201
|
Abstract
PURPOSE OF REVIEW The purpose of the present review is to provide an update on the current development in the field of broadly neutralizing antibodies (bNabs) and their potential use in the prevention and therapeutic settings, and an evaluation of the B-cell abnormalities that may impair antibody responses in HIV infection. RECENT FINDINGS Major advances have been achieved in the characterization of bNabs directed against different vulnerable regions of HIV Envelope (Env). Recent observations have clearly demonstrated the ability of bNabs to prevent HIV infection in the nonhuman primate model of HIV infection and to suppress viremia in individuals with chronic HIV infection in the absence of antiretroviral therapy. Furthermore, substantial advances have also been obtained in the development of HIV Env proteins and immunization strategies inducing bNabs in small animal models. Several studies have also shed light on the B-cell abnormalities associated with the viremic phase of HIV infection that cause impaired B-cell maturation and antibody responses. Of note, preliminary observations have provided evidence for a correlation between the expansion of a specific population of B cells, for example, germinal center B cells, the expansion of T follicular helper cells (Tfh), and the generation of neutralizing antibodies. SUMMARY The recent observations on the antiviral effects of bNabs in vivo indicate that bNabs may play a central role in both the prevention and the therapeutic settings. The identification of the role of germinal center B cells and Tfh cells as critical components of the immune response leading to the generation of neutralizing antibodies, will allow the development of specific immunization strategies for the stimulation of germinal center B cells and Tfh cells. A lot of work still remains to be done for the delineation of B-cell and Tfh cell biology from human lymphoid tissues and in the development of HIV Env proteins and immunization strategies leading to the generation of bNabs.
Collapse
|
202
|
Abstract
Purpose of review The ability to induce broadly neutralizing antibody (bNAb) responses is likely essential for development of a globally effective HIV vaccine. Unfortunately, human vaccine trials conducted to date have failed to elicit broad plasma neutralization of primary virus isolates. Despite this limitation, in-depth analysis of the vaccine-induced memory B-cell repertoire can provide valuable insights into the presence and function of subdominant B-cell responses, and identify initiation of antibody lineages that may be on a path towards development of neutralization breadth. Recent findings Characterization of the functional capabilities of monoclonal antibodies isolated from a HIV-1 vaccine trial with modest efficacy has revealed mechanisms by which non-neutralizing antibodies are presumed to have mediated protection. In addition, B-cell repertoire analysis has demonstrated that vaccine boosts shifted the HIV-specific B-cell repertoire, expanding pools of cells with long third heavy chain complementarity determining regions – a characteristic of some bNAb lineages. Summary Detailed analysis of memory B-cell repertoires and evaluating the effector functions of isolated monoclonal antibodies expands what we can learn from human vaccine trails, and may provide knowledge that can enable rational design of novel approaches to drive maturation of subdominant disfavored bNAb lineages.
Collapse
|
203
|
Abstract
Purpose of review Here we discuss recently developed HIV-1 entry inhibitors that can target multiple epitopes on the HIV-1 envelope glycoprotein (Env), with an emphasis on eCD4-Ig. Some of these inhibitors are more potent and broader than any single antibody characterized to date. We also discuss the use of recombinant adeno-associated virus (rAAV) vectors as a platform for long-term expression of these inhibitors. Recent findings Much of the exterior of HIV-1 Env can be targeted by broadly neutralizing antibodies (bNAbs). Recent studies combine the variable regions or Fabs from different bNAbs, often with the receptor-mimetic components, to create broad, potent, and hard-to-escape inhibitors. rAAV vectors can express these inhibitors for years in vivo, highlighting their ability to prevent or treat HIV-1 infection. Summary By targeting multiple epitopes on Env, bispecific and antibody-like inhibitors can be broader and more potent than bNAbs. These inhibitors can provide long-term protection from, and perhaps suppression of, HIV-1 if they are administered by a delivery platform, like rAAV vectors, but only after rAAV limitations are addressed.
Collapse
|
204
|
Früh K, Picker L. CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Curr Opin Immunol 2017; 47:52-56. [PMID: 28734175 DOI: 10.1016/j.coi.2017.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Vectors based on cytomegalovirus (CMV) represent a novel vaccine platform that maintains high frequencies of non-exhausted effector memory T cells in both CMV sero-positive and sero-negative individuals. In non-human primate models, CMV vectored vaccines provide unprecedented protection against simian immunodeficiency virus (SIV). Moreover, CMV vectors can be genetically altered to program highly diverse CD8+ T cell responses that differ in their epitope targeting including conventional, MHC-I restricted CD8+ T cells as well as unconventional CD8+ T cells restricted by MHC class II or non-polymorphic MHC-E. By modifying cytomegaloviral determinants that control unconventional T cell priming it is possible to uniquely tailor the CD8+ T cell response for each individual disease target in order to maximize prophylactic or therapeutic protection.
Collapse
Affiliation(s)
- Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.
| | - Louis Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.
| |
Collapse
|
205
|
Ozorowski G, Pallesen J, de Val N, Lyumkis D, Cottrell CA, Torres JL, Copps J, Stanfield RL, Cupo A, Pugach P, Moore JP, Wilson IA, Ward AB. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 2017; 547:360-363. [PMID: 28700571 PMCID: PMC5538736 DOI: 10.1038/nature23010] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
For many enveloped viruses, binding to a receptor(s) on a host cell acts as a first step in a series of events culminating in fusion with the host cell membrane and transfer of genetic material for replication [for review see1,2]. The envelope glycoprotein (Env) trimer on the surface of HIV is responsible for receptor binding and fusion. While Env can tolerate a high degree of mutation in five variable regions (V1-V5), and also at N-linked glycosylation sites that contribute roughly half the mass of Env, the functional sites for recognition of receptor CD4 and co-receptor CXCR4/CCR5 are conserved and essential for viral fitness. Soluble SOSIP Env trimers are structural and antigenic mimics of the pre-fusion native, surface-presented Env3,4, targets of broadly neutralizing antibodies (bnAbs). Thus, they are attractive immunogens for vaccine development [for review see5–8]. Here we present high-resolution cryo-electron microscopy (cryoEM) structures of subtype B B41 SOSIP Env trimers in complex with CD4 and antibody 17b, or with antibody b12, at resolutions of ~3.7 Å and ~3.6 Å, respectively, and compare them to cryoEM reconstructions of ligand-free B41 SOSIP Env trimers or in complex with either CD4 or CD4bs antibody PGV04, at ~5.6 Å, ~5.2 Å and ~7.4 Å, respectively. Consequently, we present the most complete description and understanding of the CD4/17b-induced intermediate and provide the molecular basis of the receptor-binding induced conformational change required for HIV-1 entry into host cells. Both CD4 and b12 induce large, previously uncharacterized conformational rearrangements in the gp41 subunits, and the fusion peptide becomes more buried in a newly formed pocket. These structures provide key details on the biological function of the type I viral fusion machine from HIV-1 as well as new templates for inhibitor design.
Collapse
Affiliation(s)
- Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
206
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
207
|
Meador LR, Kessans SA, Kilbourne J, Kibler KV, Pantaleo G, Roderiguez ME, Blattman JN, Jacobs BL, Mor TS. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles. Virology 2017; 507:242-256. [PMID: 28458036 PMCID: PMC5529300 DOI: 10.1016/j.virol.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1.
