201
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
202
|
Suseela V, Tharayil N, Orr G, Hu D. Chemical plasticity in the fine root construct of Quercus spp. varies with root order and drought. THE NEW PHYTOLOGIST 2020; 228:1835-1851. [PMID: 32750158 DOI: 10.1111/nph.16841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Fine roots of trees exhibit varying degree of plasticity to adapt to environmental stress. Although the morphological and physiological plasticity of roots has been well studied, less known are the accompanying changes in the chemical composite (chemical plasticity) of fine roots, which regulates both root function and soil carbon sequestration. We investigated the changes in quantity, composition and localization of phenolic compounds in fine root orders of Quercus alba and Quercus rubra subjected to drought stress. In both species the total quantity of lignins varied only by root orders, where the distal (first and second) root orders had lower lignin compared to higher orders. Despite a lower lignin content, the distal root orders had higher content of guaiacyl lignin and bound phenolics that would provide a greater meshing of lignocellulosic matrix, and thus a higher tissue integrity. Unlike lignins, drought altered the quantity and composition of tannins. In Q. alba, the ellagitannins decreased in the distal root orders exposed to drought, while the fiber-bound condensed tannnins increased. The lower content of ellagitannins with antimicrobial properties under drought reveals an adaptive response by fine roots to promote symbiotic association, as evidenced by the higher colonization of ectomycorrhizal fungi. Our study revealed that, when exposed to drought, the composition of heteropolymers are strategically varied across fine root orders, so as to provide a greater root function without compromising the tissue protection.
Collapse
Affiliation(s)
- Vidya Suseela
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29624, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29624, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory - Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory - Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
203
|
Penttilä PA, Altgen M, Awais M, Österberg M, Rautkari L, Schweins R. Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scattering. Sci Rep 2020; 10:20844. [PMID: 33257738 PMCID: PMC7705696 DOI: 10.1038/s41598-020-77755-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
Wood and other plant-based resources provide abundant, renewable raw materials for a variety of applications. Nevertheless, their utilization would greatly benefit from more efficient and accurate methods to characterize the detailed nanoscale architecture of plant cell walls. Non-invasive techniques such as neutron and X-ray scattering hold a promise for elucidating the hierarchical cell wall structure and any changes in its morphology, but their use is hindered by challenges in interpreting the experimental data. We used small-angle neutron scattering in combination with contrast variation by poly(ethylene glycol) (PEG) to identify the scattering contribution from cellulose microfibril bundles in native wood cell walls. Using this method, mean diameters for the microfibril bundles from 12 to 19 nm were determined, without the necessity of cutting, drying or freezing the cell wall. The packing distance of the individual microfibrils inside the bundles can be obtained from the same data. This finding opens up possibilities for further utilization of small-angle scattering in characterizing the plant cell wall nanostructure and its response to chemical, physical and biological modifications or even in situ treatments. Moreover, our results give new insights into the interaction between PEG and the wood nanostructure, which may be helpful for preservation of archaeological woods.
Collapse
Affiliation(s)
- Paavo A Penttilä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland.
- Large-Scale Structures Group, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042, Grenoble, France.
| | - Michael Altgen
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland
| | - Muhammad Awais
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland
| | - Lauri Rautkari
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland
| | - Ralf Schweins
- Large-Scale Structures Group, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042, Grenoble, France
| |
Collapse
|
204
|
A grass-specific cellulose-xylan interaction dominates in sorghum secondary cell walls. Nat Commun 2020; 11:6081. [PMID: 33247125 PMCID: PMC7695714 DOI: 10.1038/s41467-020-19837-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
Sorghum (Sorghum bicolor L. Moench) is a promising source of lignocellulosic biomass for the production of renewable fuels and chemicals, as well as for forage. Understanding secondary cell wall architecture is key to understanding recalcitrance i.e. identifying features which prevent the efficient conversion of complex biomass to simple carbon units. Here, we use multi-dimensional magic angle spinning solid-state NMR to characterize the sorghum secondary cell wall. We show that xylan is mainly in a three-fold screw conformation due to dense arabinosyl substitutions, with close proximity to cellulose. We also show that sorghum secondary cell walls present a high ratio of amorphous to crystalline cellulose as compared to dicots. We propose a model of sorghum cell wall architecture which is dominated by interactions between three-fold screw xylan and amorphous cellulose. This work will aid the design of low-recalcitrance biomass crops, a requirement for a sustainable bioeconomy. Sorghum is a source of lignocellulosic biomass for the production of renewable fuels. Here the authors characterise the sorghum secondary cell wall using multi-dimensional magic angle spinning solid-state NMR and present a model dominated by interactions between three-fold screw xylan and amorphous cellulose.
Collapse
|
205
|
Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering. Carbohydr Polym 2020; 254:117293. [PMID: 33357862 DOI: 10.1016/j.carbpol.2020.117293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022]
Abstract
Cellulose-lignin composite carbon fibers have shown to be a potential environmentally benign alternative to the traditional polyacrylonitrile precursor. With the associated cost reduction, cellulose-lignin carbon fibers are an attractive light-weight material for, e.g. wind power and automobile manufacturing. The carbon fiber tenacity, tensile modulus and creep resistance is in part determined by the carbon content and the molecular orientation distribution of the precursor. This work disassociates the molecular orientation of different components in cellulose-lignin composite fibers using rotor-synchronized solid-state nuclear magnetic resonance spectroscopy and X-ray scattering. Our results show that lignin is completely disordered, in a mechanically stretched cellulose-lignin composite fiber, while the cellulose is ordered. In contrast, the native spruce wood raw material displays both oriented lignin and cellulose. The current processes for fabricating a cellulose-lignin composite fiber cannot regain the oriented lignin as observed from the native wood.
Collapse
|
206
|
Jiang B, Chen H, Zhao H, Wu W, Jin Y. Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L). Int J Biol Macromol 2020; 163:694-701. [DOI: 10.1016/j.ijbiomac.2020.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
|
207
|
Grape stalk: a first attempt to disentangle its fibres via electrostatic separation. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
208
|
Qaseem MF, Wu AM. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. Int J Mol Sci 2020; 21:ijms21217875. [PMID: 33114198 PMCID: PMC7660596 DOI: 10.3390/ijms21217875] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and position of xylan acetylation is necessary for xylan function and for plant growth and development. The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation (RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the latest advances in understanding xylan acetylation and deacetylation and explores their effects on plant growth and development. Baseline knowledge about precise regulation of xylan acetylation and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid biofuel production.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
209
|
Addison B, Stengel D, Bharadwaj VS, Happs RM, Doeppke C, Wang T, Bomble YJ, Holland GP, Harman-Ware AE. Selective One-Dimensional 13C- 13C Spin-Diffusion Solid-State Nuclear Magnetic Resonance Methods to Probe Spatial Arrangements in Biopolymers Including Plant Cell Walls, Peptides, and Spider Silk. J Phys Chem B 2020; 124:9870-9883. [PMID: 33091304 DOI: 10.1021/acs.jpcb.0c07759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two-dimensional (2D) and 3D through-space 13C-13C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from 13C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D 13C-13C spin-diffusion solid-state NMR technique. The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk. 1D 13C-13C spin-diffusion methods described here apply in select cases in which the 1D 13C solid-state NMR spectrum displays chemical shift-resolved moieties. This is analogous to the selective 1D nuclear Overhauser effect spectroscopy (NOESY) experiment utilized in liquid-state NMR as a faster (1D instead of 2D) and often less ambiguous (direct sampling of the time domain data, coupled with increased signal averaging) alternative to 2D NOESY. Selective 1D 13C-13C spin-diffusion methods are more time-efficient than their 2D counterparts such as proton-driven spin diffusion (PDSD) and dipolar-assisted rotational resonance. The additional time gained enables measurements of 13C-13C spin-diffusion buildup curves and extraction of spin-diffusion time constants TSD, yielding detailed structural information. Specifically, selective 1D DARR difference buildup curves applied to 13C-enriched hybrid poplar woody stems confirm strong spatial interaction between lignin and acetylated xylan polymers within poplar plant secondary cell walls, and an interpolymer distance of ∼0.45-0.5 nm was estimated. Additionally, Tyr/Gly long-range correlations were observed on isotopically enriched black widow spider dragline silks.
