201
|
Alvarado-Mallart RM. The chick/quail transplantation model: Discovery of the isthmic organizer center. ACTA ACUST UNITED AC 2005; 49:109-13. [PMID: 16111542 DOI: 10.1016/j.brainresrev.2005.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 02/10/2005] [Accepted: 03/07/2005] [Indexed: 11/24/2022]
Abstract
This paper summarizes chick/quail transplantation experiments performed in the INSERM U106 by Alvarado-Mallart's group from 1989 to 2002. First, it will present the various steps leading us to demonstrate that, at stage 10 of Hamburger and Hamilton, the avian neuroepithelium is still competent to change its fate influenced by environmental inductive factors and that these factors emanate from the cerebellar neuroepithelium; then, it will be briefly reported, experiments aimed to characterize the genetic cascade involved in the formation of the midbrain/hindbrain boundary and the specification of the meso-isthmic-cerebellar domain.
Collapse
Affiliation(s)
- Rosa-Magda Alvarado-Mallart
- INSERM U106, Hôpital de la Salpêtrière, Pavillon de l'Enfant et de l'Adolescent, 75651 Paris CEDEX 13, France.
| |
Collapse
|
202
|
Acampora D, Annino A, Tuorto F, Puelles E, Lucchesi W, Papalia A, Simeone A. Otx genes in the evolution of the vertebrate brain. Brain Res Bull 2005; 66:410-20. [PMID: 16144623 DOI: 10.1016/j.brainresbull.2005.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 12/01/2022]
Abstract
Only until a decade ago, animal phylogeny was traditionally based on the assumption that evolution of bilaterians went from simple to complex through gradual steps in which the extant species would represent grades of intermediate complexity that reflect the organizational levels of their ancestors. The advent of more sophisticated molecular biology techniques combined to an increasing variety of functional experiments has provided new tools, which lead us to consider evolutionary studies under a brand new light. An ancestral versus derived low-complexity of a given organism has now to be carefully re-assessed and also the molecular data so far accumulated needs to be re-evaluated. Conserved gene families expressed in the nervous system of all the species have been extensively used to reconstruct evolutionary steps, which may lead to identify the morphological as well as molecular features of the last common ancestor of bilaterians (Urbilateria). The Otx gene family is among these and will be here reviewed.
Collapse
Affiliation(s)
- Dario Acampora
- MRC Centre for Developmental Neurobiology, New Hunt's House, 4th Floor, King's College London, UK
| | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
204
|
Abstract
Fifteen years ago, cell lineage restriction boundaries were discovered in the embryonic vertebrate hindbrain, subdividing it into a series of cell-tight compartments (known as rhombomeres). Compartition, together with segmentally reiterative neuronal architecture and the nested expression of Hox genes, indicates that the hindbrain has a truly metameric organization. This finding initiated a search for compartments in other regions of the developing brain. The results of recent studies have clarified where compartment boundaries exist, have shed light on molecular mechanisms that underlie their formation and have revealed an important function of these boundaries: the positioning and stabilization of local signalling centres.
Collapse
Affiliation(s)
- Clemens Kiecker
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | | |
Collapse
|
205
|
Lichtneckert R, Reichert H. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity (Edinb) 2005; 94:465-77. [PMID: 15770230 DOI: 10.1038/sj.hdy.6800664] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent molecular genetic analyses of Drosophila melanogaster and mouse central nervous system (CNS) development revealed strikingly similar genetic patterning mechanisms in the formation of the insect and vertebrate brain. Thus, in both insects and vertebrates, the correct regionalization and neuronal identity of the anterior brain anlage is controlled by the cephalic gap genes otd/Otx and ems/Emx, whereas members of the Hox genes are involved in patterning of the posterior brain. A third intermediate domain on the anteroposterior axis of the vertebrate and insect brain is characterized by the expression of the Pax2/5/8 orthologues, suggesting that the tripartite ground plans of the protostome and deuterostome brains share a common evolutionary origin. Furthermore, cross-phylum rescue experiments demonstrate that insect and mammalian members of the otd/Otx and ems/Emx gene families can functionally replace each other in embryonic brain patterning. Homologous genes involved in dorsoventral regionalization of the CNS in vertebrates and insects show remarkably similar patterning and orientation with respect to the neurogenic region (ventral in insects and dorsal in vertebrates). This supports the notion that a dorsoventral body axis inversion occurred after the separation of protostome and deuterostome lineages in evolution. Taken together, these findings demonstrate conserved genetic patterning mechanisms in insect and vertebrate brain development and suggest a monophyletic origin of the brain in protostome and deuterostome bilaterians.
Collapse
Affiliation(s)
- R Lichtneckert
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
206
|
O'Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 2005; 132:3163-73. [PMID: 15944182 PMCID: PMC1361118 DOI: 10.1242/dev.01898] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.1 and lmx1b.2, in the rostral IsO, and demonstrate that these genes are necessary for key aspects of MMR development. Simultaneous knockdown of Lmx1b.1 and Lmx1b.2 using morpholino antisense oligos results in a loss of wnt1, wnt3a, wnt10b, pax8 and fgf8 expression at the IsO, leading ultimately to programmed cell death and the loss of the isthmic constriction and cerebellum. Single morpholino knockdown of either Lmx1b.1 or Lmx1b.2 has no discernible effect on MMR development. Maintenance of lmx1b.1 and lmx1b.2 expression at the isthmus requires the function of no isthmus/pax2.1, as well as Fgf signaling. Transient misexpression of Lmx1b.1 or Lmx1b.2 during early MMR development induces ectopic wnt1 and fgf8 expression in the MMR, as well as throughout much of the embryo. We propose that Lmx1b.1- and Lmx1b.2-mediated regulation of wnt1, wnt3a, wnt10b, pax8 and fgf8 maintains cell survival in the isthmocerebellar region.
Collapse
Affiliation(s)
- F Patrick O'Hara
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
207
|
Maruyama M, Ichisaka T, Nakagawa M, Yamanaka S. Differential Roles for Sox15 and Sox2 in Transcriptional Control in Mouse Embryonic Stem Cells. J Biol Chem 2005; 280:24371-9. [PMID: 15863505 DOI: 10.1074/jbc.m501423200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sox family transcription factors play essential roles in cell differentiation, development, and sex determination. Sox2 was previously thought to be the sole Sox protein expressed in mouse embryonic stem (ES) cells. Sox2 associates with Oct3/4 to maintain self-renewal of ES cells. In the current study, digital differential display identified transcripts for an additional Sox family member, Sox15, enriched in mouse ES cells. Reverse transcription-PCR confirmed that Sox15 expression is highest in undifferentiated ES cells and repressed upon differentiation. Sox15 is expressed at low levels in several tissues, including testis and muscle. In vitro studies showed that Sox15, like Sox2, associated with Oct3/4 on DNA sequences containing the octamer motif and Sox-binding site. Gel mobility shift assays and SELEX analyses showed that Sox15 binds similar DNA sequences as Sox2 but with weaker affinity. In contrast to the early embryonic lethality observed in Sox2-null mice, Sox15-null ES cells and mice were grossly normal. DNA microarray analyses revealed that Otx2, Ctgf, Ebaf, and Hrc are dysregulated in Sox15-null ES cells, however. Chromatin immunoprecipitation showed that Sox15, but not Sox2, bound to a Sox consensus binding site within the Hrc gene. Taken together, these data demonstrate differential roles for Sox15 and Sox2 in transcriptional control in mouse ES cells.
Collapse
Affiliation(s)
- Masayoshi Maruyama
- Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
208
|
Ramos-Mejía V, Escalante-Alcalde D, Kunath T, Ramírez L, Gertsenstein M, Nagy A, Lomelí H. Phenotypic analyses of mouse embryos with ubiquitous expression of Oct4: effects on mid-hindbrain patterning and gene expression. Dev Dyn 2005; 232:180-90. [PMID: 15580630 DOI: 10.1002/dvdy.20211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oct4 is a transcription factor that has been associated with pluripotency and fate determination in the initial cell lineages of mammals. On the other hand, Pou2, the ortholog of Oct4 in zebrafish, serves additional later functions during brain development acting as a differentiation switch. In mice, Oct4 is expressed throughout the neural plate of embryos until embryonic day (E) 8.0. In this study, we produced transgenic mouse embryos that ubiquitously express Oct4 and analyzed the consequences during development. We show that, at E8.0, a higher dosage of Oct4 in the neuroectoderm is sufficient to transiently alter mid-hindbrain patterning and produced a strong up-regulation of Pax2, indicating that Oct4 can regulate this gene in vivo. After E9.5, ectopic Oct4 in this region produced cell death and affected the development of the forebrain, suggesting that, at these later stages, Oct4 down-regulation is necessary for normal development to proceed. The phenotype of the transgenic embryos was also accompanied with an increase of Fgf8 expression in several of its endogenous domains, suggesting the possibility that Oct4 can participate in the regulation of expression of this ligand. Our observations support the hypothesis that Oct4, like zebrafish Pou2, has a conserved function during early brain patterning in mouse.