Collapse
Affiliation(s)
- Lydia R Meador
- Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ, USA; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Sarah A Kessans
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Karen V Kibler
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne, Switzerland
| | | | - Joseph N Blattman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Tsafrir S Mor
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
208
|
Sun Y, Qiao Y, Zhu Y, Chong H, He Y. Identification of a novel HIV-1-neutralizing antibody from a CRF07_BC-infected Chinese donor. Oncotarget 2017; 8:63047-63063. [PMID: 28968970 PMCID: PMC5609902 DOI: 10.18632/oncotarget.18594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023] Open
Abstract
The identification of human monoclonal antibodies (mAbs) able to neutralize a broad spectrum of primary HIV-1 isolates is highly important for understanding the immune response of HIV-1 infection and developing vaccines and therapeutics. In this study, we isolated a novel human mAb termed Y498 from a phage display antibody library constructed with the PBMC samples of a CRF07_BC-infected Chinese donor whose sera exhibited broadly neutralizing activity. Y498 cross-reacted with diverse Env antigens and neutralized 30% of 70 tested HIV-1 isolates. It efficiently blocked the binding of soluble CD4 to gp120 and competed with the CD4-binding site (CD4bs)-specific mAbs. By combining molecular docking and site-directed mutagenesis, the epitope of Y498 was characterized to contain three antigenic sites on gp120, including the CD4 binding loop in C3, the β23 in C4 and the β24-α5 in C5, which overlap the binding sites of CD4 and CD4bs-directed mAbs (b12, VRC01, A16). Therefore, Y498 is a novel neutralizing human mAb targeting a conformation-dependent CD4bs-based epitope, and its isolation and characterization could provide helpful information for elucidating human immune response to HIV-1 infection and designing effective vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- Youxiang Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanyuan Qiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
209
|
Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nat Commun 2017; 8:15711. [PMID: 28593989 PMCID: PMC5472724 DOI: 10.1038/ncomms15711] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. A previous human HIV-1 vaccine clinical trial, boosting with HIV envelope protein from two strains, demonstrated moderate vaccine efficacy. Here, Bradley et al. show that a pentavalent HIV envelope protein boost improves protection from viral challenge in non-human primates and they identify immune correlates of protection.
Collapse
|
210
|
Erwin S, Ciupe SM. Germinal center dynamics during acute and chronic infection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:655-671. [PMID: 28092957 DOI: 10.3934/mbe.2017037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of the immune system to clear pathogens is limited during chronic virus infections where potent long-lived plasma and memory B-cells are produced only after germinal center B-cells undergo many rounds of somatic hypermutations. In this paper, we investigate the mechanisms of germinal center B-cell formation by developing mathematical models for the dynamics of B-cell somatic hypermutations. We use the models to determine how B-cell selection and competition for T follicular helper cells and antigen influences the size and composition of germinal centers in acute and chronic infections. We predict that the T follicular helper cells are a limiting resource in driving large numbers of somatic hypermutations and present possible mechanisms that can revert this limitation in the presence of non-mutating and mutating antigen.
Collapse
Affiliation(s)
- Samantha Erwin
- 460 McBryde Hall, Virginia Tech, Blacksburg, VA 24061, United States .
| | | |
Collapse
|
211
|
Wang H, Gristick HB, Scharf L, West AP, Galimidi RP, Seaman MS, Freund NT, Nussenzweig MC, Bjorkman PJ. Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. eLife 2017; 6. [PMID: 28548638 PMCID: PMC5472438 DOI: 10.7554/elife.27389] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022] Open
Abstract
The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2 Å resolution) and PG9 (11.5 Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility. DOI:http://dx.doi.org/10.7554/eLife.27389.001
Collapse
Affiliation(s)
- Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
212
|
Virnik K, Nesti E, Dail C, Hockenbury M, Ni Y, Felber BK, Schief WR, Berkower I. Expression of complete SIV p27 Gag and HIV gp120 engineered outer domains targeted by broadly neutralizing antibodies in live rubella vectors. Vaccine 2017; 35:3272-3278. [PMID: 28483193 DOI: 10.1016/j.vaccine.2017.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/30/2022]
Abstract
Infection with HIV or SIV often elicits a potent immune response to viral antigens. This includes T cells and antibodies specific for Gag and Env antigens. In contrast, when given as a vaccine, the same antigens have been weak immunogens, unable to elicit antibodies with comparable titer, durability, or neutralizing activity. We have used the live attenuated rubella vaccine strain RA27/3 as a viral vector to express HIV and SIV antigens. By mimicking an HIV infection, these vectors could elicit stronger and more durable immunity to HIV antigens. The vectors are based on the licensed rubella vaccine strain, which has demonstrated safety and potency in millions of children. One or two doses protect for life against rubella infection. The question was whether rubella vectors could similarly enhance the immunogenicity of a foreign vaccine insert. We have previously reported that rubella vectors can express small protein antigens in vitro and in vivo, where they elicit a strong immune response to the vaccine insert. The vectors have now expressed larger vaccine inserts that include epitope-rich fragments of the Gag matrix and capsid proteins (aa 41-211) or the complete p27 capsid protein with p2 (aa 136-381). These vectors have elicited a robust and durable immune response to Gag in rhesus macaques. This size range also encompasses the engineered outer domain (eOD) of HIV envelope gp120 (172 amino acids). The rubella/eOD-GT6 and GT8 vectors stably expressed glycoproteins that bind germline precursors and mature forms of VRC01-class broadly neutralizing antibodies. These vectors potentially could be used as part of a sequential immunization strategy to initiate the production of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Edmund Nesti
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Cody Dail
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Max Hockenbury
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Yisheng Ni
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, NCI Frederick, Bldg 535, Room 209, Frederick, MD 21702, USA
| | - William R Schief
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ira Berkower
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA.
| |
Collapse
|
213
|
Brandenberg OF, Magnus C, Rusert P, Günthard HF, Regoes RR, Trkola A. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters. PLoS Pathog 2017; 13:e1006313. [PMID: 28472201 PMCID: PMC5417720 DOI: 10.1371/journal.ppat.1006313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/24/2017] [Indexed: 01/08/2023] Open
Abstract
The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.
Collapse
Affiliation(s)
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
214
|
Bailey JR, Flyak AI, Cohen VJ, Li H, Wasilewski LN, Snider AE, Wang S, Learn GH, Kose N, Loerinc L, Lampley R, Cox AL, Pfaff JM, Doranz BJ, Shaw GM, Ray SC, Crowe JE. Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight 2017; 2:92872. [PMID: 28469084 PMCID: PMC5414559 DOI: 10.1172/jci.insight.92872] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023] Open
Abstract
Here, we report the isolation of broadly neutralizing mAbs (bNAbs) from persons with broadly neutralizing serum who spontaneously cleared hepatitis C virus (HCV) infection. We found that bNAbs from two donors bound the same epitope and were encoded by the same germline heavy chain variable gene segment. Remarkably, these bNAbs were encoded by antibody variable genes with sparse somatic mutations. For one of the most potent bNAbs, these somatic mutations were critical for antibody neutralizing breadth and for binding to autologous envelope variants circulating late in infection. However, somatic mutations were not necessary for binding of the bNAb unmutated ancestor to envelope proteins of early autologous transmitted/founder viruses. This study identifies a public B cell clonotype favoring early recognition of a conserved HCV epitope, proving that anti-HCV bNAbs can achieve substantial neutralizing breadth with relatively few somatic mutations, and identifies HCV envelope variants that favored selection and maturation of an anti-HCV bNAb in vivo. These data provide insight into the molecular mechanisms of immune-mediated clearance of HCV infection and present a roadmap to guide development of a vaccine capable of stimulating anti-HCV bNAbs with a physiologic number of somatic mutations characteristic of vaccine responses.
