound to multiple cell proteins including GLT-1, a glial glutamate transporter present at high levels in synaptosomes. 4-Hydroxynonenal itself induced lipid peroxidation suggesting that, in addition to binding directly to membrane regulatory proteins, 4-hydroxynonenal potentiates oxidative cascades. Collectively, these findings suggest that 4-hydroxynonenal plays important roles in oxidative impairment of synaptic functions that would be expected to promote excitotoxic cascades.
Collapse
Affiliation(s)
- J N Keller
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
Oxidative stress is believed to play important roles in neuronal cell death associated with many different neurodegenerative conditions (e.g., Alzheimer's disease, Parkinson's disease, and cerebral ischemia), and it is believed also that apoptosis is an important mode of cell death in these disorders. Membrane lipid peroxidation has been documented in the brain regions affected in these disorders as well as in cell culture and in vivo models. We now provide evidence that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, is a key mediator of neuronal apoptosis induced by oxidative stress. HNE induced apoptosis in PC12 cells and primary rat hippocampal neurons. Oxidative insults (FeSO4 and amyloid beta-peptide) induced lipid peroxidation, cellular accumulation of HNE, and apoptosis. Bcl-2 prevented apoptosis of PC12 cells induced by oxidative stress and HNE. Antioxidants that suppress lipid peroxidation protected against apoptosis induced by oxidative insults, but not that induced by HNE. Glutathione, which binds HNE, protected neurons against apoptosis induced by oxidative stress and HNE. PC12 cells expressing Bcl-2 exhibited higher levels of glutathione and lower levels of HNE after oxidative stress. Collectively, the data identify that HNE is a novel nonprotein mediator of oxidative stress-induced neuronal apoptosis and suggest that the antiapoptotic action of glutathione may involve detoxification of HNE.
Collapse
|
244
|
Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997. [PMID: 9151738 DOI: 10.1523/jneurosci.17-11-04212.1997] [Citation(s) in RCA: 354] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most autosomal dominant inherited forms of early onset Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS-1) gene on chromosome 14. PS-1 is an integral membrane protein with six to nine membrane-spanning domains and is expressed in neurons throughout the brain wherein it is localized mainly in endoplasmic reticulum (ER). The mechanism or mechanisms whereby PS-1 mutations promote neuron degeneration in AD are unknown. Recent findings suggest links among deposition of amyloid beta-peptide (Abeta), oxidative stress, disruption of ion homeostasis, and an apoptotic form of neuron death in AD. We now report that expression of the human PS-1 L286V mutation in PC12 cells increases their susceptibility to apoptosis induced by trophic factor withdrawal and Abeta. Increases in oxidative stress and intracellular calcium levels induced by the apoptotic stimuli were exacerbated greatly in cells expressing the PS-1 mutation, as compared with control cell lines and lines overexpressing wild-type PS-1. The antiapoptotic gene product Bcl-2 prevented apoptosis after NGF withdrawal from differentiated PC12 cells expressing mutant PS-1. Elevations of [Ca2+]i in response to thapsigargin, an inhibitor of the ER Ca2+-ATPase, were increased in cells expressing mutant PS-1, and this adverse effect was abolished in cells expressing Bcl-2. Antioxidants and blockers of calcium influx and release from ER protected cells against the adverse consequences of the PS-1 mutation. By perturbing cellular calcium regulation and promoting oxidative stress, PS-1 mutations may sensitize neurons to apoptotic death in AD.
Collapse
|
245
|
Cao C, Mioduszewski R, Menking D, Valdes J, Cortes V, Eldefrawi M, Eldefrawi A. Validation of the cytosensor for in vitro cytotoxicity studies. Toxicol In Vitro 1997; 11:285-93. [DOI: 10.1016/s0887-2333(97)00009-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/1996] [Indexed: 10/17/2022]
|
246
|
Aziz SM, Toborek M, Hennig B, Mattson MP, Guo H, Lipke DW. Oxidative stress mediates monocrotaline-induced alterations in tenascin expression in pulmonary artery endothelial cells. Int J Biochem Cell Biol 1997; 29:775-87. [PMID: 9251245 DOI: 10.1016/s1357-2725(97)00010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidative stress may be involved in monocrotaline (MCT)-induced endothelial cell injury and upregulation of extracellular matrix proteins in the pulmonary vasculature. To test this hypothesis, cytotoxicity, expression and distribution of tenascin (TN) as well as cellular oxidation were determined in porcine pulmonary artery endothelial cells (PAECs) exposed to MCT and/or to an oxygen radical scavenger, dimethylthiourea (DMTU). Relative to controls, treatment with 2.5 mM MCT for 24 hr produced cytotoxicity as evidenced by changes in cellular morphology, cell detachment, hypertrophy, reduction in cellular proliferation and severe cytoplasmic vacuolization. Parallel studies showed that MCT markedly altered the expression and distribution of TN in PAEC as determined by immunocytochemistry. Western analysis showed that MCT increased cellular TN content and promoted the appearance of an additional, smaller TN isoform. Northern analysis demonstrated an increase in the steady-state level of TN-specific mRNA in response to MCT treatment. Exposure to MCT also increased the synthesis of cell-associated and media-associated TN as determined by immunoprecipitation. In addition, MCT increased the intensity of cellular oxidative stress as measured by 2,7-dichlorofluorescein fluorescence. Co-treatment with DMTU prevented MCT-induced cytotoxicity, alterations in TN distribution and content, and reduced the increase in DCF fluorescence. These results suggest that MCT-induced cytotoxicity and upregulation of TN are mediated, at least in part, by induction of cellular oxidative stress.
