201
|
Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Sci Rep 2021; 11:2121. [PMID: 33483532 PMCID: PMC7822874 DOI: 10.1038/s41598-021-81486-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration–response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.
Collapse
|
202
|
Lyu M, Su CC, Kazura JW, Yu EW. Structural basis of transport and inhibition of the Plasmodium falciparum transporter PfFNT. EMBO Rep 2021; 22:e51628. [PMID: 33471955 DOI: 10.15252/embr.202051628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
The intra-erythrocyte stage of P. falciparum relies primarily on glycolysis to generate adenosine triphosphate (ATP) and the energy required to support growth and reproduction. Lactic acid, a metabolic byproduct of glycolysis, is potentially toxic as it lowers the pH inside the parasite. Plasmodium falciparum formate-nitrite transporter (PfFNT), a 34-kDa transmembrane protein, has been identified as a novel drug target as it exports lactate from inside the parasite to the surrounding parasitophorous vacuole within the erythrocyte cytosol. The structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present structures of PfFNT in the absence and presence of the functional inhibitor MMV007839 at resolutions of 2.56 Å and 2.78 Å using single-particle cryo-electron microscopy. Genetic analysis and transport assay indicate that PfFNT is able to transfer lactate across the membrane. Combined, our data suggest a stepwise displacement mechanism for substrate transport. The PfFNT membrane protein is capable of picking up lactate ions from the parasite's cytosol, converting them to lactic acids and then exporting these acids into the extracellular space.
Collapse
Affiliation(s)
- Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James W Kazura
- Center for Global Health & Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
203
|
Abstract
BACKGROUND The World Health Organization (WHO) in 2015 stated atovaquone-proguanil can be used in travellers, and is an option in malaria-endemic areas in combination with artesunate, as an alternative treatment where first-line artemisinin-based combination therapy (ACT) is not available or effective. This review is an update of a Cochrane Review undertaken in 2005. OBJECTIVES To assess the efficacy and safety of atovaquone-proguanil (alone and in combination with artemisinin drugs) versus other antimalarial drugs for treating uncomplicated Plasmodium falciparum malaria in adults and children. SEARCH METHODS The date of the last trial search was 30 January 2020. Search locations for published trials included the Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, Embase, and LILACS. To include recently published and unpublished trials, we also searched ClinicalTrials.gov, the metaRegister of Controlled Trials and the WHO International Clinical Trials Registry Platform Search Portal. SELECTION CRITERIA Randomized controlled trials (RCTs) reporting efficacy and safety data for atovaquone-proguanil or atovaquone-proguanil with a partner drug compared with at least one other antimalarial drug for treating uncomplicated Plasmodium falciparum infection. DATA COLLECTION AND ANALYSIS For this update, two review authors re-extracted data and assessed certainty of evidence. We meta-analyzed data to calculate risk ratios (RRs) with 95% confidence intervals (CI) for treatment failures between comparisons, and for safety outcomes between and across comparisons. Outcome measures include unadjusted treatment failures and polymerase chain reaction (PCR)-adjusted treatment failures. PCR adjustment differentiates new infection from recrudescent infection. MAIN RESULTS Seventeen RCTs met our inclusion criteria providing 4763 adults and children from Africa, South-America, and South-East Asia. Eight trials reported PCR-adjusted data to distinguish between new and recrudescent infection during the follow-up period. In this abstract, we report only the comparisons against the three WHO-recommended antimalarials which were included within these trials. There were two comparisons with artemether-lumefantrine, one trial from 2008 in Ethiopia with 60 participants had two failures with atovaquone-proguanil compared to none with artemether-lumefantrine (PCR-adjusted treatment failures at day 28). A second trial from 2012 in Colombia with 208 participants had one failure in each arm (PCR-adjusted treatment failures at day 42). There was only one comparison with artesunate-amodiaquine from a 2014 trial conducted in Cameroon. There were six failures with atovaquone-proguanil at day 28 and two with artesunate-amodiaquine (PCR-adjusted treatment failures at day 28: 9.4% with atovaquone-proguanil compared to 2.9% with artesunate-amodiaquine; RR 3.19, 95% CI 0.67 to 15.22; 1 RCT, 132 participants; low-certainty evidence), although there was a similar number of PCR-unadjusted treatment failures (9 (14.1%) with atovaquone-proguanil and 8 (11.8%) with artesunate-amodiaquine; RR 1.20, 95% CI 0.49 to 2.91; 1 RCT, 132 participants; low-certainty evidence). There were two comparisons with artesunate-mefloquine from a 2012 trial in Colombia and a 2002 trial in Thailand where there are high levels of multi-resistant malaria. There were similar numbers of PCR-adjusted treatment failures between groups at day 42 (2.7% with atovaquone-proguanil compared to 2.4% with artesunate-mefloquine; RR 1.15, 95% CI 0.57 to 2.34; 2 RCTs, 1168 participants; high-certainty evidence). There were also similar PCR-unadjusted treatment failures between groups (5.3% with atovaquone-proguanil compared to 6.6% with artesunate-mefloquine; RR 0.8, 95% CI 0.5 to 1.3; 1 RCT, 1063 participants; low-certainty evidence). When atovaquone-proguanil was combined with artesunate, there were fewer treatment failures with and without PCR-adjustment at day 28 (PCR-adjusted treatment failures at day 28: 2.16% with atovaquone-proguanil compared to no failures with artesunate-atovaquone-proguanil; RR 5.14, 95% CI 0.61 to 43.52; 2 RCTs, 375 participants, low-certainty evidence) and day 42 (PCR-adjusted treatment failures at day 42: 3.82% with atovaquone-proguanil compared to 2.05% with artesunate-atovaquone-proguanil (RR 1.84, 95% CI 0.95 to 3.56; 2 RCTs, 1258 participants, moderate-certainty evidence). In the 2002 trial in Thailand, there were fewer treatment failures in the artesunate-atovaquone-proguanil group compared to the atovaquone-proguanil group at day 42 with PCR-adjustment. Whilst there were some small differences in which adverse events were more frequent in the atovaquone-proguanil groups compared to comparator drugs, there were no recurrent associations to suggest that atovaquone-proguanil is strongly associated with any specific adverse event. AUTHORS' CONCLUSIONS Atovaquone-proguanil was effective against uncomplicated P falciparum malaria, although in some instances treatment failure rates were between 5% and 10%. The addition of artesunate to atovaquone-proguanil may reduce treatment failure rates. Artesunate-atovaquone-proguanil and the development of parasite resistance may represent an area for further research.
Collapse
Affiliation(s)
- Andrew Blanshard
- Department of Medicine, Norfolk and Norwich University Hospital, Norwich, UK
| | - Paul Hine
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
204
|
Rawat M, Kanyal A, Sahasrabudhe A, Vembar SS, Lopez-Rubio JJ, Karmodiya K. Histone acetyltransferase PfGCN5 regulates stress responsive and artemisinin resistance related genes in Plasmodium falciparum. Sci Rep 2021; 11:852. [PMID: 33441725 PMCID: PMC7806804 DOI: 10.1038/s41598-020-79539-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Plasmodium falciparum has evolved resistance to almost all front-line drugs including artemisinin, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress-responsive genes in a poised state and regulates their expression under stress conditions. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Interestingly, expression of genes bound by PfGCN5 was found to be upregulated during stress conditions. Moreover, inhibition of PfGCN5 in artemisinin-resistant parasites increases the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with a potential role in modulating artemisinin drug resistance and identify PfGCN5 as an important target against artemisinin-resistant parasites.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - Aishwarya Sahasrabudhe
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | | | - Jose-Juan Lopez-Rubio
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, INSERM, Montpellier University, Montpellier, France
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.
| |
Collapse
|
205
|
Pereira PHS, Garcia CRS. Melatonin action in Plasmodium infection: Searching for molecules that modulate the asexual cycle as a strategy to impair the parasite cycle. J Pineal Res 2021; 70:e12700. [PMID: 33025644 PMCID: PMC7757246 DOI: 10.1111/jpi.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Half of the world's population lives in countries at risk of malaria infection, which results in approximately 450,000 deaths annually. Malaria parasites infect erythrocytes in a coordinated manner, with cycle durations in multiples of 24 hours, which reflects a behavior consistent with the host's circadian cycle. Interference in cycle coordination can help the immune system to naturally fight infection. Consequently, there is a search for new drugs that interfere with the cycle duration for combined treatment with conventional antimalarials. Melatonin appears to be a key host hormone responsible for regulating circadian behavior in the parasite cycle. In addition to host factors, there are still unknown factors intrinsic to the parasite that control the cycle duration. In this review, we present a series of reports of indole compounds and melatonin derivatives with antimalarial activity that were tested on several species of Plasmodium to evaluate the cytotoxicity to parasites and human cells, in addition to the ability to interfere with the development of the erythrocytic cycle. Most of the reported compounds had an IC50 value in the low micromolar range, without any toxicity to human cells. Triptosil, an indole derivative of melatonin, was able to inhibit the effect of melatonin in vitro without causing changes to the parasitemia. The wide variety of tested compounds indicates that it is possible to develop a compound capable of safely eliminating parasites from the host and interfering with the life cycle, which is promising for the development of new combined therapies against malaria.
Collapse
Affiliation(s)
- Pedro H. S. Pereira
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological AnalysesSchool of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
206
|
Jiang Q, Hirsh DA, Tu Y, Luo L. Multicomponent crystals of an artemisinin derivative and cinchona alkaloids for use as antimalarial drugs. CrystEngComm 2021. [DOI: 10.1039/d1ce00974e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multicomponent crystals of an artemisinin derivative and cinchona alkaloids were produced, combining two major types of antimalaria drugs with unique hydrogen bond interactions. These salts demonstrate a new category of antimalarial pharmaceuticals.