Collapse
Affiliation(s)
- Justin R. Bailey
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew I. Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Valerie J. Cohen
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa N. Wasilewski
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anna E. Snider
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerald H. Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Leah Loerinc
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Rebecca Lampley
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
215
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize recent advances in the use of broadly neutralizing antibodies (bNAbs) as therapeutics in human clinical trials and in non-human primate (NHP) models. We seek to highlight lessons from these studies with an emphasis on consequences to the virus and immune system. RECENT FINDINGS In the past 10 years, advances in HIV-1 trimer structure and B cell isolation methods have precipitated the identification of "new-generation" anti-HIV antibodies with broad and potent neutralization. In the past 2 years, the concept of using these bNAbs as therapeutic tools has moved from NHP models into human clinical trials. These trials have investigated the effects of bNAb infusions into patients chronically infected with HIV-1, while the NHP model has investigated treatment during acute infection. Through this work, the relationship between in vitro breadth and potency and in vivo clinical effect, although unresolved, is gradually being elucidated. These results emphasize the need for combination antibody therapy.
Collapse
Affiliation(s)
- Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), 1 Modderfontein Road, Sandringham, Johannesburg, Gauteng 2131 South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St. NW, Washington, DC 20001 USA
| |
Collapse
|
216
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
217
|
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery, Duke University School of Medicine, Durham, NC, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, Scripps Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| |
Collapse
|
218
|
Harada S, Yoshimura K. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Front Microbiol 2017; 8:390. [PMID: 28360890 PMCID: PMC5352695 DOI: 10.3389/fmicb.2017.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
219
|
Haußner C, Damm D, Nirschl S, Rohrhofer A, Schmidt B, Eichler J. Peptide Paratope Mimics of the Broadly Neutralizing HIV-1 Antibody b12. Chembiochem 2017; 18:647-653. [DOI: 10.1002/cbic.201600621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Christina Haußner
- Department of Chemistry and Pharmacy; University of Erlangen-Nürnberg; Schuhstrasse 19 91052 Erlangen Germany
| | - Dominik Damm
- Institute of Medical Microbiology and Hygiene; University of Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - Sandra Nirschl
- Institute of Medical Microbiology and Hygiene; University of Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and Hygiene; University of Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - Barbara Schmidt
- Institute of Medical Microbiology and Hygiene; University of Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
- Institute of Clinical Microbiology and Hygiene; University of Regensburg; Franz-Josef-Strauss-Allee 11 93053 Regensburg Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy; University of Erlangen-Nürnberg; Schuhstrasse 19 91052 Erlangen Germany
| |
Collapse
|
220
|
Sack B, Kappe SHI, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 2017; 16:403-414. [PMID: 28277097 DOI: 10.1080/14760584.2017.1295853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
Collapse
Affiliation(s)
- Brandon Sack
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| | - Stefan H I Kappe
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - D Noah Sather
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| |
Collapse
|
221
|
Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. mBio 2017; 8:mBio.00036-17. [PMID: 28246356 PMCID: PMC5347340 DOI: 10.1128/mbio.00036-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.
Collapse
|
222
|
Struwe WB, Stuckmann A, Behrens AJ, Pagel K, Crispin M. Global N-Glycan Site Occupancy of HIV-1 gp120 by Metabolic Engineering and High-Resolution Intact Mass Spectrometry. ACS Chem Biol 2017; 12:357-361. [PMID: 27984693 DOI: 10.1021/acschembio.6b00854] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A vital step in HIV vaccine development strategies has been the observation that some infected individuals generate broadly neutralizing antibodies that target the glycans on the surface of HIV-1 gp120. These antibodies target glycan epitopes on viral envelope spikes, and yet the positions and degree of occupancy of glycosylation sites is diverse. Therefore, there is a need to understand glycosylation occupancy on recombinant immunogens. The sheer number of potential glycosylation sites and degree of chemical heterogeneity impedes assessing the global sequon occupancy of gp120 glycoforms. Here, we trap the glycan processing of recombinant gp120 to generate homogeneous glycoforms, facilitating occupancy assessment by intact mass spectrometry. We show that gp120 monomers of the BG505 strain contain either fully occupied sequons or missing the equivalent of one and sometimes two glycans across the molecule. This biosynthetic engineering approach enables the analysis of therapeutically important glycoproteins otherwise recalcitrant to analysis by native mass spectrometry.
Collapse
Affiliation(s)
- Weston B. Struwe
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Alexandra Stuckmann
- Free University Berlin, Department of Chemistry
and Biochemistry, Takustrasse
3, 14195 Berlin, Germany
| | - Anna-Janina Behrens
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Kevin Pagel
- Free University Berlin, Department of Chemistry
and Biochemistry, Takustrasse
3, 14195 Berlin, Germany
| | - Max Crispin
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
- Department
of Immunology and Microbial Science, The Scripps Research Institute, La
Jolla, California 92037, United States
| |
Collapse
|
223
|
Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, Murrell B, Pfeifer N, Nogueira L, Oliveira TY, Learn GH, Cohen YZ, Lehmann C, Gillor D, Shimeliovich I, Unson-O’Brien C, Weiland D, Robles A, Kümmerle T, Wyen C, Levin R, Witmer-Pack M, Eren K, Ignacio C, Kiss S, West AP, Mouquet H, Zingman BS, Gulick RM, Keler T, Bjorkman PJ, Seaman MS, Hahn BH, Fätkenheuer G, Schlesinger SJ, Nussenzweig MC, Klein F. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med 2017; 23:185-191. [PMID: 28092665 PMCID: PMC5467219 DOI: 10.1038/nm.4268] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 log10 copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Allison Settler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Theodora Karagounis
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Edward F. Kreider
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Gerald H. Learn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yehuda Z. Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Daniel Gillor
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Cecilia Unson-O’Brien
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Daniela Weiland
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Alexander Robles
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tim Kümmerle
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | - Rebeka Levin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Kemal Eren
- Department of Biomedical Informatics and
- Bioinformatics and System Biology, University of California, San Diego, San Diego, California, USA
| | - Caroline Ignacio
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Szilard Kiss
- Department of Ophthalmology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris, France
| | - Barry S. Zingman
- Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Einstein/CUNY/Rockefeller Center for AIDS Research, Bronx, New York, New York, USA
| | - Roy M. Gulick
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, New Jersey, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| | - Sarah J. Schlesinger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, Cologne, Germany
| |
Collapse
|
224
|
Martin-Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb KE, Schulze Zur Wiesch J, Cubas R, Porichis F, Shalek AK, van Lunzen J, Haddad EK, Walker BD, Kaufmann DE, Lichterfeld M, Yu XG. Circulating CXCR5 +CXCR3 +PD-1 lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight 2017; 2:e89574. [PMID: 28138558 DOI: 10.1172/jci.insight.89574] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
HIV-1-specific broadly neutralizing antibodies (bnAbs) typically develop in individuals with continuous high-level viral replication and increased immune activation, conditions that cannot be reproduced during prophylactic immunization. Understanding mechanisms supporting bnAb development in the absence of high-level viremia may be important for designing bnAb-inducing immunogens. Here, we show that the breadth of neutralizing antibody responses in HIV-1 controllers was associated with a relative enrichment of circulating CXCR5+CXCR3+PD-1lo CD4+ T cells. These CXCR3+PD-1lo Tfh-like cells were preferentially induced in vitro by functionally superior dendritic cells from controller neutralizers, and able to secrete IL-21 and support B cells. In addition, these CXCR3+PD-1lo Tfh-like cells contained higher proportions of stem cell-like memory T cells, and upon antigenic stimulation differentiated into PD-1hi Tfh-like cells in a Notch-dependent manner. Together, these data suggest that CXCR5+CXCR3+PD-1lo cells represent a dendritic cell-primed precursor cell population for PD-1hi Tfh-like cells that may contribute to the generation of bnAbs in the absence of high-level viremia.