Collapse
Affiliation(s)
- Bennett Addison
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yannick J Bomble
- Biosciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
210
|
Kelly JE, Chrissian C, Stark RE. Tailoring NMR experiments for structural characterization of amorphous biological solids: A practical guide. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 109:101686. [PMID: 32896783 PMCID: PMC7530138 DOI: 10.1016/j.ssnmr.2020.101686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 05/12/2023]
Abstract
Many interesting solid-state targets for biological research do not form crystalline structures; these materials include intrinsically disordered proteins, plant biopolymer composites, cell-wall polysaccharides, and soil organic matter. The absence of aligned repeating structural elements and atomic-level rigidity presents hurdles to achieving structural elucidation and obtaining functional insights. We describe strategies for adapting several solid-state NMR methods to determine the molecular structures and compositions of these amorphous biosolids. The main spectroscopic problems in studying amorphous structures by NMR are over/under-sampling of the spin signals and spectral complexity. These problems arise in part because amorphous biosolids typically contain a mix of rigid and mobile domains, making it difficult to select a single experiment or set of acquisition conditions that fairly represents all nuclear spins in a carbon-based organic sample. These issues can be addressed by running hybrid experiments, such as using direct excitation alongside cross polarization-based methods, to develop a more holistic picture of the macromolecular system. In situations of spectral crowding or overlap, the structural elucidation strategy can be further assisted by coupling 13C spins to nuclei such as 15N, filtering out portions of the spectrum, highlighting individual moieties of interest, and adding a second or third spectral dimension to an NMR experiment in order to spread out the resonances and link them pairwise through space or through bonds. We discuss practical aspects and illustrations from the recent literature for 1D experiments that use cross or direct polarization and both homo- and heteronuclear 2D and 3D solid-state NMR experiments.
Collapse
Affiliation(s)
- John E Kelly
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
211
|
Liu X, Zhu R, Chen T, Song P, Lu F, Xu F, Ralph J, Zhang X. Mild Acetylation and Solubilization of Ground Whole Plant Cell Walls in EmimAc: A Method for Solution-State NMR in DMSO- d6. Anal Chem 2020; 92:13101-13109. [PMID: 32885955 DOI: 10.1021/acs.analchem.0c02124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignocellulosic biomass is mainly composed of polysaccharides and lignin. The complexity and diversity of the plant cell wall polymers makes it difficult to isolate the components in pure form for characterization. Many current approaches to analyzing the structure of lignocellulose, which involve sequential extraction and characterization of the resulting fractions, are time-consuming and labor-intensive. The present study describes a new and facile system for rationally derivatizing and dissolving coarsely ground plant cell wall materials. Using ionic liquids (EmimAc) and dichloroacetyl chloride as a solvent/reagent produced mildly acetylated whole cell walls without significant degradation. The acetylated products were soluble in DMSO-d6 from which they can be characterized by solution-state two-dimensional nuclear magnetic resonance (2D NMR) spectrometry. A distinct advantage of the procedure is that it realizes the dissolution of whole lignocellulosic materials without requiring harsh ball milling, thereby allowing the acquisition of high-resolution 2D NMR spectra to revealing structural details of the main components (lignin and polysaccharides). The method is therefore beneficial to understanding the composition and structure of biomass aimed at its improved utilization.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ruonan Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Tianying Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Pingping Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.,Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.,Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| |
Collapse
|
212
|
Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun 2020; 11:4692. [PMID: 32943624 PMCID: PMC7499266 DOI: 10.1038/s41467-020-18390-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Hemicelluloses, a family of heterogeneous polysaccharides with complex molecular structures, constitute a fundamental component of lignocellulosic biomass. However, the contribution of each hemicellulose type to the mechanical properties of secondary plant cell walls remains elusive. Here we homogeneously incorporate different combinations of extracted and purified hemicelluloses (xylans and glucomannans) from softwood and hardwood species into self-assembled networks during cellulose biosynthesis in a bacterial model, without altering the morphology and the crystallinity of the cellulose bundles. These composite hydrogels can be therefore envisioned as models of secondary plant cell walls prior to lignification. The incorporated hemicelluloses exhibit both a rigid phase having close interactions with cellulose, together with a flexible phase contributing to the multiscale architecture of the bacterial cellulose hydrogels. The wood hemicelluloses exhibit distinct biomechanical contributions, with glucomannans increasing the elastic modulus in compression, and xylans contributing to a dramatic increase of the elongation at break under tension. These diverging effects cannot be explained solely from the nature of their direct interactions with cellulose, but can be related to the distinct molecular structure of wood xylans and mannans, the multiphase architecture of the hydrogels and the aggregative effects amongst hemicellulose-coated fibrils. Our study contributes to understanding the specific roles of wood xylans and glucomannans in the biomechanical integrity of secondary cell walls in tension and compression and has significance for the development of lignocellulosic materials with controlled assembly and tailored mechanical properties. Hemicelluloses are an essential constituent of plant cell walls, but the individual biomechanical roles remain elusive. Here the authors report on the interaction of wood hemicellulose with bacterial cellulose during deposition and explore the resultant fibrillar architecture and mechanical properties.
Collapse
|
213
|
Yokoyama R. A Genomic Perspective on the Evolutionary Diversity of the Plant Cell Wall. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1195. [PMID: 32932717 PMCID: PMC7570368 DOI: 10.3390/plants9091195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023]
Abstract
The plant cell wall is a complex and dynamic structure composed of numerous different molecules that play multiple roles in all aspects of plant life. Currently, a new frontier in biotechnology is opening up, which is providing new insights into the structural and functional diversity of cell walls, and is thus serving to re-emphasize the significance of cell wall divergence in the evolutionary history of plant species. The ever-increasing availability of plant genome datasets will thus provide an invaluable basis for enhancing our knowledge regarding the diversity of cell walls among different plant species. In this review, as an example of a comparative genomics approach, I examine the diverse patterns of cell wall gene families among 100 species of green plants, and illustrate the evident benefits of using genome databases for studying cell wall divergence. Given that the growth and development of all types of plant cells are intimately associated with cell wall dynamics, gaining a further understanding of the functional diversity of cell walls in relation to diverse biological events will make significant contributions to a broad range of plant sciences.
