201
|
Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med 2007; 4:e172. [PMID: 17503961 PMCID: PMC1868041 DOI: 10.1371/journal.pmed.0040172] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 03/19/2007] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. METHODS AND FINDINGS The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. CONCLUSIONS These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
202
|
Peterson LF, Boyapati A, Ahn EY, Biggs JR, Okumura AJ, Lo MC, Yan M, Zhang DE. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007; 110:799-805. [PMID: 17412887 PMCID: PMC1924771 DOI: 10.1182/blood-2006-11-019265] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonrandom and somatically acquired chromosomal translocations can be identified in nearly 50% of human acute myeloid leukemias. One common chromosomal translocation in this disease is the 8q22;21q22 translocation. It involves the AML1 (RUNX1) gene on chromosome 21 and the ETO (MTG8, RUNX1T1) gene on chromosome 8 generating the AML1-ETO fusion proteins. In this review, we survey recent advances made involving secondary mutational events and alternative t(8;21) transcripts in relation to understanding AML1-ETO leukemogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/metabolism
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Core Binding Factor Alpha 2 Subunit/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- RUNX1 Translocation Partner 1 Protein
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- Luke F Peterson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Marmigère F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007; 8:114-27. [PMID: 17237804 DOI: 10.1038/nrn2057] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.
Collapse
Affiliation(s)
- Frédéric Marmigère
- Section of Molecular Neurobiology, Karolinska Institutet, MBB, Scheeles vg 1, S17 177 Stockholm, Sweden
| | | |
Collapse
|
204
|
Pimanda JE, Donaldson IJ, de Bruijn MFTR, Kinston S, Knezevic K, Huckle L, Piltz S, Landry JR, Green AR, Tannahill D, Göttgens B. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci U S A 2007; 104:840-5. [PMID: 17213321 PMCID: PMC1783401 DOI: 10.1073/pnas.0607196104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Indexed: 11/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) development is regulated by several signaling pathways and a number of key transcription factors, which include Scl/Tal1, Runx1, and members of the Smad family. However, it remains unclear how these various determinants interact. Using a genome-wide computational screen based on the well characterized Scl +19 HSC enhancer, we have identified a related Smad6 enhancer that also targets expression to blood and endothelial cells in transgenic mice. Smad6, Bmp4, and Runx1 transcripts are concentrated along the ventral aspect of the E10.5 dorsal aorta in the aorta-gonad-mesonephros region from which HSCs originate. Moreover, Smad6, an inhibitor of Bmp4 signaling, binds and inhibits Runx1 activity, whereas Smad1, a positive mediator of Bmp4 signaling, transactivates the Runx1 promoter. Taken together, our results integrate three key determinants of HSC development; the Scl transcriptional network, Runx1 activity, and the Bmp4/Smad signaling pathway.
Collapse
Affiliation(s)
- John E. Pimanda
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Ian J. Donaldson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Marella F. T. R. de Bruijn
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; and
| | - Sarah Kinston
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Kathy Knezevic
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Liz Huckle
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Sandie Piltz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Josette-Renée Landry
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Anthony R. Green
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - David Tannahill
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Berthold Göttgens
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| |
Collapse
|
205
|
Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 2006; 8:145-53. [PMID: 17195845 DOI: 10.1038/ni1424] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 11/14/2006] [Indexed: 11/08/2022]
Abstract
Cell differentiation involves activation and silencing of lineage-specific genes. Here we show that the transcription factor Runx3 is induced in T helper type 1 (T(H)1) cells in a T-bet-dependent manner, and that both transcription factors T-bet and Runx3 are required for maximal production of interferon-gamma (IFN-gamma) and silencing of the gene encoding interleukin 4 (Il4) in T(H)1 cells. T-bet does not repress Il4 in Runx3-deficient T(H)2 cells, but coexpression of Runx3 and T-bet induces potent repression in those cells. Both T-bet and Runx3 bind to the Ifng promoter and the Il4 silencer, and deletion of the silencer decreases the sensitivity of Il4 to repression by either factor. Our data indicate that cytokine gene expression in T(H)1 cells may be controlled by a feed-forward regulatory circuit in which T-bet induces Runx3 and then 'partners' with Runx3 to direct lineage-specific gene activation and silencing.