Collapse
Affiliation(s)
- Qi Jiang
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/P.O. Box 368, Ridgefield, CT 06877, USA
| | - David A. Hirsh
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/P.O. Box 368, Ridgefield, CT 06877, USA
| | - Yifan Tu
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/P.O. Box 368, Ridgefield, CT 06877, USA
| | - Laibin Luo
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road/P.O. Box 368, Ridgefield, CT 06877, USA
| |
Collapse
|
207
|
Fukuda N, Tachibana SI, Ikeda M, Sakurai-Yatsushiro M, Balikagala B, Katuro OT, Yamauchi M, Emoto S, Hashimoto M, Yatsushiro S, Sekihara M, Mori T, Hirai M, Opio W, Obwoya PS, Auma MA, Anywar DA, Kataoka M, Palacpac NMQ, Odongo-Aginya EI, Kimura E, Ogwang M, Horii T, Mita T. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in Northern Uganda. Parasitol Int 2020; 81:102277. [PMID: 33370608 DOI: 10.1016/j.parint.2020.102277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
In Uganda, artemether-lumefantrine was introduced as an artemisinin-based combination therapy (ACT) for malaria in 2006. We have previously reported a moderate decrease in ex vivo efficacy of lumefantrine in Northern Uganda, where we also detected ex vivo artemisinin-resistant Plasmodium falciparum. Therefore, it is necessary to search for candidate partner alternatives for ACT. Here, we investigated ex vivo susceptibility to four ACT partner drugs as well as quinine and chloroquine, in 321 cases between 2013 and 2018. Drug-resistant mutations in pfcrt and pfmdr1 were also determined. Ex vivo susceptibility to amodiaquine, quinine, and chloroquine was well preserved, whereas resistance to mefloquine was found in 45.8%. There were few cases of multi-drug resistance. Reduced sensitivity to mefloquine and lumefantrine was significantly associated with the pfcrt K76 wild-type allele, in contrast to the association between chloroquine resistance and the K76T allele. Pfmdr1 duplication was not detected in any of the cases. Amodiaquine, a widely used partner drug for ACT in African countries, may be the first promising alternative in case lumefantrine resistance emerges. Therapeutic use of mefloquine may not be recommended in this area. This study also emphasizes the need for sustained monitoring of antimalarial susceptibility in Northern Uganda to develop proper treatment strategies.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ichiro Tachibana
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Sakurai-Yatsushiro
- Department of International Affairs and Tropical Medicine, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Osbert T Katuro
- Mildmay Uganda, Nazibwa Hill, Lweza, P.O. Box 24985, Kampala, Uganda
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakurako Emoto
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Muneaki Hashimoto
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Shouki Yatsushiro
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Walter Opio
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Paul S Obwoya
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Mary A Auma
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Denis A Anywar
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Masatoshi Kataoka
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Eisaku Kimura
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Martin Ogwang
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
208
|
Gogoi P, Shakya A, Ghosh SK, Gogoi N, Gahtori P, Singh N, Bhattacharyya DR, Singh UP, Bhat HR. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5-triazine derivatives. J Biochem Mol Toxicol 2020; 35:e22682. [PMID: 33332673 DOI: 10.1002/jbt.22682] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
Malaria continues to become a major global health problem, particularly in Sub-Saharan Africa, Asia, and Latin America. The widespread emergence of resistance to first-line drugs has further bolstered an urgent need for a new and cost-effective antimalarial(s). Thus, the present study enumerates the synthesis of novel hybrid dimethoxy pyrazole 1,3,5-triazine derivatives 7(a-j) and their in silico results short-listed three compounds with good binding energies and dock scores. Docking analysis shows that hydrogen-bonding predominates and typically involves key residues, such as Asp54, Tyr170, Ile164, and Arg122. The in vitro antimalarial evaluation of three top-ranked compounds (7e, 7g, and 7h) showed half-maximal inhibitory concentration values range from 53.85 to 100 μg/ml against chloroquine-sensitive strain 3D7 of Plasmodium falciparum. Compound 7e may be utilized as a lead for further optimization work in drug discovery due to good antimalarial activity.
Collapse
Affiliation(s)
- Pinku Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Nardev Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Dibya R Bhattacharyya
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Udaya P Singh
- Department of Pharmaceutical Sciences, Drug Design and Discovery Laboratory, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
209
|
Ansbro MR, Itkin Z, Chen L, Zahoranszky-Kohalmi G, Amaratunga C, Miotto O, Peryea T, Hobbs CV, Suon S, Sá JM, Dondorp AM, van der Pluijm RW, Wellems TE, Simeonov A, Eastman RT. Modulation of Triple Artemisinin-Based Combination Therapy Pharmacodynamics by Plasmodium falciparum Genotype. ACS Pharmacol Transl Sci 2020; 3:1144-1157. [PMID: 33344893 PMCID: PMC7737215 DOI: 10.1021/acsptsci.0c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 01/19/2023]
Abstract
The first-line treatments for uncomplicated Plasmodium falciparum malaria are artemisinin-based combination therapies (ACTs), consisting of an artemisinin derivative combined with a longer acting partner drug. However, the spread of P. falciparum with decreased susceptibility to artemisinin and partner drugs presents a significant challenge to malaria control efforts. To stem the spread of drug resistant parasites, novel chemotherapeutic strategies are being evaluated, including the implementation of triple artemisinin-based combination therapies (TACTs). Currently, there is limited knowledge on the pharmacodynamic and pharmacogenetic interactions of proposed TACT drug combinations. To evaluate these interactions, we established an in vitro high-throughput process for measuring the drug concentration-response to three distinct antimalarial drugs present in a TACT. Sixteen different TACT combinations were screened against 15 parasite lines from Cambodia, with a focus on parasites with differential susceptibilities to piperaquine and artemisinins. Analysis revealed drug-drug interactions unique to specific genetic backgrounds, including antagonism between piperaquine and pyronaridine associated with gene amplification of plasmepsin II/III, two aspartic proteases that localize to the parasite digestive vacuole. From this initial study, we identified parasite genotypes with decreased susceptibility to specific TACTs, as well as potential TACTs that display antagonism in a genotype-dependent manner. Our assay and analysis platform can be further leveraged to inform drug implementation decisions and evaluate next-generation TACTs.
Collapse
Affiliation(s)
- Megan R. Ansbro
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Wellcome Sanger Institute, Hinxton CB10 1SA, U.K.
| | - Zina Itkin
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lu Chen
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gergely Zahoranszky-Kohalmi
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Chanaki Amaratunga
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton CB10 1SA, U.K.
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
- Medical Research Council (MRC) Centre for Genomics and
Global Health, University of Oxford, Oxford OX3 7BN, U.K.
| | - Tyler Peryea
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Charlotte V. Hobbs
- Division of Infectious Diseases, Children’s
Hospital, University of Mississippi Medical
Center, Jackson, Mississippi 39216, United States
| | - Seila Suon
- National Center for Parasitology, Entomology,
and Malaria Control, Phnom Penh, Cambodia
| | - Juliana M. Sá
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
| | - Rob W. van der Pluijm
- Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol
University, Bangkok 10400, Thailand
- Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine
Research, University of Oxford, Oxford OX3 7LF, U.K.
| | - Thomas E. Wellems
- Laboratory of Malaria
and Vector Research, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Richard T. Eastman
- National
Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
210
|
Shalini, Kumar S, Gendrot M, Fonta I, Mosnier J, Cele N, Awolade P, Singh P, Pradines B, Kumar V. Amide Tethered 4-Aminoquinoline-naphthalimide Hybrids: A New Class of Possible Dual Function Antiplasmodials. ACS Med Chem Lett 2020; 11:2544-2552. [PMID: 33335678 DOI: 10.1021/acsmedchemlett.0c00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
A series of amide tethered 4-aminoquinoline-naphthalimide hybrids has been synthesized to assess their in vitro antiplasmodial potential against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. The most active and noncytotoxic compound had an IC50 value of 0.07 μM against W2 strain and was more active than standard antimalarial drugs, including chloroquine, desethylamodiaquine, and quinine, particularly for drug resistant malaria. The promising scaffold, when subjected to heme binding and molecular modeling studies, was identified as a possible potent inhibitor of hemozoin formation and P. falciparum chloroquine resistance transporter (PfCRT), respectively, and, therefore, could act as a dual function antiplasmodial.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Pin 143005, India
| | - Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Pin 143005, India
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
- Centre National de Référence du Paludisme, Marseille 13234, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
- Centre National de Référence du Paludisme, Marseille 13234, France
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille 13234, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13234, France
- IHU Méditerranée Infection, Marseille 13234, France
- Centre National de Référence du Paludisme, Marseille 13234, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Pin 143005, India
| |
Collapse
|
211
|
Patel OPS, Beteck RM, Legoabe LJ. Antimalarial application of quinones: A recent update. Eur J Med Chem 2020; 210:113084. [PMID: 33333397 DOI: 10.1016/j.ejmech.2020.113084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Atovaquone belongs to a naphthoquinone class of drugs and is used in combination with proguanil (Malarone) for the treatment of acute, uncomplicated malaria caused by Plasmodium falciparum (including chloroquine-resistant P. falciparum/P. vivax). Numerous quinone-derived compounds have attracted considerable attention in the last few decades due to their potential in antimalarial drug discovery. Several semi-synthetic derivatives of natural quinones, synthetic quinones (naphtho-/benzo-quinone, anthraquinones, thiazinoquinones), and quinone-based hybrids were explored for their in vitro and in vivo antimalarial activities. A careful literature survey revealed that this topic has not been compiled as a review article so far. Therefore, we herein summarise the recent discovery (the year 2009-2020) of quinone based antimalarial compounds in chronological order. This compilation would be very useful towards the exploration of novel quinone-derived compounds against malarial parasites with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
212
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
213
|
Ménard D, Mayor A. Knowing the enemy: genetics to track antimalarial resistance. THE LANCET INFECTIOUS DISEASES 2020; 20:1361-1362. [DOI: 10.1016/s1473-3099(20)30271-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022]
|
214
|
Hastings IM, Hardy D, Kay K, Sharma R. Incorporating genetic selection into individual-based models of malaria and other infectious diseases. Evol Appl 2020; 13:2723-2739. [PMID: 33294019 PMCID: PMC7691459 DOI: 10.1111/eva.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Control strategies for human infections are often investigated using individual-based models (IBMs) to quantify their impact in terms of mortality, morbidity and impact on transmission. Genetic selection can be incorporated into the IBMs to track the spread of mutations whose origin and spread are driven by the intervention and which subsequently undermine the control strategy; typical examples are mutations which encode drug resistance or diagnosis- or vaccine-escape phenotypes. METHODS AND RESULTS We simulated the spread of malaria drug resistance using the IBM OpenMalaria to investigate how the finite sizes of IBMs require strategies to optimally incorporate genetic selection. We make four recommendations. Firstly, calculate and report the selection coefficients, s, of the advantageous allele as the key genetic parameter. Secondly, use these values of "s" to calculate the wait time until a mutation successfully establishes itself in the pathogen population. Thirdly, identify the inherent limits of the IBM to robustly estimate small selection coefficients. Fourthly, optimize computational efficacy: when "s" is small, fewer replicates of larger IBMs may be more efficient than a larger number of replicates of smaller size. DISCUSSION The OpenMalaria IBM of malaria was an exemplar and the same principles apply to IBMs of other diseases.