Collapse
Affiliation(s)
- Verónica Ramos-Mejía
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | |
Collapse
|
209
|
Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. ACTA ACUST UNITED AC 2005; 283:224-38. [PMID: 15678491 DOI: 10.1002/ar.a.20158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The midbrain-hindbrain (MHB) junction plays a key role in the patterning of the embryonic neural tube and the formation of brain structures such as the cerebellum. The mitogen wnt-1 is critical for cerebellar development, as evidenced by the lack of MHB region and cerebellar formation in the wnt-1 null embryo. We have generated wnt-1 null embryos overexpressing the gap junction gene connexin43 by crossing wnt-1 null heterozygotes into the CMV43 mouse line. We have confirmed that these mice show an increase in gap junctional communication by dye coupling analysis. Two-thirds of wnt-1 null CMV43(+) mouse embryos at E18.5 have a cerebellum. In addition, changes in the wnt-1 null phenotype in mouse embryos overexpressing connexin43 are observed as early as E9.5. At this stage, one-quarter of wnt-1 null CMV43(+) embryos display extra or expanded tissue present at the MHB boundary (a wnt-1 null enlarged phenotype). In situ hybridization studies conducted on these embryos have indicated no changes in the expression of embryonic brain positional markers in this region. We conclude from these studies that overexpression of the connexin43 gap junction restores cerebellar formation by compensating for the loss of wnt-1.
Collapse
|
210
|
Colombo E, Galli R, Cossu G, Gécz J, Broccoli V. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev Dyn 2005; 231:631-9. [PMID: 15376319 DOI: 10.1002/dvdy.20164] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the human ARX gene show unusually heterogeneous clinical presentations, including syndromic and nonsyndromic mental retardation, myoclonic epilepsy with spasticity, and lissencephaly with abnormal genitalia, that are believed to arise from an impairment of the embryonic mechanisms building the anterior central nervous system structures. Here, we show that the murine ortholog Arx has a highly dynamic expression pattern during both early shaping of the forebrain vesicle and later major events of neural migrations and cell-type specification. Early on, the Arx gene is specifically activated in anterior forebrain anlage. Afterward, Arx expression is confined to the telencephalic vesicles and is enhanced during differentiation of the subpallial structures of the ganglionic eminences, overlapping with Dlx2, Dlx5, and Gad1 transcriptional domains. Tangentially migrating neurons reaching the cortical plate are also Arx-positive at all embryonic stages analyzed. RNA-protein colabeling staining shows that Arx expression is maintained in the mature cortical interneurons, suggesting its involvement in the different functions of the gamma-aminobutyric acid (GABA)ergic neurons settled into the adult cerebral cortex. Finally, Arx expression is detected in the anterior subventricular layer of the adult brain, where neural stem cells have been shown to be located. Of interest, Arx expression is highly up-regulated during in vitro differentiation of pure neural stem cell cultures retrieved from adult brain. All together, these findings suggest Arx as a gene involved in the commitment of proliferating neuroblasts into a GABAergic neuronal fate. In conclusion, our mouse Arx expression data provide important further insights into the puzzling complexity of the human ARX mutation pleiotropy.
Collapse
Affiliation(s)
- Elena Colombo
- Stem Cell Research Institute, DIBIT, San Raffaele Science Park, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
211
|
Toro R, Burnod Y. A morphogenetic model for the development of cortical convolutions. ACTA ACUST UNITED AC 2005; 15:1900-13. [PMID: 15758198 DOI: 10.1093/cercor/bhi068] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The convolutions of the mammalian cortex are one of its most intriguing characteristics. Their pattern is very distinctive for different species, and there seems to be a remarkable relationship between convolutions and the architectonic and functional regionalization of the cerebral cortex. Yet the mechanisms behind the development of convolutions and their association with the cortical regionalization are poorly understood. Here we propose a morphogenetic model for the development of cortical convolutions based on the structure of the cortex as a closed surface with glial and axonal fibres pulling radially, the fundamental mechanical properties of cortex and fibres (elasticity and plasticity), and the growth of the cortical surface. The computer simulations of this model suggest that convolutions are a natural consequence of cortical growth. The model reproduces several aspects of convolutional development, such as the relationship between cortical surface and brain volume among mammals, the period of compensation in the degree of convolution observed in gyrencephalic brains and the dependence of the degree of convolution on cortical thickness. We have also studied the effect of early cortical regionalization on the development of convolutions by introducing geometric, mechanic and growth asymmetries in the model. The morphogenetic model is thus able to reproduce the gradients in the degree of convolution, the development of primary, secondary and tertiary convolution, and the overproduction of sulci observed in animals with altered afferent cortical connections.
Collapse
Affiliation(s)
- Roberto Toro
- Institut des Sciences Cognitives, UMR 5015 CNRS-Université Claude Bernard Lyon 1, 67, boulevard Pinel, 69675 Bron, France.
| | | |
Collapse
|
212
|
Koutmani Y, Hurel C, Patsavoudi E, Hack M, Gotz M, Thomaidou D, Matsas R. BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage. Eur J Neurosci 2005; 20:2509-23. [PMID: 15548196 DOI: 10.1111/j.1460-9568.2004.03724.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Progression of progenitor cells towards neuronal differentiation is tightly linked with cell cycle control and the switch from proliferative to neuron-generating divisions. We have previously shown that the neuronal protein BM88 drives neuroblastoma cells towards exit from the cell cycle and differentiation into a neuronal phenotype in vitro. Here, we explored the role of BM88 during neuronal birth, cell cycle exit and the initiation of differentiation in vivo. By double- and triple-labelling with the S-phase marker BrdU or the late G2 and M-phase marker cyclin B1, antibodies to BM88 and markers of the neuronal or glial cell lineages, we demonstrate that in the rodent forebrain, BM88 is expressed in multipotential progenitor cells before terminal mitosis and in their neuronal progeny during the neurogenic interval, as well as in the adult. Further, we defined at E16 a cohort of proliferative progenitors that exit S phase in synchrony, and by following their fate for 24 h we show that BM88 is associated with the dynamics of neuron-generating divisions. Expression of BM88 was also evident in cycling cortical radial glial cells, which constitute the main neurogenic population in the cerebral cortex. In agreement, BM88 expression was markedly reduced and restricted to a smaller percentage of cells in the cerebral cortex of the Small eye mutant mice, which lack functional Pax6 and exhibit severe neurogenesis defects. Our data show an interesting correlation between BM88 expression and the progression of progenitor cells towards neuronal differentiation during the neurogenic interval.
Collapse
Affiliation(s)
- Yassemi Koutmani
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, Athens 115 21, Greece
| | | | | | | | | | | | | |
Collapse
|
213
|
Medina L, Brox A, Legaz I, García-López M, Puelles L. Expression patterns of developmental regulatory genes show comparable divisions in the telencephalon of Xenopus and mouse: insights into the evolution of the forebrain. Brain Res Bull 2005; 66:297-302. [PMID: 16144605 DOI: 10.1016/j.brainresbull.2005.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/01/2004] [Indexed: 11/26/2022]
Abstract
In this study, we review data on the existence of comparable divisions and subdivisions in the telencephalon of different groups of tetrapods based on expression of some developmental regulatory genes, having a particular focus in the comparison of the anuran amphibian Xenopus and the mouse. The available data on Xenopus, mouse, chick and turtle indicate that apparently all tetrapod groups possess the same molecularly distinct divisions and subdivisions in the telencephalon. This basic organization was likely present in the telencephalon of stem tetrapods. Each division/subdivision is characterized by expression of a unique combination of developmental regulatory genes, and appears to represent a self-regulated and topologically constant histogenetic brain compartment that gives rise to specific groups of cells. This interpretation has an important consequence for searching homologies, since a basic condition for cell groups in different vertebrates to be considered homologous is that they originate in the same compartment. However, evolution may allow individual cell groups derived from comparable (field homologous) subdivisions to be either similar or dissimilar across the vertebrate groups, giving rise to several possible scenarios of evolution, which include both the evolutionary conservation of similar (homologous) cells or the production of novel cell groups. Finally, available data in the lamprey, a jawless fish, suggest that not all telencephalic subdivisions were present at the origin of vertebrates, raising important questions about their evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, Spain.
| | | | | | | | | |
Collapse
|
214
|
Kuijper S, Beverdam A, Kroon C, Brouwer A, Candille S, Barsh G, Meijlink F. Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development 2005; 132:1601-10. [PMID: 15728667 DOI: 10.1242/dev.01735] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The diverse cellular contributions to the skeletal elements of the vertebrate shoulder and pelvic girdles during embryonic development complicate the study of their patterning. Research in avian embryos has recently clarified part of the embryological basis of shoulder formation. Although dermomyotomal cells provide the progenitors of the scapular blade, local signals appear to have an essential guiding role in this process. These signals differ from those that are known to pattern the more distal appendicular skeleton. We have studied the impact of Tbx15, Gli3, Alx4 and related genes on formation of the skeletal elements of the mouse shoulder and pelvic girdles. We observed severe reduction of the scapula in double and triple mutants of these genes. Analyses of a range of complex genotypes revealed aspects of their genetic relationship, as well as functions that had been previously masked due to functional redundancy. Tbx15 and Gli3 appear to have synergistic functions in formation of the scapular blade. Scapular truncation in triple mutants of Tbx15, Alx4 and Cart1 indicates essential functions for Alx4 and Cart1 in the anterior part of the scapula, as opposed to Gli3 function being linked to the posterior part. Especially in Alx4/Cart1 mutants, the expression of markers such as Pax1, Pax3 and Scleraxis is altered prior to stages when anatomical aberrations are visible in the shoulder region. This suggests a disorganization of the proximal limb bud and adjacent flank mesoderm, and is likely to reflect the disruption of a mechanism providing positional cues to guide progenitor cells to their destination in the pectoral girdle.