Collapse
Affiliation(s)
- Ivana M Djuretic
- Harvard Medical School and the CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
206
|
Elango N, Li Y, Shivshankar P, Katz MS. Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation. J Cell Biochem 2006; 99:1108-21. [PMID: 16767703 DOI: 10.1002/jcb.20909] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RUNX2, a major regulator of skeletogenesis, is expressed as type-I and type-II isoforms. Whereas most eukaryotic mRNAs are translated by the cap-dependent scanning mechanism, translation of many mRNAs including type-I and type-II RUNX2 mRNAs has been reported to be initiated by a cap independent internal ribosomal entry site (IRES). Since the dicistronic plasmid assay used to demonstrate IRES has been questioned, we investigated the presence of IRES in RUNX2 mRNAs using dicistronic plasmid and mRNA assays. Our results show that the dicistronic plasmid assay cannot be used to demonstrate IRES in RUNX2 mRNAs because the intercistronic region of dicistronic plasmids containing the 5'-UTRs of both RUNX2 mRNAs operates as a cryptic promoter. In dicistronic mRNA transfection studies the 5'-UTRs of both RUNX2 mRNAs exhibited no IRES activity. When transfected into osteoblastic cells, monocistronic reporter mRNA preceded by the 5'-UTR of type-II RUNX2 (Type-II-FLuc-A100) was translated to a high degree only in the presence of a functional cap (m(7)GpppG); in contrast, luciferase mRNA preceded by the 5'-UTR of type-I RUNX2 mRNA (Type-I-FLuc-A100) was translated poorly in the presence of either m(7)GpppG or a nonfunctional cap (ApppG). Notably, in transfected cells inhibitors of cap-dependent translation suppressed the translation of m(7)GpppG-capped Type-II-FLuc-A100, but not ApppG-capped reporter mRNA preceded by the IRES-containing hepatitis C virus (HCV) 5'-UTR. Our study demonstrates that type-II RUNX2 mRNA is translated by the cap-dependent mechanism. Although efficient translation of type-I RUNX2 mRNA appears to require a process other than cap-dependent, the mechanism of type-I RUNX2 mRNA translation remains to be resolved.
Collapse
Affiliation(s)
- Narayanasamy Elango
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas 78229, USA.
| | | | | | | |
Collapse
|
207
|
Woolf E, Brenner O, Goldenberg D, Levanon D, Groner Y. Runx3 regulates dendritic epidermal T cell development. Dev Biol 2006; 303:703-14. [PMID: 17222403 DOI: 10.1016/j.ydbio.2006.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 11/22/2006] [Accepted: 12/05/2006] [Indexed: 01/19/2023]
Abstract
The Runx3 transcription factor regulates development of T cells during thymopoiesis and TrkC sensory neurons during dorsal root ganglia neurogenesis. It also mediates transforming growth factor-beta signaling in dendritic cells and is essential for development of skin Langerhans cells. Here, we report that Runx3 is involved in the development of skin dendritic epidermal T cells (DETCs); an important component of tissue immunoregulation. In developing DETCs, Runx3 regulates expression of the alphaEbeta7 integrin CD103, known to affect migration and epithelial retention of DETCs. It also regulates expression of IL-2 receptor beta (IL-2Rbeta) that mediates cell proliferation in response to IL-2 or IL-15. In the absence of Runx3, the reduction in CD103 and IL-2Rbeta expression on Runx3(-/-) DETC precursors resulted in impaired cell proliferation and maturation, leading to complete lack of skin DETCs in Runx3(-/-) mice. The data demonstrate the requirement of Runx3 for DETCs development and underscore the importance of CD103 and IL-2Rbeta in this process. Of note, while Runx3(-/-) mice lack both DETCs and Langerhans cells, the two most important components of skin immune surveillance, the mice did not develop skin lesions under pathogen-free (SPF) conditions.
Collapse
Affiliation(s)
- Eilon Woolf
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
208
|
Vanderzwan-Butler CJ, Prazak LM, Gergen JP. The HMG-box protein Lilliputian is required for Runt-dependent activation of the pair-rule gene fushi-tarazu. Dev Biol 2006; 301:350-60. [PMID: 17137570 DOI: 10.1016/j.ydbio.2006.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 09/06/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
lilliputian (lilli), the sole Drosophila member of the FMR2/AF4 (Fragile X Mental Retardation/Acute Lymphoblastic Leukemia) family of transcription factors, is widely expressed with roles in segmentation, cellularization, and gastrulation during early embryogenesis with additional distinct roles at later stages of embryonic and postembryonic development. We identified lilli in a genetic screen based on the suppression of a lethal phenotype that is associated with ectopic expression of the transcription factor encoded by the segmentation gene runt in the blastoderm embryo. In contrast to other factors identified by this screen, lilli appears to have no role in mediating either the establishment or maintenance of engrailed (en) repression by Runt. Instead, we find that Lilli plays a critical role in the Runt-dependent activation of the pair-rule segmentation gene fushi-tarazu (ftz). The requirement for lilli is distinct from and temporally precedes the Runt-dependent activation of ftz that is mediated by the orphan nuclear receptor protein Ftz-F1. We further describe a role for lilli in the activation of Sex-lethal (Sxl), an early target of Runt in the sex determination pathway. However, lilli is not required for all targets that are activated by Runt and appears to have no role in activation of sloppy paired (slp1). Based on these results we suggest that Lilli plays an architectural role in facilitating transcriptional activation that depends both on the target gene and the developmental context.