Collapse
Affiliation(s)
- Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
214
|
Ndukwe IE, Black I, Heiss C, Azadi P. Evaluating the Utility of Permethylated Polysaccharide Solution NMR Data for Characterization of Insoluble Plant Cell Wall Polysaccharides. Anal Chem 2020; 92:13221-13228. [PMID: 32794693 DOI: 10.1021/acs.analchem.0c02379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plant cell wall polysaccharide analysis encompasses the utilization of a variety of analytical tools, including gas and liquid chromatography, mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. These methods provide complementary data, which enable confident structural proposals of the many complex polysaccharide structures that exist in the complex matrices of plant cell walls. However, cell walls contain fractions of varying solubilities, and a few techniques are available that can analyze all fractions simultaneously. We have discovered that permethylation affords the complete dissolution of both soluble and insoluble polysaccharide fractions of plant cell walls in organic solvents such as chloroform or acetonitrile, which can then be analyzed by a number of analytical techniques including MS and NMR. In this work, NMR structure analysis of 10 permethylated polysaccharide standards was undertaken to generate chemical shift data providing insights into spectral changes that result from permethylation of polysaccharide residues. This information is of especial relevance to the structure analysis of insoluble polysaccharide materials that otherwise are not easily investigated by solution-state NMR methodologies. The preassigned NMR chemical shift data is shown to be vital for NMR structure analysis of minor polysaccharide components of plant cell walls that are particularly difficult to assign by NMR correlation data alone. With the assigned chemical shift data, we analyzed the permethylated samples of destarched, alcohol-insoluble residues of switchgrass and poplar by two-dimensional NMR spectral profiling. Thus, we identified, in addition to the major polysaccharide components, two minor polysaccharides, namely, <5% 3-linked arabinoxylan (switchgrass) and <2% glucomannan (poplar). In particular, the position of the arabinose residue in the arabinoxylan of the switchgrass sample was confidently assigned based on chemical shift values, which are highly sensitive to local chemical environments. Furthermore, the high resolution afforded by the 1H NMR spectra of the permethylated switchgrass and poplar samples allowed facile relative quantitative analysis of their polysaccharide composition, utilizing only a few milligrams of the cell wall material. The concepts herein developed will thus facilitate NMR structure analysis of insoluble plant cell wall polysaccharides, more so of minor cell wall components that are especially challenging to analyze with current methods.
Collapse
Affiliation(s)
- Ikenna E Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
215
|
Miyagawa Y, Tobimatsu Y, Lam PY, Mizukami T, Sakurai S, Kamitakahara H, Takano T. Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:156-170. [PMID: 32623768 DOI: 10.1111/tpj.14913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.
Collapse
Affiliation(s)
- Yasuyuki Miyagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Yuki Tobimatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahito Mizukami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Sayaka Sakurai
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Hiroshi Kamitakahara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| |
Collapse
|
216
|
Oliveira DM, Mota TR, Salatta FV, Sinzker RC, Končitíková R, Kopečný D, Simister R, Silva M, Goeminne G, Morreel K, Rencoret J, Gutiérrez A, Tryfona T, Marchiosi R, Dupree P, Del Río JC, Boerjan W, McQueen-Mason SJ, Gomez LD, Ferrarese-Filho O, Dos Santos WD. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. PLANT, CELL & ENVIRONMENT 2020; 43:2172-2191. [PMID: 32441772 DOI: 10.1111/pce.13805] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 05/15/2023]
Abstract
Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Fábio V Salatta
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Renata C Sinzker
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Mariana Silva
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Leonardo D Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
217
|
An Eco-Friendly Fluidizable FexOy/CaO-γ-Al2O3 Catalyst for Tar Cracking during Biomass Gasification. Catalysts 2020. [DOI: 10.3390/catal10070806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study deals with the development, characterization, and performance evaluation of an eco-friendly catalyst, using 2-methoxy-4-methylphenol (2M4MP) as a surrogate tar. The 2M4MP was selected due to its chemical functionalities and the fact that it is a good model compound to represent the tar formed during biomass low temperature gasification. The eco-friendly catalyst was prepared using the typical Fe and Ca minerals which are present in ash. These ash components were added to a fluidizable γ-Al2O3 support using a multistep incipient impregnation, yielding Fe oxides as an active phase and CaO as the promoter. The prepared catalyst displayed a 120 m2/g BET specific surface area, with few γ-Al2O3 bulk phase changes, as observed with XRD. TPD-NH3 and pyridine FTIR allowed us to show the significant influence of CaO reduced support acidity. A TPR analysis provided evidence of catalyst stability during consecutive reduction–oxidation cycles. Furthermore, catalyst evaluation vis-à-vis catalytic steam 2M4MP gasification was performed using the fluidized CREC riser simulator. The obtained results confirm the high performance of the developed catalyst, with 2M4MP conversion being close to 100% and with selectivities of up to 98.6% for C1-C2 carbon-containing species, at 500 °C, with a 7.5 s reaction time and 1.5 g steam/g 2M4MP. These high tar conversions are promising efficiency indicators for alumina catalysts doped with Fe and Ca. In addition, the used catalyst particles could be blended with biochar to provide an integrated solid supplement that could return valuable mineral supplements to the soil.
Collapse
|
218
|
Chow WY, Norman BP, Roberts NB, Ranganath LR, Teutloff C, Bittl R, Duer MJ, Gallagher JA, Oschkinat H. Pigmentierungschemie und radikalbasierter Kollagenabbau bei Alkaptonurie und Arthrose. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wing Ying Chow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch, Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - Brendan P. Norman
- Department of Musculoskeletal Biology Institute of Ageing & Chronic Disease William Henry Duncan Building University of Liverpool Liverpool L7 8TX Vereinigtes Königreich
| | - Norman B. Roberts
- Departments of Clinical Biochemistry and Metabolic Medicine Royal Liverpool and Broadgreen University Hospitals Trust Liverpool L7 8XP Vereinigtes Königreich
| | - Lakshminarayan R. Ranganath
- Department of Musculoskeletal Biology Institute of Ageing & Chronic Disease William Henry Duncan Building University of Liverpool Liverpool L7 8TX Vereinigtes Königreich
- Departments of Clinical Biochemistry and Metabolic Medicine Royal Liverpool and Broadgreen University Hospitals Trust Liverpool L7 8XP Vereinigtes Königreich
| | - Christian Teutloff
- Freie Universität Berlin Fachbereich Physik, Berlin Joint EPR Lab Arnimallee 14 14195 Berlin Deutschland
| | - Robert Bittl
- Freie Universität Berlin Fachbereich Physik, Berlin Joint EPR Lab Arnimallee 14 14195 Berlin Deutschland
| | - Melinda J. Duer
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW Vereinigtes Königreich
| | - James A. Gallagher
- Department of Musculoskeletal Biology Institute of Ageing & Chronic Disease William Henry Duncan Building University of Liverpool Liverpool L7 8TX Vereinigtes Königreich
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch, Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Freie Universität Berlin Fachbereich Biologie, Chemie und Pharmazie Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
219
|
Chow WY, Norman BP, Roberts NB, Ranganath LR, Teutloff C, Bittl R, Duer MJ, Gallagher JA, Oschkinat H. Pigmentation Chemistry and Radical-Based Collagen Degradation in Alkaptonuria and Osteoarthritic Cartilage. Angew Chem Int Ed Engl 2020; 59:11937-11942. [PMID: 32219972 PMCID: PMC7383862 DOI: 10.1002/anie.202000618] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.