Collapse
Affiliation(s)
- Sanne Kuijper
- Hubrecht Laboratory, The Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
215
|
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 2005; 8:288-96. [PMID: 15696161 DOI: 10.1038/nn1402] [Citation(s) in RCA: 600] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/14/2005] [Indexed: 02/07/2023]
Abstract
We demonstrate directed differentiation of telencephalic precursors from mouse embryonic stem (ES) cells using optimized serum-free suspension culture (SFEB culture). Treatment with Wnt and Nodal antagonists (Dkk1 and LeftyA) during the first 5 d of SFEB culture causes nearly selective neural differentiation in ES cells ( approximately 90%). In the presence of Dkk1, with or without LeftyA, SFEB induces efficient generation ( approximately 35%) of cells expressing telencephalic marker Bf1. Wnt3a treatment during the late culture period increases the pallial telencephalic population (Pax6(+) cells yield up to 75% of Bf1(+) cells), whereas Shh promotes basal telencephalic differentiation (into Nkx2.1(+) and/or Islet1/2(+) cells) at the cost of pallial telencephalic differentiation. Thus, in the absence of caudalizing signals, floating aggregates of ES cells generate naive telencephalic precursors that acquire subregional identities by responding to extracellular patterning signals.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Irioka T, Watanabe K, Mizusawa H, Mizuseki K, Sasai Y. Distinct effects of caudalizing factors on regional specification of embryonic stem cell-derived neural precursors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:63-70. [PMID: 15617756 DOI: 10.1016/j.devbrainres.2004.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2004] [Indexed: 11/19/2022]
Abstract
Recent embryological studies have implicated several "caudalizing factors" in the caudal specification of the central nervous system (CNS). In this study, we have examined the effects of three candidate caudalizing factors on neural precursors induced from embryonic stem (ES) cells by the stromal cell-derived inducing activity (SDIA) method. Among retinoic acid (RA), Wnt and FGF signals, RA causes the strongest level of caudalization: inducing suppression of forebrain differentiation and promotion of caudal CNS specification. Obvious suppression of the telencephalic marker Bf1 and that of the forebrain marker Otx2 occur at 2x10(-8) and 2x10(-7) M, respectively. Activation of the caudal marker genes such as Hoxb9 is observed in a dose-dependent manner over the range of 2x10(-9)-2x10(-6) M. Suppression of the forebrain genes has a narrow critical period of RA response during the early culture phase. In contrast, significant induction of the caudal genes is evoked by a 1-day exposure to RA at any time between days 3 and 8. RA treatment not only induces caudal specification but also inhibits differentiation of ventral CNS tissues, particularly of floor plate cells. FGF4 induces partial caudalization while Wnt-3A exhibits weak caudalizing activities only in the presence of RA. These findings provide useful information on the proper selection of combination of signaling molecules, doses and timing for steering ES cell differentiation by caudalizing factors into caudal neural fates.
Collapse
Affiliation(s)
- Takashi Irioka
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
217
|
Fossat N, Courtois V, Chatelain G, Brun G, Lamonerie T. Alternative usage ofOtx2 promoters during mouse development. Dev Dyn 2005; 233:154-60. [PMID: 15759271 DOI: 10.1002/dvdy.20287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Our previous structural analysis of mouse Otx2 transcripts has revealed the existence of three different promoters and suggested that the corresponding mRNAs could exhibit specific expression patterns. Here, we analyze the precise dynamics of their expression throughout mouse development. Their spatial distribution was determined by isoform-specific in situ hybridization and their relative abundance by real-time reverse transcriptase-polymerase chain reaction. Although the three promoters may be used in the same areas, we show that transcription preferentially occurs from the proximal promoter at onset of gene activity in early embryogenesis, and switches to the more distal one in most of the sites of expression in the adult brain. During gestation, their relative utilization becomes inverted. The third promoter, which shows no activity in embryonic stem cells and is moderately expressed during embryogenesis, is mostly used in specific areas derived from the rostral part of the neural tube.
Collapse
Affiliation(s)
- Nicolas Fossat
- LBMC, ENS-Lyon, IFR128 Lyon-Gerland, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
218
|
Abstract
Implantation is a complex process that requires synchronization between the embryo and a receptive endometrium. Hormones, such as the female sex steroids, prostaglandins, and peptide hormones, regulate the cellular and molecular mediators of endometrial receptivity, which include pinopodes, cell adhesion molecules, cytokines, homeobox genes, and growth factors. These mediators can be altered, despite the presence of normal hormone levels and endometrial histology; this limits the usefulness of the luteal phase endometrial biopsy. Therefore, analysis of markers of endometrial receptivity may predict successful implantation better. Elevated androgen and estrogen levels, as seen with polycystic ovary syndrome and controlled ovarian hyperstimulation, respectively, also can have detrimental effects on the endometrium, and therefore, implantation.
Collapse
Affiliation(s)
- Pinar H Kodaman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
219
|
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64:7011-21. [PMID: 15466194 DOI: 10.1158/0008-5472.can-04-1364] [Citation(s) in RCA: 1913] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent (astroglial) in vivo and multipotent (neuronal-astroglial-oligodendroglial) in culture. More importantly, these cells can act as tumor-founding cells down to the clonal level and can establish tumors that closely resemble the main histologic, cytologic, and architectural features of the human disease, even when challenged through serial transplantation. Thus, cells possessing all of the characteristics expected from tumor neural stem cells seem to be involved in the growth and recurrence of adult human glioblastomas multiforme.
Collapse
Affiliation(s)
- Rossella Galli
- Stem Cell Research Institute and Laboratory of Molecular Diagnostics, H. S. Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
The recent identification of molecular cues involved in the generation of the cortical area map, such as the patterning molecule FGF8 and transcription factors such as Emx2, represents an important breakthrough. In this issue of Neuron, Hamasaki et al. use a genetic approach to explore how these signals interact and propose that Emx2 plays a direct, largely FGF8-independent role in the control of the relative size and position that each area occupies within the cortex.
Collapse
Affiliation(s)
- Franck Polleux
- Neuroscience Center, Department of Pharmacology, University of North Carolina, 105 Mason Farm Road, NRB 8109C, Chapel Hill, NC 27599, USA
| |
Collapse
|
221
|
Hamasaki T, Leingärtner A, Ringstedt T, O'Leary DDM. EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 2004; 43:359-72. [PMID: 15294144 DOI: 10.1016/j.neuron.2004.07.016] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 04/23/2004] [Accepted: 06/16/2004] [Indexed: 12/28/2022]
Abstract
Genetic studies of neocortical area patterning are limited, because mice deficient for candidate regulatory genes die before areas emerge and have other complicating issues. To define roles for the homeodomain transcription factor EMX2, we engineered nestin-Emx2 transgenic mice that overexpress Emx2 in cortical progenitors coincident with expression of endogenous Emx2 and survive postnatally. Cortical size, lamination, thalamus, and thalamocortical pathfinding are normal in homozygous nestin-Emx2 mice. However, primary sensory and motor areas are disproportionately altered in size and shift rostrolaterally. Heterozygous transgenics have similar but smaller changes. Opposite changes are found in heterozygous Emx2 knockout mice. Fgf8 expression in the commissural plate of nestin-Emx2 mice is indistinguishable from wild-type, but Pax6 expression is downregulated in rostral cortical progenitors, suggesting that EMX2 repression of PAX6 specification of rostral identities contributes to reduced rostral areas. We conclude that EMX2 levels in cortical progenitors disproportionately specify sizes and positions of primary cortical areas.