Collapse
Affiliation(s)
- Christine J Vanderzwan-Butler
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | | | |
Collapse
|
209
|
Raveh E, Cohen S, Levanon D, Negreanu V, Groner Y, Gat U. Dynamic expression of Runx1 in skin affects hair structure. Mech Dev 2006; 123:842-50. [PMID: 17011173 DOI: 10.1016/j.mod.2006.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/01/2006] [Accepted: 08/03/2006] [Indexed: 12/17/2022]
Abstract
The three mammalian Runx transcription factors, some of which are known to be involved in human genetic diseases and cancer, are pivotal players in embryo development and function as key regulators of cell fate determination and organogenesis. Here, we report the expression of Runx1 during the development of hair and other skin appendages in the mouse and describe the effect of Runx1 on the structural hair output. In hair follicles, where the three Runx proteins are expressed, Runx1 expression is most prominent in both mesenchymal and epithelial compartments. The epithelial expression includes the hair keratin forming layers of the hair shaft and the bulge, where interestingly, Runx1 is co-expressed with keratin 15, a putative hair follicle stem cell marker. In the hair mesenchyme, during early stages of hair morphogenesis, Runx1 is expressed in a discrete dermal sub-epithelial layer, while at later stages it is found in a hair cycle dependent pattern in the dermal papilla. To elucidate the function of Runx1 in the hair follicle we have generated a Runx1 epidermal conditional knockout and found that the mutant mice display a remarkable structural deformation of the zigzag hair type. The data delineate Runx1 as a novel specific marker of several hair follicle cell types and sheds light on its role in hair morphogenesis and differentiation.
Collapse
Affiliation(s)
- Eli Raveh
- Department of Cell and Animal Biology, Silberman Life Sciences Institute, Edmond Safra Campus at Givat-Ram, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
210
|
Choi J, Newman AP. A two-promoter system of gene expression in C. elegans. Dev Biol 2006; 296:537-44. [PMID: 16765937 DOI: 10.1016/j.ydbio.2006.04.470] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/15/2022]
Abstract
The development of multicellular organisms requires precise spatiotemporal gene expression and the expression of cell/tissue specific isoforms of some genes. This task may require more efficient genome organization in Caenorhabditis elegans and other organisms with relatively small genome size. The SL1 leader sequence is trans-spliced to many mRNAs in C. elegans. We hypothesize that introns coupled to internal SL1 acceptors contain independent promoters. We identify 238 genes that have introns coupled to internal SL1 acceptors. We find that the mean length of the internal SL1-coupled introns is significantly longer than the genome mean. For twelve of the genes, evidence exists that the intronic promoter provides tissue specificity different from that of the primary promoter. We estimate that 2.7% of the genome is regulated through this two-promoter system. We propose that internal SL1-coupled introns function as independent promoters and that this two-promoter system represents a major mechanism in C. elegans, in addition to alternative splicing, that serves to promote tissue-specific expression of protein isoforms. Our finding of the frequent coupling between an internal SL1 and a large immediately upstream intron will make promoters and transcription start sites predictable.
Collapse
Affiliation(s)
- Jaebok Choi
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, 319 B, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
211
|
Yarmus M, Woolf E, Bernstein Y, Fainaru O, Negreanu V, Levanon D, Groner Y. Groucho/transducin-like Enhancer-of-split (TLE)-dependent and -independent transcriptional regulation by Runx3. Proc Natl Acad Sci U S A 2006; 103:7384-9. [PMID: 16651517 PMCID: PMC1464349 DOI: 10.1073/pnas.0602470103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Regulation of gene expression by tissue-specific transcription factors involves both turning on and turning off transcription of target genes. Runx3, a runt-domain transcription factor, regulates cell-intrinsic functions by activating and repressing gene expression in sensory neurons, dendritic cells (DC), and T cells. To investigate the mechanism of Runx3-mediated repression in an in vivo context, we generated mice expressing a mutant Runx3 lacking the C-terminal VWRPY, a motif required for Runx3 interaction with the corepressor Groucho/transducin-like Enhancer-of-split (TLE). In contrast with Runx3(-/-) mice, which displayed ataxia due to the death of dorsal root ganglia TrkC neurons, Runx3(VWRPY-/-) mice were not ataxic and had intact dorsal root ganglia neurons, indicating that ability of Runx3 to tether Groucho/TLE is not essential for neurogenesis. In the DC compartment, the mutant protein Runx3(VWRPY-) promoted normally developed skin Langerhans cells but failed to restrain DC spontaneous maturation, indicating that this latter process involves Runx3-mediated repression through recruitment of Groucho/TLE. Moreover, in CD8(+) thymocytes, Runx3(VWRPY-) up-regulated alphaE/CD103-like WT Runx3, whereas unlike wild type, it failed to repress alphaE/CD103 in CD8(+) splenocytes. Thus, in CD8-lineage T cells, Runx3 regulates alphaE/CD103 in opposing regulatory modes and recruits Groucho/TLE to facilitate the transition from activation to repression. Runx3(VWRPY-) also failed to mediate the epigenetic silencing of CD4 gene in CD8(+) T cells, but normally regulated other pan-CD8(+) T cell genes. These data provide evidence for the requirement of Groucho/TLE for Runx3-mediated epigenetic silencing of CD4 and pertain to the mechanism through which other Runx3-regulated genes are epigenetically silenced.