Collapse
Affiliation(s)
| | - Jacqueline Cronin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Taylor Hickman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Madelene Lindqvist
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), Duke University, Durham, North Carolina, USA
| | - Kellie E Kolb
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,MIT Institute for Medical Engineering & Science (IMES) and Chemistry, Cambridge, Massachusetts, USA
| | | | - Rafael Cubas
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Filippos Porichis
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,MIT Institute for Medical Engineering & Science (IMES) and Chemistry, Cambridge, Massachusetts, USA
| | | | - Elias K Haddad
- Drexel University, Division of Infectious Diseases and HIV Medicine, Philadelphia, Pennsylvania, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Daniel E Kaufmann
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), Duke University, Durham, North Carolina, USA.,Centre hospitalier de l'Université de Montréal (CHUM) Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Infectious Disease Divisions, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
225
|
Identification of Human Anti-HIV gp160 Monoclonal Antibodies That Make Effective Immunotoxins. J Virol 2017; 91:JVI.01955-16. [PMID: 27852851 DOI: 10.1128/jvi.01955-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoprotein of HIV is the only intact viral protein expressed on the surface of both virions and infected cells. Env is the target of neutralizing antibodies (Abs) and has been the subject of intense study in efforts to produce HIV vaccines. Therapeutic anti-Env Abs can also exert antiviral effects via Fc-mediated effector mechanisms or as cytotoxic immunoconjugates, such as immunotoxins (ITs). In the course of screening monoclonal antibodies (MAbs) for their ability to deliver cytotoxic agents to infected or Env-transfected cells, we noted disparities in their functional activities. Different MAbs showed diverse functions that did not correlate with each other. For example, MAbs against the external loop region of gp41 made the most effective ITs against infected cells but did not neutralize virus and bound only moderately to the same cells that they killed so effectively when they were used in ITs. There were also differences in IT-mediated killing among transfected and infected cell lines that were unrelated to the binding of the MAb to the target cells. Our studies of a well-characterized antigen demonstrate that MAbs against different epitopes have different functional activities and that the binding of one MAb can influence the interaction of other MAbs that bind elsewhere on the antigen. These results have implications for the use of MAbs and ITs to kill HIV-infected cells and eradicate persistent reservoirs of HIV infection. IMPORTANCE There is increased interest in using antibodies to treat and cure HIV infection. Antibodies can neutralize free virus and kill cells already carrying the virus. The virus envelope (Env) is the only HIV protein expressed on the surfaces of virions and infected cells. In this study, we examined a panel of human anti-Env antibodies for their ability to deliver cell-killing toxins to HIV-infected cells and to perform other antiviral functions. The ability of an antibody to make an effective immunotoxin could not be predicted from its other functional characteristics, such as its neutralizing activity. Anti-HIV immunotoxins could be used to eliminate virus reservoirs that persist despite effective antiretroviral therapy.
Collapse
|
226
|
Bournazos S, Gazumyan A, Seaman MS, Nussenzweig MC, Ravetch JV. Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency. Cell 2017; 165:1609-1620. [PMID: 27315478 DOI: 10.1016/j.cell.2016.04.050] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/16/2016] [Accepted: 04/13/2016] [Indexed: 01/06/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
227
|
Abstract
The induction of neutralizing antibodies directed against the human immunodeficiency virus (HIV) has received considerable attention in recent years, in part driven by renewed interest and opportunities for antibody-based strategies for prevention such as passive transfer of antibodies and the development of preventive vaccines, as well as immune-based therapeutic interventions. Advances in the ability to screen, isolate, and characterize HIV-specific antibodies have led to the identification of a new generation of potent broadly neutralizing antibodies (bNAbs). The majority of these antibodies have been isolated from B cells of chronically HIV-infected individuals with detectable viremia. In this review, we provide insight into the phenotypic and functional attributes of human B cells, with a focus on HIV-specific memory B cells and plasmablasts/cells that are responsible for sustaining humoral immune responses against HIV. We discuss the abnormalities in B cells that occur in HIV infection both in the peripheral blood and lymphoid tissues, especially in the setting of persisting viremia. Finally, we consider the opportunities and drawbacks of intensively interrogating antibodies isolated from HIV-infected individuals to guide strategies aimed at developing effective antibody-based vaccine and therapeutic interventions for HIV.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
228
|
Chan SK, Lim TS. Immune Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:61-78. [PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
229
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
230
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
231
|
|
232
|
Abstract
Despite major advances in our understanding of the biology of HIV-1 infection, and advances in antiretroviral therapy to treat the disease, there were 2.1 million new cases of HIV-1 infection in 2015, and 36.7 million people living with AIDS (http://www.unaids.org/en/resources/fact-sheet ). Thus, a vaccine that can prevent HIV-infection remains a global priority. Thirty-three years after the discovery of HIV-1(1 ), and the demonstration it was the cause of AIDS(2 ) and after 6 HIV-1 vaccine efficacy trials (3 –8 ), no HIV-1 candidate vaccine has shown enough efficacy to be approved for clinical use. Of several vaccine concepts tested in efficacy trials, only one, the RV144 pox virus prime, protein boost (ALVAC/AIDSVAX B/E) vaccine, showed a low level of vaccine protection with an estimated 31% vaccine efficacy (8 ). Candidate vaccines have sought to elicit both antibody and T-cell responses, but to fully prevent the acquisition of infection, a major focus has been on the induction of protective antibody responses (9 , 10 ). Hence, the focus of this issue of Immunologic Reviews is “Antibodies and Immunity to HIV”. Animal models have demonstrated that passive administration of HIV-1-- neutralizing antibodies can fully protect against infection, but the induction of such antibodies via immunization remains a major scientific challenge. With recent advances in the isolation and characterization of broadly neutralizing antibodies (bnAbs) from HIV-1-infected subjects, in elucidating structures of the HIV-1 envelope glycoprotein (Env), in defining novel approaches to immunogen design, and in improved understanding of the immunological pathways leading to bNAb elicitation, the challenge developing an HIV-1 vaccine appears to be more tractable. The articles in this issue highlight both major areas of HIV-1 vaccine development progress and remaining obstacles, and provide context for the renewed optimism that a highly effective vaccine, while not imminent, is possible.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