Collapse
Affiliation(s)
| | - Diggory Hardy
- Swiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | | | - Raman Sharma
- Liverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
215
|
Turkiewicz A, Manko E, Sutherland CJ, Diez Benavente E, Campino S, Clark TG. Genetic diversity of the Plasmodium falciparum GTP-cyclohydrolase 1, dihydrofolate reductase and dihydropteroate synthetase genes reveals new insights into sulfadoxine-pyrimethamine antimalarial drug resistance. PLoS Genet 2020; 16:e1009268. [PMID: 33382691 PMCID: PMC7774857 DOI: 10.1371/journal.pgen.1009268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment for malaria after wide-spread resistance to chloroquine emerged and, although replaced by artemisinin combinations, is currently used as intermittent preventive treatment of malaria in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limiting pfgch1 gene and promoter, have recently been described. However, the genetic make-up and prevalence of those amplifications is not fully understood. We analyse the whole genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic countries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates, respectively. Amplifications are more likely to be present in isolates with a greater accumulation of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and there was evidence that the frequency of pfgch1 variants may be increasing in some African populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate containing antibiotics used for the treatment of bacterial infections. The selection of P. falciparum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform the surveillance of SP drug resistance, its prophylactic use, and future experimental work to understand functional mechanisms.
Collapse
Affiliation(s)
- Anna Turkiewicz
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emilia Manko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J. Sutherland
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
216
|
Expansion of a Specific Plasmodium falciparum PfMDR1 Haplotype in Southeast Asia with Increased Substrate Transport. mBio 2020; 11:mBio.02093-20. [PMID: 33262257 PMCID: PMC7733942 DOI: 10.1128/mbio.02093-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms. Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.
Collapse
|
217
|
Adamu A, Jada MS, Haruna HMS, Yakubu BO, Ibrahim MA, Balogun EO, Sakura T, Inaoka DK, Kita K, Hirayama K, Culleton R, Shuaibu MN. Plasmodium falciparum multidrug resistance gene-1 polymorphisms in Northern Nigeria: implications for the continued use of artemether-lumefantrine in the region. Malar J 2020; 19:439. [PMID: 33256739 PMCID: PMC7708160 DOI: 10.1186/s12936-020-03506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background The analysis of single nucleotide polymorphism (SNPs) in drug-resistance associated genes is a commonly used strategy for the surveillance of anti-malarial drug resistance in populations of parasites. The present study was designed and performed to provide genetic epidemiological data of the prevalence of N86Y-Y184F-D1246Y SNPs in Plasmodium falciparum multidrug resistance 1 (pfmdr1) in the malaria hotspot of Northern Nigeria. Methods Plasmodium falciparum-positive blood samples on Whatman-3MM filter papers were collected from 750 symptomatic patients from four states (Kano, Kaduna, Yobe and Adamawa) in Northern Nigeria, and genotyped via BigDye (v3.1) terminator cycle sequencing for the presence of three SNPs in pfmdr1. SNPs in pfmdr1 were used to construct NYD, NYY, NFY, NFD, YYY, YYD, YFD and YFY haplotypes, and all data were analysed using Pearson Chi square and Fisher’s exact (FE) tests. Results The prevalence of the pfmdr1 86Y allele was highest in Kaduna (12.50%, 2 = 10.50, P = 0.02), whilst the 184F allele was highest in Kano (73.10%, 2 = 13.20, P = 0.00), and the pfmdr1 1246Y allele was highest in Yobe (5.26%, 2 = 9.20, P = 0.03). The NFD haplotype had the highest prevalence of 69.81% in Kano (2 = 36.10, P = 0.00), followed by NYD with a prevalence of 49.00% in Adamawa, then YFD with prevalence of 11.46% in Kaduna. The YYY haplotype was not observed in any of the studied states. Conclusion The present study suggests that strains of P. falciparum with reduced sensitivity to the lumefantrine component of AL exist in Northern Nigeria and predominate in the North-West region.
Collapse
Affiliation(s)
- Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mahmoud Suleiman Jada
- Department of Biochemistry, Modibbo Adama University of Technology Yola, Yola, Nigeria
| | | | | | | | | | - Takaya Sakura
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Kita
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Ehime, Japan
| | | |
Collapse
|
218
|
Russell TL, Farlow R, Min M, Espino E, Mnzava A, Burkot TR. Capacity of National Malaria Control Programmes to implement vector surveillance: a global analysis. Malar J 2020; 19:422. [PMID: 33228725 PMCID: PMC7682121 DOI: 10.1186/s12936-020-03493-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background Solving the problem of malaria requires a highly skilled workforce with robust infrastructure, financial backing and sound programme management coordinated by a strategic plan. Here, the capacity of National Malaria Control Programmes (NMCPs) was analysed to identify the strengths and weaknesses underpinning the implementation of vector surveillance and control activities by the core elements of programme capacity, being strategic frameworks, financing, human resources, logistics and infrastructure, and information systems. Results Across nearly every country surveyed, the vector surveillance programmes were hampered by a lack of capacity and capability. Only 8% of NMCPs reported having sufficient capacity to implement vector surveillance. In contrast, 57%, 56% and 28% of NMCPs had the capacity to implement long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS) and larval source management (LSM) activities, respectively. Largely underlying this was a lack of up-to-date strategic plans that prioritize vector surveillance and include frameworks for decision-making and action. Conclusions Strategic planning and a lack of well-trained entomologists heavily hamper vector surveillance. Countries on the path to elimination generally had more operational/field staff compared to countries at the stage of control, and also were more likely to have an established system for staff training and capacity building. It is unlikely that controlling countries will make significant progress unless huge investments also go towards increasing the number and capacity of programmatic staff.
Collapse
Affiliation(s)
- Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | | | - Myo Min
- Asia-Pacific Malaria Elimination Network, Singapore, Singapore
| | - Effie Espino
- Asia-Pacific Malaria Elimination Network, Singapore, Singapore
| | - Abraham Mnzava
- African Leaders' Malaria Alliance, Dar es Salaam, Tanzania
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
219
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
220
|
Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition. mBio 2020; 11:mBio.02312-20. [PMID: 33173001 PMCID: PMC7667033 DOI: 10.1128/mbio.02312-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines. The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei, while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.
Collapse
|
221
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
222
|
Recombinant C-Terminal Domains from Scorpine-like Peptides Inhibit the Plasmodium berghei Ookinete Development In Vitro. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
223
|
Horatscheck A, Andrijevic A, Nchinda AT, Le Manach C, Paquet T, Khonde LP, Dam J, Pawar K, Taylor D, Lawrence N, Brunschwig C, Gibhard L, Njoroge M, Reader J, van der Watt M, Wicht K, de Sousa ACC, Okombo J, Maepa K, Egan TJ, Birkholtz LM, Basarab GS, Wittlin S, Fish PV, Street LJ, Duffy J, Chibale K. Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and In Vivo Efficacy in the Plasmodium falciparum NSG Mouse Model. J Med Chem 2020; 63:13013-13030. [PMID: 33103428 DOI: 10.1021/acs.jmedchem.0c01411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.