Collapse
Affiliation(s)
- Merav Yarmus
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eilon Woolf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Bernstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofer Fainaru
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- *To whom correspondence should be addressed. E-mail
| |
Collapse
|
212
|
Kramer I, Sigrist M, de Nooij JC, Taniuchi I, Jessell TM, Arber S. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 2006; 49:379-93. [PMID: 16446142 DOI: 10.1016/j.neuron.2006.01.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/21/2005] [Accepted: 12/23/2005] [Indexed: 01/10/2023]
Abstract
Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Cell Count/methods
- Ciliary Neurotrophic Factor/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/physiology
- Core Binding Factor Alpha 3 Subunit/genetics
- Core Binding Factor Alpha 3 Subunit/physiology
- Embryo, Mammalian
- Ganglia, Spinal/cytology
- Gene Expression Regulation, Developmental/physiology
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Immunohistochemistry/methods
- LIM-Homeodomain Proteins
- Mice
- Mice, Transgenic
- Models, Biological
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Receptor, trkB/metabolism
- Receptor, trkC/genetics
- Signal Transduction/genetics
- Signal Transduction/physiology
- Substance P/metabolism
- Transcription Factors/metabolism
- tau Proteins/genetics
Collapse
Affiliation(s)
- Ina Kramer
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
213
|
Carvalho R, Milne ANA, Polak M, Corver WE, Offerhaus GJA, Weterman MAJ. Exclusion of RUNX3 as a tumour-suppressor gene in early-onset gastric carcinomas. Oncogene 2006; 24:8252-8. [PMID: 16091737 DOI: 10.1038/sj.onc.1208963] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies claim a critical role for RUNX3 in gastric epithelial homeostasis. However, conflicting results exist regarding RUNX3 expression in the stomach and its potential role as a tumour-suppressor gene (TSG) in gastric carcinogenesis. Our aim was to evaluate the role of RUNX3 in early-onset gastric carcinomas (EOGCs). We analysed 41 EOGCs for RUNX3 aberrations using loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analyses. LOH of markers flanking RUNX3 was relatively common, indicating that loss of the gene may play a role in gastric carcinogenesis. However, FISH analysis of selected cases and a panel of 14 gastric carcinoma-derived cell lines showed widespread presence of multiple copies of centromere 1. While RUNX3 copy numbers were generally equal to or fewer than those of centromere 1, at least two copies were present in almost all cells analysed. Accordingly, a subpopulation of tumour cells in 12/37 cases showed RUNX3 protein expression. However, expression was not detected in the adjacent nontumorous mucosa of any case. Together, these observations indicate that chromosome 1 aberrations occur frequently in EOGCs and are reflected in the LOH and IHC patterns found. Our findings refute a role for RUNX3 as a TSG in EOGCs.
Collapse
Affiliation(s)
- Ralph Carvalho
- Department of Pathology, Academisch Medisch Centrum, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
214
|
Puig-Kröger A, Corbí A. RUNX3: A new player in myeloid gene expression and immune response. J Cell Biochem 2006; 98:744-56. [PMID: 16598764 DOI: 10.1002/jcb.20813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RUNX transcription factors function as scaffolds for interaction with various coregulatory proteins during developmental processes such as hematopoiesis, neurogenesis, and osteogenesis. The current view places RUNX proteins within the TGF-beta signaling pathway, although each one exhibits cell- and tissue-specific functions. In the case of RUNX3, recent data have suggested its function as a tumor suppressor factor and highlighted its involvement in immune cell differentiation and activation. The molecular mechanisms for the pleiotropic effects of Runx3 deficiency are not completely understood. The present article will summarize the known functional activities of RUNX3, emphasizing its role in myeloid cell gene expression and its potential contribution to the migratory and adhesive capabilities of this cell lineage.
Collapse
|
215
|
Bae SC, Lee YH. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 2005; 366:58-66. [PMID: 16325352 DOI: 10.1016/j.gene.2005.10.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/23/2005] [Accepted: 10/15/2005] [Indexed: 12/19/2022]
Abstract
The RUNX family members play pivotal roles in normal development and neoplasia. RUNX1 and RUNX2 are essential for hematopoiesis and osteogenesis, respectively, while RUNX3 is involved in neurogenesis, thymopoiesis and functions as a tumor suppressor. Inappropriate levels of RUNX activity are associated with leukemia, autoimmune disease, cleidocranial dysplasia, craniosynostosis and various solid tumors. Therefore, RUNX activity must be tightly regulated to prevent tumorigenesis and maintain normal cell differentiation. Recent work indicates that RUNX activity is controlled by various extracellular signaling pathways, and that phosphorylation, acetylation and ubiquitination are important post-translational modifications of RUNX that affect its stability and activity. Defining the precise roles, these modifications that play in the regulation of RUNX function may reveal not only how the RUNX proteins are regulated but also how they are assembled into other regulatory machineries.