233
|
Kwong PD, Chuang G, DeKosky BJ, Gindin T, Georgiev IS, Lemmin T, Schramm CA, Sheng Z, Soto C, Yang A, Mascola JR, Shapiro L. Antibodyomics: bioinformatics technologies for understanding B-cell immunity to HIV-1. Immunol Rev 2017; 275:108-128. [PMID: 28133812 PMCID: PMC5516196 DOI: 10.1111/imr.12480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous antibodies have been identified from HIV-1-infected donors that neutralize diverse strains of HIV-1. These antibodies may provide the basis for a B cell-mediated HIV-1 vaccine. However, it has been unclear how to elicit similar antibodies by vaccination. To address this issue, we have undertaken an informatics-based approach to understand the genetic and immunologic processes controlling the development of HIV-1-neutralizing antibodies. As DNA sequencing comprises the fastest growing database of biological information, we focused on incorporating next-generation sequencing of B-cell transcripts to determine the origin, maturation pathway, and prevalence of broadly neutralizing antibody lineages (Antibodyomics1, 2, 4, and 6). We also incorporated large-scale robotic analyses of serum neutralization to identify and quantify neutralizing antibodies in donor cohorts (Antibodyomics3). Statistical analyses furnish another layer of insight (Antibodyomics5), with physical characteristics of antibodies and their targets through molecular dynamics simulations (Antibodyomics7) and free energy perturbation analyses (Antibodyomics8) providing information-rich output. Functional interrogation of individual antibodies (Antibodyomics9) and synthetic antibody libraries (Antibodyomics10) also yields multi-dimensional data by which to understand and improve antibodies. Antibodyomics, described here, thus comprise resolution-enhancing tools, which collectively embody an information-driven discovery engine aimed toward the development of effective B cell-based vaccines.
Collapse
Affiliation(s)
- Peter D. Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Gwo‐Yu Chuang
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Brandon J. DeKosky
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Tatyana Gindin
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Thomas Lemmin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Chaim A. Schramm
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Zizhang Sheng
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Cinque Soto
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - An‐Suei Yang
- Genomics Research CenterAcademia SinicaTaipeiTaiwan
| | - John R. Mascola
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Lawrence Shapiro
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
234
|
Abstract
We describe the development and potential use of various designs of recombinant HIV-1 envelope glycoprotein trimers that mimic the structure of the virion-associated spike, which is the target for neutralizing antibodies. The goal of trimer development programs is to induce broadly neutralizing antibodies with the potential to intervene against multiple circulating HIV-1 strains. Among the topics we address are the designs of various constructs; how native-like trimers can be produced and purified; the properties of such trimers in vitro and their immunogenicity in various animals; and the immunization strategies that may lead to the eventual elicitation of broadly neutralizing antibodies. In summary, native-like trimers are a now a platform for structure- and immunology-based design improvements that could eventually yield immunogens of practical value for solving the long-standing HIV-1 vaccine problem.
Collapse
Affiliation(s)
- Rogier W. Sanders
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
- Department of Medical MicrobiologyAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - John P. Moore
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
| |
Collapse
|
235
|
Escolano A, Dosenovic P, Nussenzweig MC. Progress toward active or passive HIV-1 vaccination. J Exp Med 2016; 214:3-16. [PMID: 28003309 PMCID: PMC5206506 DOI: 10.1084/jem.20161765] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
AIDS is a preventable disease. Nevertheless, according to UNAIDS, 2.1 million individuals were infected with HIV-1 in 2015 worldwide. An effective vaccine is highly desirable. Most vaccines in clinical use today prevent infection because they elicit antibodies that block pathogen entry. Consistent with this general rule, studies in experimental animals have shown that broadly neutralizing antibodies to HIV-1 can prevent infection, suggesting that a vaccine that elicits such antibodies would be protective. However, despite significant efforts over the last 30 years, attempts to elicit broadly HIV-1 neutralizing antibodies by vaccination failed until recent experiments in genetically engineered mice were finally successful. Here, we review the key breakthroughs and remaining obstacles to the development of active and passive HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Pia Dosenovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
236
|
Astronomo RD, Santra S, Ballweber-Fleming L, Westerberg KG, Mach L, Hensley-McBain T, Sutherland L, Mildenberg B, Morton G, Yates NL, Mize GJ, Pollara J, Hladik F, Ochsenbauer C, Denny TN, Warrier R, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Kaewkungwal J, Ferrari G, Shaw GM, Xia SM, Liao HX, Montefiori DC, Tomaras GD, Haynes BF, McElrath JM. Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine 2016; 14:97-111. [PMID: 27919754 PMCID: PMC5161443 DOI: 10.1016/j.ebiom.2016.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sampa Santra
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katharine G Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linh Mach
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tiffany Hensley-McBain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Benjamin Mildenberg
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Georgeanna Morton
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Gregory J Mize
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Ranjit Warrier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sorachai Nitayapan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
237
|
Rujas E, Caaveiro JMM, Partida-Hanon A, Gulzar N, Morante K, Apellániz B, García-Porras M, Bruix M, Tsumoto K, Scott JK, Jiménez MÁ, Nieva JL. Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Sci Rep 2016; 6:38177. [PMID: 27905530 PMCID: PMC5131266 DOI: 10.1038/srep38177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671–687). The MPER-N-TMD helix projects beyond the tip of the heavy-chain complementarity determining region 3 loop, indicating that the antibody sits parallel to the plane of the membrane in binding the native epitope. Biophysical, biochemical and mutational analyses demonstrated that strengthening the affinity of 10E8 for the TMD helix in a membrane environment, correlated with its neutralizing potency. Our research clarifies the molecular mechanisms underlying broad neutralization of HIV-1 by 10E8, and the structure of its natural epitope. The conclusions of our research will guide future vaccine-design strategies targeting MPER.