Collapse
Affiliation(s)
- André Horatscheck
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ana Andrijevic
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Aloysius T Nchinda
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Tanya Paquet
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Lutete Peguy Khonde
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jean Dam
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kailash Pawar
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Kathryn Wicht
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Keletso Maepa
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute ,Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | - Paul V Fish
- Alzheimer's Research UK, UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
| | - Leslie J Street
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - James Duffy
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva, Switzerland
| | - Kelly Chibale
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
224
|
Portugaliza HP, Miyazaki S, Geurten FJ, Pell C, Rosanas-Urgell A, Janse CJ, Cortés A. Artemisinin exposure at the ring or trophozoite stage impacts Plasmodium falciparum sexual conversion differently. eLife 2020; 9:60058. [PMID: 33084568 PMCID: PMC7577739 DOI: 10.7554/elife.60058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Malaria transmission is dependent on the formation of gametocytes in the human blood. The sexual conversion rate, the proportion of asexual parasites that convert into gametocytes at each multiplication cycle, is variable and reflects the relative parasite investment between transmission and maintaining the infection. The impact of environmental factors such as drugs on sexual conversion rates is not well understood. We developed a robust assay using gametocyte-reporter parasite lines to accurately measure the impact of drugs on sexual conversion rates, independently from their gametocytocidal activity. We found that exposure to subcurative doses of the frontline antimalarial drug dihydroartemisinin (DHA) at the trophozoite stage resulted in a ~ fourfold increase in sexual conversion. In contrast, no increase was observed when ring stages were exposed or in cultures in which sexual conversion was stimulated by choline depletion. Our results reveal a complex relationship between antimalarial drugs and sexual conversion, with potential public health implications.
Collapse
Affiliation(s)
- Harvie P Portugaliza
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona Ja Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Christopher Pell
- Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, Netherlands
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alfred Cortés
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
225
|
Plasmodium falciparum Apicomplexan-Specific Glucosamine-6-Phosphate N-Acetyltransferase Is Key for Amino Sugar Metabolism and Asexual Blood Stage Development. mBio 2020; 11:mBio.02045-20. [PMID: 33082260 PMCID: PMC7587441 DOI: 10.1128/mbio.02045-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apicomplexan parasites cause a major burden on global health and economy. The absence of treatments, the emergence of resistances against available therapies, and the parasite’s ability to manipulate host cells and evade immune systems highlight the urgent need to characterize new drug targets to treat infections caused by these parasites. We demonstrate that glucosamine-6-phosphate N-acetyltransferase (GNA1), required for the biosynthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), is essential for P. falciparum asexual blood stage development and that the disruption of the gene encoding this enzyme quickly causes the death of the parasite within a life cycle. The high-resolution crystal structure of the GNA1 ortholog from the apicomplexan parasite C. parvum, used here as a surrogate, highlights significant differences from human GNA1. These divergences can be exploited for the design of specific inhibitors against the malaria parasite. UDP-N-acetylglucosamine (UDP-GlcNAc), the main product of the hexosamine biosynthetic pathway, is an important metabolite in protozoan parasites since its sugar moiety is incorporated into glycosylphosphatidylinositol (GPI) glycolipids and N- and O-linked glycans. Apicomplexan parasites have a hexosamine pathway comparable to other eukaryotic organisms, with the exception of the glucosamine-phosphate N-acetyltransferase (GNA1) enzymatic step that has an independent evolutionary origin and significant differences from nonapicomplexan GNA1s. By using conditional genetic engineering, we demonstrate the requirement of GNA1 for the generation of a pool of UDP-GlcNAc and for the development of intraerythrocytic asexual Plasmodium falciparum parasites. Furthermore, we present the 1.95 Å resolution structure of the GNA1 ortholog from Cryptosporidium parvum, an apicomplexan parasite which is a leading cause of diarrhea in developing countries, as a surrogate for P. falciparum GNA1. The in-depth analysis of the crystal shows the presence of specific residues relevant for GNA1 enzymatic activity that are further investigated by the creation of site-specific mutants. The experiments reveal distinct features in apicomplexan GNA1 enzymes that could be exploitable for the generation of selective inhibitors against these parasites, by targeting the hexosamine pathway. This work underscores the potential of apicomplexan GNA1 as a drug target against malaria.
Collapse
|
226
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
227
|
Eagon S, Hammill JT, Sigal M, Ahn KJ, Tryhorn JE, Koch G, Belanger B, Chaplan CA, Loop L, Kashtanova AS, Yniguez K, Lazaro H, Wilkinson SP, Rice AL, Falade MO, Takahashi R, Kim K, Cheung A, DiBernardo C, Kimball JJ, Winzeler EA, Eribez K, Mittal N, Gamo FJ, Crespo B, Churchyard A, García-Barbazán I, Baum J, Anderson MO, Laleu B, Guy RK. Synthesis and Structure-Activity Relationship of Dual-Stage Antimalarial Pyrazolo[3,4- b]pyridines. J Med Chem 2020; 63:11902-11919. [PMID: 32945666 DOI: 10.1021/acs.jmedchem.0c01152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria remains one of the most deadly infectious diseases, causing hundreds of thousands of deaths each year, primarily in young children and pregnant mothers. Here, we report the discovery and derivatization of a series of pyrazolo[3,4-b]pyridines targeting Plasmodium falciparum, the deadliest species of the malaria parasite. Hit compounds in this series display sub-micromolar in vitro activity against the intraerythrocytic stage of the parasite as well as little to no toxicity against the human fibroblast BJ and liver HepG2 cell lines. In addition, our hit compounds show good activity against the liver stage of the parasite but little activity against the gametocyte stage. Parasitological profiles, including rate of killing, docking, and molecular dynamics studies, suggest that our compounds may target the Qo binding site of cytochrome bc1.
Collapse
Affiliation(s)
- Scott Eagon
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jared T Hammill
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| | - Martina Sigal
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kevin J Ahn
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Julia E Tryhorn
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Grant Koch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Briana Belanger
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Cory A Chaplan
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Lauren Loop
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Anna S Kashtanova
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Kenya Yniguez
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Horacio Lazaro
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Steven P Wilkinson
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Amy L Rice
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| | - Mofolusho O Falade
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| | - Rei Takahashi
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Katie Kim
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Ashley Cheung
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Celine DiBernardo
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Joshua J Kimball
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Korina Eribez
- School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | | | - Benigno Crespo
- GlaxoSmithKline, Global Health, DDW, Tres Cantos, Madrid 28760, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Irene García-Barbazán
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), P.O. Box 1826, 20, Route de Pré-Bois, Geneva 1215, Switzerland
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| |
Collapse
|
228
|
Dias BK, Nakabashi M, Alves MRR, Portella DP, dos Santos BM, Costa da Silva Almeida F, Ribeiro RY, Schuck DC, Jordão AK, Garcia CR. The Plasmodium falciparum eIK1 kinase (PfeIK1) is central for melatonin synchronization in the human malaria parasite. Melatotosil blocks melatonin action on parasite cell cycle. J Pineal Res 2020; 69:e12685. [PMID: 32702775 PMCID: PMC7539967 DOI: 10.1111/jpi.12685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Melatonin and its indoles derivatives are central in the synchronization of malaria parasites. In this research, we discovered that melatonin is unable to increase the parasitemia in the human malaria Plasmodium falciparum that lacks the kinase PfeIK1. The PfeIK1 knockout strain is a valuable tool in the screening of indol-related compound that blocks the melatonin effect in wild-type (WT) parasite development. The assays were performed by using flow cytometry with simultaneous labeling for mitochondria viability with MitoTracker Deep Red and nucleus staining with SYBR Green. We found that Melatotosil leads to an increase in parasitemia in P. falciparum and blocks melatonin effect in the WT parasite. Using microscopy imaging system, we found that Melatotosil at 500 nM is able to induce cytosolic calcium rise in transgenic PfGCaMP3 parasites. On the contrary, the compound Triptiofen blocks P. falciparum cell cycle with IC50 9.76 µM ± 0.6, inhibits melatonin action, and does not lead to a cytosolic calcium rise in PfGCaMP3 parasites. We also found that the synthetic indol-related compounds arrested parasite cycle for PfeIK1 knockout and (WT) P. falciparum (3D7) in 72 hours culture assays with the IC50 values slighting lower for the WT strain. We concluded that the kinase PfeIK1 is central for melatonin downstream signaling pathways involved in parasite cell cycle progression. More importantly, the indol-related compounds block its cycle as an upstream essential mechanism for parasite survival. Our data clearly show that this class of compounds emerge as an alternative for the problem of resistance with the classical antimalarials.
Collapse
Affiliation(s)
- Bárbara K.M. Dias
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| | - Myna Nakabashi
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| | | | | | | | | | - Ramira Yuri Ribeiro
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
| | - Desiree C. Schuck
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrazil
| | - Alessandro Kappel Jordão
- Departamento de FarmáciaFaculdade de FarmáciaUniversidade Federal do Rio Grande do NorteNatalRNBrazil
- Unidade Universitária de FarmáciaCentro Universitário Estadual da Zona OesteRio de JaneiroRJBrazil
| | - Celia R.S. Garcia
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrazil
| |
Collapse
|
229
|
Uwimana A, Legrand E, Stokes BH, Ndikumana JLM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati JB, Munguti K, Campagne P, Criscuolo A, Ariey F, Murindahabi M, Ringwald P, Fidock DA, Mbituyumuremyi A, Menard D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med 2020; 26:1602-1608. [PMID: 32747827 PMCID: PMC7541349 DOI: 10.1038/s41591-020-1005-2] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
Artemisinin resistance (delayed P. falciparum clearance following artemisinin-based combination therapy), is widespread across Southeast Asia but to date has not been reported in Africa1-4. Here we genotyped the P. falciparum K13 (Pfkelch13) propeller domain, mutations in which can mediate artemisinin resistance5,6, in pretreatment samples collected from recent dihydroarteminisin-piperaquine and artemether-lumefantrine efficacy trials in Rwanda7. While cure rates were >95% in both treatment arms, the Pfkelch13 R561H mutation was identified in 19 of 257 (7.4%) patients at Masaka. Phylogenetic analysis revealed the expansion of an indigenous R561H lineage. Gene editing confirmed that this mutation can drive artemisinin resistance in vitro. This study provides evidence for the de novo emergence of Pfkelch13-mediated artemisinin resistance in Rwanda, potentially compromising the continued success of antimalarial chemotherapy in Africa.
