201
|
Georgiou AS, Sostaric E, Wong CH, Snijders APL, Wright PC, Moore HD, Fazeli A. Gametes alter the oviductal secretory proteome. Mol Cell Proteomics 2005; 4:1785-96. [PMID: 16105986 DOI: 10.1074/mcp.m500119-mcp200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian oviduct provides an optimal environment for the maturation of gametes, fertilization, and early embryonic development. Secretory cells lining the lumen of the mammalian oviduct synthesize and secrete proteins that have been shown to interact with and influence the activities of gametes and embryos. We hypothesized that the presence of gametes in the oviduct alters the oviductal secretory proteomic profile. We used a combination of two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry to identify oviductal protein secretions that were altered in response to the presence of gametes in the oviduct. The oviductal response to spermatozoa was different from its response to oocytes as verified by Western blotting. The presence of spermatozoa or oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are known to have an influence on gamete maturation, viability, and function, and there is evidence to suggest these proteins may prepare the oviductal environment for arrival of the zygote. Our findings suggest the presence of a gamete recognition system within the oviduct capable of distinguishing between spermatozoa and oocytes.
Collapse
Affiliation(s)
- A Stephen Georgiou
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
202
|
Burrell HE, Wlodarski B, Foster BJ, Buckley KA, Sharpe GR, Quayle JM, Simpson AWM, Gallagher JA. Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem 2005; 280:29667-76. [PMID: 15958381 DOI: 10.1074/jbc.m505381200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleotide activation of P2 receptors is important in autocrine and paracrine regulation in many tissues. In the epidermis, nucleotides are involved in proliferation, differentiation, and apoptosis. In this study, we have used a combination of luciferin-luciferase luminometry, pharmacological inhibitors, and confocal microscopy to demonstrate that HaCaT keratinocytes release ATP into the culture medium, and that there are three mechanisms for nucleotide interconversion, resulting in ATP generation at the cell surface. Addition of ADP, GTP, or UTP to culture medium elevated the ATP concentration. ADP to ATP conversion was inhibited by diadenosine pentaphosphate, oligomycin, and UDP, suggesting the involvement of cell surface adenylate kinase, F(1)F(0) ATP synthase, and nucleoside diphosphokinase (NDPK), respectively, which was supported by immunohistochemistry. Simultaneous addition of ADP and GTP elevated ATP above that for each nucleotide alone indicating that GTP acts as a phosphate donor. However, the activity of NDPK, F(1)F(0) ATP synthase or the forward reaction of adenylate kinase could not fully account for the culture medium ATP content. We postulate that this discrepancy is due to the reverse reaction of adenylate kinase utilizing AMP. In normal human skin, F(1)F(0) ATP synthase and NDPK were differentially localized, with mitochondrial expression in the basal layer, and cell surface expression in the differentiated layers. We and others have previously demonstrated that keratinocytes express multiple P2 receptors. In this study we now identify the potential sources of extracellular ATP required to activate these receptors and provide better understanding of the role of nucleotides in normal epidermal homeostasis and wound healing.
Collapse
Affiliation(s)
- Helen E Burrell
- Department of Human Anatomy & Cell Biology, School of Biomedical Sciences, University of Liverpool, The Sherrington Buildings, UK.
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Rege TA, Fears CY, Gladson CL. Endogenous inhibitors of angiogenesis in malignant gliomas: nature's antiangiogenic therapy. Neuro Oncol 2005; 7:106-21. [PMID: 15831230 PMCID: PMC1871889 DOI: 10.1215/s115285170400119x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is necessary for tumor growth beyond a volume of approximately 2 mm(3). This observation, along with the accessibility of tumor vessels to therapeutic targeting, has resulted in a research focus on inhibitors of angiogenesis. A number of endogenous inhibitors of angiogenesis are found in the body. Some of these are synthesized by specific cells in different organs, and others are created by extracellular proteolytic cleavage of plasma-derived or extracellular matrix-localized proteins. In this review, we focus on angiostatin, endostatin, PEX, pigment epithelial-derived factor, and thrombospondin (TSP)-1 and -2, either because these molecules are expressed in malignant glioma biopsies or because animal studies in malignant glioma models have suggested that their therapeutic administration could be efficacious. We review the known mechanisms of action, potential receptors, expression in glioma biopsy samples, and studies testing their potential therapeutic efficacy in animal models of malignant glioma. Two conclusions can be made regarding the mechanisms of action of these inhibitors: (1) Several of these inhibitors appear to mediate their antiangiogenic effect through multiple protein-protein interactions that inhibit the function of proangiogenic molecules rather than through a specific receptor-mediated signaling event, and (2) TSP-1 and TSP-2 appear to mediate their antiangiogenic effect, at least in part, through a specific receptor, CD36, which initiates the antiangiogenic signal. Although not proven in gliomas, evidence suggests that expression of specific endogenous inhibitors of angiogenesis in certain organs may be part of a host antitumor response. The studies reviewed here suggest that new antiangiogenic therapies for malignant gliomas offer exciting promise as nontoxic, growth-inhibitory agents.
Collapse
Affiliation(s)
| | | | - Candece L. Gladson
- Address correspondence to Candece L. Gladson, The University of Alabama at Birmingham, LHRB 567, 701 South 19th Street, Birmingham, AL 35294, USA (
)
| |
Collapse
|
204
|
Cortés-Hernández P, Domínguez-Ramírez L, Estrada-Bernal A, Montes-Sánchez DG, Zentella-Dehesa A, de Gómez-Puyou MT, Gómez-Puyou A, García JJ. The inhibitor protein of the F1F0-ATP synthase is associated to the external surface of endothelial cells. Biochem Biophys Res Commun 2005; 330:844-9. [PMID: 15809073 DOI: 10.1016/j.bbrc.2005.03.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Indexed: 11/22/2022]
Abstract
The ATPase inhibitor protein (IP) of mitochondria was detected in the plasma membrane of living endothelial cells by flow cytometry, competition assays, and confocal microscopy of cells exposed to IP antibodies. The plasma membranes of endothelial cells also possess beta-subunits of the mitochondrial ATPase. Plasma membranes have the capacity to bind exogenous IP. TNF-alpha decreases the level of beta-subunits and increases the amount of IP, indicating that the ratio of IP to beta-subunit exhibits significant variations. Therefore, it is probable that the function of IP in the plasma membrane of endothelial cells is not limited to regulation of catalysis.