Collapse
Affiliation(s)
- Edurne Rujas
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Angélica Partida-Hanon
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Naveed Gulzar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Koldo Morante
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Beatriz Apellániz
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Miguel García-Porras
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Marta Bruix
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jamie K Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - M Ángeles Jiménez
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - José L Nieva
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
238
|
Bar KJ, Sneller MC, Harrison LJ, Justement JS, Overton ET, Petrone ME, Salantes DB, Seamon CA, Scheinfeld B, Kwan RW, Learn GH, Proschan MA, Kreider EF, Blazkova J, Bardsley M, Refsland EW, Messer M, Clarridge KE, Tustin NB, Madden PJ, Oden K, O'Dell SJ, Jarocki B, Shiakolas AR, Tressler RL, Doria-Rose NA, Bailer RT, Ledgerwood JE, Capparelli EV, Lynch RM, Graham BS, Moir S, Koup RA, Mascola JR, Hoxie JA, Fauci AS, Tebas P, Chun TW. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. N Engl J Med 2016; 375:2037-2050. [PMID: 27959728 PMCID: PMC5292134 DOI: 10.1056/nejmoa1608243] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The discovery of potent and broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus (HIV) has made passive immunization a potential strategy for the prevention and treatment of HIV infection. We sought to determine whether passive administration of VRC01, a bNAb targeting the HIV CD4-binding site, can safely prevent or delay plasma viral rebound after the discontinuation of antiretroviral therapy (ART). METHODS We conducted two open-label trials (AIDS Clinical Trials Group [ACTG] A5340 and National Institutes of Health [NIH] 15-I-0140) of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of VRC01 in persons with HIV infection who were undergoing interruption of ART. RESULTS A total of 24 participants were enrolled, and one serious alcohol-related adverse event occurred. Viral rebound occurred despite plasma VRC01 concentrations greater than 50 μg per milliliter. The median time to rebound was 4 weeks in the A5340 trial and 5.6 weeks in the NIH trial. Study participants were more likely than historical controls to have viral suppression at week 4 (38% vs. 13%, P=0.04 by a two-sided Fisher's exact test in the A5340 trial; and 80% vs. 13%, P<0.001 by a two-sided Fisher's exact test in the NIH trial) but the difference was not significant at week 8. Analyses of virus populations before ART as well as before and after ART interruption showed that VRC01 exerted pressure on rebounding virus, resulting in restriction of recrudescent viruses and selection for preexisting and emerging antibody neutralization-resistant virus. CONCLUSIONS VRC01 slightly delayed plasma viral rebound in the trial participants, as compared with historical controls, but it did not maintain viral suppression by week 8. In the small number of participants enrolled in these trials, no safety concerns were identified with passive immunization with a single bNAb (VRC01). (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTG A5340 and NIH 15-I-0140 ClinicalTrials.gov numbers, NCT02463227 and NCT02471326 .).
Collapse
Affiliation(s)
- Katharine J Bar
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Michael C Sneller
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Linda J Harrison
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - J Shawn Justement
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Edgar T Overton
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Mary E Petrone
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - D Brenda Salantes
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Catherine A Seamon
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Benjamin Scheinfeld
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Richard W Kwan
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Gerald H Learn
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Michael A Proschan
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Edward F Kreider
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Jana Blazkova
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Mark Bardsley
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Eric W Refsland
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Michael Messer
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Katherine E Clarridge
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Nancy B Tustin
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Patrick J Madden
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - KaSaundra Oden
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Sijy J O'Dell
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Bernadette Jarocki
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Andrea R Shiakolas
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Randall L Tressler
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Nicole A Doria-Rose
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Robert T Bailer
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Julie E Ledgerwood
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Edmund V Capparelli
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Rebecca M Lynch
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Barney S Graham
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Susan Moir
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Richard A Koup
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - John R Mascola
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - James A Hoxie
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Anthony S Fauci
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Pablo Tebas
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| | - Tae-Wook Chun
- From the University of Pennsylvania (K.J.B., D.B.S., B.S., G.H.L., E.F.K., M.B., J.A.H., P.T.) and Children's Hospital of Philadelphia (N.B.T.) - both in Philadelphia; the Laboratory of Immunoregulation (M.C.S., J.S.J., M.E.P., J.B., E.W.R., K.E.C., S.M., A.S.F., T.-W.C.), Biostatistics Research Branch (M.A.P.), Vaccine Research Center (P.J.M., S.J.O., A.R.S., N.A.D.-R., R.T.B., J.E.L., R.M.L., B.S.G., R.A.K., J.R.M.), and Division of AIDS (R.L.T.), National Institute of Allergy and Infectious Diseases and National Institutes of Health (NIH), and the Critical Care Medicine Department, Clinical Center, NIH (C.A.S., R.W.K.), Bethesda, the AIDS Clinical Trials Group, Silver Spring (K.O.), and Columbus Technologies and Services, Greenbelt (R.L.T.) - all in Maryland; Harvard T.H. Chan School of Public Health, Boston (L.J.H.); the University of Alabama at Birmingham, Birmingham (E.T.O., M.M.); Frontier Science and Technology Research Foundation, Amherst, NY (B.J.); and the University of California, San Diego, La Jolla (E.V.C.)
| |
Collapse
|
239
|
Kesavardhana S, Das R, Citron M, Datta R, Ecto L, Srilatha NS, DiStefano D, Swoyer R, Joyce JG, Dutta S, LaBranche CC, Montefiori DC, Flynn JA, Varadarajan R. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. J Biol Chem 2016; 292:278-291. [PMID: 27879316 DOI: 10.1074/jbc.m116.725614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses.
Collapse
Affiliation(s)
- Sannula Kesavardhana
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Michael Citron
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Rohini Datta
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Linda Ecto
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | | | | | - Ryan Swoyer
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Joseph G Joyce
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Somnath Dutta
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Celia C LaBranche
- the Department of Surgery, Duke University, Durham, North Carolina 27705
| | - David C Montefiori
- the Department of Surgery, Duke University, Durham, North Carolina 27705
| | | | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,
| |
Collapse
|
240
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
241
|
van Gils MJ, van den Kerkhof TLGM, Ozorowski G, Cottrell CA, Sok D, Pauthner M, Pallesen J, de Val N, Yasmeen A, de Taeye SW, Schorcht A, Gumbs S, Johanna I, Saye-Francisco K, Liang CH, Landais E, Nie X, Pritchard LK, Crispin M, Kelsoe G, Wilson IA, Schuitemaker H, Klasse PJ, Moore JP, Burton DR, Ward AB, Sanders RW. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat Microbiol 2016; 2:16199. [PMID: 27841852 DOI: 10.1038/nmicrobiol.2016.199] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023]
Abstract
The induction by vaccination of broadly neutralizing antibodies (bNAbs) capable of neutralizing various HIV-1 viral strains is challenging, but understanding how a subset of HIV-infected individuals develops bNAbs may guide immunization strategies. Here, we describe the isolation and characterization of the bNAb ACS202 from an elite neutralizer that recognizes a new, trimer-specific and cleavage-dependent epitope at the gp120-gp41 interface of the envelope glycoprotein (Env), involving the glycan N88 and the gp41 fusion peptide. In addition, an Env trimer, AMC011 SOSIP.v4.2, based on early virus isolates from the same elite neutralizer, was constructed, and its structure by cryo-electron microscopy at 6.2 Å resolution reveals a closed, pre-fusion conformation similar to that of the BG505 SOSIP.664 trimer. The availability of a native-like Env trimer and a bNAb from the same elite neutralizer provides the opportunity to design vaccination strategies aimed at generating similar bNAbs against a key functional site on HIV-1.