Collapse
Affiliation(s)
- Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda.
| | - Eric Legrand
- Malaria Genetics and Resistance Unit-Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA
| | | | | | - Noella Umulisa
- Maternal and Child Survival Program/JHPIEGO, Baltimore, MD, USA
- Impact Malaria Rwanda, Kigali, Rwanda
| | | | - Tharcisse Munyaneza
- National Reference Laboratory (NRL), BIOS /Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Jean-Baptiste Mazarati
- National Reference Laboratory (NRL), BIOS /Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | | | - Pascal Campagne
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Paris, France
| | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Paris, France
| | - Frédéric Ariey
- INSERM 1016, Institut Cochin, Service de Parasitologie-Mycologie, Hôpital Cochin, Université de Paris, Paris, France
| | | | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aimable Mbituyumuremyi
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Didier Menard
- Malaria Genetics and Resistance Unit-Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France.
| |
Collapse
|
230
|
Burns AL, Sleebs BE, Siddiqui G, De Paoli AE, Anderson D, Liffner B, Harvey R, Beeson JG, Creek DJ, Goodman CD, McFadden GI, Wilson DW. Retargeting azithromycin analogues to have dual-modality antimalarial activity. BMC Biol 2020; 18:133. [PMID: 32993629 PMCID: PMC7526119 DOI: 10.1186/s12915-020-00859-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. RESULTS Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. CONCLUSION We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3050, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - Ghizal Siddiqui
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Amanda E De Paoli
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Richard Harvey
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Christopher D Goodman
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Burnet Institute, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
231
|
Konan KV, Le TC, Mateescu MA. Antiplasmodial Combined Formulation of Artemisinin with Peschiera fuchsiaefolia Bis-Indole Alkaloids. J Pharm Sci 2020; 110:135-145. [PMID: 32987093 DOI: 10.1016/j.xphs.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
Antimalarial agents used as monotherapy are increasingly ineffective due to the emergence of Plasmodium resistant strains. Artemisinin (Arte), extracted from Artemisia annua, presents a good efficiency against the Plasmodium strains and is currently used to treat malaria. To avoid the appearance of new resistant strains to artemisinin, the use of Artemisinin-based Combination Therapy (ACT) with another antimalaria agent was recommended by WHO to provide an effective cure and delayed resistance. Although combined formulations of various drugs with Artemisinin have been developed, their release is immediate, and they require multiple doses with side detrimental effects and effectiveness still desired. To improve its efficiency, controlled release formulations were developed to ensure long-term antiplasmodial activity by associating Artemisinin with a natural antimalarial agent extracted from Peschiera fuchsiaefolia (Pf). The Pf extract (containing mostly low soluble alkaloids) was complexed with carboxymethylcellulose to improve its solubility and stability. Two formulation types are reported. As bilayer tablet dosage form, the kinetic release pattern was an immediate release of Artemisinin, followed by a slow sustained release of Pf for 12 h. As monolithic tablet, the release profile shows a simultaneous sustained release of the two active agents, about of 10 h for Arte and 12 h for Pf.
Collapse
Affiliation(s)
- Kouadio Victorien Konan
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys" and CERMO-FC Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Tien Canh Le
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys" and CERMO-FC Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys" and CERMO-FC Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
232
|
Lu KY, Pasaje CFA, Srivastava T, Loiselle DR, Niles JC, Derbyshire E. Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. eLife 2020; 9:e56773. [PMID: 32975513 PMCID: PMC7518890 DOI: 10.7554/elife.56773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) levels in Plasmodium falciparum correlate with tolerance to cellular stresses caused by artemisinin and environmental factors. However, PI(3)P function during the Plasmodium stress response was unknown. Here, we used PI3K inhibitors and antimalarial agents to examine the importance of PI(3)P under thermal conditions recapitulating malarial fever. Live cell microscopy using chemical and genetic reporters revealed that PI(3)P stabilizes the digestive vacuole (DV) under heat stress. We demonstrate that heat-induced DV destabilization in PI(3)P-deficient P. falciparum precedes cell death and is reversible after withdrawal of the stress condition and the PI3K inhibitor. A chemoproteomic approach identified PfHsp70-1 as a PI(3)P-binding protein. An Hsp70 inhibitor and knockdown of PfHsp70-1 phenocopy PI(3)P-deficient parasites under heat shock. Furthermore, PfHsp70-1 downregulation hypersensitizes parasites to heat shock and PI3K inhibitors. Our findings underscore a mechanistic link between PI(3)P and PfHsp70-1 and present a novel PI(3)P function in DV stabilization during heat stress.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| | | | | | - David R Loiselle
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke UniversityDurhamUnited States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| |
Collapse
|
233
|
Associations between Aminoquinoline Resistance Genotypes and Clinical Presentations of Plasmodium falciparum Infection in Uganda. Antimicrob Agents Chemother 2020; 64:AAC.00721-20. [PMID: 32660999 DOI: 10.1128/aac.00721-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/07/2020] [Indexed: 01/30/2023] Open
Abstract
Mutations that mediate resistance of Plasmodium falciparum to aminoquinoline antimalarials are selected by prior drug use and may alter parasite fitness, but associations with clinical presentations are uncertain. We evaluated genotypes in samples from a case-control study of determinants of severe malaria in Ugandan children 4 months to 10 years of age. We studied 274 cases with severe malaria matched by age and geography to 275 uncomplicated malaria controls and 179 asymptomatic parasitemic controls. The overall prevalence of mutations of interest (considering mixed results as mutant) was 67.0% for PfCRT K76T, 8.5% for PfMDR1 N86Y, 71.5% for PfMDR1 Y184F, and 14.7% for PfMDR1 D1246Y. Compared to asymptomatic controls, the odds of mutant PfCRT 76T were lower for uncomplicated (odds ratio, 0.42 [95% confidence interval, 0.24 to 0.72]; P < 0.001) or severe (0.56 [0.32 to 0.97]; P = 0.031) malaria; the odds of mutant PfMDR1 86Y were lower for uncomplicated (0.33 [0.16 to 0.65]; P < 0.001) or severe (0.21 [0.09 to 0.45]; P < 0.001) malaria; and the odds of mutant PfMDR1 1246Y were higher for uncomplicated (1.83 [0.90 to 3.98]; P = 0.076) or severe (2.06 [1.01 to 4.55]; P = 0.033) malaria. The odds of mutant PfMDR1 184F were lower in severe than asymptomatic (0.59 [0.37 to 0.92]; P = 0.016) or uncomplicated (0.61 [0.41 to 0.90]; P = 0.009) malaria. Overall, the PfCRT 76T and PfMDR1 86Y mutations were associated with decreased risk of symptomatic malaria, PfMDR1 1246Y was associated with increased risk of symptomatic malaria, and PfMDR1 184F was associated with decreased risk of severe malaria. These results offer insights into parasite genotypes in children with different presentations, although the basis for the identified associations is likely complex.
Collapse
|
234
|
Bal M, Das A, Ghosal J, Pradhan MM, Khuntia HK, Pati S, Dutta A, Ranjit M. Assessment of effectiveness of DAMaN: A malaria intervention program initiated by Government of Odisha, India. PLoS One 2020; 15:e0238323. [PMID: 32898853 PMCID: PMC7478908 DOI: 10.1371/journal.pone.0238323] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
India, a persistently significant contributor to the global malaria burden, rolled out several anti-malaria interventions at the national and state level to control and recently, to eliminate the disease. Odisha, the eastern Indian state with the highest malaria burden experienced substantial gains shown by various anti-malaria initiatives implemented under the National Vector-borne Disease Control Programme (NVBDCP). However, recalcitrant high-transmission "pockets" of malaria persist in hard-to-reach stretches of the state, characterised by limited access to routine malaria surveillance and the forested hilly topography favouring unbridled vector breeding. The prevalence of asymptomatic malaria in such pockets serves as perpetual malaria reservoir, thus hindering its elimination. Therefore, a project with the acronym DAMaN was initiated since 2017 by state NVBDCP, targeting locally identified high endemic 'pockets' in 23 districts. DAMaN comprised biennial mass screening and treatment, provisioning of long-lasting insecticidal net (LLIN) and behavioural change communication. Subsequently, to inform policy, assessment of DAMaN was conceived that aims to estimate the coverage of the various components of the project; the prevalence of malaria, even at sub-patent level especially among pregnant/lactating women and children; and its impact on malaria incidence. A survey of DAMaN beneficiaries will measure coverage; and knowledge and practices related to LLIN; along with collection of blood specimens from a probability sample. A multi-stage stratified clustered sample of 2228 households (~33% having pregnant/lactating women) will be selected from 6 DAMaN districts. Routine DAMaN project data (2017-2018) and NVBDCP data (2013-2018) will be extracted. Rapid Diagnostic Test, Polymerase Chain Reaction and blood smear microscopy will be conducted to detect malarial parasitemia. In addition to measuring DAMaN's coverage and malarial prevalence in DAMaN pockets, its impact will be estimated using pre-post differences and Interrupted Time Series analysis using 2017 as the "inflection" point. The assessment may help to validate the unique strategies employed by DAMaN.