Collapse
Affiliation(s)
- Wing Ying Chow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Rössle-Str. 1013125BerlinGermany
| | - Brendan P. Norman
- Department of Musculoskeletal BiologyInstitute of Ageing & Chronic DiseaseWilliam Henry Duncan BuildingUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Norman B. Roberts
- Departments of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolL7 8XPUK
| | - Lakshminarayan R. Ranganath
- Department of Musculoskeletal BiologyInstitute of Ageing & Chronic DiseaseWilliam Henry Duncan BuildingUniversity of LiverpoolLiverpoolL7 8TXUK
- Departments of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospitals TrustLiverpoolL7 8XPUK
| | - Christian Teutloff
- Freie Universität BerlinFachbereich Physik, Berlin Joint EPR LabArnimallee 1414195BerlinGermany
| | - Robert Bittl
- Freie Universität BerlinFachbereich Physik, Berlin Joint EPR LabArnimallee 1414195BerlinGermany
| | - Melinda J. Duer
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - James A. Gallagher
- Department of Musculoskeletal BiologyInstitute of Ageing & Chronic DiseaseWilliam Henry Duncan BuildingUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Rössle-Str. 1013125BerlinGermany
- Freie Universität BerlinFachbereich Biologie, Chemie und PharmazieTakustraße 314195BerlinGermany
| |
Collapse
|
220
|
George N, Antony A, Ramachandran T, Hamed F, Kamal-Eldin A. Microscopic Investigationsof Silicification and Lignification Suggest Their Coexistence in Tracheary Phytoliths in Date Fruits ( Phoenix dactylifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:977. [PMID: 32733510 PMCID: PMC7359715 DOI: 10.3389/fpls.2020.00977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Date fruits are special representative of hard fruits and one of the richest sources of dietary silica and edible lignin, which are believed to have several health benefits. In this study, we used optical and scanning electron microscopy (SEM) to investigate the presence of associations between silicification and lignification in date fruits (Phoenix dactylifera, L.). Phloroglucinol staining was employed to observe lignification in date fruits, while silicification was studied by SEM of whole fruits and their acid digesta. This work revealed the presence of heterogeneity and complexity in the silica phytoliths and the lignified structures in date fruits. It was found that lignin exists independently of silica in the secondary cell walls of parenchymal and sclereid cells and that silica exists independently of lignin in the spheroid phytoliths that surround the sclereid cells. Interestingly, a small proportion of lignin and silica seemed to co-exist as partners in the spiral coils of the tracheid phytoliths.
Collapse
Affiliation(s)
- Navomy George
- Department of Food, Nutrition & Health, College of Food & Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Asha Antony
- Department of Veterinary Medicine, College of Food & Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food, Nutrition & Health, College of Food & Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
221
|
Cao JF, Zhao B, Huang CC, Chen ZW, Zhao T, Liu HR, Hu GJ, Shangguan XX, Shan CM, Wang LJ, Zhang TZ, Wendel JF, Guan XY, Chen XY. The miR319-Targeted GhTCP4 Promotes the Transition from Cell Elongation to Wall Thickening in Cotton Fiber. MOLECULAR PLANT 2020; 13:1063-1077. [PMID: 32422188 DOI: 10.1016/j.molp.2020.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 05/08/2023]
Abstract
Plant cell growth involves a complex interplay among cell-wall expansion, biosynthesis, and, in specific tissues, secondary cell wall (SCW) deposition, yet the coordination of these processes remains elusive. Cotton fiber cells are developmentally synchronous, highly elongated, and contain nearly pure cellulose when mature. Here, we report that the transcription factor GhTCP4 plays an important role in balancing cotton fiber cell elongation and wall synthesis. During fiber development the expression of miR319 declines while GhTCP4 transcript levels increase, with high levels of the latter promoting SCW deposition. GhTCP4 interacts with a homeobox-containing factor, GhHOX3, and repressing its transcriptional activity. GhTCP4 and GhHOX3 function antagonistically to regulate cell elongation, thereby establishing temporal control of fiber cell transition to the SCW stage. We found that overexpression of GhTCP4A upregulated and accelerated activation of the SCW biosynthetic pathway in fiber cells, as revealed by transcriptome and promoter activity analyses, resulting in shorter fibers with varied lengths and thicker walls. In contrast, GhTCP4 downregulation led to slightly longer fibers and thinner cell walls. The GhHOX3-GhTCP4 complex may represent a general mechanism of cellular development in plants since both are conserved factors in many species, thus providing us a potential molecular tool for the design of fiber traits.
Collapse
Affiliation(s)
- Jun-Feng Cao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Plant Stress Biology Center, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao-Chen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Wen Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ting Zhao
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong-Ru Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guan-Jing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chun-Min Shan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Zhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Xue-Ying Guan
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| |
Collapse
|
222
|
Elongating maize root: zone-specific combinations of polysaccharides from type I and type II primary cell walls. Sci Rep 2020; 10:10956. [PMID: 32616810 PMCID: PMC7331734 DOI: 10.1038/s41598-020-67782-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
The dynamics of cell wall polysaccharides may modulate the cell wall mechanics and thus control the expansion growth of plant cells. The unique composition of type II primary cell wall characteristic of grasses suggests that they employ specific mechanisms for cell enlargement. We characterized the transcriptomes in five zones along maize root, clustered the expression of genes for numerous glycosyltransferases and performed extensive immunohistochemical analysis to relate the changes in cell wall polysaccharides to critical stages of cell development in Poaceae. Specific patterns of cell wall formation differentiate the initiation, realization and cessation of elongation growth. Cell walls of meristem and early elongation zone represent a mixture of type I and type II specific polysaccharides. Xyloglucans and homogalacturonans are synthesized there actively together with mixed-linkage glucans and glucuronoarabinoxylans. Rhamnogalacturonans-I with the side-chains of branched 1,4-galactan and arabinan persisted in cell walls throughout the development. Thus, the machinery to generate the type I primary cell wall constituents is completely established and operates. The expression of glycosyltransferases responsible for mixed-linkage glucan and glucuronoarabinoxylan synthesis peaks at active or late elongation. These findings widen the number of jigsaw pieces which should be put together to solve the puzzle of grass cell growth.
Collapse
|
223
|
Lunin VV, Wang HT, Bharadwaj VS, Alahuhta M, Peña MJ, Yang JY, Archer-Hartmann SA, Azadi P, Himmel ME, Moremen KW, York WS, Bomble YJ, Urbanowicz BR. Molecular Mechanism of Polysaccharide Acetylation by the Arabidopsis Xylan O-acetyltransferase XOAT1. THE PLANT CELL 2020; 32:2367-2382. [PMID: 32354790 PMCID: PMC7346548 DOI: 10.1105/tpc.20.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 05/03/2023]
Abstract
Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/β/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.
Collapse
Affiliation(s)
- Vladimir V Lunin
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Vivek S Bharadwaj
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Markus Alahuhta
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Michael E Himmel
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Yannick J Bomble
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
224
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
225
|
Gao Y, Mortimer JC. Unlocking the architecture of native plant cell walls via solid-state nuclear magnetic resonance. Methods Cell Biol 2020; 160:121-143. [PMID: 32896312 DOI: 10.1016/bs.mcb.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the biosynthesis and architecture of the plant cell wall is key to predictably engineering plants as a sustainable bioenergy source. Multi-dimensional solid-state nuclear magnetic resonance (ssNMR) is a promising technique to investigate the three-dimensional networks formed between cell wall components in their native state, and develop models of cell wall architecture. To do this, it is necessary to produce plant material that is highly enriched in the carbon-13 isotope (13C), since carbon-12 (12C) is inactive in NMR. Here, we present a cost-effective way to generate 13C-enriched mature plant tissue and to determine the degree of 13C incorporation. We describe a series of multi-dimensional ssNMR experiments that have been used in recent studies of cell wall architecture, and provide an introduction to interpreting the resulting ssNMR spectra.