Collapse
Affiliation(s)
- Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Tom L G M van den Kerkhof
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Anna Schorcht
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Stephanie Gumbs
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Inez Johanna
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Karen Saye-Francisco
- Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Chi-Hui Liang
- Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Elise Landais
- Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Xiaoyan Nie
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Laura K Pritchard
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK
| | - Garnett Kelsoe
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Janssen Pharmaceutical Companies of Johnson &Johnson, Archimedesweg 4-6, 2301 CA, Leiden, The Netherlands
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| |
Collapse
|
242
|
Bradley T, Yang G, Ilkayeva O, Holl TM, Zhang R, Zhang J, Santra S, Fox CB, Reed SG, Parks R, Bowman CM, Bouton-Verville H, Sutherland LL, Scearce RM, Vandergrift N, Kepler TB, Moody MA, Liao HX, Alam SM, McLendon R, Everitt JI, Newgard CB, Verkoczy L, Kelsoe G, Haynes BF. HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. THE JOURNAL OF IMMUNOLOGY 2016; 197:4663-4673. [PMID: 27849170 DOI: 10.4049/jimmunol.1601484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
The HIV-1 envelope protein (Env) has evolved to subvert the host immune system, hindering viral control by the host. The tryptophan metabolic enzyme kynureninase (KYNU) is mimicked by a portion of the HIV Env gp41 membrane proximal region (MPER) and is cross-reactive with the HIV broadly neutralizing Ab (bnAb) 2F5. Molecular mimicry of host proteins by pathogens can lead to autoimmune disease. In this article, we demonstrate that neither the 2F5 bnAb nor HIV MPER-KYNU cross-reactive Abs elicited by immunization with an MPER peptide-liposome vaccine in 2F5 bnAb VHDJH and VLJL knock-in mice and rhesus macaques modified KYNU activity or disrupted tissue tryptophan metabolism. Thus, molecular mimicry by HIV-1 Env that promotes the evasion of host anti-HIV-1 Ab responses can be directed toward nonfunctional host protein epitopes that do not impair host protein function. Therefore, the 2F5 HIV Env gp41 region is a key and safe target for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Todd Bradley
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710; .,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Guang Yang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Olga Ilkayeva
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - T Matt Holl
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ruijun Zhang
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Jinsong Zhang
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | | | - Steve G Reed
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Robert Parks
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Cindy M Bowman
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | | - Laura L Sutherland
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Richard M Scearce
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Nathan Vandergrift
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02215
| | - M Anthony Moody
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - S Munir Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Roger McLendon
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Christopher B Newgard
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Laurent Verkoczy
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Medicine, Duke University Medical Center, Durham, NC 27710.,Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Garnett Kelsoe
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710; .,Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Barton F Haynes
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710; .,Department of Medicine, Duke University Medical Center, Durham, NC 27710.,Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
243
|
Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies. Virology 2016; 501:12-24. [PMID: 27846415 DOI: 10.1016/j.virol.2016.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022]
Abstract
Glycans on HIV-1 Envelope serve multiple functions including blocking epitopes from antibodies. We show that removal of glycan 301, a major target of anti-V3/glycan antibodies, has substantially different effects in two viruses. While glycan 301 on Du156.12 blocks epitopes commonly recognized by sera from chronically HIV-1-infected individuals, it does not do so on CAP45.G3, suggesting that removing the 301 glycan has a smaller effect on the integrity of the glycan shield in CAP45.G3. Changes in sensitivity to broadly neutralizing monoclonal antibodies suggest that the interaction between glycan 301 and the CD4 binding site differ substantially between these 2 viruses. Molecular modeling suggests that removal of glycan 301 likely exposes a greater surface area of the V3 and C4 regions in Du156.12. Our data indicate that the contribution of the 301 glycan to resistance to common neutralizing antibodies varies between viruses, allowing for easier selection for its loss in some viruses.
Collapse
|
244
|
Cheng W. The Density Code for the Development of a Vaccine? J Pharm Sci 2016; 105:3223-3232. [PMID: 27649885 PMCID: PMC5102155 DOI: 10.1016/j.xphs.2016.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/17/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
The development of prophylactic vaccines remains largely empirical in nature and rarely have general rules been applied in the strategic decision and the formulation of a viral vaccine. Currently, there are a total of 15 virus agents from 12 unique virus families with vaccines licensed by the U.S. Food and Drug Administration. Extensive structural information on these viral particles and potential mechanisms of protection are available for the majority of these virus pathogens and their respective vaccines. Here I review the quantitative features of these viral surface antigens in relation to the molecular mechanisms of B-cell activation and point out a potential correlation between the density of immunogenic proteins displayed on the surface of the vaccine antigen carrier and the success of a vaccine. These features help us understand the humoral immunity induced by viral vaccines on a quantitative ground and re-emphasize the importance of antigen density on the activation of the immune system. Although the detailed mechanisms behind this phenomenon remain to be explored, it implies that both the size of antigen carriers and the density of immunogenic proteins displayed on these carriers are important parameters that may need to be optimized for the formulation of a vaccine.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
245
|
The first 24 h: targeting the window of opportunity for antibody-mediated protection against HIV-1 transmission. Curr Opin HIV AIDS 2016; 11:561-568. [PMID: 27559708 DOI: 10.1097/coh.0000000000000319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW I will review evidence that antibodies protect against HIV-1 transmission in a short window of opportunity, involving neutralization, Fc-mediated effector function, or both. RECENT FINDINGS The last decade witnessed a dramatic progress in the understanding of antibody-mediated protection against HIV-1, including active and passive immunization studies in nonhuman primates; association between reduced infection risk and the specificities and function of antibodies in the RV144 clinical trial; identification of potent, broadly neutralizing antibodies; high-resolution structural studies of the HIV-1 envelope trimer; and an increasing appreciation that Fc-mediated effector function is critical to protection against transmission for neutralizing and nonneutralizing antibodies. Less information is known about how antibodies protect in situ, except that they must do in the first 24 h after exposure. New evidence suggests that antibodies protect in an acute innate immune environment involving the NXLRX1 inflammasome and transforming growth factor beta (TGF-β) that favors infection and rapid dissemination of CCR6RORγ Th17 cells. SUMMARY These recent findings set the stage for understanding how antibodies can prevent the transmission of HIV-1. In this context, antibodies must prevent infection in an innate immune environment that strongly favors transmission. This information is key for the development of a vaccine against HIV-1.