Collapse
Affiliation(s)
- Madhusmita Bal
- ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Arundhuti Das
- ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Jyoti Ghosal
- ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | | | | | - Sanghamitra Pati
- ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Ambarish Dutta
- Indian Institute of Public Health, Bhubaneswar, Odisha, India
| | | |
Collapse
|
235
|
Ehrlich HY, Jones J, Parikh S. Molecular surveillance of antimalarial partner drug resistance in sub-Saharan Africa: a spatial-temporal evidence mapping study. LANCET MICROBE 2020; 1:e209-e217. [PMID: 33089222 DOI: 10.1016/s2666-5247(20)30094-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Molecular markers for antimalarial drug resistance can be used to rapidly monitor the emergence and spatial distribution of resistance to artemisinin-based combination therapies (ACTs). Little has been done to analyse molecular surveillance efforts or to assess surveillance coverage. This study aimed to develop an evidence map to characterise the spatial-temporal distribution and sampling methodologies of drug resistance surveillance in sub-Saharan Africa, specifically focusing on markers associated with ACT partner drugs. Methods By use of a systematic search, we identified studies that reported data on the following mutations associated with ACT partner drug resistance: pfmdr1 Asn86Tyr, Tyr184Phe, Asp1246Tyr, and copy number variation and pfcrt Lys76Thr, with sample collection occurring in sub-Saharan Africa between Jan 1, 2004, and Dec 31, 2018, corresponding to the uptake of ACTs. For each identified study, we extracted information on its sampling and laboratory methods, author and publication affiliations, years of sampling and of publication, geographic coordinates of the study sites, and prevalence of the partner drug resistance-associated markers. We used linear models to test whether urbanicity, population density, and endemicity were predictors of drug resistance survey sites and linear regressions to identify associations between the number of resistance surveys within a given country and the at-risk malaria population in 2010, the per-capita GDP in 2010, and the mean amount of funding directed to malaria and to determine trends in marker prevalence over time. For country case studies with three or more datapoints, we assessed global spatial autocorrelation using Moran's I. Findings Our search yielded 254 studies encompassing 492 year-specific and location-specific surveys from 35 malaria-endemic countries, the most complete set of molecular partner drug surveillance data to date. We observed a median time lag of 3·1 years (95% CI 1·0-7·7) from final sample acquisition to publication. 22 (49%) of the 44 countries in the study region conducted, on average, one or fewer studies every 3 years. The locations of surveillance sites were positively associated with urbanicity (p<0·0001), and the abundance of country-level data was associated with reported donor funding in 2004-18 (p=0·0011) and local government funding in 2004-09 (p=0·014). Nearly all molecular markers displayed significant regional trends over time and global spatial autocorrelation in space. For selected countries with more widespread coverage of surveillance data, some markers also displayed spatial heterogeneity. Interpretation In most sub-Saharan countries, molecular data on antimalarial resistance might not be representative of the temporal and geographic heterogeneity of partner drug resistance, and likely do not represent the true spatially dependent distribution of partner drug resistance. Our results highlight several inefficiencies that can be improved upon to develop more accurate data landscapes, including the expansion of sentinel surveillance systems, syndemic usage of research samples, and increased participation in reporting published and unpublished data to centralised platforms.
Collapse
Affiliation(s)
- Hanna Y Ehrlich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Justin Jones
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
236
|
Zhang R, Dong X, Wang J, Guo Y, Dai Y. A protocol for systematic review and meta-analysis of optimizing treatment for malaria. Medicine (Baltimore) 2020; 99:e22044. [PMID: 32899064 PMCID: PMC7478701 DOI: 10.1097/md.0000000000022044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Malaria remains a global health threat for centuries. In recent years, a rising resistance of Plasmodium falciparum to current standard artemisinin-based combination therapies (ACTs) leads to increasing treatment failures and requires for optimized treatment. Here, we intend to make a systematic review and meta-analysis of optimizing treatment for malaria, so as to find a potential optimal treatment. METHODS We will search electronic databases: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CEN-TRAL), PubMed, Embase, Web of Science from their inception to 1 July, 2020. We will also search International Clinical Trials Registry Platform (ICTRP) and ClinicalTrials.gov, and contact with authors when necessary. Two authors will independently collect and select data, and the statistical analyses will be conducted by Revman V.5.3 software. RESULTS We will evaluate efficacy and safety of modified ACTs for uncomplicate malaria, comparing with standard ACTs in all eligible clinical studies. CONCLUSION In this study, we will offer clinical evidence for optimizing treatment for malaria. REGISTRATION NUMBER INPLASY202070115.
Collapse
|
237
|
Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum. Biomolecules 2020; 10:biom10091243. [PMID: 32867164 PMCID: PMC7563138 DOI: 10.3390/biom10091243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology.
Collapse
|
238
|
Martins JF, Marques C, Nieto-Andrade B, Kelley J, Patel D, Nace D, Herman C, Barratt J, Ponce de León G, Talundzic E, Rogier E, Halsey ES, Plucinski MM. Malaria Risk and Prevention in Asian Migrants to Angola. Am J Trop Med Hyg 2020; 103:1918-1926. [PMID: 32815500 DOI: 10.4269/ajtmh.20-0706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The number of Asian migrants working in sub-Saharan developing countries like Angola has been increasing. Their malaria risk, prevention, and care-seeking practices have not been characterized. A cross-sectional survey was conducted in 733 Chinese and Southeast Asian migrants in Angola. Respondents were interviewed and provided blood samples. Samples were analyzed to detect Plasmodium antigen and characterize host anti-Plasmodium response. Positive samples were genotyped using the pfs47 marker. Most respondents (72%; 95% CI: 68-75) reported using bed nets, but less than 1% reported using chemoprophylaxis. Depending on the assay, 1-4% of respondents had evidence of active malaria infection. By contrast, 55% (95% CI: 52-59) were seropositive for Plasmodium antibodies. Most infections were Plasmodium falciparum, but infection and/or exposure to Plasmodium vivax and Plasmodium malariae was also detected. Seroprevalence by time in Angola showed most exposure occurred locally. One respondent had sufficiently high parasitemia for pfs47 genotyping, which showed that the infection was likely locally acquired despite recent travel to home country. Asian migrants to Angola are at substantial risk of malaria. Employers should consider enhanced malaria prevention programs, including chemoprophylaxis; embassies should encourage prevention practices. Angolan healthcare workers should be aware of high malaria exposure in Asian migrants.
Collapse
Affiliation(s)
| | | | | | - Julia Kelley
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Dhruviben Patel
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Doug Nace
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Camelia Herman
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel Barratt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gabriel Ponce de León
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric S Halsey
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mateusz M Plucinski
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
239
|
Plasmodium falciparum Knockout for the GPCR-Like PfSR25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules 2020; 10:biom10081197. [PMID: 32824696 PMCID: PMC7465636 DOI: 10.3390/biom10081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/05/2023] Open
Abstract
The search for new compounds with antimalarial activity is urgent, as resistance to ones in the classical drug, has already been described in more than one continent. Compounds derived from 1,2,3-triazoles are effective against parasites and bacteria. Here, we evaluated the potential antimalarial activity against the human malaria parasite Plasmodium falciparum in a culture of fifty-four triazole compounds derived from 1H-and 2H-1,2,3-triazole. We identified thirty-one compounds with potential antimalarial activity at concentrations in the micromolar order (µM) and IC50 values ranging from 2.80 µM (9) to 29.27 µM (21). Then, we selected some of these compounds to perform the same tests on the PfSR25- strain (knockout for P. falciparum G-protein coupled receptor-like, SR25). Our experiences with the PfSR25- strain showed that both compounds with higher antimalarial activity for the 3D7 strain and those with less activity resulted in lower IC50 values for the knockout strain. The cytotoxicity of the compounds was evaluated in human renal embryonic cells (HEK 293), using MTT assays. This demonstrated that the compounds with the highest activity (9, 13, 19, 22, 24, 29), showed no toxicity at the tested concentrations.
Collapse
|
240
|
Annang F, Pérez-Moreno G, González-Menéndez V, Lacret R, Pérez-Victoria I, Martín J, Cantizani J, de Pedro N, Choquesillo-Lazarte D, Ruiz-Pérez LM, González-Pacanowska D, Genilloud O, Vicente F, Reyes F. Strasseriolides A-D, A Family of Antiplasmodial Macrolides Isolated from the Fungus Strasseria geniculata CF-247251. Org Lett 2020; 22:6709-6713. [PMID: 32808790 DOI: 10.1021/acs.orglett.0c01665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel family of four potent antimalarial macrolides, strasseriolides A-D (1-4), has been isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. The structures of these compounds, including their absolute configurations, were elucidated by HRMS, NMR spectroscopy, and X-ray single-crystal diffraction. The four compounds gave respective IC50 values of 9.810, 0.013, 0.123, and 0.128 μM against Plasmodium falciparum 3D7 parasites with no significant cytotoxicity against the HepG2 cell line.