Collapse
Affiliation(s)
- Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
226
|
Yamada K, Yamaguchi Y, Uekusa Y, Aoki K, Shimada I, Yamaguchi T, Kato K. Solid-state 17O NMR analysis of synthetically 17O-enriched d-glucosamine. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
227
|
Zhao W, Fernando LD, Kirui A, Deligey F, Wang T. Solid-state NMR of plant and fungal cell walls: A critical review. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101660. [PMID: 32251983 DOI: 10.1016/j.ssnmr.2020.101660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 05/22/2023]
Abstract
The cell walls of plants and microbes are a central source for bio-renewable energy and the major targets of antibiotics and antifungal agents. It is highly challenging to determine the molecular structure of complex carbohydrates, protein and lignin, and their supramolecular assembly in intact cell walls. This article selectively highlights the recent breakthroughs that employ 13C/15N solid-state NMR techniques to elucidate the architecture of fungal cell walls in Aspergillus fumigatus and the primary and secondary cell walls in a large variety of plant species such as Arabidopsis, Brachypodium, maize, and spruce. Built upon these pioneering studies, we further summarize the underexplored aspects of fungal and plant cell walls. The new research opportunities introduced by innovative methods, such as the detection of proton and quadrupolar nuclei on ultrahigh-field magnets and under fast magic-angle spinning, paramagnetic probes, natural-abundance DNP, and software development, are also critically discussed.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
228
|
Cao Y, Zhang C, Tsang DC, Fan J, Clark JH, Zhang S. Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01617] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Cheng Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - James H. Clark
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
229
|
Kang X, Zhao W, Dickwella Widanage MC, Kirui A, Ozdenvar U, Wang T. CCMRD: a solid-state NMR database for complex carbohydrates. JOURNAL OF BIOMOLECULAR NMR 2020; 74:239-245. [PMID: 32125579 DOI: 10.1007/s10858-020-00304-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/27/2020] [Indexed: 05/03/2023]
Abstract
Carbohydrates are essential to various life activities in living organisms and serve as the central component in many biomaterials. As an emerging technique with steadily improving resolution, solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has the unique capability in revealing the polymorphic structure and heterogeneous dynamics of insoluble complex carbohydrates. Here, we report the first solid-state NMR database for complex carbohydrates, Complex Carbohydrates Magnetic Resonance Database (CCMRD). This database currently holds the chemical shift information of more than four hundred solid-state NMR compounds and expects rapid expansion. CCMRD provides open portals for data deposition and supports search options based on NMR chemical shifts, carbohydrate names, and compound classes. With the timely implementation, this platform will facilitate spectral analysis and structure determination of carbohydrates and promote software development to benefit the research community. The database is freely accessible at www.ccmrd.org.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Uluc Ozdenvar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
230
|
Ishida T, Suzuki R, Nakagami S, Kuroha T, Sakamoto S, Nakata MT, Yokoyama R, Kimura S, Mitsuda N, Nishitani K, Sawa S. Root-knot nematodes modulate cell walls during root-knot formation in Arabidopsis roots. JOURNAL OF PLANT RESEARCH 2020; 133:419-428. [PMID: 32246281 DOI: 10.1007/s10265-020-01186-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Phytoparasitic nematodes parasitize many species of rooting plants to take up nutrients, thus causing severe growth defects in the host plants. During infection, root-knot nematodes induce the formation of a characteristic hyperplastic structure called a root-knot or gall on the roots of host plants. Although many previous studies addressed this abnormal morphogenesis, the underlying mechanisms remain uncharacterized. To analyze the plant-microorganism interaction at the molecular level, we established an in vitro infection assay system using the nematode Meloidogyne incognita and the model plant Arabidopsis thaliana. Time-course mRNA-seq analyses indicated the increased levels of procambium-associated genes in the galls, suggesting that vascular stem cells play important roles in the gall formation. Conversely, genes involved in the formation of secondary cell walls were decreased in galls. A neutral sugar analysis indicated that the level of xylan, which is one of the major secondary cell wall components, was dramatically reduced in the galls. These observations were consistent with the hypothesis of a decrease in the number of highly differentiated cells and an increase in the density of undifferentiated cells lead to gall formation. Our findings suggest that phytoparasitic nematodes modulate the developmental mechanisms of the host to modify various aspects of plant physiological processes and establish a feeding site.
Collapse
Affiliation(s)
- Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.
| | - Reira Suzuki
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Miyuki T Nakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
231
|
Felhofer M, Bock P, Singh A, Prats-Mateu B, Zirbs R, Gierlinger N. Wood Deformation Leads to Rearrangement of Molecules at the Nanoscale. NANO LETTERS 2020; 20:2647-2653. [PMID: 32196350 PMCID: PMC7146868 DOI: 10.1021/acs.nanolett.0c00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Indexed: 05/20/2023]
Abstract
Wood, as the most abundant carbon dioxide storing bioresource, is currently driven beyond its traditional use through creative innovations and nanotechnology. For many properties the micro- and nanostructure plays a crucial role and one key challenge is control and detection of chemical and physical processes in the confined microstructure and nanopores of the wooden cell wall. In this study, correlative Raman and atomic force microscopy show high potential for tracking in situ molecular rearrangement of wood polymers during compression. More water molecules (interpreted as wider cellulose microfibril distances) and disentangling of hemicellulose chains are detected in the opened cell wall regions, whereas an increase of lignin is revealed in the compressed areas. These results support a new more "loose" cell wall model based on flexible lignin nanodomains and advance our knowledge of the molecular reorganization during deformation of wood for optimized processing and utilization.