Collapse
|
205
|
Abstract
Angiogenesis, the development of new blood vessels from the existing vasculature, and haemostasis, the coagulation cascade leading to formation of a clot, are among the most consistent host responses associated with cancer. Importantly, these two pathways interrelate, with blood coagulation and fibrinolysis influencing tumor angiogenesis directly, thereby contributing to tumor growth. Moreover, many endogenous inhibitors of angiogenesis are found within platelets or harboured as cryptic fragments of haemostatic proteins. In this review we outline ways in which angiogenesis is coordinated and regulated by haemostasis in human cancer. Then we detail the experimental and pre-clinical evidence for the ability of many of these endogenous proteins to inhibit tumor angiogenesis and thus their potential to be anti-cancer agents, with particular reference to any clinical trials.
Collapse
Affiliation(s)
- Carolyn A Staton
- Microcirculation Research Group, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | | |
Collapse
|
206
|
Gledhill J, Walker J. Inhibition sites in F1-ATPase from bovine heart mitochondria. Biochem J 2005; 386:591-8. [PMID: 15537385 PMCID: PMC1134879 DOI: 10.1042/bj20041513] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/14/2004] [Accepted: 11/10/2004] [Indexed: 11/17/2022]
Abstract
High-resolution crystallographic studies of a number of inhibited forms of bovine F1-ATPase have identified four independent types of inhibitory site: the catalytic site, the aurovertin B-binding site, the efrapeptin-binding site and the site to which the natural inhibitor protein IF1 binds. Hitherto, the binding sites for other inhibitors, such as polyphenolic phytochemicals, non-peptidyl lipophilic cations and amphiphilic peptides, have remained undefined. By employing multiple inhibition analysis, we have identified the binding sites for these compounds. Several of them bind to the known inhibitory sites. The amphiphilic peptides melittin and synthetic analogues of the mitochondrial import pre-sequence of yeast cytochrome oxidase subunit IV appear to mimic the natural inhibitor protein, and the polyphenolic phytochemical inhibitors resveratrol and piceatannol compete for the aurovertin B-binding site (or sites). The non-peptidyl lipophilic cation rhodamine 6G acts at a separate unidentified site, indicating that there are at least five inhibitory sites in the F1-ATPase. Each of the above inhibitors has significantly different activity against the bacterial Bacillus PS3 alpha3beta3gamma subcomplex compared with that observed with bovine F1-ATPase. IF1 does not inhibit the bacterial enzyme, even in the absence of the epsilon-subunit. An understanding of these inhibitors may enable rational development of therapeutic agents to act as novel antibiotics against bacterial ATP synthases or for the treatment of several disorders linked to the regulation of the ATP synthase, including ischaemia-reperfusion injury and some cancers.
Collapse
Affiliation(s)
- Jonathan R. Gledhill
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K
| | - John E. Walker
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, U.K
| |
Collapse
|
207
|
Yamamoto K, Ando J. [Shear-stress sensing via P2 purinoceptors in vascular endothelial cells]. Nihon Yakurigaku Zasshi 2005; 124:319-28. [PMID: 15502397 DOI: 10.1254/fpj.124.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms by which shear stress elevates intracellular Ca(2+) in endothelial cells (EC) are not fully understood. Here we report that endogenously released ATP contributes to shear stress-induced Ca(2+) responses. Application of a flow of Hank's balanced solution to human pulmonary artery EC (HPAEC) elicited shear stress-dependent increases in Ca(2+) concentration. Chelation of extracellular Ca(2+) with EGTA completely abolished the Ca(2+) responses, whereas the phospholipase C inhibitor U-73122 and the Ca(2+)-ATPase inhibitor thapsigargin had no effect, indicating that the response was due to the influx of extracellular Ca(2+). The Ca(2+) influx was significantly suppressed by apyrase, which degrades ATP, and by antisense oligonucleotide targeted to P2X4 receptors. A luciferase luminometric assay showed that shear stress induced dose-dependent release of ATP. When the ATP release was inhibited by the ATP synthase inhibitors angiostatin or oligomycin, the Ca(2+) influx was markedly suppressed but was restored by removal of these inhibitors or addition of extracellular ATP. These results suggest that shear stress stimulates HPAEC to release ATP, which activates Ca(2+) influx via P2X4 receptors.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo
| | | |
Collapse
|
208
|
Burwick NR, Wahl ML, Fang J, Zhong Z, Capaldi RA, Kenan DJ, Pizzo SV. An Inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem 2005; 280:1740-5. [PMID: 15528193 PMCID: PMC1201548 DOI: 10.1074/jbc.m405947200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Angiostatin binds to endothelial cell (EC) surface F(1)-F(0) ATP synthase, leading to inhibition of EC migration and proliferation during tumor angiogenesis. This has led to a search for angiostatin mimetics specific for this enzyme. A naturally occurring protein that binds to the F1 subunit of ATP synthase and blocks ATP hydrolysis in mitochondria is inhibitor of F1 (IF1). The present study explores the effect of IF1 on cell surface ATP synthase. IF1 protein bound to purified F(1) ATP synthase and inhibited F(1)-dependent ATP hydrolysis consistent with its reported activity in studies of mitochondria. Although exogenous IF1 did not inhibit ATP production on the surface of EC, it did conserve ATP on the cell surface, particularly at low extracellular pH. IF1 inhibited ATP hydrolysis but not ATP synthesis, in contrast to angiostatin, which inhibited both. In cell-based assays used to model angiogenesis in vitro, IF1 did not inhibit EC differentiation to form tubes and only slightly inhibited cell proliferation compared with angiostatin. From these data, we conclude that inhibition of ATP synthesis is necessary for an anti-angiogenic outcome in cell-based assays. We propose that IF1 is not an angiostatin mimetic, but it can serve a protective role for EC in the tumor microenvironment. This protection may be overridden in a concentration-dependent manner by angiostatin. In support of this hypothesis, we demonstrate that angiostatin blocks IF1 binding to ATP synthase and abolishes its ability to conserve ATP. These data suggest that there is a relationship between the binding sites of IF1 and angiostatin on ATP synthase and that IF1 could be employed to modulate angiogenesis.