Collapse
Affiliation(s)
- Frederick Annang
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitologı́a y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientı́ficas (CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | | | - Rodney Lacret
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | | | - Jesús Martín
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Juan Cantizani
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC, University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Luis M Ruiz-Pérez
- Instituto de Parasitologı́a y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientı́ficas (CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologı́a y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientı́ficas (CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| |
Collapse
|
241
|
Tsamesidis I, Reybier K, Marchetti G, Pau MC, Virdis P, Fozza C, Nepveu F, Low PS, Turrini FM, Pantaleo A. Syk Kinase Inhibitors Synergize with Artemisinins by Enhancing Oxidative Stress in Plasmodium falciparum-Parasitized Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9080753. [PMID: 32824055 PMCID: PMC7464437 DOI: 10.3390/antiox9080753] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Although artemisinin-based combination therapies (ACTs) treat Plasmodium falciparum malaria effectively throughout most of the world, the recent expansion of ACT-resistant strains in some countries of the Greater Mekong Subregion (GMS) further increased the interest in improving the effectiveness of treatment and counteracting resistance. Recognizing that (1) partially denatured hemoglobin containing reactive iron (hemichromes) is generated in parasitized red blood cells (pRBC) by oxidative stress, (2) redox-active hemichromes have the potential to enhance oxidative stress triggered by the parasite and the activation of artemisinin to its pharmaceutically active form, and (3) Syk kinase inhibitors block the release of membrane microparticles containing hemichromes, we hypothesized that increasing hemichrome content in parasitized erythrocytes through the inhibition of Syk kinase might trigger a virtuous cycle involving the activation of artemisinin, the enhancement of oxidative stress elicited by activated artemisinin, and a further increase in hemichrome production. We demonstrate here that artemisinin indeed augments oxidative stress within parasitized RBCs and that Syk kinase inhibitors further increase iron-dependent oxidative stress, synergizing with artemisinin in killing the parasite. We then demonstrate that Syk kinase inhibitors achieve this oxidative enhancement by preventing parasite-induced release of erythrocyte-derived microparticles containing redox-active hemichromes. We also observe that Syk kinase inhibitors do not promote oxidative toxicity to healthy RBCs as they do not produce appreciable amounts of hemichromes. Since some Syk kinase inhibitors can be taken daily with minimal side effects, we propose that Syk kinase inhibitors could evidently contribute to the potentiation of ACTs.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Karine Reybier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Giuseppe Marchetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Maria Carmina Pau
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Patrizia Virdis
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Claudio Fozza
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Francoise Nepveu
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Philip S. Low
- Purdue Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;
| | | | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- Correspondence:
| |
Collapse
|
242
|
Miazgowicz KL, Shocket MS, Ryan SJ, Villena OC, Hall RJ, Owen J, Adanlawo T, Balaji K, Johnson LR, Mordecai EA, Murdock CC. Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi. Proc Biol Sci 2020; 287:20201093. [PMID: 32693720 PMCID: PMC7423674 DOI: 10.1098/rspb.2020.1093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Models predicting disease transmission are vital tools for long-term planning of malaria reduction efforts, particularly for mitigating impacts of climate change. We compared temperature-dependent malaria transmission models when mosquito life-history traits were estimated from a truncated portion of the lifespan (a common practice) versus traits measured across the full lifespan. We conducted an experiment on adult female Anopheles stephensi, the Asian urban malaria mosquito, to generate daily per capita values for mortality, egg production and biting rate at six constant temperatures. Both temperature and age significantly affected trait values. Further, we found quantitative and qualitative differences between temperature-trait relationships estimated from truncated data versus observed lifetime values. Incorporating these temperature-trait relationships into an expression governing the thermal suitability of transmission, relative R0(T), resulted in minor differences in the breadth of suitable temperatures for Plasmodium falciparum transmission between the two models constructed from only An. stephensi trait data. However, we found a substantial increase in thermal niche breadth compared with a previously published model consisting of trait data from multiple Anopheles mosquito species. Overall, this work highlights the importance of considering how mosquito trait values vary with mosquito age and mosquito species when generating temperature-based suitability predictions of transmission.
Collapse
Affiliation(s)
- K L Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M S Shocket
- Biology Department, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - S J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O C Villena
- Computational Modeling and Data Analytics, Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | - R J Hall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - J Owen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - T Adanlawo
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - K Balaji
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L R Johnson
- Computational Modeling and Data Analytics, Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | - E A Mordecai
- Biology Department, Stanford University, Stanford, CA, USA
| | - C C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,River Basin Center, University of Georgia, Athens, GA, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
243
|
Vanaerschot M, Murithi JM, Pasaje CFA, Ghidelli-Disse S, Dwomoh L, Bird M, Spottiswoode N, Mittal N, Arendse LB, Owen ES, Wicht KJ, Siciliano G, Bösche M, Yeo T, Kumar TRS, Mok S, Carpenter EF, Giddins MJ, Sanz O, Ottilie S, Alano P, Chibale K, Llinás M, Uhlemann AC, Delves M, Tobin AB, Doerig C, Winzeler EA, Lee MCS, Niles JC, Fidock DA. Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol 2020; 27:806-816.e8. [PMID: 32359426 PMCID: PMC7369637 DOI: 10.1016/j.chembiol.2020.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Louis Dwomoh
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Megan Bird
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Natasha Spottiswoode
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren B Arendse
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Bösche
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emma F Carpenter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Marla J Giddins
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olalla Sanz
- Diseases of the Developing World Global Health Pharma Unit, GlaxoSmithKline, 28760 Tres Cantos, Spain
| | - Sabine Ottilie
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK, Scotland
| | - Christian Doerig
- Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora VIC 3083, Australia
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
244
|
Abamecha A, Yilma D, Addisu W, El-Abid H, Ibenthal A, Noedl H, Yewhalaw D, Moumni M, Abdissa A. Therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Chewaka District, Ethiopia. Malar J 2020; 19:240. [PMID: 32650784 PMCID: PMC7350688 DOI: 10.1186/s12936-020-03307-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background The efficacy of artemether-lumefantrine (AL) for treatment of uncomplicated Plasmodium falciparum malaria in south-western Ethiopia is poorly documented. Regular monitoring of drug efficacy is an important tool for supporting national treatment policies and practice. This study investigated the therapeutic efficacy of AL for the treatment of P. falciparum malaria in Ethiopia. Methods The study was a one-arm, prospective, evaluation of the clinical and parasitological, responses to directly observed treatment with AL among participants 6 months and older with uncomplicated P. falciparum malaria. Real-time polymerase chain reaction (PCR) and nested PCR reaction methods were used to quantify and genotype P. falciparum. A modified protocol based on the World Health Organization 2009 recommendations for the surveillance of anti-malarial drug efficacy was used for the study with primary outcomes, clinical and parasitological cure rates at day-28. Secondary outcomes assessed included patterns of fever and parasite clearance. Cure rate on day-28 was assessed by intention to treat (ITT) and per protocol (PP) analysis. Parasite genotyping was also performed at baseline and at the time of recurrence of parasitaemia to differentiate between recrudescence and new infection. Results Of the 80 study participants enrolled, 75 completed the follow-up at day-28 with ACPR. For per protocol (PP) analysis, PCR-uncorrected and-corrected cure rate of AL among the study participants was 94.7% (95% CI 87.1–98.5) and 96% (95% CI 88.8–99.2), respectively. For intention to treat (ITT) analysis, the cure rate was 90% (95% CI 88.8–99.2). Based on Kaplan–Meier survival estimate, the cumulative incidence of failure rate of AL was 3.8% (95% CI 1.3–11.4). Only three participants 3.8% (95% CI 0.8–10.6) of the 80 enrolled participants were found to be positive on day-3. The day three-positive participants were followed up to day 28 and did not correspond to treatment failures observed during follow-up. Only 7.5% (6/80) of the participants were gametocyte-positive on enrollment and gametocytaemia was absent on day-2 following treatment with AL. Conclusions The therapeutic efficacy of AL is considerably high (above 90%). AL remained highly efficacious in the treatment of uncomplicated malaria in the study area resulted in rapid fever and parasite clearance as well as low gametocyte carriage rates despite the use of this combination for more than 15 years.
Collapse
Affiliation(s)
- Abdulhakim Abamecha
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia. .,Department of Biomedical, College of Public Health and Medical Science, Mettu University, Mettu, Ethiopia. .,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia.
| | - Daniel Yilma
- Department of Internal Medicine, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Wondimagegn Addisu
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Hassan El-Abid
- Biotechnology and Bio-Resources Development Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Achim Ibenthal
- Faculty of Science and Art, HAWK University, Gottingen, Germany
| | - Harald Noedl
- Malaria Research Initiative Bandarban (MARIB), Vienna, Austria
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Mohieddine Moumni
- Biotechnology and Bio-Resources Development Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Alemseged Abdissa
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
245
|
Belay C, Steinman NY, Campos LM, Dzikowski R, Golenser J, Domb AJ. Asymmetric trisalkylamine cyclopropenium derivatives with antimicrobial activity. Bioorg Chem 2020; 102:104069. [PMID: 32683179 DOI: 10.1016/j.bioorg.2020.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Cationic molecules are found in abundance as antimicrobial agents with a well-defined mechanism of action and significant therapeutic benefits. Quaternary ammonium-containing compounds are frequently employed due to their facile synthesis and tunable properties. Over time, however, bacterial resistance to these compounds has become a significant obstacle. We report here a series of asymmetric trisalkylamine cyclopropenium cationic derivatives as chemical isosteres of quaternary ammonium compounds, capable of strong antimicrobial activity and overcoming microbial resistance. These small molecules were prepared by one-pot reaction of tetrachlorocyclopropene (TCC) with unhindered secondary amines in the presence of Hünig's base. In this work we describe the synthesis, purification, and characterization of five trisamino-cyclopropenium derivatives and confirm their structures by spectral analysis and mass-spectrometry. Three of the compounds displayed considerable antimalarial activity (IC50 < 0.1 µM) without demonstrating significant toxic effects in vitro (TC50 > 1 µM). This class of cyclopropenium-based compounds provides an opening for the discovery of potent and non-toxic antimicrobial agents.