Collapse
Affiliation(s)
- Suk-Chul Bae
- Department of Biochemistry, College of Medicine and Institute for Tumor Research, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea.
| | | |
Collapse
|
216
|
Wein MN, Jones DC, Glimcher LH. Turning down the system: counter-regulatory mechanisms in bone and adaptive immunity. Immunol Rev 2005; 208:66-79. [PMID: 16313341 DOI: 10.1111/j.0105-2896.2005.00322.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Major advances have been made in recent years toward the identification of transcription factors that control cell-type-specific gene expression in the skeletal and adaptive immune systems. However, the identification of factors necessary and sufficient to drive production of effector cell proteins such as matrix components and cytokines represents the first step toward understanding how cells in bone and the adaptive system achieve their highly specialized functions. Here, we provide selected examples of counter-regulatory mechanisms that serve to turn down cells involved in extracellular matrix biosynthesis and adaptive immunity at the level of the transcription factors Runx2 and nuclear factor for the activation of T cells.
Collapse
Affiliation(s)
- Marc N Wein
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
217
|
Nucifora G, Laricchia-Robbio L, Senyuk V. EVI1 and hematopoietic disorders: history and perspectives. Gene 2005; 368:1-11. [PMID: 16314052 DOI: 10.1016/j.gene.2005.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/07/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
The ecotropic viral integration site 1 (EVI1) gene was identified almost 20 years ago as the integration site of an ecotropic retrovirus leading to murine myeloid leukemia. Since its identification, EVI1 has slowly been recognized as one of the most aggressive oncogenes associated with human leukemia. Despite the effort of many investigators, still very little is known about this gene. The mechanism by which EVI1 operates in the transformation of hematopoietic cells is not known, but it is clear that EVI1 upregulates cell proliferation, impairs cell differentiation, and induces cell transformation. In this review, we summarize the biochemical properties of EVI1 and the effects of EVI1 in biological models.
Collapse
Affiliation(s)
- Giuseppina Nucifora
- Department of Pathology, University of Illinois at Chicago, 60607, United States.
| | | | | |
Collapse
|
218
|
Wang Y, Belflower RM, Dong YF, Schwarz EM, O'Keefe RJ, Drissi H. Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. J Bone Miner Res 2005; 20:1624-36. [PMID: 16059634 DOI: 10.1359/jbmr.050516] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/04/2005] [Accepted: 05/20/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED Runx proteins mediate skeletal development. We studied the regulation of Runx1 during chondrocyte differentiation by real-time RT-PCR and its function during chondrogenesis using overexpression and RNA interference. Runx1 induces mesenchymal stem cell commitment to the early stages of chondrogenesis. INTRODUCTION Runx1 and Runx2 are co-expressed in limb bud cell condensations that undergo both cartilage and bone differentiation during murine development. However, the cooperative and/or compensatory effects these factors exert on skeletal formation have yet to be elucidated. MATERIALS AND METHODS Runx1/Cbfa2 and Runx2/Cbfa1 were examined at different stages of embryonic development by immunohistochemistry. In vitro studies used mouse embryonic limb bud cells and assessed Runx expressions by immunohistochemistry and real-time RT-PCR in the presence and absence of TGFbeta and BMP2. Runx1 was overexpressed in mesenchymal cell progenitors using retroviral infection. RESULTS Immunohistochemistry showed that Runx1 and Runx2 are co-expressed in undifferentiated mesenchyme, had similar levels in chondrocytes undergoing transition from proliferation to hypertrophy, and that there was primarily Runx2 expression in hypertrophic chondrocytes. Overall, the expression of Runx1 remained significantly higher than Runx2 mRNA levels during early limb bud cell maturation. Treatment of limb bud micromass cultures with BMP2 resulted in early induction of both Runx1 and Runx2. However, upregulation of Runx2 by BMP2 was sustained, whereas Runx1 decreased in later time-points when type X collagen was induced. Although TGFbeta potently inhibits Runx2 and type X collagen, it induces type II collagen mRNA and mildly but significantly inhibits Runx1 isoforms in the early stages of chondrogenesis. Virus-mediated overexpression of Runx1 in mouse embryonic mesenchymal cells resulted in a potent induction of the early chondrocyte differentiation markers but not the hypertrophy marker, type X collagen. Knockdown or Runx1 potently inhibits type II collagen, alkaline phosphatase, and Runx2 and has a late inhibitory effect on type X collagen. CONCLUSION These findings show a distinct and sustained role for Runx proteins in chondrogenesis and subsequent chondrocyte maturation. Runx1 is highly expressed during chondrogenesis in comparison with Runx2, and Runx1 gain of functions stimulated this process. Thus, the Runx genes are uniquely expressed and have distinct roles during skeletal development.