Collapse
Affiliation(s)
- Tadashi Hamasaki
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
222
|
Sato T, Nakamura H. The Fgf8 signal causes cerebellar differentiation by activating the Ras-ERK signaling pathway. Development 2004; 131:4275-85. [PMID: 15294862 DOI: 10.1242/dev.01281] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mes/metencephalic boundary (isthmus) is an organizing center for the optic tectum and cerebellum. Fgf8 is accepted as a crucial organizing signal. Previously, we reported that Fgf8b could induce cerebellum in the mesencephalon, while Fgf8a transformed the presumptive diencephalon into mesencephalon. Since lower doses of Fgf8b exerted similar effects to those of Fgf8a, the type difference could be attributed to the difference in the strength of the signal. It is of great interest to uncover mechanisms of signal transduction pathways downstream of the Fgf8 signal in tectal and cerebellar development, and in this report we have concentrated on the Ras-ERK pathway. In normal embryos,extracellular-signal-regulated kinase (ERK) is activated at the site where Fgf8 mRNA is expressed. Fgf8b activated ERK while Fgf8a or a lower dose of Fgf8b did not activate ERK in the mes/metencephalon. Disruption of the Ras-ERK signaling pathway by a dominant negative form of Ras (RasS17N) changed the fate of the metencephalic alar plate from cerebellum to tectum. RasS17N canceled the effects of Fgf8b, while co-transfection of Fgf8a and RasS17N exerted additive effects. Disruption of Fgf8b, not Fgf8a, by siRNA resulted in posterior extension of the Otx2 expression domain. Our results indicate that the presumptive metencephalon receives a strong Fgf8 signal that activates the Ras-ERK pathway and differentiates into the cerebellum.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Molecular Neurobiology, Graduate School of Life Sciences, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai 980-8575, Japan
| | | |
Collapse
|
223
|
Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 2004; 23:3444-53. [PMID: 15064731 DOI: 10.1038/sj.onc.1207475] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To increase our understanding of the molecular pathogenesis of medulloblastoma (MB), we utilized the technique of suppression subtractive hybridization (SSH) to identify genes that are dysregulated in MB when compared to cerebellum. SSH-enriched cDNA libraries from both human and Ptch+/- heterozygous murine MBs were generated by subtracting common cDNAs from corresponding non-neoplastic cerebellum. For the human classic MB library, total human cerebellar RNA was used as control tissue; for the Ptch+/- heterozygous MB, non-neoplastic cerebellum from an unaffected Ptch+/- littermate was used as the control. Through differential screening of these libraries, over 100 upregulated tumor cDNA fragments were isolated, sequenced and identified with the NCBI BLAST program. From these, we selected genes involved in cellular proliferation, antiapoptosis, and cerebellar differentiation for further analysis. Upregulated genes identified in the human MB library included Unc33-like protein (ULIP), SOX4, Neuronatin (NNAT), the mammalian homologue of Drosophila BarH-like 1(BARHL1), the nuclear matix protein NRP/B (ENC1), and the homeobox OTX2 gene. Genes found to be upregulated in the murine MB library included cyclin D2 (Ccnd2), thymopoietin (Tmpo), Musashi-1 (Msh1), protein phosphatase 2A inhibitor-2 (I-2pp2a), and Unc5h4(D). Using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), the mRNA expression levels for these genes were markedly higher in human MBs than in cerebellum. Western blot analysis was used to further confirm the overexpression of a subset of these genes at the protein level. Notch pathway overactivity was demonstrated in the TE671 MB cell line expressing high levels of MSH1 through HES1-Luciferase transfections. This study has revealed a panel of developmentally regulated genes that may be involved in the pathogenesis of MB.
Collapse
Affiliation(s)
- Naoki Yokota
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Kurokawa D, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, Aizawa S. Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development 2004; 131:3319-31. [PMID: 15201224 DOI: 10.1242/dev.01220] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Otx2 expression in the forebrain and midbrain was found to be regulated by two distinct enhancers (FM and FM2) located at 75 kb 5′upstream and 115 kb 3′ downstream. The activities of these two enhancers were absent in anterior neuroectoderm earlier than E8.0; however, at E9.5 their regions of activity spanned the entire mesencephalon and diencephalon with their caudal limits at the boundary with the metencephalon or isthmus. In telencephalon, activities were found only in the dorsomedial aspect. Potential binding sites of OTX and TCF were essential to FM activity, and TCF sites were also essential to FM2 activity. The FM2 enhancer appears to be unique to rodent; however, the FM enhancer region is deeply conserved in gnathostomes. Studies of mutants lacking FM or FM2 enhancer demonstrated that these enhancers indeed regulate Otx2 expression in forebrain and midbrain. Development of mesencephalic and diencephalic regions was differentially regulated in a dose-dependent manner by the cooperation between Otx1and Otx2 under FM and FM2 enhancers: the more caudal the structure the higher the OTX dose requirement. At E10.5 Otx1–/–Otx2ΔFM/ΔFMmutants, in which Otx2 expression under the FM2 enhancer remained,exhibited almost complete loss of the entire diencephalon and mesencephalon;the telencephalon did, however, develop.
Collapse
Affiliation(s)
- Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB RIKEN Kobe, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0046, Japan
| | | | | | | | | | | |
Collapse
|
225
|
Kurokawa D, Takasaki N, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, Aizawa S. Regulation ofOtx2expression and its functions in mouse epiblast and anterior neuroectoderm. Development 2004; 131:3307-17. [PMID: 15201223 DOI: 10.1242/dev.01219] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified cis-regulatory sequences acting on Otx2expression in epiblast (EP) and anterior neuroectoderm (AN) at about 90 kb 5′ upstream. The activity of the EP enhancer is found in the inner cell mass at E3.5 and the entire epiblast at E5.5. The AN enhancer activity is detected initially at E7.0 and ceases by E8.5; it is found later in the dorsomedial aspect of the telencephalon at E10.5. The EP enhancer includes multiple required domains over 2.3 kb, and the AN enhancer is an essential component of the EP enhancer. Mutants lacking the AN enhancer have demonstrated that these cis-sequences indeed regulate Otx2 expression in EP and AN. At the same time, our analysis indicates that another EP and AN enhancer must exist outside of the –170 kb to +120 kb range. In Otx2ΔAN/– mutants, in which one Otx2allele lacks the AN enhancer and the other allele is null, anteroposterior axis forms normally and anterior neuroectoderm is normally induced. Subsequently, however, forebrain and midbrain are lost, indicating that Otx2 expression under the AN enhancer functions to maintain anterior neuroectoderm once induced. Furthermore, Otx2 under the AN enhancer cooperates with Emx2 in diencephalon development. The AN enhancer region is conserved among mouse, human and Xenopus; moreover, the counterpart region in Xenopus exhibited an enhancer activity in mouse anterior neuroectoderm.
Collapse
Affiliation(s)
- Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB RIKEN Kobe, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0046, Japan
| | | | | | | | | | | | | |
Collapse
|
226
|
Pantò MR, Zappalà A, Tuorto F, Cicirata F. Role of the Otx1 gene in cell differentiation of mammalian cortex. Eur J Neurosci 2004; 19:2893-902. [PMID: 15147323 DOI: 10.1111/j.0953-816x.2004.03326.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study analyses by immunohistochemical methods the effects of the deletion of the Otx1 gene on 12 areas of the cerebral cortex and on neurons expressing Ca-binding proteins (CaBP), such as parvalbumin (Pv) and calbindin-D28K (Cb). We found that the deletion of the Otx1 gene modified differently the various cortical areas. The decrease in cortical thickness ranged from 29.35 to 9.85% and the reduction in cellular population from 35.90 to 3.65% in the different cortical areas. The influence of the Otx1 gene concerns all cortical layers with variable effects on different cortical areas. The cellular population of cerebral cortex considered as a whole was reduced by 20.67%, Pv-positive (Pv+) cells by 58.01% and Cb-positive (Cb+) cells by 51.54%. The quantitative distribution of Pv+ and Cb+ cells varied independently in the different cortical areas. Topographic analysis of CaBP cells in Otx1-null mice (Otx1(-/-)) showed that Pv+ cells were principally distributed in layers IV and V and Cb+ cells in layers V and VI. Given that in the development of wild-type mice both cell types first appear in deep layers and later spread to superficial ones, the segregation of CaBP neurons in inner layers of Otx1(-/-) animals is an index of the immaturity of the cerebral cortex of these animals. This study showed that the Otx1 gene has a more complex role than previously reported, as it is involved in the maturation and differentiation of various cerebral cortices, and, specifically, in the development of CaBP cells.