Collapse
Affiliation(s)
- Martin Felhofer
- Institute
for Biophysics, Department of Nanobiotechnology (DNBT), University of Natural Resources and Life (BOKU) Sciences, Vienna, Muthgasse 11/II, 1190 Vienna, Austria
| | - Peter Bock
- Institute
for Biophysics, Department of Nanobiotechnology (DNBT), University of Natural Resources and Life (BOKU) Sciences, Vienna, Muthgasse 11/II, 1190 Vienna, Austria
| | - Adya Singh
- Institute
for Biophysics, Department of Nanobiotechnology (DNBT), University of Natural Resources and Life (BOKU) Sciences, Vienna, Muthgasse 11/II, 1190 Vienna, Austria
| | - Batirtze Prats-Mateu
- Institute
of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ronald Zirbs
- Institute
for Biologically Inspired Materials, Department of Nanobiotechnology
(DNBT), University of Natural Resources
and Life Sciences, Vienna, Muthgasse 11/II, 1190 Vienna, Austria
| | - Notburga Gierlinger
- Institute
for Biophysics, Department of Nanobiotechnology (DNBT), University of Natural Resources and Life (BOKU) Sciences, Vienna, Muthgasse 11/II, 1190 Vienna, Austria
- E-mail:
| |
Collapse
|
232
|
Song L, Wang R, Jiang J, Xu J, Gou J. Stepwise separation of poplar wood in oxalic acid/water and γ-valerolactone/water systems. RSC Adv 2020; 10:11188-11199. [PMID: 35495319 PMCID: PMC9050453 DOI: 10.1039/d0ra01163k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/08/2020] [Indexed: 11/21/2022] Open
Abstract
A cost-efficient methodology was developed for a two-step removal of hemicellulose from lignocellulosic biomass, thereby yielding C5 sugars, further separated residue, and high purity cellulose as well as lignin. In the first step of the process, an oxalic acid (OA)-assisted hydrolysis pretreatment was conducted for the selective decomposition of hemicellulose to C5 sugars. The optimized process conditions were as follows: temperature: 160 °C, OA concentration: 1%, holding time: 10 min. Under these conditions, various monosaccharides and other intermediates were obtained and more than 98.32% of the hemicellulose was removed from the original poplar. In the second step of the process, to extract lignin, a low concentration of sulfuric acid was used as a catalyst during the treatment of samples in a γ-valerolactone/H2O system; more than 91.57% lignin was removed, 82.99% cellulose was retained in the solid cellulose-rich substrates, and 94.45% (i.e., high-purity) cellulose was obtained. This method can be used for efficient fractionation of hemicellulose, cellulose, and lignin with the aim of achieving high value utilization of the entire biomass. A combined treatment method of oxalic acid/H2O and γ-valerolactone/H2O can be used for efficient fractionation of hemicellulose, cellulose, and lignin.![]()
Collapse
Affiliation(s)
- Liuming Song
- College Materials Science & Technology, Beijing Forestry University, Key Laboratory of Wooden Material Science and Application, Ministry of Education Beijing 100083 China +86 10 62336711
| | - Ruizhen Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material Nanjing 210042 China +86 25 85482478
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material Nanjing 210042 China +86 25 85482478
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material Nanjing 210042 China +86 25 85482478
| | - Jinsheng Gou
- College Materials Science & Technology, Beijing Forestry University, Key Laboratory of Wooden Material Science and Application, Ministry of Education Beijing 100083 China +86 10 62336711
| |
Collapse
|
233
|
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:469-497. [PMID: 31505131 DOI: 10.1146/annurev-marine-010318-095333] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose-an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom;
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570;
| | - Lucy G Gillis
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany;
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria 3125, Australia;
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom;
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA;
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| |
Collapse
|
234
|
Dey KK, Ghosh M. Understanding the effect of deacetylation on chitin by measuring chemical shift anisotropy tensor and spin lattice relaxation time. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
235
|
Hu H, Zhang Y, Zhang X, Deb H, Yao J. Phase selection of calcium carbonate crystals under the induction of lignin monomer model compounds. CrystEngComm 2020. [DOI: 10.1039/c9ce01822k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The formation and application of ‘cinnamic acid & CaCO3 crystals’ (CACs) induced by a lignin monomer compound.
Collapse
Affiliation(s)
- Huifeng Hu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yong Zhang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiumei Zhang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Hridam Deb
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
236
|
Fertahi S, Bertrand I, Ilsouk M, Oukarroum A, Amjoud M, Zeroual Y, Barakat A. New generation of controlled release phosphorus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. Int J Biol Macromol 2020; 143:153-162. [DOI: 10.1016/j.ijbiomac.2019.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 11/16/2022]
|
237
|
Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019; 9:E303. [PMID: 31847393 PMCID: PMC6969922 DOI: 10.3390/metabo9120303] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Ali Raza
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| |
Collapse
|
238
|
Oliveira DM, Mota TR, Salatta FV, Marchiosi R, Gomez LD, McQueen‐Mason SJ, Ferrarese‐Filho O, dos Santos WD. Designing xylan for improved sustainable biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2225-2227. [PMID: 31077637 PMCID: PMC6835121 DOI: 10.1111/pbi.13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 05/25/2023]
Affiliation(s)
- Dyoni M. Oliveira
- Laboratory of Plant BiochemistryDepartment of BiochemistryState University of MaringáMaringáParanáBrazil
| | - Thatiane R. Mota
- Laboratory of Plant BiochemistryDepartment of BiochemistryState University of MaringáMaringáParanáBrazil
| | - Fábio V. Salatta
- Laboratory of Plant BiochemistryDepartment of BiochemistryState University of MaringáMaringáParanáBrazil
| | - Rogério Marchiosi
- Laboratory of Plant BiochemistryDepartment of BiochemistryState University of MaringáMaringáParanáBrazil
| | - Leonardo D. Gomez
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of YorkYorkUK
| | | | - Osvaldo Ferrarese‐Filho
- Laboratory of Plant BiochemistryDepartment of BiochemistryState University of MaringáMaringáParanáBrazil
| | - Wanderley D. dos Santos
- Laboratory of Plant BiochemistryDepartment of BiochemistryState University of MaringáMaringáParanáBrazil
| |
Collapse
|
239
|
Effects of Moisture on Diffusion in Unmodified Wood Cell Walls: A Phenomenological Polymer Science Approach. FORESTS 2019. [DOI: 10.3390/f10121084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the importance of cell wall diffusion to nearly all aspects of wood utilization, diffusion mechanisms and the detailed effects of moisture remain poorly understood. In this perspective, we introduce and employ approaches established in polymer science to develop a phenomenological framework for understanding the effects of moisture on diffusion in unmodified wood cell walls. The premise for applying this polymer-science-based approach to wood is that wood polymers (cellulose, hemicelluloses, and lignin) behave like typical solid polymers. Therefore, the movement of chemicals through wood cell walls is a diffusion process through a solid polymer, which is in contrast to previous assertions that transport of some chemicals occurs via aqueous pathways in the cell wall layers. Diffusion in polymers depends on the interrelations between free volume in the polymer matrix, molecular motions of the polymer, diffusant dimensions, and solubility of the diffusant in the polymer matrix. Because diffusion strongly depends on whether a polymer is in a rigid glassy state or soft rubbery state, it is important to understand glass transitions in the amorphous wood polymers. Through a review and analysis of available literature, we conclude that in wood both lignin and the amorphous polysaccharides very likely have glass transitions. After developing and presenting this polymer-science-based perspective of diffusion through unmodified wood cell walls, suggested directions for future research are discussed. A key consideration is that a large difference between diffusion through wood polymers and typical polymers is the high swelling pressures that can develop in unmodified wood cell walls. This pressure likely arises from the hierarchical structure of wood and should be taken into consideration in the development of predictive models for diffusion in unmodified wood cell walls.
Collapse
|
240
|
Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Sci Rep 2019; 9:17153. [PMID: 31748605 PMCID: PMC6868246 DOI: 10.1038/s41598-019-53156-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Lignin is a complex phenylpropanoid polymer deposited in plant cell walls. Lignin has long been recognized as an important limiting factor for the polysaccharide-oriented biomass utilizations. To mitigate lignin-associated biomass recalcitrance, numerous mutants and transgenic plants that produce lignocellulose with reduced lignin contents and/or lignins with altered chemical structures have been produced and characterised. However, it is not fully understood how altered lignin chemistry affects the supramolecular structure of lignocellulose, and consequently, its utilization properties. Herein, we conducted comprehensive chemical and supramolecular structural analyses of lignocellulose produced by a rice cad2 mutant deficient in CINNAMYL ALCOHOL DEHYDROGENASE (CAD), which encodes a key enzyme in lignin biosynthesis. By using a solution-state two-dimensional NMR approach and complementary chemical methods, we elucidated the structural details of the altered lignins enriched with unusual hydroxycinnamaldehyde-derived substructures produced by the cad2 mutant. In parallel, polysaccharide assembly and the molecular mobility of lignocellulose were investigated by solid-state 13C MAS NMR, nuclear magnetic relaxation, X-ray diffraction, and Simon's staining analyses. Possible links between CAD-associated lignin modifications (in terms of total content and chemical structures) and changes to the lignocellulose supramolecular structure are discussed in the context of the improved biomass saccharification efficiency of the cad2 rice mutant.