Collapse
Affiliation(s)
- YongJun Wang
- Center for Musculoskeletal Research, Department of Orthopeadics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
219
|
Kobayashi M, Hjerling-Leffler J, Ernfors P. Increased progenitor proliferation and apoptotic cell death in the sensory lineage of mice overexpressing N-myc. Cell Tissue Res 2005; 323:81-90. [PMID: 16133151 DOI: 10.1007/s00441-005-0011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 05/09/2005] [Indexed: 02/07/2023]
Abstract
N-myc, a member of the myc family of bHLH transcription factors, is expressed mainly in the nervous system, including derivatives of neural crest cells in the periphery during development, such as the sensory dorsal root ganglion (DRG). Previous studies suggest that N-myc is involved in the proliferation of progenitor cells in the sensory lineage. To address the role of N-myc in the development of peripheral sensory neurons, we have overexpressed N-myc in sensory progenitor cells. The overexpression of N-myc did not significantly affect the number of multipotent neural crest cells or glial differentiation but caused a brief and marked increase of both proliferation and apoptosis in the DRG at embryonic day 11 (E11), thus coinciding with the stage of cell-cycle exit. At E17, the total number of cells in the lumbar DRG of mice with forced expression of N-myc was significantly reduced compared with that in wild-type mice. Among the different DRG subpopulations examined, the number of parvalbumin-positive neurons representing large-diameter proprioceptive neurons increased significantly. Our results indicate that forced expression of N-myc in the sensory lineage leads to unscheduled cell-cycle re-entry and excessive apoptosis and show that N-myc can affect the composition of different functional subtypes of sensory neurons in the DRG.
Collapse
Affiliation(s)
- Miwako Kobayashi
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheelesv. 1, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
220
|
Fainaru O, Shseyov D, Hantisteanu S, Groner Y. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc Natl Acad Sci U S A 2005; 102:10598-603. [PMID: 16027362 PMCID: PMC1180803 DOI: 10.1073/pnas.0504787102] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Runx3 transcription factor is a key regulator of lineage-specific gene expression in several developmental pathways and could also be involved in autoimmunity. We report that, in dendritic cells (DC), Runx3 regulates TGFbeta-mediated transcriptional attenuation of the chemokine receptor CCR7. When Runx3 is lost, i.e., in Runx3 knockout mice, expression of CCR7 is enhanced, resulting in increased migration of alveolar DC to the lung-draining lymph nodes. This increased DC migration and the consequent accumulation of activated DC in draining lymph nodes is associated with the development of asthma-like features, including increased serum IgE, hypersensitivity to inhaled bacterial lipopolysaccharide, and methacholine-induced airway hyperresponsiveness. The enhanced migration of DC in the knockout mice could be blocked in vivo by anti-CCR7 antibodies and by the drug Ciglitazone, known to inhibit CCR7 expression. The data indicate that Runx3 transcriptionally regulates CCR7 and that, when absent, the dysregulated expression of CCR7 in DC plays a role in the etiology of asthmatic conditions that recapitulate clinical symptoms of the human disease. Interestingly, human RUNX3 resides in a region of chromosome 1p36 that contains susceptibility genes for asthma and hypersensitivity against environmental antigens. Thus, mutations in RUNX3 may be associated with increased sensitivity to asthma development.
Collapse
Affiliation(s)
- Ofer Fainaru
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
221
|
Yoshida T, Phylactou LA, Uney JB, Ishikawa I, Eto K, Iseki S. Twist is required for establishment of the mouse coronal suture. J Anat 2005; 206:437-44. [PMID: 15857364 PMCID: PMC1571510 DOI: 10.1111/j.1469-7580.2005.00411.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cranial sutures are the growth centres of the skull, enabling expansion of the skull to accommodate rapid growth of the brain. Haploinsufficiency of the human TWIST gene function causes the craniosynostosis syndrome, Saethre-Chotzen syndrome (SCS), in which premature fusion of the coronal suture is a characteristic feature. Previous studies have indicated that Twist is expressed in the coronal suture during development, and therefore that it may play an important role in development and maintenance of the suture. The Twist-null mouse is lethal before the onset of osteogenesis, and the heterozygote exhibits coronal suture synostosis postnatally. In this study we investigated the function of Twist in the development of the mouse coronal suture, by inhibiting Twist synthesis using morpholino antisense oligonucleotides in calvarial organ culture. Decreased Twist production resulted in a narrow sutural space and fusion of bone domains within 48 h after the addition of the morpholino oligonucleotides. Proliferation activity in the sutural cells was decreased, and the expression of osteogenic marker genes such as Runx2 and Fgfr2 was up-regulated in the developing bone domain within 4 h. These results suggest that during establishment of the suture area, Twist is required for the regulation of sutural cell proliferation and osteoblast differentiation.