Collapse
Affiliation(s)
- Maria Rosita Pantò
- Department of Physiological Science, University of Catania, Viale A. Doria, 6, 95125-Catania, Italy
| | | | | | | |
Collapse
|
227
|
Brox A, Puelles L, Ferreiro B, Medina L. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. J Comp Neurol 2004; 474:562-77. [PMID: 15174073 DOI: 10.1002/cne.20152] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the pallial organization and the exact location and extension of the ventral pallium in amphibians, we cloned a fragment of the homeobox XenopusTbr1 (xTbr1) gene and analyzed its expression compared with that of the genes xEomes (Tbr2) and xEmx1 in the telencephalon of the frog Xenopus laevis during embryonic and larval development. The expression of xEmx1 was also analyzed in the adult frog. We compared the expression patterns of these pallial marker genes with that of the subpallial gene xDistal-less-4 (xDll4). Our results indicate that the whole pallium of Xenopus expresses the T-box genes xTbr1 and xEomes (in proliferating cells and/or mantle) during embryonic and larval development, and the expression of these genes is topographically complementary to that of xDll4 in the subpallium. In addition to their massive expression in the pallium, both xTbr1 and xEomes are expressed in a few dispersed cells in the subpallium, which may represent immigrant cells of pallial origin, because these genes are not found in the subpallial proliferating cells. On the other hand, during development xEmx1 is expressed in a large part of the pallium (proliferating and postmitotic cells) except for an area adjacent to the pallio-subpallial boundary, where xEmx1 is observed only in some mantle cells. This pallial area poor in xEmx1 expression and poor in expression of the subpallial gene xDll4, but expressing the pallial marker genes xTbr1 and xEomes, appears to represent the amphibian ventral pallium, comparable to that described in other vertebrates (Puelles et al. [2000] J. Comp. Neurol. 424:409-438). In the adult frog, the ventral pallium appears to include the rostral part of the lateral amygdalar nucleus as well as a large part of the medial amygdalar nucleus (as defined by Marín et al. [1998] J. Comp. Neurol. 392:285-312). In contrast, the caudal part of the previously termed lateral amygdalar nucleus shows strong xEmx1 expression and may be a lateral pallial derivative. The possible homology of these amphibian amygdalar nuclei is discussed. Finally, expression of xTbr1, xEomes, and xEmx1 is observed in the mitral cell layer of the olfactory bulb from early developmental stages, further supporting that this structure is a pallial derivative.
Collapse
Affiliation(s)
- Aurora Brox
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
228
|
Abdelkhalek HB, Beckers A, Schuster-Gossler K, Pavlova MN, Burkhardt H, Lickert H, Rossant J, Reinhardt R, Schalkwyk LC, Müller I, Herrmann BG, Ceolin M, Rivera-Pomar R, Gossler A. The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Genes Dev 2004; 18:1725-36. [PMID: 15231714 PMCID: PMC478193 DOI: 10.1101/gad.303504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The floating head (flh) gene in zebrafish encodes a homeodomain protein, which is essential for notochord formation along the entire body axis. flh orthologs, termed Not genes, have been isolated from chick and Xenopus, but no mammalian ortholog has yet been identified. Truncate (tc) is an autosomal recessive mutation in mouse that specifically disrupts the development of the caudal notochord. Here, we demonstrate that truncate arose by a mutation in the mouse Not gene. The truncate allele (Nottc) contains a point mutation in the homeobox of Not that changes a conserved Phenylalanine residue in helix 1 to a Cysteine (F20C), and significantly destabilizes the homeodomain. Reversion of F20C in one allele of homozygous tc embryonic stem (ES) cells is sufficient to restore normal notochord formation in completely ES cell-derived embryos. We have generated a targeted mutation of Not by replacing most of the Not coding sequence, including the homeobox with the eGFP gene. The phenotype of NoteGFP/eGFP, NoteGFP/tc, and Nottc/tc embryos is very similar but slightly more severe in NoteGFP/eGFP than in Nottc/tc embryos. This confirms allelism of truncate and Not, and indicates that tc is not a complete null allele. Not expression is abolished in Foxa2 and T mutant embryos, suggesting that Not acts downstream of both genes during notochord development. This is in contrast to zebrafish embryos, in which flh interacts with ntl (zebrafish T) in a regulatory loop and is essential for development of the entire notochord, and suggests that different genetic control circuits act in different vertebrate species during notochord formation.
Collapse
Affiliation(s)
- Hanaa Ben Abdelkhalek
- Institute for Molecular Biology OE5250, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Park BK, Sperber SM, Choudhury A, Ghanem N, Hatch GT, Sharpe PT, Thomas BL, Ekker M. Intergenic enhancers with distinct activities regulate Dlx gene expression in the mesenchyme of the branchial arches. Dev Biol 2004; 268:532-45. [PMID: 15063187 DOI: 10.1016/j.ydbio.2004.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 12/19/2003] [Accepted: 01/09/2004] [Indexed: 11/19/2022]
Abstract
The vertebrate Dlx genes, generally organized as tail-to-tail bigene clusters, are expressed in the branchial arch epithelium and mesenchyme with nested proximodistal expression implicating a code that underlies the fates of jaws. Little is known of the regulatory architecture that is responsible for Dlx gene expression in developing arches. We have identified two distinct cis-acting regulatory sequences, I12a and I56i, in the intergenic regions of the Dlx1/2 and Dlx5/6 clusters that act as enhancers in the arch mesenchyme. LacZ transgene expression containing I12a is restricted to a subset of Dlx-expressing ectomesenchyme in the first arch. The I56i enhancer is active in a broader domain in the first arch mesenchyme. Expression of transgenes containing either the I12a or the I56i enhancers is dependent on the presence of epithelium between the onset of their expression at E9-10 until independence at E11. Both enhancers positively respond to FGF8 and FGF9; however, the responses of the reporter transgenes were limited to their normal domain of expression. BMP4 had a negative effect on expression of both transgenes and counteracted the effects of FGF8. Furthermore, bosentan, a pharmacological inhibitor of Endothelin-1 signaling caused a loss of I56i-lacZ expression in the most distal aspects of the expression domain, corresponding to the area of Dlx-6 expression previously shown to be under the control of Endothelin-1. Thus, the combinatorial branchial arch expression of Dlx genes is achieved through interactions between signaling pathways and intrinsic cellular factors. I56i drives the entire expression of Dlx5/6 in the first arch and contains necessary sequences for regulation by at least three separate pathways, whereas I12a only replicates a small domain of endogenous expression, regulated in part by BMP-4 and FGF-8.
Collapse
Affiliation(s)
- Byung K Park
- Ottawa Health Research Institute at the Ottawa Hospital, Ottawa, ON, Canada K1Y 4E9
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Shinozaki K, Yoshida M, Nakamura M, Aizawa S, Suda Y. Emx1 and Emx2 cooperate in initial phase of archipallium development. Mech Dev 2004; 121:475-89. [PMID: 15147765 DOI: 10.1016/j.mod.2004.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/18/2004] [Accepted: 03/21/2004] [Indexed: 10/26/2022]
Abstract
Emx1 and Emx2 are mouse cognates of the Drosophila head gap gene, ems. Previously we have reported that the dentate gyrus is affected in Emx2 single mutants, and defects are subtle in Emx1 single mutants. In most of the cortical region Emx1 and Emx2 functions would be redundant. To test this assumption here we examined the Emx1 and Emx2 double mutant phenotype. In the double mutants the archipallium was transformed into the roof without establishing the signaling center at the cortical hem and without developing the choroid plexus. We propose that Emx1 and Emx2 cooperate in generation of the boundary between the roof and archipallium; these genes develop the archipallium against the roof. This process probably occurs immediately after the neural tube closure concomitant with the Emx1 expression.
Collapse
Affiliation(s)
- Koji Shinozaki
- Department of Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto-860, Japan
| | | | | | | | | |
Collapse
|
231
|
Cryns K, van Alphen AM, van Spaendonck MP, van de Heyning PH, Timmermans JP, de Zeeuw CI, van Camp G. Circling behavior in the Ecl mouse is caused by lateral semicircular canal defects. J Comp Neurol 2004; 468:587-95. [PMID: 14689488 DOI: 10.1002/cne.10975] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The epistatic circler mouse (Ecl mouse) is a preexisting mutant, which displays a circling phenotype and hyperactivity. It has been shown that the circling phenotype in this mutant results from a complex inheritance pattern, but the vestibular pathology has not been analyzed. The present study deals with the morphological and functional basis responsible for the circling behavior in the Ecl mouse. Morphological examination of the inner ears revealed a bilateral malformation of the horizontal (lateral) semicircular canal and duct. No cochlear abnormalities were detected, and auditory brainstem response (ABR) measurements indicated that the auditory system is not affected. Investigation of the vestibuloocular reflex (VOR) in Ecl mice showed that their horizontal VOR on stimulation is virtually absent, which correlates with the morphological findings.
Collapse
Affiliation(s)
- Kim Cryns
- Department of Medical Genetics, University of Antwerp, 2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
232
|
Gangemi RMR, Perera M, Corte G. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 2004; 89:286-306. [PMID: 15056273 DOI: 10.1046/j.1471-4159.2004.02310.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.
Collapse
|
233
|
Liguori GL, Echevarría D, Improta R, Signore M, Adamson E, Martínez S, Persico MG. Anterior neural plate regionalization in cripto null mutant mouse embryos in the absence of node and primitive streak. Dev Biol 2003; 264:537-49. [PMID: 14651936 DOI: 10.1016/j.ydbio.2003.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relation between the role of the organizer at the gastrula stage and the activity of earlier signals in the specification, maintenance, and regionalization of the developing brain anlage is still controversial. Mouse embryos homozygous for null mutation in the cripto gene die at about 9.0 days postcoitum (d.p.c.) and fail to gastrulate and to form the node (the primary organizer). Here, we study the presence and the distribution of anterior neural plate molecular domains in cripto null mutants. We demonstrate that, in cripto(-/-) embryos, the main prosencephalic and mesencephalic regions are present and that they assume the correct topological organization. The identity of the anterior neural domains is maintained in mutant embryos at 8.5 d.p.c., as well as in mutant explants dissected at 8.5 d.p.c. and cultured in vitro for 24 h. Our data imply the existence of a stable neural regionalization of anterior character inside the cripto(-/-) embryos, despite the failure in both the gastrulation process and node formation. These results suggest that, in mouse embryos, the specification of the anterior neural identities can be maintained without an absolute requirement for the embryonic mesoderm and the node.