Collapse
Affiliation(s)
- Nick R. Burwick
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Miriam L. Wahl
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Jun Fang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Zhaoxi Zhong
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Roderick A. Capaldi
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Daniel J. Kenan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
209
|
Man P, Novák P, Cebecauer M, Horváth O, Fiserová A, Havlícek V, Bezouska K. Mass spectrometric analysis of the glycosphingolipid-enriched microdomains of rat natural killer cells. Proteomics 2004; 5:113-22. [PMID: 15602775 DOI: 10.1002/pmic.200400887] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycosphingolipid-enriched microdomains (GEM) are membrane entities that concentrate glycosylphosphatiolylinositol(GPI)-anchored, acylated and membrane proteins important for immune receptor signaling. Using rat leukemic cell line RNK-16 we have initiated proteomic studies of microdomains in natural killer (NK) cells. Isolated plasma membranes were treated with Brij 58, or Nonidet-P40, or sodium carbonate. Extracts were separated by sucrose density gradient centrifugation into very light membrane, medium light membrane and heavy fractions, and a complete protein profile was analyzed by tandem mass spectrometry. Up to 250 proteins were unambiguously identified in each analyzed fraction. The first study of the proteome of NK cell GEM revealed several new aspects including identification of molecules not expected to be expressed in rat NK cells (e.g., NAP-22) or associated with GEM (e.g., NKR-P1, CD45, CD2). Moreover, it provided clear data consolidating controversial views concerning the occurrence of major histcompatibility complex glycoproteins and RT6.1/CD73/CD38 complex in NK cells. Our results also identified a large number of receptors as candidates for future functional studies.
Collapse
Affiliation(s)
- Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
210
|
Hu J, Barr MM. ATP-2 interacts with the PLAT domain of LOV-1 and is involved in Caenorhabditis elegans polycystin signaling. Mol Biol Cell 2004; 16:458-69. [PMID: 15563610 PMCID: PMC545878 DOI: 10.1091/mbc.e04-09-0851] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Caenorhabditis elegans is a powerful model to study the molecular basis of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is caused by mutations in the polycystic kidney disease (PKD)1 or PKD2 gene, encoding polycystin (PC)-1 or PC-2, respectively. The C. elegans polycystins LOV-1 and PKD-2 are required for male mating behaviors and are localized to sensory cilia. The function of the evolutionarily conserved polycystin/lipoxygenase/alpha-toxin (PLAT) domain found in all PC-1 family members remains an enigma. Here, we report that ATP-2, the beta subunit of the ATP synthase, physically associates with the LOV-1 PLAT domain and that this interaction is evolutionarily conserved. In addition to the expected mitochondria localization, ATP-2 and other ATP synthase components colocalize with LOV-1 and PKD-2 in cilia. Disrupting the function of the ATP synthase or overexpression of atp-2 results in a male mating behavior defect. We further show that atp-2, lov-1, and pkd-2 act in the same molecular pathway. We propose that the ciliary localized ATP synthase may play a previously unsuspected role in polycystin signaling.
Collapse
Affiliation(s)
- Jinghua Hu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
211
|
Abstract
Like most embryonic tissues, tumors have the ability to build up their own blood vessel networks. However, the architecture of tumor vessels is fundamentally different from that found in healthy tissues. Tumor vessels are usually irregular, heterogeneous, leaky, and poorly associated with mural cells. Endothelial cells in tumor vessels are also disorganized and express imbalanced surface molecules. These unusual features may provide some molecular and structural basis for selective inhibition or even destruction of tumor vessels by angiogenesis inhibitors. In animal tumor models, several angiogenesis inhibitors seem to inhibit tumor angiogenesis specifically without obvious effects on the normal vasculature. As a result, these inhibitors produced potent antitumor effects in mice. Excited by these preclinical studies, more than 60 angiogenesis inhibitors are being evaluated for their anticancer effects in human patients. Although the ultimate outcome of antiangiogenic clinical trials remains to be seen, several early observations have reported some disappointing results. These early clinical data have raised several important questions. Can we cure human cancers with angiogenesis inhibitors? Have we found the ideal angiogenesis inhibitors for therapy? What is the difference between angiogenesis in an implanted mouse tumor and in a spontaneous human tumor? What are the molecular mechanisms of these angiogenesis inhibitors? Should angiogenesis inhibitors be used alone or in combinations with other existing anticancer drugs? In this review, we will discuss these important issues in relation to ongoing antiangiogenic clinical trials.
Collapse
Affiliation(s)
- Yihai Cao
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm S-171 77, Sweden.
| |
Collapse
|
212
|
Dewhirst MW, Richardson R, Cardenas-Navia I, Cao Y. The relationship between the tumor physiologic microenvironment and angiogenesis. Hematol Oncol Clin North Am 2004; 18:973-90, vii. [PMID: 15474330 DOI: 10.1016/j.hoc.2004.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article examines the pathophysiology of tumors, with an emphasis on how these features influence angiogenesis in tumors.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Room 201, Medical Science Research Building, Research Drive, Box 3455, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
213
|
Agarwal A, Muñoz-Nájar U, Klueh U, Shih SC, Claffey KP. N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1683-96. [PMID: 15111315 PMCID: PMC1615662 DOI: 10.1016/s0002-9440(10)63727-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The antioxidant N-acetyl-cysteine (NAC) has been shown to be chemopreventive in clinical studies, and in recent studies, has shown promise in preventing tumor progression. Although the effects of NAC on tumorigenesis have been associated with decreased angiogenesis, the mechanism of the anti-angiogenic activity has not been determined. In the following study, we describe a novel mechanism whereby NAC therapy blocks MDA-MB-435 breast carcinoma cell proliferation and metastasis in an in vivo tumorigenic model. Athymic nude mice bearing MDA-MB-435 xenografts were treated with systemic NAC daily for 8 weeks. NAC treatment resulted in endothelial cell apoptosis and reduction of microvascular density within the core of the tumor leading to significant tumor cell apoptosis/necrosis. Angiostatin accumulated in tumors from NAC-treated but not control animals. Additional studies using a vascular endothelial growth factor-dependent chicken chorioallantoic membrane angiogenic assay recapitulated NAC-induced endothelial apoptosis and coordinate production of angiostatin, a potent endothelial apoptotic factor. In vitro studies showed angiostatin was formed in endothelial cultures in a vascular endothelial growth factor- and NAC-dependent manner, a process that requires endothelial cell surface plasminogen activation. These results suggest that systemic NAC therapy promotes anti-angiogenesis through angiostatin production, resulting in endothelial apoptosis and vascular collapse in the tumor.