Collapse
|
241
|
Ghosh M, Kango N, Dey KK. Investigation of the internal structure and dynamics of cellulose by 13C-NMR relaxometry and 2DPASS-MAS-NMR measurements. JOURNAL OF BIOMOLECULAR NMR 2019; 73:601-616. [PMID: 31414362 DOI: 10.1007/s10858-019-00272-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Internal structure and dynamics of commercial and natural cellulose were studied by measuring chemical shift anisotropy (CSA) parameters, and spin-lattice relaxation rate (1/T1) at each and every chemically different carbon nuclear site. CSA parameters were measured by 13C two-dimensional phase adjusted spinning sideband (2DPASS) cross-polarization magic angle spinning (CP-MAS) NMR experiment. Site specific spin-lattice relaxation time was measured by Torchia-CP method. Anisotropy parameters of C4 and C6 regions are higher than C1 and C235 regions and asymmetry of C4 line is lower than any other carbon site. The higher values of CSA parameters of C4 and C6 nuclei arise due to the rotation of O4-C4, C1-O4, O5-C5-C6-O6 and C4-C5-C6-O6 bonds at torsion angles ψ, Φ, χ and χ' respectively and the influence of interchain and intrachain hydrogen bondings. Two distinct peaks are also observed for C4 and C6 resonance line position-one peak arises primarily due to the nuclei in amorphous region and another one arises due to the same nuclei resides in paracrystalline region. The spin-lattice relaxation time and the CSA parameters are different at these two distinct peak positions of C4 and C6 line. Molecular correlation time of each and every chemically different carbon site was calculated with the help of CSA parameters and spin-lattice relaxation time. The molecular correlation time of the amorphous region is one order of magnitude less than the crystalline region. The distinction between amorphous and paracrystalline regions of cellulose is more vividly portrayed by determining spin-lattice relaxation time, CSA parameters, and molecular correlation time at each and every chemically different carbon site. This type of study correlating the structure and dynamics of cellulose will illuminate the path of inventing biomimetic materials.
Collapse
Affiliation(s)
- Manasi Ghosh
- Department of Physics, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
242
|
Gao C, Alaniva N, Saliba EP, Sesti EL, Judge PT, Scott FJ, Halbritter T, Sigurdsson ST, Barnes AB. Frequency-chirped dynamic nuclear polarization with magic angle spinning using a frequency-agile gyrotron. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106586. [PMID: 31525550 DOI: 10.1016/j.jmr.2019.106586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that frequency-chirped dynamic nuclear polarization (DNP) with magic angle spinning (MAS) improves the enhancement of nuclear magnetic resonance (NMR) signal beyond that of continuous-wave (CW) DNP. Using a custom, frequency-agile gyrotron we implemented frequency-chirped DNP using the TEMTriPol-1 biradical, with MAS NMR at 7 T. Frequency-chirped microwaves yielded a DNP enhancement of 137, an increase of 19% compared to 115 recorded with CW. The chirps were 120 MHz-wide and centered over the trityl resonance, with 7 W microwave power incident on the sample (estimated 0.4 MHz electron spin Rabi frequency). We describe in detail the design and fabrication of the frequency-agile gyrotron used for frequency-chirped MAS DNP. Improvements to the interaction cavity and internal mode converter yielded efficient microwave generation and mode conversion, achieving >10 W output power over a 335 MHz bandwidth with >110 W peak power. Frequency-chirped DNP with MAS is expected to have a significant impact on the future of magnetic resonance.
Collapse
Affiliation(s)
- Chukun Gao
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Physical Chemistry, ETH-Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Nicholas Alaniva
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Physical Chemistry, ETH-Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Edward P Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Physical Chemistry, ETH-Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Erika L Sesti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Patrick T Judge
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Faith J Scott
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Physical Chemistry, ETH-Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
243
|
Terrett OM, Lyczakowski JJ, Yu L, Iuga D, Franks WT, Brown SP, Dupree R, Dupree P. Molecular architecture of softwood revealed by solid-state NMR. Nat Commun 2019; 10:4978. [PMID: 31673042 PMCID: PMC6823442 DOI: 10.1038/s41467-019-12979-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022] Open
Abstract
Economically important softwood from conifers is mainly composed of the polysaccharides cellulose, galactoglucomannan and xylan, and the phenolic polymer, lignin. The interactions between these polymers lead to wood mechanical strength and must be overcome in biorefining. Here, we use 13C multidimensional solid-state NMR to analyse the polymer interactions in never-dried cell walls of the softwood, spruce. In contrast to some earlier softwood cell wall models, most of the xylan binds to cellulose in the two-fold screw conformation. Moreover, galactoglucomannan alters its conformation by intimately binding to the surface of cellulose microfibrils in a semi-crystalline fashion. Some galactoglucomannan and xylan bind to the same cellulose microfibrils, and lignin is associated with both of these cellulose-bound polysaccharides. We propose a model of softwood molecular architecture which explains the origin of the different cellulose environments observed in the NMR experiments. Our model will assist strategies for improving wood usage in a sustainable bioeconomy.
Collapse
Affiliation(s)
- Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jan J Lyczakowski
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
- Natural Material Innovation Centre, University of Cambridge, 1 Scroope Terrace, Cambridge, CB2 1PX, UK
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
- Natural Material Innovation Centre, University of Cambridge, 1 Scroope Terrace, Cambridge, CB2 1PX, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK.
- Natural Material Innovation Centre, University of Cambridge, 1 Scroope Terrace, Cambridge, CB2 1PX, UK.
| |
Collapse
|
244
|
Zhang L, Zhang B, Zhou Y. Cell Wall Compositional Analysis of Rice Culms. Bio Protoc 2019; 9:e3398. [PMID: 33654899 DOI: 10.21769/bioprotoc.3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/02/2022] Open
Abstract
The plant cell wall is a complicated network that is mainly constituted of polysaccharides, such as cellulose, hemicellulose and pectin. Many noncellulosic polysaccharides are further acetylated, which confers these polymers flexible physicochemical properties. Due to the significance of cell wall in plant growth and development, the analytic platform has been the focus for a long time. Here, we use internodes/culms, an important organ to provide mechanical support for rice plants, as an experimental sample to explore the method for cell wall composition analysis. The method includes preparation of cell wall residues, sequential extraction of polysaccharides, and measurement of cellulose. The procedure for acetate examination is also described. This method is applicable to determine the composition of individual cell wall polymers and the modifier acetates, and is suitable to identify cell wall relevant mutants based on the advantages in high throughput, precision and repeatability.