Collapse
Affiliation(s)
- Giovanna L Liguori
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, Via Guglielmo Marconi 12, 80125 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
234
|
Kimura-Yoshida C, Kitajima K, Oda-Ishii I, Tian E, Suzuki M, Yamamoto M, Suzuki T, Kobayashi M, Aizawa S, Matsuo I. Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development 2003; 131:57-71. [PMID: 14645121 DOI: 10.1242/dev.00877] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Otx2 gene, containing a highly conserved paired-type homeobox, plays a pivotal role in the development of the rostral head throughout vertebrates. Precise regulation of the temporal and spatial expression of Otx2 is likely to be crucial for proper head specification. However, regulatory mechanisms of Otx2 expression remain largely unknown. In this study, the Otx2 genome of the puffer fish Fugu rubripes, which has been proposed as a model vertebrate owing to its highly compact genome, was cloned. Consistently, Fugu Otx2 possesses introns threefold smaller in size than those of the mouse Otx2 gene. Otx2 mRNA was transcribed after MBT, and expressed in the rostral head region throughout the segmentation and pharyngula periods of wild-type Fugu embryos. To elucidate regulatory mechanisms of Otx2 expression, the expression of Otx2-lacZ reporter genes nearly covering the Fugu Otx2 locus, from -30.5 to +38.5 kb, was analyzed, by generating transgenic mice. Subsequently, seven independent cis-regulators were identified over an expanse of 60 kb; these regulators are involved in the mediation of spatiotemporally distinct subdomains of Otx2 expression. Additionally, these expression domains appear to coincide with local signaling centers and developing sense organs. Interestingly, most domains do not overlap with one another, which implies that cis-regulators for redundant expression may be abolished exclusively in the pufferfish so as to reduce its genome size. Moreover, these cis-regions were also able to direct expression in zebrafish embryos equivalent to that observed in transgenic mice. Further comparative sequence analysis of mouse and pufferfish intergenic regions revealed eight highly conserved elements within these cis-regulators. Therefore, we propose that, in vertebrate evolution, the Otx2 promoter acquires multiple, spatiotemporally specific cis-regulators in order to precisely control highly coordinated processes in head development.
Collapse
Affiliation(s)
- Chiharu Kimura-Yoshida
- Head Organizer Project, Vertebrate Body Plan Group, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami Cho, Chuou-Ku, Kobe, Hyougo 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 2003; 6:1255-63. [PMID: 14625556 DOI: 10.1038/nn1155] [Citation(s) in RCA: 458] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 10/29/2003] [Indexed: 12/11/2022]
Abstract
Understanding the molecular mechanisms by which distinct cell fate is determined during organogenesis is a central issue in development and disease. Here, using conditional gene ablation in mice, we show that the transcription factor Otx2 is essential for retinal photoreceptor cell fate determination and development of the pineal gland. Otx2-deficiency converted differentiating photoreceptor cells to amacrine-like neurons and led to a total lack of pinealocytes in the pineal gland. We also found that Otx2 transactivates the cone-rod homeobox gene Crx, which is required for terminal differentiation and maintenance of photoreceptor cells. Furthermore, retroviral gene transfer of Otx2 steers retinal progenitor cells toward becoming photoreceptors. Thus, Otx2 is a key regulatory gene for the cell fate determination of retinal photoreceptor cells. Our results reveal the key molecular steps required for photoreceptor cell-fate determination and pinealocyte development.
Collapse
Affiliation(s)
- Akihiro Nishida
- Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | |
Collapse
|
236
|
Echevarría D, Vieira C, Gimeno L, Martínez S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. ACTA ACUST UNITED AC 2003; 43:179-91. [PMID: 14572913 DOI: 10.1016/j.brainresrev.2003.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vertebrates, elaborate cellular interactions regulate the establishment of the complex structural pattern of the developing central nervous system. Distinct neural and glial identities are acquired by neuroepithelial cells, through progressive restriction of histogenetic potential under the influence of local environmental signals. The localization of the sources of such morphogenetic signals in discrete domains of the developing neural primordium has led to the concept of secondary organizers which refine the identity and polarity of neighboring neuroepithelial regions. Thus, these organizers, secondary to those that operate throughout the embryo during gastrulation, act to pattern the anterior neural plate and tube giving rise to the forebrain, midbrain and hindbrain vesicles. Important progress has recently been made in understanding their genesis and function.
Collapse
Affiliation(s)
- Diego Echevarría
- Fac. de Medicina, Instituto de Neurociencias UMH-CSIC, University Miguel Hernandez, Carretera de Valencia, N-332, Km 87, E-03550, San Juan Alicante, Spain.
| | | | | | | |
Collapse
|
237
|
Abstract
Cortical malformations give rise to severe clinical manifestations such as epilepsy and mental retardation, but sometimes to more subtle problems like dyslexia. From a clinical standpoint, such structural abnormalities are diagnosed by radiographic and histologic findings, with disease classifications often based on these observations. Using this categorization, many of the responsible genes have been determined and now provide a means of understanding the molecular basis of the neurologic disorders. This review discusses the known genetic developmental syndromes in the context of the observed cortical malformations, the expression and function of the responsible genes, and their potential roles during the various stages of central nervous system development.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center, HIM 816, 4 Blackfan Circle, Boston, MA 02115, USA
| | | |
Collapse
|
238
|
Abstract
The cerebellum is the primary motor coordination center of the CNS and is also involved in cognitive processing and sensory discrimination. Multiple cerebellar malformations have been described in humans, however, their developmental and genetic etiologies currently remain largely unknown. In contrast, there is extensive literature describing cerebellar malformations in the mouse. During the past decade, analysis of both spontaneous and gene-targeted neurological mutant mice has provided significant insight into the molecular and cellular mechanisms that regulate cerebellar development. Cerebellar development occurs in several distinct but interconnected steps. These include the establishment of the cerebellar territory along anterior-posterior and dorsal-ventral axes of the embryo, initial specification of the cerebellar cell types, their subsequent proliferation, differentiation and migration, and, finally, the interconnection of the cerebellar circuitry. Our understanding of the basis of these developmental processes is certain to provide insight into the nature of human cerebellar malformations.
Collapse
Affiliation(s)
- Victor Chizhikov
- Department of Human Genetics, University of Chicago, 920 E 58th Street, CLSC 319, Chicago, IL 60637, USA
| | | |
Collapse
|
239
|
Aspöck G, Ruvkun G, Bürglin TR. The Caenorhabditis elegans ems class homeobox gene ceh-2 is required for M3 pharynx motoneuron function. Development 2003; 130:3369-78. [PMID: 12810585 DOI: 10.1242/dev.00551] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several homeobox genes, for example those of the ems class, play important roles in animal head development. We report on the expression pattern and function of ceh-2, the Caenorhabditis elegans ems/Emx ortholog. CEH-2 protein is restricted to the nuclei of one type of small muscle cell, one type of epithelial cell, and three types of neurons in the anterior pharynx in the head. We have generated a deletion allele of ceh-2 that removes the homeobox. Animals homozygous for this deletion are viable and fertile, but grow slightly slower and lay fewer eggs than wild type. We assayed the function of two types of pharynx neurons that express ceh-2, the pairs M3 and NSM. M3 activity is substantially reduced in electropharyngeograms of ceh-2 deletion mutants; this defect can account for the observed retardation in larval development, as M3 activity is known to be necessary for effective feeding. NSM function and metabolism are normal based on the assays used. All cells that express ceh-2 in wild type are present in the ceh-2 mutant and have normal morphologies. Therefore, unlike other ems/Emx genes, ceh-2 seems to be important for a late differentiation step and not for neuron specification or regional patterning. Because the CEH-2 homeodomain is well conserved, we tested whether ceh-2 can rescue ems(-) brain defects in Drosophila, despite the apparent differences in biological roles. We found that the C. elegans ems ortholog is able to substitute for fly ems in brain development, indicating that sequence conservation rather than conservation of biological function is important.