Collapse
Affiliation(s)
- Anshu Agarwal
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501, USA
| | | | | | | | | |
Collapse
|
214
|
Veitonmäki N, Cao R, Wu LH, Moser TL, Li B, Pizzo SV, Zhivotovsky B, Cao Y. Endothelial Cell Surface ATP Synthase-Triggered Caspase-Apoptotic Pathway Is Essential for K1-5-Induced Antiangiogenesis. Cancer Res 2004; 64:3679-86. [PMID: 15150128 DOI: 10.1158/0008-5472.can-03-1754] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently reported the identification of kringle 1-5 (K1-5) of plasminogen as a potent and specific inhibitor of angiogenesis and tumor growth. Here, we show that K1-5 bound to endothelial cell surface ATP synthase and triggered caspase-mediated endothelial cell apoptosis. Induction of endothelial apoptosis involved sequential activation of caspases-8, -9, and -3. Administration of neutralizing antibodies directed against the alpha- and beta-subunits of ATP synthase to endothelial cells attenuated activation of these caspases. Furthermore, inhibitors of caspases-3, -8, and -9 also remarkably blocked K1-5-induced endothelial cell apoptosis and antiangiogenic responses. In a mouse tumor model, we show that caspase-3 inhibitors abolished the antitumor activity of K1-5 by protecting the tumor vasculature undergoing apoptosis. These results suggest that the specificity of the antiendothelial effect of K1-5 is attributable, at least in part, to its interaction with the endothelial cell surface ATP synthase and that the caspase-mediated endothelial apoptosis is essential for the angiostatic activity of K1-5. Thus, our findings provide a mechanistic insight with respect to the angiostatic action and signaling pathway of K1-5 and angiostatin.
Collapse
Affiliation(s)
- Niina Veitonmäki
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Cvejic S, Zhu Z, Felice SJ, Berman Y, Huang XY. The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila. Nat Cell Biol 2004; 6:540-6. [PMID: 15133470 DOI: 10.1038/ncb1133] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 04/13/2004] [Indexed: 11/08/2022]
Abstract
Many extracellular signals are transmitted to the interior of the cell by receptors with seven membrane-spanning helices that trigger their effects by means of heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins). These G-protein-coupled receptors (GPCRs) control various physiological functions in evolution from pheromone-induced mating in yeast to cognition in humans. The potential role of the G-protein signalling system in the control of animal ageing has been highlighted by the genetic revelation that mutation of a GPCR encoded by methuselah extends the lifespan of adult Drosophila flies. How methuselah functions in controlling ageing is not clear. A first essential step towards the understanding of methuselah function is to determine the ligands of Methuselah. Here we report the identification and characterization of two endogenous peptide ligands of Methuselah, designated Stunted A and B. Flies with mutations in the gene encoding these ligands show an increase in lifespan and resistance to oxidative stress. We conclude that the Stunted-Methuselah system is involved in the control of animal ageing.
Collapse
Affiliation(s)
- Svetlana Cvejic
- Department of Physiology, Cornell University Weill Medical College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
216
|
Kang HT, Bang WK, Yu YG. Identification and Characterization of a Novel Angiostatin-binding Protein by the Display Cloning Method. BMB Rep 2004; 37:159-66. [PMID: 15469691 DOI: 10.5483/bmbrep.2004.37.2.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of 3.4 x 10(-7) M. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.
Collapse
Affiliation(s)
- Ha-Tan Kang
- Division of Life Sciences, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | |
Collapse
|
217
|
Gabison E, Chang JH, Hernández-Quintela E, Javier J, Lu PCS, Ye H, Kure T, Kato T, Azar DT. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res 2004; 78:579-89. [PMID: 15106938 DOI: 10.1016/j.exer.2003.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to determine whether angiostatin is involved in maintaining corneal avascularity after wounding. We generated polyclonal rabbit anti-mouse angiostatin antibodies directed against each of the five kringle domains, (K1-5) and anti-mouse plasmin B chain antibodies. Mouse corneas were immunostained with anti-K1 angiostatin antibody after excimer laser keratectomy. Corneal epithelial cell lysate was harvested and angiostatin was isolated using lysine sepharose. Purified plasminogen was incubated with lysate of mouse corneal epithelial cells from wild type mice in the presence or absence of MMP inhibitors. Angiostatin activity was determined using calf pulmonary artery endothelial (CPAE) cell proliferation assay with and without angiostatin immunoprecipitation; and corneal neovascularization was assayed by intrastromal injection of anti-plasminogen, anti-K1-3 or anti-B chain antibodies after corneal wounding. Using the anti-mouse angiostatin antibodies that we generated, we confirmed that angiostatin-like molecules were expressed in the corneal epithelium and in cultured corneal epithelial cells. Western blotting after incubation of scraped corneal epithelial cell lysate with purified plasminogen showed reduction of the plasminogen bands at 6, 12, and 24 hr, respectively. Complete cleavage of plasminogen occurred by 48 hr. Functional assays in which corneal epithelial cell extracts were incubated with CPAE cells resulted in inhibition of vascular endothelial cell proliferation. Depletion experiments using anti-angiostatin (K1) antibodies resulted in a 25 +/- 1.2% increase in vascular endothelial cell proliferation as compared to 12 +/- 1.8% using the protein A control (p < 0.05). Corneal neovascularization was observed after excimer laser keratectomy when anti-angiostatin antibodies were injected into the cornea (65 +/- 13%) which was significantly higher than when plasmin B chain antibodies were injected (10 +/- 2.6%; p < 0.05). Plasminogen and angiostatin are produced in the cornea. They may play a role in preventing vascularization and may contribute to the maintenance of corneal avascularity after excimer laser keratectomy.
Collapse
Affiliation(s)
- Eric Gabison
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, and the Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Yihai C. Angiogenesis inhibitors and their therapeutic potentials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 532:109-20. [PMID: 12908553 DOI: 10.1007/978-1-4615-0081-0_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Cao Yihai
- Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
219
|
Abstract
Originally discovered in 1994 by Folkman and coworkers, angiostatin was identified through its antitumor effects in mice and later shown to be a potent inhibitor of angiogenesis. An internal fragment of plasminogen, angiostatin consists of kringle domains that are known to be lysine-binding. The crystal structure of angiostatin was the first multikringle domain-containing structure to be published. This review will focus on what is known about the structure of angiostatin and its implications in function from the current literature.