Collapse
Affiliation(s)
- S M Aziz
- Division of Pharmacology and Experimental Therapeutics, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | |
Collapse
|
247
|
Wang C, Davis N, Colvin RA. Genistein inhibits Na+/Ca2+ exchange activity in primary rat cortical neuron culture. Biochem Biophys Res Commun 1997; 233:86-90. [PMID: 9144401 DOI: 10.1006/bbrc.1997.6398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the possible regulatory effect of tyrosine kinase activity on Ca2+ transport observed in the cultured rat cortical neurons. Na+/Ca2+ exchange was studied using cells cultured for various time periods. A nearly two fold increase in Ca2+ uptake was seen when comparing 3 day and 9 day cultures. Western blot analysis also showed a two fold increase in Na+/Ca2+ exchanger (NCX1) protein levels as cells matured in culture. To study the effect of genistein (a specific tyrosine kinase inhibitor) cells were incubated with 100 microM genistein (in 1% DMSO) for 1 hour before the assay of Na+/Ca2+ exchange activity. There was a significant decrease of Ca2+ uptake in genistein treated neurons (control: 4.596+/-0.205 nmol/mg protein/15 min, n=12; genistein: 1.420+/-0.131 nmol/mg protein/15 min, n=12, mean+/-S.E. P<0.001). Daidzein, an inactive analog of genistein and phorbol myristate acetate (PMA), a PKC activator were without effect. The results suggest that as cells mature in culture, Na+/Ca2+ exchange capacity increases, as a result of greater protein expression. Exposure to genistein inhibited Ca2+ uptake suggesting that the exchanger may be modulated by tyrosine phosphorylation.
Collapse
Affiliation(s)
- C Wang
- Program in Neurobiology, Department of Biological Sciences, Ohio University College of Osteopathic Medicine, Athens 45701, USA
| | | | | |
Collapse
|
248
|
Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 1997. [PMID: 8994059 DOI: 10.1523/jneurosci.17-03-01046.1997] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A deficit in glucose uptake and a deposition of amyloid beta-peptide (A beta) each occur in vulnerable brain regions in Alzheimer's disease (AD). It is not known whether mechanistic links exist between A beta deposition and impaired glucose transport. We now report that A beta impairs glucose transport in cultured rat hippocampal and cortical neurons by a mechanism involving membrane lipid peroxidation. A beta impaired 3H-deoxy-glucose transport in a concentration-dependent manner and with a time course preceding neurodegeneration. The decrease in glucose transport was followed by a decrease in cellular ATP levels. Impairment of glucose transport, ATP depletion, and cell death were each prevented in cultures pretreated with antioxidants. Exposure to FeSO4, an established inducer of lipid peroxidation, also impaired glucose transport. Immunoprecipitation and Western blot analyses showed that exposure of cultures to A beta induced conjugation of 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, to the neuronal glucose transport protein GLUT3. HNE induced a concentration-dependent impairment of glucose transport and subsequent ATP depletion. Impaired glucose transport was not caused by a decreased energy demand in the neurons, because ouabain, which inhibits Na+/K(+)-ATPase activity and thereby reduces neuronal ATP hydrolysis rate, had little or no effect on glucose transport. Collectively, the data demonstrate that lipid peroxidation mediates A beta-induced impairment of glucose transport in neurons and suggest that this action of A beta may contribute to decreased glucose uptake and neuronal degeneration in AD.
Collapse
|
249
|
|
250
|
Hajimohamadreza I, Treherne JM. The role of apoptosis in neurodegenerative diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1997; 48:55-98. [PMID: 9204683 DOI: 10.1007/978-3-0348-8861-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- I Hajimohamadreza
- Department of Discovery Biology, Pfizer Central Research, Sandwich, Kent, UK
| | | |
Collapse
|