Collapse
Affiliation(s)
- Gudrun Aspöck
- Division of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
240
|
Hsu YH, Huang HY, Tsaur ML. Contrasting expression of Kv4.3, an A-type K+ channel, in migrating Purkinje cells and other post-migratory cerebellar neurons. Eur J Neurosci 2003; 18:601-12. [PMID: 12911756 DOI: 10.1046/j.1460-9568.2003.02786.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kv4.3, an A-type K+ channel, is the only channel molecule showing anterior-posterior (A-P) compartmentalization in the granular layer of mammalian cerebellum known so far. Kv4.3 mRNA has been detected from the posterior but not anterior granular layer in adult rat cerebellum. To characterize this A-P compartmentalization further, we examined Kv4.3 protein expression in rat cerebellum by immunohistochemistry at the embryonic, early postnatal and adult stages. Specificity of the Kv4.3 antibody was confirmed by both Western blot and immunoprecipitation analysis. In adulthood, Kv4.3 was detected from the somatodendritic domain of posterior granule cells, with a restriction boundary in the vermal lobule VI extending laterally to the hemispheric crus 1 ansiform lobules. At the early postnatal stage, this A-P pattern first appeared on postnatal day 8, when significant numbers of granule cells had migrated into the posterior granular layer and started to express Kv4.3. Similar Kv4.3 expression in the somatodendritic domain of post-migratory neurons in the cerebellum was also observed in basket cells, stellate cells, a subset of GABAergic deep neurons, Lugaro cells and, probably, deep Lugaro cells. However, none of them showed A-P compartmentalization. Strikingly, we found Kv4.3 in several clusters of migrating Purkinje cells with mediolateral compartmentalization. These Purkinje cells no longer expressed Kv4.3 after completing the migration. By contrasting the expression in migrating and post-migratory neurons, our results suggest that Kv4.3 may play an important role in the development of cerebellum, as well as in the mature cerebellum.
Collapse
Affiliation(s)
- Yi-Hua Hsu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | |
Collapse
|
241
|
Sprecher SG, Reichert H. The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:141-156. [PMID: 18089000 DOI: 10.1016/s1467-8039(03)00007-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 03/20/2003] [Indexed: 05/25/2023]
Abstract
Classical phylogenetic, neuroanatomical and neuroembryological studies propose an independent evolutionary origin of the brains of insects and vertebrates. Contrasting with this, data from three sets of molecular and genetic analyses indicate that the developmental program of brains of insects and vertebrates might be highly conserved and suggest a monophyletic origin of the brain of protostomes and deuterostomes. First, recent results of molecular phylogeny imply that none of the currently living animals correspond to evolutionary intermediates between protostomes and deuterostomes, thus making it impossible to infer the morphological organization of an ancestral bilaterian brain from living specimens. Second, recent molecular genetic evidence provides support for the body axis inversion hypothesis, which implies that a dorsoventral inversion of the body axis occurred in protostomes versus deuterostomes, leading to the inverted location of neurogenic regions in these animal groups. Third, recent developmental genetic analyses are uncovering the existence of structurally and functionally homologous genes that have comparable and interchangeable functions in early brain development in insect and vertebrate model systems. Thus, development of the anteriormost part of the embryonic brain in both insects and vertebrates depends upon the otd/Otx and ems/Emx genes; development of the posterior part of the embryonic brain in both insects and vertebrates involves homologous control genes of the Hox cluster. These findings, which demonstrate the conserved expression and function of key patterning genes involved in embryonic brain development in insects and vertebrates support the hypothesis that the brains of protostomes and deuterostomes are of monophyletic, urbilaterian origin.
Collapse
Affiliation(s)
- Simon G Sprecher
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | |
Collapse
|
242
|
Yun K, Garel S, Fischman S, Rubenstein JLR. Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J Comp Neurol 2003; 461:151-65. [PMID: 12724834 DOI: 10.1002/cne.10685] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The function of the Gsh1 and Gsh2 homeobox transcription factors during development of the mouse telencephalon was studied using loss of function mutations. No telencephalic phenotype was observed in Gsh1 mutants, whereas Gsh2 and Gsh1/2 mutants showed progressively more severe defects in development of neurons derived from the lateral ganglionic eminence (LGE). These defects arise from abnormal dorsoventral specification of LGE progenitor cells. Mice lacking both Gsh1 and Gsh2 have severe hypoplasia of the striatum, olfactory tubercle, and interneurons that migrate from the dorsal LGE to the olfactory bulb. In addition, Gsh function is linked to the development of telencephalic dopaminergic neurons. These observations show that Gsh1 and Gsh2 have early roles in defining the identity of LGE progenitor cells. As a result of the basal ganglia defects in the Gsh1/2 mutants, there are pallial heterotopia near the cortical/subcortical limit and defects in the pathfinding of corticofugal and thalamocortical fibers. These findings highlight the developmental interdependence of adjacent telencephalic structures.
Collapse
Affiliation(s)
- Kyuson Yun
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, LPPI, University of California at San Francisco, San Francisco, California 94143-0984, USA
| | | | | | | |
Collapse
|
243
|
Oda-Ishii I, Saiga H. Genomic organization and promoter and transcription regulatory regions for the expression in the anterior brain (sensory vesicle) of Hroth, the otx homologue of the ascidian, Halocynthia roretzi. Dev Dyn 2003; 227:104-13. [PMID: 12701103 DOI: 10.1002/dvdy.10295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Otx (otd in Drosophila) is a well-conserved homeobox gene throughout animal phylogeny and commonly expressed in the anterior part of the embryo. In embryos of the ascidian Halocynthia roretzi, Hroth, the otx homologue in this species, is expressed in the endoderm and the sensory vesicle, the anterior part of the larval ascidian central nervous system (CNS), which has been thought to be homologous to vertebrate forebrain and midbrain. The developmental expression pattern of Hroth is very similar to that of vertebrate counterparts, which leads to a possibility that a similar mechanism may exist in the patterning of the CNS between ascidians and vertebrates. To better understand the mechanism, we decided to undertake analysis of the transcriptional regulatory regions of Hroth. We isolated and determined the nucleotide sequence of the 11.4-kbp region upstream of the translation start site of Hroth. We found that Hroth transcripts are modified likely with spliced leader RNA; therefore, we could not determine the transcription start site. However, first, we identified three introns that are unknown with vertebrate otx genes. Second, we found two regions that are capable of functioning as a promoter through deletion analysis, one of which appeared to be an endogenous promoter of Hroth. We analyzed the 5' upstream region 5402-1473bp, the region between 1473 and 5402 base pairs upstream from the translation start site of Hroth, including the putative endogenous promoter. This region was capable of driving Hroth expression in the sensory vesicle lineage cells as well as some other lineages at the early tail bud stage. Deletion analysis of this region suggested that three regions, 1659-1650bp, 1628-1613bp, and 1542-1473bp are responsible for regulating Hroth expression in the sensory vesicle cells at the tail bud stage. Among these regions, no apparent sequence conservation was observed. The present study has revealed a complex organization of transcription regulatory regions for the ascidian otx.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan
| | | |
Collapse
|
244
|
Abstract
The nature versus nurture debate has recently resurfaced with the emergence of the field of developmental molecular neurobiology. The questions associated with "nature" have crystallized into testable hypotheses regarding patterns of gene expression during development, and those associated with "nurture" have given over to activity-dependent cellular mechanisms that give rise to variable phenotypes in developing nervous systems. This review focuses on some of the features associated with complex brains and discusses the evolutionary and activity-dependent mechanisms that generate these features. These include increases in the size of the cortical sheet, changes in cortical domain and cortical field specification, and the activity-dependent intracellular mechanisms that regulate the structure and function of neurons during development. We discuss which features are likely to be genetically mediated, which features are likely to be regulated by activity, and how these two mechanisms act in concert to produce the wide variety of phenotypes observed for the mammalian neocortex. For example, the size of the cortical sheet is likely to be under genetic control, and regulation of cell-cycle kinetics through upregulation of genes such as beta-catenin can account for increases in the size of the cortical sheet. Similarly, intrinsic signaling genes or gene products such as Wnt, Shh, Fgf2, Fgf8 and BMP may set up a combinatorial coordinate system that guides thalamic afferents. Changes in peripheral morphology that regulate patterned activity are also likely to be under genetic control. Finally, the intracellular machinery that allows for activity-dependent plasticity in the developing CNS may be genetically regulated, although the specific phenotype they generate are not. On the other hand, aspects of neocortical organization such as sensory domain assignment, the size and shape of cortical fields, some aspects of connectivity, and details of functional organization are likely to be activity-dependent. Furthermore, the role of genes versus activity, and their interactions, may be different for primary fields versus non-primary fields.
Collapse
Affiliation(s)
- Leah Krubitzer
- Department of Psychology, Center for Neuroscience, University of California, 1544 Newton Ct, Davis, CA 95616, USA.
| | | |
Collapse
|
245
|
Kessler MA, Yang M, Gollomp KL, Jin H, Iacovitti L. The human tyrosine hydroxylase gene promoter. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:8-23. [PMID: 12670698 DOI: 10.1016/s0169-328x(02)00694-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
13.329 kilobases of the single copy human tyrosine hydroxylase (hTH) gene were isolated from a genomic library. The 5' flanking 11 kilobases fused to the reporter green fluorescent protein (GFP) drove high level expression in TH+ cells of the substantia nigra of embryonic and adult transgenic mice as determined by double label fluorescence microscopy. To provide a basis for future analysis of polymorphisms and structure-function studies, the previously unreported distal 10.5 kilobases of the hTH promoter were sequenced with an average coverage of 20-fold, the remainder with 4-fold coverage. Sequence features identified included four perfect matches to the bicoid binding element (BBE, consensus: BBTAATCYV) all of which exhibited specific binding by electrophoretic mobility shift assay (EMSA). Comparison to published sequences of mouse and rat TH promoters revealed five areas of exceptional homology shared by these species in the upstream TH promoter region -2 kb to -9 kb relative to the transcription start site. Within these conserved regions (CRs I-V), potential recognition sites for NR4A2 (Nurr1), HNF-3beta, HOXA4, and HOXA5 were shared across human, mouse, and rat TH promoters.