Collapse
Affiliation(s)
- J H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
220
|
Osanai T, Sasaki S, Kamada T, Fujiwara N, Nakano T, Tomita H, Matsunaga T, Magota K, Okumura K. Circulating coupling factor 6 in human hypertension. J Hypertens 2003; 21:2323-8. [PMID: 14654753 DOI: 10.1097/00004872-200312000-00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Coupling factor 6 is an endogenous inhibitor of prostacyclin synthesis and might function as an endogenous vasoconstrictor in the fashion of a circulating hormone in rats. We investigated the role of coupling factor 6 in human hypertension. METHODS AND RESULTS The patients with essential hypertension (EH) (n = 30) received a series of normal salt diet (12 g salt/day) for 3 days, low salt diet (2 g salt/day) for 7 days, and high salt diet (20-23 g salt/day) for 7 days. Normotensive control subjects (n = 27) received normal and low salt diets. The plasma level of coupling factor 6, measured by radioimmunoassay, during normal salt diet was higher in patients with EH than in normotensive subjects (17.6 +/- 1.7 versus 12.8 +/- 0.5 ng/ml, P < 0.01). Whereas the plasma level of coupling factor 6 was unchanged after salt restriction in normotensive subjects, it was decreased after salt restriction (from 12 g/day to 2 g/day) and was increased after salt loading (from 2 g/day to 20-23 g/day) in patients with EH. This increase in plasma level of coupling factor 6 was abolished by oral administration of ascorbic acid, but the level of blood pressure was unaffected. The percentage changes in plasma coupling factor 6 level after salt restriction and loading were positively correlated with those in mean blood pressure (r = 0.57, P < 0.01), and negatively correlated with those in plasma nitric oxide level (r = -0.51, P < 0.05). CONCLUSION These indicate that circulating coupling factor 6 is elevated in human hypertension and modulated by salt intake presumably via reactive oxygen species.
Collapse
Affiliation(s)
- Tomohiro Osanai
- Second Deparment of Internal Medicine, Hirosaki University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Peyruchaud O, Serre CM, NicAmhlaoibh R, Fournier P, Clezardin P. Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J Biol Chem 2003; 278:45826-32. [PMID: 12954626 DOI: 10.1074/jbc.m309024200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone is a very common metastatic site for breast cancer. In bone metastasis, there is a vicious circle wherein bone-residing metastatic cells stimulate osteoclast-mediated bone resorption, and bone-derived growth factors released from resorbed bone promote tumor growth. The contribution of tumor angiogenesis in the growth of bone metastases is, however, unknown. By using an experimental model of bone metastasis caused by MDA-MB-231/B02 breast cancer cells that quite closely mimics the conditions likely to occur in naturally arising metastatic human breast cancers, we demonstrate here that when MDA-MB-231/B02 cells were engineered to produce at the bone metastatic site an angiogenesis inhibitor, angiostatin, there was a marked inhibition in the extent of skeletal lesions. Inhibition of skeletal lesions came with a pronounced reduction in tumor burden in bone. However, although angiostatin produced by MDA-MB-231/B02 cells was effective at inhibiting in vitro endothelial cell proliferation and in vivo angiogenesis in a Matrigel implant model, we have shown that it inhibited cancer-induced bone destruction through a direct inhibition of osteoclast activity and generation. Overall, these results indicate that, besides its well known anti-angiogenic activity, angiostatin must also be considered as a very effective inhibitor of bone resorption, broadening its potential clinical use in cancer therapy.
Collapse
Affiliation(s)
- Olivier Peyruchaud
- INSERM Research Unit 403, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
222
|
te Velde EA, Kusters B, Maass C, de Waal R, Borel Rinkes IHM. Histological analysis of defective colonic healing as a result of angiostatin treatment. Exp Mol Pathol 2003; 75:119-23. [PMID: 14516772 DOI: 10.1016/s0014-4800(03)00049-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antiangiogenic therapy is a highly promising new strategy in the treatment of cancer. One of the first angiogenesis inhibitors described was angiostatin, a 38-kDa internal proteolytically generated fragment of plasminogen. In a previous study we found that angiostatin affected physiological angiogenesis as well as tumor angiogenesis. It impaired healing when administered during repair of experimental colonic anastomoses, as reflected by a decrease in mechanical strength. On histology, we observed a decrease in factor VIII-stained vessel amount and volume in angiostatin-treated colonic anastomoses. The exact working mechanism of angiostatin has not been elucidated. Based on the available studies on proposed working mechanisms of angiostatin, we have attempted to address histological differences in physiological angiogenesis between the tissues of colonic anastomoses of mice with impaired healing and control mice. After angiostatin treatment there was more inflammatory tissue as a result of impaired healing. Furthermore, we found fewer vessels in the granulation tissue after angiostatin treatment. However, especially with respect to extracellular matrix (ECM), endothelial cell apoptosis, proliferation, or neutrophil influx, no gross differences were discerned 1 week following surgery, using histology and immunohistochemistry techniques.
Collapse
Affiliation(s)
- Elisabeth A te Velde
- Department of Surgery, University Medical Center Utrecht, 3508 6A Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
223
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1597-1600. [DOI: 10.11569/wcjd.v11.i10.1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
224
|
Chen YH, Wu HL, Chen CK, Huang YH, Yang BC, Wu LW. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun 2003; 310:804-10. [PMID: 14550275 DOI: 10.1016/j.bbrc.2003.09.081] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiostatin consisting of the first four-kringle domains of the plasminogen potently inhibits angiogenesis in vitro and in vivo. However, the molecular mechanism of action whereby angiostatin mediates its inhibitory effect on proliferating endothelial cells remains elusive. We therefore used the proliferating cultured human umbilical vein endothelial cells (HUVECs) promoted by vascular endothelial growth factor A to identify the endogenous signaling elements that mediate the antiangiogenic effect of angiostatin. Treatment of HUVEC with angiostatin at a concentration known to inhibit cell proliferation and induce apoptosis resulted in induction of p53-, Bax-, and tBid-mediated release of cytochrome c into the cytosol. In addition, angiostatin also activated the Fas-mediated apoptotic pathway in part via up-regulation of FasL mRNA, down-regulation of c-Flip, and activation of caspase 3. These results suggest that the anti-angiogenic action of angiostatin is likely mediated by two distinct signaling pathways, one intrinsic mediated by p53 while the other extrinsic involved in FasL engagement and mitochondria dysfunction.