Collapse
Affiliation(s)
- Toshiyuki Yoshida
- Departments of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental UniversityJapan
- Departments of Periodontology, Graduate School, Tokyo Medical and Dental UniversityJapan
| | - Leonidas A Phylactou
- Department of Molecular Genetics C, The Cyprus Institute of Neurology and GeneticsCyprus
| | - James B Uney
- The Henry Wellcome Laboratories for Integrative Neuroscience, University of BristolUK
| | - Isao Ishikawa
- Departments of Periodontology, Graduate School, Tokyo Medical and Dental UniversityJapan
| | - Kazuhiro Eto
- Departments of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental UniversityJapan
| | - Sachiko Iseki
- Departments of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental UniversityJapan
| |
Collapse
|
222
|
Maki K, Yamagata T, Asai T, Yamazaki I, Oda H, Hirai H, Mitani K. Dysplastic definitive hematopoiesis in AML1/EVI1 knock-in embryos. Blood 2005; 106:2147-55. [PMID: 15914564 DOI: 10.1182/blood-2004-11-4330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AML1/EVI1 chimeric gene is created by the t(3;21)(q26;q22) chromosomal translocation seen in patients with leukemic transformation of myelodysplastic syndrome or blastic crisis of chronic myelogenous leukemia. We knocked-in the AML1/EVI1 chimeric gene into mouse Aml1 genomic locus to explore its effect in developmental hematopoiesis in vivo. AML1/EVI1/+ embryo showed defective hematopoiesis in the fetal liver and died around embryonic day 13.5 (E13.5) as a result of hemorrhage in the central nervous system. The peripheral blood had yolk-sac-derived nucleated erythroblasts but lacked erythrocytes of the definitive origin. Although E12.5 fetal liver contained progenitors for macrophage only, E13.5 fetal liver contained multilineage progenitors capable of differentiating into dysplastic myelocyte and megakaryocyte. No erythroid progenitor was detected in E12.5 or E13.5 fetal liver. Hematopoietic progenitors from E13.5 AML1/EVI1/+ fetal liver were highly capable of self-renewal compared with those from wild-type liver. Maintained expression of PU.1 gene and decreased expression of LMO2 and SCL genes may explain the aberrant hematopoiesis in AML1/EVI1/+ fetal liver.
Collapse
Affiliation(s)
- Kazuhiro Maki
- Department of Hematology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
224
|
Luo X, Ding L, Xu J, Chegini N. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology 2005; 146:1097-118. [PMID: 15604209 DOI: 10.1210/en.2004-1377] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altered expression of the TGF-beta system is recognized to play a central role in various fibrotic disorders, including leiomyoma. In this study we performed microarray analysis to characterize the gene expression profile of leiomyoma and matched myometrial smooth muscle cells (LSMC and MSMC, respectively) in response to the time-dependent action of TGF-beta and, after pretreatment with TGF-beta type II receptor (TGF-beta RII) antisense oligomer-blocking/reducing TGF-beta autocrine/paracrine actions. Unsupervised and supervised assessments of the gene expression values with a false discovery rate selected at P < or = 0.001 identified 310 genes as differentially expressed and regulated in LSMC and MSMC in a cell- and time-dependent manner by TGF-beta. Pretreatment with TGF-beta RII antisense resulted in changes in the expression of many of the 310 genes regulated by TGF-beta, with 54 genes displaying a response to TGF-beta treatment. Comparative analysis of the gene expression profile in TGF-beta RII antisense- and GnRH analog-treated cells indicated that these treatments target the expression of 222 genes in a cell-specific manner. Gene ontology assigned these genes functions as cell cycle regulators, transcription factors, signal transducers, tissue turnover, and apoptosis. We validated the expression and TGF-beta time-dependent regulation of IL-11, TGF-beta-induced factor, TGF-beta-inducible early gene response, early growth response 3, CITED2 (cAMP response element binding protein-binding protein/p300-interacting transactivator with ED-rich tail), Nur77, Runx1, Runx2, p27, p57, growth arrest-specific 1, and G protein-coupled receptor kinase 5 in LSMC and MSMC using real-time PCR. Together, the results provide the first comprehensive assessment of the LSMC and MSMC molecular environment targeted by autocrine/paracrine action of TGF-beta, highlighting potential involvement of specific genes whose products may influence the outcome of leiomyoma growth and fibrotic characteristics by regulating inflammatory response, cell growth, apoptosis, and tissue remodeling.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Box 100294, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
225
|
Stock M, Otto F. Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem 2005; 95:506-17. [PMID: 15838892 DOI: 10.1002/jcb.20471] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three mammalian RUNX genes constitute the family of runt domain transcription factors that are involved in the regulation of a number of developmental processes such as haematopoiesis, osteogenesis and neuronal differentiation. All three genes show a complex temporo-spatial pattern of expression. Since the three proteins are probably mutually interchangeable with regard to function, most of the specificity of each family member seems to be based on a tightly controlled regulation of expression. While RUNX gene expression is driven by two promoters for each gene, the promoter sequence alone does not seem to suffice for a proper expressional control. This review focuses on the available evidence for the existence of such control mechanisms and studies aiming at discovering cis-acting regulatory sequences of the RUNX2 gene.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
226
|
Raveh E, Cohen S, Levanon D, Groner Y, Gat U. Runx3 is involved in hair shape determination. Dev Dyn 2005; 233:1478-87. [PMID: 15937937 DOI: 10.1002/dvdy.20453] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcriptional regulators of the Runx family play critical roles in normal organ development and, when mutated, lead to genetic diseases and cancer. Runx3 functions during cell lineage decisions in thymopoiesis and neurogenesis and mediates transforming growth factor-beta signaling in dendritic cells. Here, we study the function of Runx3 in the skin and its appendages, primarily the hair follicle, during mouse development. Runx3 is expressed predominantly in the dermal compartment of the hair follicles as they form and during the hair cycle, as well as in the nail and sweat gland skin appendages. Distinct expression is also detected periodically in isolated cells of the epidermis and in melanocytes, populating the hair bulb. Runx3-deficient mice display a perturbation of the normal hair coat, which we show to be due to hair type and hair shape changes. Thus, one of the functions of Runx3 in skin may be to regulate the formation of the epithelial derived structural hair by affecting dermal to epidermal interactions.