Collapse
Affiliation(s)
- Mark A Kessler
- Department of Neurology and Farber Institute for the Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
246
|
Cipelletti B, Avanzini G, Vitellaro-Zuccarello L, Franceschetti S, Sancini G, Lavazza T, Acampora D, Simeone A, Spreafico R, Frassoni C. Morphological organization of somatosensory cortex in Otx1(-/-) mice. Neuroscience 2003; 115:657-67. [PMID: 12435405 DOI: 10.1016/s0306-4522(02)00531-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Knock-out Otx1 mice show brain hypoplasia, spontaneous epileptic seizures and abnormalities of the dorsal region of the neocortex. We investigated structural alterations in excitatory and inhibitory circuits in somatosensory cortex of Otx1(-/-) mice by immunocytochemistry using light, confocal and electron microscopy. Immunostaining for non-phosphorylated neurofilament SMI311 and subunit 1 of the NMDA receptor - used as markers of pyramidal neurons - showed reduced layer V pyramidal cells and ectopic pyramidal cells in layers II and III of the mutant cortex. Immunostaining for calcium-binding proteins calbindin, calretinin and parvalbumin - markers of non-overlapping types of GABAergic interneurons - showed no differences between wild-type and knock-out cortex for calbindin and calretinin neurons, while parvalbumin neurons were only patchily distributed in Otx1(-/-) cortex. The pattern of positivity of the GABAergic marker glutamic acid decarboxylase in Otx1(-/-) cortex was also altered and similar to that of parvalbumin. GABA transporter 1 immunoreactivity was greater in Otx1(-/-) than wild-type; quantitation of structures immunoreactive for this transporter in layer V showed that they were increased overall in Otx1(-/-) but the density of inhibitory terminals on pyramidal neurons in the same layer labeled with this transporter was similar to that in wild-type mice. No differences in the distribution or intensity of the glial markers GABA transporter 3 or glial fibrillary acidic protein were found. The defects found in the cortical GABAergic system of the Otx1(-/-) mouse can plausibly explain the cortical hyperexcitability that produces seizures in these animals.
Collapse
Affiliation(s)
- B Cipelletti
- Dipartimento Neurofisiologia Sperimentale, Istituto Nazionale Neurologico 'C Besta', via Celoria 11, 20133, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Viczian AS, Vignali R, Zuber ME, Barsacchi G, Harris WA. XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina. Development 2003; 130:1281-94. [PMID: 12588845 DOI: 10.1242/dev.00343] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photoreceptor and bipolar cells are molecularly related cell types in the vertebrate retina. XOtx5b is expressed in both photoreceptors and bipolars, while a closely related member of the same family of transcription factors, XOtx2, is expressed in bipolar cells only. Lipofection of retinal precursors with XOtx5b biases them toward photoreceptor fates whereas a similar experiment with XOtx2 promotes bipolar cell fates. Domain swap experiments show that the ability to specify different cell fates is largely contained in the divergent sequence C-terminal to the homeodomain, while the more homologous N-terminal and homeodomain regions of both genes, when fused to VP16 activators, promote only photoreceptor fates. XOtx5b is closely related to Crx and like Crx it drives expression from an opsin reporter in vivo. XOtx2 suppresses this XOtx5b-driven reporter activity providing a possible explanation for why bipolars do not express opsin. Similarly, co-lipofection of XOtx2 with XOtx5b overrides the latter's ability to promote photoreceptor fates and the combination drives bipolar fates. The results suggest that the shared and divergent parts of these homologous genes may be involved in specifying the shared and distinct characters of related cell types in the vertebrate retina.
Collapse
Affiliation(s)
- Andrea S Viczian
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, UK
| | | | | | | | | |
Collapse
|
248
|
Hevner RF, Neogi T, Englund C, Daza RAM, Fink A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 141:39-53. [PMID: 12644247 DOI: 10.1016/s0165-3806(02)00641-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cajal-Retzius cells are reelin-secreting neurons found in the marginal zone of the mammalian cortex during development. Recently, it has been proposed that Cajal-Retzius cells may be generated both early and late in corticogenesis, and may migrate into the cortex from proliferative zones in the subpallium (lateral ganglionic eminence and medial ganglionic eminence) or cortical hem. In the present study, we used reelin as a marker to study the properties of Cajal-Retzius cells, including their likely origins, neurotransmitters, and birthdates. In double labeling experiments, Cajal-Retzius cells (reelin(+)) expressed transcription factors characteristic of pallial neurons (Tbr1 and Emx2), contained high levels of glutamate, were usually calretinin(+), and were born early in corticogenesis, on embryonic days (E)10.5 and E11.5. Tbr1(+) cells in the marginal zone were almost always reelin(+). The first Cajal-Retzius cells (Tbr1(+)/reelin(+)) appeared in the preplate on E10.5. In contrast, interneurons expressed a subpallial transcription factor (Dlx), contained high levels of GABA, were frequently calbindin(+), and were born throughout corticogenesis (from E10.5 to E16.5). Interneurons (Dlx(+)) first appeared in the cortex on E12.5. Our results suggest that the marginal zone contains two main types of neurons: Cajal-Retzius cells derived from the pallium, and migrating interneurons derived from the subpallium.
Collapse
Affiliation(s)
- Robert F Hevner
- Department of Pathology, University of Washington, Harborview Medical Center, Box 359630, 325 Ninth Ave, Seattle, WA 98104-2499, USA.
| | | | | | | | | |
Collapse
|
249
|
Yun ME, Johnson RR, Antic A, Donoghue MJ. EphA family gene expression in the developing mouse neocortex: regional patterns reveal intrinsic programs and extrinsic influence. J Comp Neurol 2003; 456:203-16. [PMID: 12528186 DOI: 10.1002/cne.10498] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parcellation of the mammalian cerebral cortex into distinct areas is essential for proper cortical function; however, the developmental program that results in the genesis of distinct areas is not fully understood. We examined the expression of members of the EphA family-the EphA receptor tyrosine kinases and the ephrin-A ligands-within the developing mouse cerebral cortex, with the aim of characterizing this component of the molecular landscape during cortical parcellation. We found that specific embryonic zones, such as the ventricular, subventricular, intermediate, subplate, and marginal zones, as well as the cortical plate, were positive for particular EphA genes early in corticogenesis (E12-E15). Along with this zone-selective expression, several genes (EphA3, EphA4, EphA5) were evenly expressed along the axes of the developing cortex, whereas one family member (EphA7) was expressed in a distinct anteroposterior pattern. Later in corticogenesis (E16-E18), other EphA family members became selectively expressed, but only within the cortical plate: EphA6 was present posteriorly, and ephrin-A5 was expressed within a middle region. At birth, patterning of EphA gene expression was striking. Thus, we found that the expression of a single EphA gene or a combination of family members can define distinct embryonic zones and anteroposterior regions of the neocortex during development. To examine whether cellular context affects the patterning of EphA expression, we examined gene expression in embryonic cortical cells grown in vitro, such that all cellular contacts are lacking, and in Mash-1 mutant mice, in which thalamocortical connections do not form. We found that the expression patterns of most EphA family members remained stable in these scenarios, whereas the pattern of ephrin-A5 was altered. Taken together, this work provides a comprehensive picture of EphA family expression during mouse corticogenesis and demonstrates that most EphA expression profiles are cell intrinsically based, whereas ephrin-A5 is plastically regulated.
Collapse
Affiliation(s)
- Mihae E Yun
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
250
|
Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HRC, McKinnon PJ, Solnica-Krezel L, Oliver G. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 2003; 17:368-79. [PMID: 12569128 PMCID: PMC195989 DOI: 10.1101/gad.1059403] [Citation(s) in RCA: 377] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 12/09/2002] [Indexed: 01/20/2023]
Abstract
In vertebrate embryos, formation of anterior neural structures requires suppression of Wnt signals emanating from the paraxial mesoderm and midbrain territory. In Six3(-/-) mice, the prosencephalon was severely truncated, and the expression of Wnt1 was rostrally expanded, a finding that indicates that the mutant head was posteriorized. Ectopic expression of Six3 in chick and fish embryos, together with the use of in vivo and in vitro DNA-binding assays, allowed us to determine that Six3 is a direct negative regulator of Wnt1 expression. These results, together with those of phenotypic rescue of headless/tcf3 zebrafish mutants by mouse Six3, demonstrate that regionalization of the vertebrate forebrain involves repression of Wnt1 expression by Six3 within the anterior neuroectoderm. Furthermore, these results support the hypothesis that a Wnt signal gradient specifies posterior fates in the anterior neural plate.
Collapse
Affiliation(s)
- Oleg V Lagutin
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|