Collapse
Affiliation(s)
- Ya-Huey Chen
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
225
|
Dell'Eva R, Pfeffer U, Indraccolo S, Albini A, Noonan D. Inhibition of tumor angiogenesis by angiostatin: from recombinant protein to gene therapy. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2003; 9:3-10. [PMID: 12901356 DOI: 10.1080/10623320210712] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor growth, local invasion, and metastatic dissemination are dependent on the formation of new microvessels. The process of angiogenesis is regulated by a balance between pro-angiogenic and anti-angiogenic factors, and the shift to an angiogenic phenotype (the "angiogenic switch") is a key event in tumor progression. The use of anti-angiogenic agents to restore this balance represents a promising approach to cancer treatment. Known physiological inhibitors include trombospondin, several interleukins, and the proteolytic break-down products of several proteins. Angiostatin, an internal fragment of plasminogen, is one of the more potent of this latter class of angiogenesis inhibitors. Like endostatin, another anti-angiogenic peptide derived from collagen XVIII, angiostatin can induce tumor vasculature regression, leading to a complete cessation of tumor growth. Inhibitors of angiogenesis target normal endothelial cells, therefore the development of resistance to these drugs is unlikely. The efficacy of angiostatin has been demonstrated in animal models for many different types of solid tumors. Anti-angiogenic cancer therapy with angiostatin requires prolonged administration of the peptide. The production of the functional polypeptides is expensive and technical problems related to physical properties and purity are frequently encountered. Gene transfer represents an alternative method to deliver angiostatin. Gene therapy has the potential to produce the therapeutic agent in high concentrations in a local area for a sustained period, thereby avoiding the problems encountered with long-term administration of recombinant proteins, monoclonal antibodies, or anti-angiogenic drugs. In this review we compare the different gene therapy strategies that have been applied to angiostatin, with special regard to their ability to provide sufficient angiostatin at the target site.
Collapse
Affiliation(s)
- Raffaella Dell'Eva
- Laboratory of Molecular Biology, National Cancer Research Institute, Genoa, Italy
| | | | | | | | | |
Collapse
|
226
|
Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 2003; 285:H793-803. [PMID: 12714321 DOI: 10.1152/ajpheart.01155.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which flow-imposed shear stress elevates intracellular Ca2+ in cultured endothelial cells (ECs) are not fully understood. Here we report finding that endogenously released ATP contributes to shear stress-induced Ca2+ responses. Application of flow of Hanks' balanced solution to human pulmonary artery ECs (HPAECs) elicited shear stress-dependent increases in Ca2+ concentrations. Chelation of extracellular Ca2+ with EGTA completely abolished the Ca2+ responses, whereas the phospholipase C inhibitor U-73122 or the Ca2+-ATPase inhibitor thapsigargin had no effect, which thereby indicates that the response was due to the influx of extracellular Ca2+. The Ca2+ influx was significantly suppressed by apyrase, which degrades ATP, or antisense oligonucleotide targeted to P2X4 purinoceptors. A luciferase luminometric assay showed that shear stress induced dose-dependent release of ATP. When the ATP release was inhibited by the ATP synthase inhibitors angiostatin or oligomycin, the Ca2+ influx was markedly suppressed but was restored by removal of these inhibitors or addition of extracellular ATP. These results suggest that shear stress stimulates HPAECs to release ATP, which activates Ca2+ influx via P2X4 receptors.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
227
|
Martinez L, Jacquet S, Tercé F, Perret B, Collet X, Barbaras R. ATP synthase/apolipoprotéine A-I : un nouveau couple contre l’athérosclérose ? Med Sci (Paris) 2003; 19:795-6. [PMID: 14593610 DOI: 10.1051/medsci/20031989795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
228
|
Morioka H, Morii T, Vogel T, Hornicek FJ, Weissbach L. Interaction of plasminogen-related protein B with endothelial and smooth muscle cells in vitro. Exp Cell Res 2003; 287:166-77. [PMID: 12799192 DOI: 10.1016/s0014-4827(03)00137-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasminogen-related protein B (PRP-B) closely resembles the N-terminal plasminogen activation peptide, which is released from plasminogen during conversion to plasmin. We have previously demonstrated that the steady-state level of mRNA encoding PRP-B is increased within tumor tissues, and that recombinant PRP-B antagonizes neoplastic growth when administered systemically to mice harboring tumors, but no insights into the cell targets of PRP-B have been presented. Employing serum-free medium optimized for culturing human endothelial or smooth muscle cells, we show that recombinant PRP-B inhibits basic fibroblast growth factor-dependent cell migration for both cell types, as well as tube formation of endothelial cells. Comparison with the angiogenesis inhibitors angiostatin and endostatin revealed similar results. Recombinant PRP-B is effective in promoting cell attachment of endothelial and smooth muscle cells, and antibody interference experiments reveal that the interaction of recombinant PRP-B with endothelial cells is mediated at least in part by alpha(v)-containing integrins. Inhibition of angiogenesis in vivo by PRP-B was demonstrated in the chicken chorioallantoic membrane assay. PRP-B and other antiangiogenic molecules may elicit metabolic perturbations in endothelial cells as well as perivascular mesenchymal cells such as smooth muscle cells and pericytes.