Collapse
Affiliation(s)
- Eli Raveh
- Department of Cell and Animal Biology, Silberman Life Sciences Institute, Edmond Safra Campus at Givat-Ram, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
227
|
Schroeder TM, Jensen ED, Westendorf JJ. Runx2: A master organizer of gene transcription in developing and maturing osteoblasts. ACTA ACUST UNITED AC 2005; 75:213-25. [PMID: 16187316 DOI: 10.1002/bdrc.20043] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Runx2 is essential for osteoblast development and proper bone formation. A member of the Runt domain family of transcription factors, Runx2 binds specific DNA sequences to regulate transcription of numerous genes and thereby control osteoblast development from mesenchymal stem cells and maturation into osteocytes. Although necessary for gene transcription and osteoblast development, Runx2 is not sufficient for optimal gene expression or bone formation. Runx2 cooperates with numerous proteins, including transcription factors and cofactors, is posttranslationally modified, and associates with the nuclear matrix to integrate a variety of signals and organize crucial events during osteoblast development and maturation. Consistent with its role as a master organizer, alterations in Runx2 expression levels are associated with skeletal diseases. Runx2 haploinsufficiency causes cleidocranial dysplasia, while Runx2 overexpression is common in many bone-metastatic cancers. In this review, we summarize the molecular mechanisms by which Runx2 integrates signals through coregulatory interactions, and discuss how its role as a master organizer may shift depending on promoter structure, developmental cues, and cellular context.
Collapse
Affiliation(s)
- Tania M Schroeder
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
228
|
Glusman G, Kaur A, Hood L, Rowen L. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution. BMC Evol Biol 2004; 4:43. [PMID: 15527507 PMCID: PMC533870 DOI: 10.1186/1471-2148-4-43] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/04/2004] [Indexed: 11/10/2022] Open
Abstract
Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family), but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes) reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.
Collapse
Affiliation(s)
- Gustavo Glusman
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| | - Amardeep Kaur
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| | - Leroy Hood
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| | - Lee Rowen
- Institute for Systems Biology, 1441 N 34th St., Seattle, WA 98103, USA
| |
Collapse
|
229
|
Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E, Groner Y. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci U S A 2004; 101:16016-21. [PMID: 15514019 PMCID: PMC528776 DOI: 10.1073/pnas.0407180101] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RUNX transcription factors are key regulators of lineage-specific gene expression and might be involved in autoimmune diseases. Runx3 plays a role during the development of sensory neurons and T cells and regulates transforming growth factor beta (TGF-beta) signaling in dendritic cells. Here, we report that at 4 weeks of age, Runx3 knockout (KO) mice spontaneously develop inflammatory bowel disease (IBD) characterized by leukocyte infiltration, mucosal hyperplasia, formation of lymphoid clusters, and increased production of IgA. Additionally, at a considerably older age (8 months), the KO mice also develop progressive hyperplasia of the gastric mucosa associated with disturbed epithelial differentiation and cellular hyaline degeneration. Analysis of cytokines in the colonic mucosa of Runx3 KO mice revealed a mixed T helper 1/T helper 2 response. By using immunohistochemistry and RNA in situ hybridization, Runx3 expression in the gastrointestinal tract is detected in lymphoid and myeloid populations but not in the epithelium. The data indicate that loss of leukocytic cell-autonomous function of Runx3 results in IBD and gastric lesion in the KO mice. IBD in humans is viewed as a complex genetic disorder. Several susceptibility loci were identified on different human chromosomes including the chromosomal region 1p36 where RUNX3 resides. It is thus tempting to speculate that mutations in RUNX3 may constitute an IBD risk factor in humans.
Collapse
Affiliation(s)
- Ori Brenner
- Departments of Molecular Genetics and Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|