Collapse
Affiliation(s)
- Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
245
|
Structure, chemistry and physicochemistry of lignin for material functionalization. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1126-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
246
|
Özparpucu M, Gierlinger N, Cesarino I, Burgert I, Boerjan W, Rüggeberg M. Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4039-4047. [PMID: 31187131 PMCID: PMC6685656 DOI: 10.1093/jxb/erz180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/02/2019] [Indexed: 05/20/2023]
Abstract
Wood is extensively used as a construction material. Despite increasing knowledge of its mechanical properties, the contribution of the cell-wall matrix polymers to wood mechanics is still not well understood. Previous studies have shown that axial stiffness correlates with lignin content only for cellulose microfibril angles larger than around 20°, while no influence is found for smaller angles. Here, by analysing the wood of poplar with reduced lignin content due to down-regulation of CAFFEOYL SHIKIMATE ESTERASE, we show that lignin content also influences axial stiffness at smaller angles. Micro-tensile tests of the xylem revealed that axial stiffness was strongly reduced in the low-lignin transgenic lines. Strikingly, microfibril angles were around 15° for both wild-type and transgenic poplars, suggesting that cellulose orientation is not responsible for the observed changes in mechanical behavior. Multiple linear regression analysis showed that the decrease in stiffness was almost completely related to the variation in both density and lignin content. We suggest that the influence of lignin content on axial stiffness may gradually increase as a function of the microfibril angle. Our results may help in building up comprehensive models of the cell wall that can unravel the individual roles of the matrix polymers.
Collapse
Affiliation(s)
- Merve Özparpucu
- Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland
- School of Life Sciences Weihenstephan, Wood Research Munich, Technical University of Munich (TUM), Munich, Germany
| | - Notburga Gierlinger
- Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Wien, Austria
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo – SP, Brazil
| | - Ingo Burgert
- Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland
- Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Markus Rüggeberg
- Institute for Building Materials (IfB), ETH Zurich, Zurich, Switzerland
- Laboratory of Cellulose and Wood Materials, EMPA, Dübendorf, Switzerland
- Correspondence:
| |
Collapse
|
247
|
Ghosh M, Prajapati BP, Suryawanshi RK, Kishor Dey K, Kango N. Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
248
|
Zhang L, Gao C, Mentink-Vigier F, Tang L, Zhang D, Wang S, Cao S, Xu Z, Liu X, Wang T, Zhou Y, Zhang B. Arabinosyl Deacetylase Modulates the Arabinoxylan Acetylation Profile and Secondary Wall Formation. THE PLANT CELL 2019; 31:1113-1126. [PMID: 30886126 PMCID: PMC6533017 DOI: 10.1105/tpc.18.00894] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 05/19/2023]
Abstract
Acetylation, a prevalent modification of cell-wall polymers, is a tightly controlled regulatory process that orchestrates plant growth and environmental adaptation. However, due to limited characterization of the enzymes involved, it is unclear how plants establish and dynamically regulate the acetylation pattern in response to growth requirements. In this study, we identified a rice (Oryza sativa) GDSL esterase that deacetylates the side chain of the major rice hemicellulose, arabinoxylan. Acetyl esterases involved in arabinoxylan modification were screened using enzymatic assays combined with mass spectrometry analysis. One candidate, DEACETYLASE ON ARABINOSYL SIDECHAIN OF XYLAN1 (DARX1), is specific for arabinosyl residues. Disruption of DARX1 via Tos17 insertion and CRISPR/Cas9 approaches resulted in the accumulation of acetates on the xylan arabinosyl side chains. Recombinant DARX1 abolished the excess acetyl groups on arabinoxylan-derived oligosaccharides of the darx1 mutants in vitro. Moreover, DARX1 is localized to the Golgi apparatus. Two-dimensional 13C-13C correlation spectroscopy and atomic force microscopy further revealed that the abnormal acetylation pattern observed in darx1 interrupts arabinoxylan conformation and cellulose microfibril orientation, resulting in compromised secondary wall patterning and reduced mechanical strength. This study provides insight into the mechanism controlling the acetylation pattern on arabinoxylan side chains and suggests a strategy to breed robust elite crops.
Collapse
Affiliation(s)
- Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Lu Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaogan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaoxue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
249
|
Torres AF, Xu X, Nikiforidis CV, Bitter JH, Trindade LM. Exploring the Treasure of Plant Molecules With Integrated Biorefineries. FRONTIERS IN PLANT SCIENCE 2019; 10:478. [PMID: 31040858 PMCID: PMC6476976 DOI: 10.3389/fpls.2019.00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Despite significant progress toward the commercialization of biobased products, today's biorefineries are far from achieving their intended goal of total biomass valorization and effective product diversification. The problem is conceptual. Modern biorefineries were built around well-optimized, cost-effective chemical synthesis routes, like those used in petroleum refineries for the synthesis of fuels, plastics, and solvents. However, these were designed for the conversion of fossil resources and are far from optimal for the processing of biomass, which has unique chemical characteristics. Accordingly, existing biomass commodities were never intended for modern biorefineries as they were bred to meet the needs of conventional agriculture. In this perspective paper, we propose a new path toward the design of efficient biorefineries, which capitalizes on a cross-disciplinary synergy between plant, physical, and catalysis science. In our view, the best opportunity to advance profitable and sustainable biorefineries requires the parallel development of novel feedstocks, conversion protocols and synthesis routes specifically tailored for total biomass valorization. Above all, we believe that plant biologists and process technologists can jointly explore the natural diversity of plants to synchronously develop both, biobased crops with designer chemistries and compatible conversion protocols that enable maximal biomass valorization with minimum input utilization. By building biorefineries from the bottom-up (i.e., starting with the crop), the envisioned partnership promises to develop cost-effective, biomass-dedicated routes which can be effectively scaled-up to deliver profitable and resource-use efficient biorefineries.
Collapse
Affiliation(s)
- Andres F. Torres
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Biobased Chemistry and Technology, Wageningen University, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, Netherlands
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Xuan Xu
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | | | - Johannes H. Bitter
- Biobased Chemistry and Technology, Wageningen University, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
250
|
Lyczakowski JJ, Bourdon M, Terrett OM, Helariutta Y, Wightman R, Dupree P. Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:1398. [PMID: 31708959 PMCID: PMC6819431 DOI: 10.3389/fpls.2019.01398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/10/2019] [Indexed: 05/18/2023]
Abstract
The woody secondary cell walls of plants are the largest repository of renewable carbon biopolymers on the planet. These walls are made principally from cellulose and hemicelluloses and are impregnated with lignin. Despite their importance as the main load bearing structure for plant growth, as well as their industrial importance as both a material and energy source, the precise arrangement of these constituents within the cell wall is not yet fully understood. We have adapted low temperature scanning electron microscopy (cryo-SEM) for imaging the nanoscale architecture of angiosperm and gymnosperm cell walls in their native hydrated state. Our work confirms that cell wall macrofibrils, cylindrical structures with a diameter exceeding 10 nm, are a common feature of the native hardwood and softwood samples. We have observed these same structures in Arabidopsis thaliana secondary cell walls, enabling macrofibrils to be compared between mutant lines that are perturbed in cellulose, hemicellulose, and lignin formation. Our analysis indicates that the macrofibrils in Arabidopsis cell walls are dependent upon the proper biosynthesis, or composed, of cellulose, xylan, and lignin. This study establishes that cryo-SEM is a useful additional approach for investigating the native nanoscale architecture and composition of hardwood and softwood secondary cell walls and demonstrates the applicability of Arabidopsis genetic resources to relate fibril structure with wall composition and biosynthesis.
Collapse
Affiliation(s)
- Jan J. Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Natural Material Innovation Centre, University of Cambridge, Cambridge, United Kingdom
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver M. Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Institute of Biotechnology/Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raymond Wightman, ; Paul Dupree,
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Natural Material Innovation Centre, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raymond Wightman, ; Paul Dupree,
| |
Collapse
|