Collapse
MESH Headings
- Animals
- Biological Assay
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Line
- Cell Movement/drug effects
- Cell Movement/physiology
- Culture Media, Serum-Free/pharmacology
- Drug Interactions/physiology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/metabolism
- Humans
- Integrin alpha Chains/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Neoplasms/blood supply
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Plasminogen/genetics
- Recombinant Fusion Proteins
Collapse
Affiliation(s)
- Hideo Morioka
- Orthopaedic Research Laboratories, Massachusetts General Hospital and Harvard Medical School, GRJ 1124, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
229
|
Lee KH, Song SH, Paik JY, Byun SS, Lee SY, Choe YS, Kim BT. Specific endothelial binding and tumor uptake of radiolabeled angiostatin. Eur J Nucl Med Mol Imaging 2003; 30:1032-7. [PMID: 12557052 DOI: 10.1007/s00259-002-1094-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiostatin (AS) is a potent antiangiogenic agent which inhibits tumor growth through specific action on proliferating endothelial cells. Imaging of radiolabeled AS would enhance our knowledge on the pharmacokinetics of AS and might provide useful information relating to tumor neovasculature. We therefore investigated the potential of radiolabeled AS as a novel tumor imaging agent. Human angiostatin was radioiodine labeled using the lactoperoxidase method. Competition binding studies showed a dose-dependent inhibition of (125)I-AS binding to endothelial cells by excess unlabeled AS, and a displacement curve demonstrated that specific binding was dose dependent and saturable, with a K(d) value of 169 n M. Gel analysis showed that (125)I-AS remained stable in serum for up to 24 h without significant degradation. Intravenously injected (125)I-AS in rats was cleared from the blood in an exponential fashion. Biodistribution data from human colon cancer-bearing Balb/C nude mice showed high uptake in the kidneys, stomach, liver, and lungs. Tumor uptake was 3.2+/-0.7, 2.6+/-0.2, and 1.7+/-0.2%ID/g at 2, 4, and 9 h after injection, respectively. Tumor to muscle count ratio increased from 3.1+/-0.5 at 2 h to 4.4+/-0.5 at 9 h. Serial scintigraphy from 1 to 5 h after (123)I-AS injection demonstrated high uptake in the kidneys and bladder, consistent with renal excretion. There was clear demarcation of tumor by 1 h, with gradual increase in contrast over time (4-h tumor to contralateral thigh ratio =4.7+/-1.1). Thus, radioiodine-labeled angiostatin binds specifically to endothelial cells and has potential as a novel tumor imaging agent.
Collapse
Affiliation(s)
- Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwondong, Kangnamgu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates into cancerous growths, supplying nutrients and oxygen and removing waste products. The process of angiogenesis plays an important role in many physiological and pathological conditions. Solid tumors depend on angiogenesis for growth and metastasis in a hostile environment. In the prevascular phase, the tumor is rarely larger than 2 to 3 mm3 and may contain a million or more cells. Up to this size, tumor cells can obtain the necessary oxygen and nutrient supplies required for growth and survival by simple passive diffusion. The properties of tumors to release and induce several angiogenic and anti-angiogenic factors which play crucial roles in regulating endothelial cell (EC) proliferation, migration, apoptosis or survival, cell-cell and cell-matrix adhesion through different intracellular signaling are thought to be the essential mechanisms during tumor-induced angiogenesis. Tumor angiogenesis actually starts with tumor cells releasing molecules that send signals to surrounding normal host tissue. This signaling activates certain genes in the host tissue that, in turn, make proteins to encourage growth of new blood vessels. In this review, we focus the mechanisms of tumor-induced angiogenesis, with an emphasis on the regulatory role of several angiogenic and anti-angiogenic agents during the angiogenic process in tumors. Advances in understanding the mechanisms of tumor angiogenesis have led to the development of several most effective anti-angiogenic and anti-metastatic therapeutic agents and also have provided several techniques for the regulation of cancer's angiogenic switch. The suggestion is made that standard cytotoxic chemotherapy and angiogenesis inhibitors used in combination may produce complementary therapeutic benefits in the treatment of cancer.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | | |
Collapse
|
231
|
Novak I, Amstrup J, Henriksen KL, Hede SE, Sørensen CE. ATP release and effects in pancreas. Drug Dev Res 2003. [DOI: 10.1002/ddr.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
232
|
Sergeant N, Wattez A, Galván-valencia M, Ghestem A, David JP, Lemoine J, Sautiére PE, Dachary J, Mazat JP, Michalski JC, Velours J, Mena-López R, Delacourte A. Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's disease. Neuroscience 2003; 117:293-303. [PMID: 12614671 DOI: 10.1016/s0306-4522(02)00747-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amyloid deposits and neurofibrillary tangles (NFT) are the two hallmarks that characterize Alzheimer's disease (AD). In order to find the molecular partners of these degenerating processes, we have developed antibodies against insoluble AD brain lesions. One clone, named AD46, detects only NFT. Biochemical and histochemistry analyses demonstrate that the labeled protein accumulating in the cytosol of Alzheimer degenerating neurons is the alpha-chain of the ATP synthase. The cytosolic accumulation of the alpha-chain of ATP synthase is observed even at early stages of neurofibrillary degenerating process. It is specifically observed in degenerating neurons, either alone or tightly associated with aggregates of tau proteins, suggesting that it is a new molecular event related to neurodegeneration. Overall, our results strongly suggest the implication of the alpha-chain of ATP synthase in neurofibrillary degeneration of AD that is illustrated by the cytosolic accumulation of this mitochondrial protein, which belongs to the mitochondrial respiratory system. This regulatory subunit of the respiratory complex V of mitochondria is thus a potential target for therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- N Sergeant
- Unite INSERM 422, 1, Place de Verdun, Lille Cedex 59045, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Kim HK, Lee SY, Oh HK, Kang BH, Ku HJ, Lee Y, Shin JY, Hong YK, Joe YA. Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem Biophys Res Commun 2003; 304:740-6. [PMID: 12727218 DOI: 10.1016/s0006-291x(03)00656-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tissue-type plasminogen activator (tPA) is a multidomain serine protease that converts the zymogen plasminogen to plasmin. tPA contains two kringle domains which display considerable sequence identity with those of angiostatin, an angiogenesis inhibitor. TK1-2, a recombinant kringle domain composed of t-PA kringles 1 and 2 (Ala(90)-Thr(263)), was produced by both bacterial and yeast expression systems. In vitro, TK1-2 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, and epidermal growth factor. It did not inhibit proliferation of non-endothelial cells. TK1-2 also inhibited in vivo angiogenesis in the chick embryo chorioallantoic membrane model. These results suggest that the recombinant kringle domain of t-PA is a selective inhibitor of endothelial cell growth and identifies this molecule as a novel anti-angiogenic agent.