Collapse
|
246
|
Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: An approach to control HIV-1 infection. Int Rev Immunol 2016; 36:31-40. [PMID: 27739924 DOI: 10.1080/08830185.2016.1225301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although available antiretroviral therapy (ART) has changed human immunodeficiency virus (HIV)-1 infection to a non-fatal chronic disease, the economic burden of lifelong therapy, severe adverse ART effects, daily ART adherence, and emergence of ART-resistant HIV-1 mutants require prospecting for alternative therapeutic modalities. Indeed, a growing body of evidence suggests that broadly neutralizing anti-HIV-1 antibodies (BNAbs) may offer one such feasible alternative. To evaluate their therapeutic potential in established HIV-1 infection, we sought to address recent advances in pre-clinical and clinical investigations in this area of HIV-1 research. In addition, we addressed the obstacles that may impede the success of such immunotherapeutic approach, suggested strategic solutions, and briefly compared this approach with the currently used ART to open new insights for potential future passive immunotherapy for HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- a Department of Medical Laboratory Sciences , College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad Mahmoud Yaseen
- b Department of Public Health, College of Nursing , University of Benghazi , Benghazi , Libya
| | - Mohammad Ali Alqudah
- c Department of Clinical Pharmacy , College of Pharmacy, Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
247
|
Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci U S A 2016; 113:E6639-E6648. [PMID: 27702895 DOI: 10.1073/pnas.1606050113] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Natural infections expose the immune system to escalating antigen and inflammation over days to weeks, whereas nonlive vaccines are single bolus events. We explored whether the immune system responds optimally to antigen kinetics most similar to replicating infections, rather than a bolus dose. Using HIV antigens, we found that administering a given total dose of antigen and adjuvant over 1-2 wk through repeated injections or osmotic pumps enhanced humoral responses, with exponentially increasing (exp-inc) dosing profiles eliciting >10-fold increases in antibody production relative to bolus vaccination post prime. Computational modeling of the germinal center response suggested that antigen availability as higher-affinity antibodies evolve enhances antigen capture in lymph nodes. Consistent with these predictions, we found that exp-inc dosing led to prolonged antigen retention in lymph nodes and increased Tfh cell and germinal center B-cell numbers. Thus, regulating the antigen and adjuvant kinetics may enable increased vaccine potency.
Collapse
|
248
|
Rusert P, Kouyos RD, Kadelka C, Ebner H, Schanz M, Huber M, Braun DL, Hozé N, Scherrer A, Magnus C, Weber J, Uhr T, Cippa V, Thorball CW, Kuster H, Cavassini M, Bernasconi E, Hoffmann M, Calmy A, Battegay M, Rauch A, Yerly S, Aubert V, Klimkait T, Böni J, Fellay J, Regoes RR, Günthard HF, Trkola A. Determinants of HIV-1 broadly neutralizing antibody induction. Nat Med 2016; 22:1260-1267. [PMID: 27668936 DOI: 10.1038/nm.4187] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen-viral load, length of untreated infection and viral diversity-independently drive bnAb evolution. Notably, black participants showed significantly (P = 0.0086-0.038) higher rates of bnAb induction than white participants. Neutralization fingerprint analysis, which was used to delineate plasma specificity, identified strong virus subtype dependencies, with higher frequencies of CD4-binding-site bnAbs in infection with subtype B viruses (P = 0.02) and higher frequencies of V2-glycan-specific bnAbs in infection with non-subtype B viruses (P = 1 × 10-5). Thus, key host, disease and viral determinants, including subtype-specific envelope features that determine bnAb specificity, remain to be unraveled and harnessed for bnAb-based vaccine design.
Collapse
Affiliation(s)
- Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Hanna Ebner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Nathanael Hozé
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alexandra Scherrer
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Valentina Cippa
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christian W Thorball
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Herbert Kuster
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Cavassini
- University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases, University Hospital of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Vincent Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine-Petersplatz, University of Basel, Basel, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Roland R Regoes
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
249
|
Foster TL, Wilson H, Iyer SS, Coss K, Doores K, Smith S, Kellam P, Finzi A, Borrow P, Hahn BH, Neil SJD. Resistance of Transmitted Founder HIV-1 to IFITM-Mediated Restriction. Cell Host Microbe 2016; 20:429-442. [PMID: 27640936 PMCID: PMC5075283 DOI: 10.1016/j.chom.2016.08.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 01/13/2023]
Abstract
Interferon-induced transmembrane proteins (IFITMs) restrict the entry of diverse enveloped viruses through incompletely understood mechanisms. While IFITMs are reported to inhibit HIV-1, their in vivo relevance is unclear. We show that IFITM sensitivity of HIV-1 strains is determined by the co-receptor usage of the viral envelope glycoproteins as well as IFITM subcellular localization within the target cell. Importantly, we find that transmitted founder HIV-1, which establishes de novo infections, is uniquely resistant to the antiviral activity of IFITMs. However, viral sensitivity to IFITMs, particularly IFITM2 and IFITM3, increases over the first 6 months of infection, primarily as a result of neutralizing antibody escape mutations. Additionally, the ability to evade IFITM restriction contributes to the different interferon sensitivities of transmitted founder and chronic viruses. Together, these data indicate that IFITMs constitute an important barrier to HIV-1 transmission and that escape from adaptive immune responses exposes the virus to antiviral restriction.
Collapse
Affiliation(s)
- Toshana L Foster
- Department of Infectious Diseases, King's College London Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Harry Wilson
- Department of Infectious Diseases, King's College London Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Shilpa S Iyer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karen Coss
- Department of Infectious Diseases, King's College London Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Katie Doores
- Department of Infectious Diseases, King's College London Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Sarah Smith
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Kellam
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - Andrés Finzi
- Centre de Recherche du CHUM and Department of Microbiology, Infection, and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
250
|
Generation of Long-Lived Bone Marrow Plasma Cells Secreting Antibodies Specific for the HIV-1 gp41 Membrane-Proximal External Region in the Absence of Polyreactivity. J Virol 2016; 90:8875-90. [PMID: 27466419 PMCID: PMC5021391 DOI: 10.1128/jvi.01089-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED An effective preventive vaccine is highly sought after in order to stem the current HIV-1 pandemic. Both conservation of contiguous gp41 membrane-proximal external region (MPER) amino acid sequences across HIV-1 clades and the ability of anti-MPER broadly neutralizing antibodies (BNAbs) to block viral hemifusion/fusion establish the MPER as a prime vaccination target. In earlier studies, we described the development of an MPER vaccine formulation that takes advantage of liposomes to array the MPER on a lipid bilayer surface, paralleling its native configuration on the virus membrane while also incorporating molecular adjuvant and CD4 T cell epitope cargo. Here we demonstrate that several immunizations with MPER/liposomes induce high levels of bone marrow long-lived plasma cell (LLPC) antibody production. Single-cell immunoglobulin gene retrieval analysis shows that these plasma cells are derived from a germ line repertoire of B cells with a diverse representation of immunoglobulin genes, exhibiting antigen-driven positive selection. Characterization of LLPC recombinant monoclonal antibodies (rMAbs) indicates that antigen recognition is achieved through convergence on a common epitopic focus by utilizing various complementarity-determining region H3 (CDRH3) lengths. Importantly, the vast majority of rMAbs produced from these cells lack polyreactivity yet manifest antigen specificity in the context of lipids, shaping MPER-specific paratopes through selective pressure. Taken together, these findings demonstrate that the MPER is a vaccine target with minimal risk of generating off-target autoimmunity. IMPORTANCE A useful vaccine must generate desired long-term, antigen-specific antibody responses devoid of polyreactivity or autoreactivity. The common polyreactive features of some HIV-1 BNAbs have raised concern about elicitation of anti-MPER antibodies. Utilizing single-LLPC repertoire analysis and biophysical characterization of anti-MPER rMAbs, we show that their fine specificities require a structural fitness of the antibody combining site involving heavy and light chain variable domains shaped by somatic hypermutation and affinity maturation of B cells in the germinal center. Perhaps more importantly, our results demonstrate that the majority of MPER-specific antibodies are not inherently polyspecific and/or autoreactive, suggesting that polyreactivity of MPER-specific antibodies is separable from their antigen specificity.
Collapse
|