Collapse
Affiliation(s)
- Chen Belay
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Noam Y Steinman
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
246
|
Yasmin R, Kaur I, Tuteja R. Plasmodium falciparum DDX55 is a nucleocytoplasmic protein and a 3'-5' direction-specific DNA helicase. PROTOPLASMA 2020; 257:1049-1067. [PMID: 32125511 DOI: 10.1007/s00709-020-01495-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Malaria is one of the major causes of mortality as well as morbidity in many tropical and subtropical countries around the world. Although artemisinin combination therapies (ACTs) are contributing to substantial decline in the worldwide malaria burden, it is becoming vulnerable by the emergence of artemisinin resistance in Plasmodium falciparum leading to clinical failure of ACTs in Southeast Asia. Helicases play important role in nucleic acid metabolic processes and have been also identified as therapeutic drug target for different diseases. Previously, it has been reported that P. falciparum contains a group of DEAD-box family of helicases which are homologous to Has1 family of yeast. Here, we present the characterization of a member of Has1 family (PlasmoDB number PF3D7_1419100) named as PfDDX55. The biochemical characterization of PfDDX55C revealed that it contains both DNA- and RNA-dependent ATPase activity. PfDDX55C unwinds partially duplex DNA in 3' to 5' direction and utilizes mainly ATP or dATP for its activity. The immunofluorescence assay and q-RT PCR analysis show that PfDDX55 is a nucleocytoplasmic protein expressed in all the intraerythrocytic development of P. falciparum 3D7 strain with maximum expression level in trophozoite stage. The LC-MS/MS experiment results and STRING analysis show that PfDDX55 interacts with AAA-ATPase which has been shown to be involved in ribosomal biogenesis.
Collapse
Affiliation(s)
- Rahena Yasmin
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Inderjeet Kaur
- Malaria Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
247
|
Tahghighi A, Mohamadi-Zarch SM, Rahimi H, Marashiyan M, Maleki-Ravasan N, Eslamifar A. In silico and in vivo anti-malarial investigation on 1-(heteroaryl)-2-((5-nitroheteroaryl)methylene) hydrazine derivatives. Malar J 2020; 19:231. [PMID: 32600425 PMCID: PMC7322848 DOI: 10.1186/s12936-020-03269-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Background Resistance of Plasmodium falciparum against common anti-malarial drugs emphasizes the need of alternative and more effective drugs. Synthetic derivatives of 1-(heteroaryl)-2-((5-nitroheteroaryl)methylene) hydrazine have showed in vitro anti-plasmodial activities. The present study aimed to evaluate the molecular binding and anti-plasmodial activity of synthetic compounds in vivo. Methods The molecular docking was used to study the binding of compounds to haem and Plasmodium falciparum lactate dehydrogenase (PfLDH). Acute toxicity of the synthetic compounds was evaluated based on the modified up & down method. The anti-plasmodial activity of the compounds was conducted by the two standard tests of Peters’ and of Rane, using chloroquine-sensitive Plasmodium berghei in mice. Also, the toxicity to the internal organs of mice was evaluated on the seventh day after the treatment in addition to the histopathology of their liver. Compound 3 that showed high activity in the lowest dose was selected for further pharmacodynamic studies. Results According to the docking studies, the active site of PfLDH had at least four common residues, including Ala98, Ile54, Gly29, and Tyr97 to bind the compounds with the affinity, ranging from − 8.0 to − 8.4 kcal/mol. The binding mode of ligands to haem revealed an effective binding affinity, ranging from − 5.1 to − 5.5 kcal/mol. Compound 2 showed the highest % suppression of parasitaemia (99.09%) at the dose of 125 mg/kg/day in Peters’ test. Compound 3, with 79.42% suppression, was the best in Rane’s test at the lowest dose (31 mg/kg/day). Compound 3 was confirmed by the pharmacodynamic study to have faster initial parasite elimination in the lowest concentration. The histopathology of the livers of mice did not reveal any focal necrosis of hepatocytes in the studied compounds. Conclusions The docking studies verified Pf LDH inhibition and the inhibitory effect on the haemozoin formation for the studied compounds. Accordingly, some compounds may provide new avenues for the development of anti-malarial drugs without liver toxicity, although further studies are required to optimize their anti-plasmodial activity.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran. .,Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed-Mahdi Mohamadi-Zarch
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
248
|
Bérubé C, Borgia A, Gagnon D, Mukherjee A, Richard D, Voyer N. Total Synthesis and Antimalarial Activity of Dominicin, a Cyclic Octapeptide from a Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2020; 83:1778-1783. [PMID: 32484670 DOI: 10.1021/acs.jnatprod.9b00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dominicin, a macrocyclic peptide isolated from the marine sponge Eurypon laughlini, has been synthesized for the first time by solid-phase peptide synthesis. The strategy uses oxime resin and takes advantage of the nucleophile susceptibility of the oxime ester bond. The synthesis relies on the preparation of a linear precursor followed by on-resin head-to-tail concomitant cyclization-cleavage. This is the first report of the use of a Boc/OtBu biorthogonal protection strategy on oxime resin to facilitate concomitant N-terminal and side-chain tert-butyl ether deprotection cyclization of unprotected peptides. Also, we report the first antimalarial investigation of dominicin. Interestingly, the natural macrocyclic peptide demonstrates effective low micromolar activity (1.8 μM) against the chloroquine-mefloquine-pyrimethamine-resistant Dd2 strain of Plasmodium falciparum.
Collapse
Affiliation(s)
- Christopher Bérubé
- Département de Chimie and PROTEO, Université Laval, Québec, G1V 0A6, Canada
| | - Alexandre Borgia
- Département de Chimie and PROTEO, Université Laval, Québec, G1V 0A6, Canada
| | - Dominic Gagnon
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, G1 V 0A6, Canada
| | - Angana Mukherjee
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, G1 V 0A6, Canada
| | - Dave Richard
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, G1 V 0A6, Canada
| | - Normand Voyer
- Département de Chimie and PROTEO, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
249
|
Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr Pharm Des 2020; 25:3983-3996. [PMID: 31612822 DOI: 10.2174/1381612825666191014171354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Parasitic infections affecting the central nervous system (CNS) present high morbidity and mortality rates and affect millions of people worldwide. The most important parasites affecting the CNS are protozoans (Plasmodium sp., Toxoplasma gondii, Trypanosoma brucei), cestodes (Taenia solium) and free-living amoebae (Acantamoeba spp., Balamuthia mandrillaris and Naegleria fowleri). Current therapeutic regimens include the use of traditional chemicals or natural compounds that have very limited access to the CNS, despite their elevated toxicity to the host. Improvements are needed in drug administration and formulations to treat these infections and to allow the drug to cross the blood-brain barrier (BBB). METHODS This work aims to elucidate the recent advancements in the use of nanoparticles as nanoscaled drug delivery systems (NDDS) for treating and controlling the parasitic infections that affect the CNS, addressing not only the nature and composition of the polymer chosen, but also the mechanisms by which these nanoparticles may cross the BBB and reach the infected tissue. RESULTS There is a strong evidence in the literature demonstrating the potential usefulness of polymeric nanoparticles as functional carriers of drugs to the CNS. Some of them demonstrated the mechanisms by which drugloaded nanoparticles access the CNS and control the infection by using in vivo models, while others only describe the pharmacological ability of these particles to be utilized in in vitro environments. CONCLUSION The scarcity of the studies trying to elucidate the compatibility as well as the exact mechanisms by which NDDS might be entering the CNS infected by parasites reveals new possibilities for further exploratory projects. There is an urgent need for new investments and motivations for applying nanotechnology to control parasitic infectious diseases worldwide.
Collapse
Affiliation(s)
- Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, Paraíba, Brazil
| | - Jonatas da Silva Catarino
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Mariana de Oliveira Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Juliana Reis Machado
- Department of Pathology, Genetics and Evolution, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
250
|
Kloehn J, Oppenheim RD, Siddiqui G, De Bock PJ, Kumar Dogga S, Coute Y, Hakimi MA, Creek DJ, Soldati-Favre D. Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii. BMC Biol 2020; 18:67. [PMID: 32546260 PMCID: PMC7296777 DOI: 10.1186/s12915-020-00791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Acetyl-CoA is a key molecule in all organisms, implicated in several metabolic pathways as well as in transcriptional regulation and post-translational modification. The human pathogen Toxoplasma gondii possesses at least four enzymes which generate acetyl-CoA in the nucleo-cytosol (acetyl-CoA synthetase (ACS); ATP citrate lyase (ACL)), mitochondrion (branched-chain α-keto acid dehydrogenase-complex (BCKDH)) and apicoplast (pyruvate dehydrogenase complex (PDH)). Given the diverse functions of acetyl-CoA, we know very little about the role of sub-cellular acetyl-CoA pools in parasite physiology. RESULTS To assess the importance and functions of sub-cellular acetyl-CoA-pools, we measured the acetylome, transcriptome, proteome and metabolome of parasites lacking ACL/ACS or BCKDH. We demonstrate that ACL/ACS constitute a synthetic lethal pair. Loss of both enzymes causes a halt in fatty acid elongation, hypo-acetylation of nucleo-cytosolic and secretory proteins and broad changes in gene expression. In contrast, loss of BCKDH results in an altered TCA cycle, hypo-acetylation of mitochondrial proteins and few specific changes in gene expression. We provide evidence that changes in the acetylome, transcriptome and proteome of cells lacking BCKDH enable the metabolic adaptations and thus the survival of these parasites. CONCLUSIONS Using multi-omics and molecular tools, we obtain a global and integrative picture of the role of distinct acetyl-CoA pools in T. gondii physiology. Cytosolic acetyl-CoA is essential and is required for the synthesis of parasite-specific fatty acids. In contrast, loss of mitochondrial acetyl-CoA can be compensated for through metabolic adaptations implemented at the transcriptional, translational and post-translational level.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Rebecca D Oppenheim
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Pieter-Jan De Bock
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Yohann Coute
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Mohamed-Ali Hakimi
- Epigenetic and Parasites Team, UMR5163/LAPM, Domaine de la Merci, Jean Roget Institute, 38700, La Tronche, France
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|