Collapse
Affiliation(s)
- Hyun-Kyung Kim
- Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea, 137-701, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Wahl ML, Owen CS, Grant DS. Angiostatin induces intracellular acidosis and anoikis in endothelial cells at a tumor-like low pH. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2003; 9:205-16. [PMID: 12380645 DOI: 10.1080/10623320213633] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiostatin inhibits angiogenesis by binding to endothelial cells (ECs) lining the vasculature of growing tumors. These cells are in a dynamic state during angiogenesis and are thus not firmly attached to the extracellular matrix. This makes them more vulnerable to anoikis, a process resulting in cell death initiated by or promoted by loss of attachment. Another potential source of EC vulnerability during tumor angiogenesis is that tumor extracellular pH is typically lower than in normal tissues. This presents an additional challenge to ECs in terms of maintaining ionic homeostasis. We report here that the lethality of angiostatin is significantly enhanced both by reduced matrix attachment during exposure and lowered extracellular pH (pH(e)). Another effect of angiostatin at reduced pH(e) is a decreased intracellular pH (pH(i)). These effects were observed in three model systems: aortic ring sprouts, ECs during tube formation, and ECs in a scratch/migration assay. In these three dynamic assays, angiostatin-induced cell death and intracellular acidification were clearly seen when pH(e) was reduced to 6.7. The intracellular acidification was far greater than that induced by pH(e) reduction alone. In contrast, the effect of angiostatin on pH(i) and on viability were not observed in a subconfluent monolayer in which the cells were allowed to attach to substrate for 48 h prior to exposure to angiostatin. These data suggest that low pH(e) and reduced adhesion to matrix play a role in the specificity of angiostatin for tumor neovasculature in contrast to wound healing and other normal angiogenic processes. The results also implicate roles for both pH(e) and pH(i) regulation in the mechanism of angiostatin action.
Collapse
Affiliation(s)
- Miriam L Wahl
- Department of Biochemistry and Molecular Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
235
|
Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 2003; 101:1857-63. [PMID: 12406896 DOI: 10.1182/blood-2002-02-0582] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiostatin, an inhibitor of angiogenesis, contains 3 to 4 kringle domains that are derived from proteolytic cleavage of plasminogen. The antiangiogenic effects of angiostatin occur, in part, from its inhibition of endothelial cell surface adenosine triphosphate synthase, integrin functions, and pericellular proteolysis. Angiostatin has structural similarities to hepatocyte growth factor (HGF; "scatter factor"), a promoter of angiogenesis, that induces proliferation and migration of both endothelial and smooth muscle cells via its cell surface receptor, c-met. We hypothesized that angiostatin might block HGF-induced signaling in endothelial and smooth muscle cells. Angiostatin inhibited HGF-induced phosphorylation of c-met, Akt, and ERK1/2. Angiostatin also significantly inhibited proliferation of human umbilical vein endothelial cells (HUVECs) induced by HGF. In contrast, angiostatin did not inhibit vascular endothelial growth factor (VEGF)-or basic fibroblast growth factor (bFGF)-induced signaling events or HUVEC proliferation. Angiostatin bound to immobilized truncated c-met produced by A431 cells and could be immunoprecipitated as a complex with soluble c-met. HGF inhibited the binding of (125)I-angiostatin to HUVECs. Soluble c-met, produced by several tumor cell lines, could inhibit the antiangiogenic effect of angiostatin. The disruption of HGF/c-met signaling is a novel mechanism for the antiangiogenic effect of angiostatin.
Collapse
Affiliation(s)
- Nadeem Wajih
- Wake Forest University School of Medicine, Section of Cardiology, Winston-Salem, NC 27157-1045, USA.
| | | |
Collapse
|
236
|
Abstract
It is thought that disulfide bonds in secreted proteins are inert because of the oxidizing nature of the extracellular milieu. We have suggested that this is not necessarily the case and that certain secreted proteins contain one or more disulfide bonds that can be cleaved and that this cleavage is central to the protein's function. This review discusses disulfide bond cleavage in the secreted soluble protein, plasmin. Cleavage of plasmin disulfide bond(s) triggers peptide bond cleavage and formation of the tumour angiogenesis inhibitor, angiostatin. Tumour cells secrete phosphoglycerate kinase which facilitates cleavage of the plasmin disulfide bond(s). Phosphoglycerate kinase is not a conventional disulfide bond reductase. We propose that phosphoglycerate kinase facilitates cleavage of a particular plasmin disulfide bond by hydroxide ion, which results in formation of a sulfenic acid and a free thiol. The free thiol is then available to exchange with another nearby disulfide bond resulting in formation of a new disulfide and a new free thiol. The reduced plasmin is then susceptible to discreet proteolysis which results in release of angiostatin.
Collapse
Affiliation(s)
- Philip J Hogg
- Centre for Thrombosis and Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
237
|
Martinez LO, Jacquet S, Esteve JP, Rolland C, Cabezón E, Champagne E, Pineau T, Georgeaud V, Walker JE, Tercé F, Collet X, Perret B, Barbaras R. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003; 421:75-9. [PMID: 12511957 DOI: 10.1038/nature01250] [Citation(s) in RCA: 356] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 10/07/2002] [Indexed: 12/14/2022]
Abstract
The effect of high-density lipoprotein (HDL) in protecting against atherosclerosis is usually attributed to its role in 'reverse cholesterol transport'. In this process, HDL particles mediate the efflux and the transport of cholesterol from peripheral cells to the liver for further metabolism and bile excretion. Thus, cell-surface receptors for HDL on hepatocytes are chief partners in the regulation of cholesterol homeostasis. A high-affinity HDL receptor for apolipoprotein A-I (apoA-I) was previously identified on the surface of hepatocytes. Here we show that this receptor is identical to the beta-chain of ATP synthase, a principal protein complex of the mitochondrial inner membrane. Different experimental approaches confirm this ectopic localization of components of the ATP synthase complex and the presence of ATP hydrolase activity at the hepatocyte cell surface. Receptor stimulation by apoA-I triggers the endocytosis of holo-HDL particles (protein plus lipid) by a mechanism that depends strictly on the generation of ADP. We confirm this effect on endocytosis in perfused rat liver ex vivo by using a specific inhibitor of ATP synthase. Thus, membrane-bound ATP synthase has a previously unsuspected role in modulating the concentrations of extracellular ADP and is regulated by a principal plasma apolipoprotein.
Collapse
Affiliation(s)
- Laurent O Martinez
- Institut Fédératif de Recherche Claude de Preval, IFR 30, Département Lipoprotéines, et Médiateurs Lipidiques, Toulouse cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002; 277:45243-8. [PMID: 12237313 DOI: 10.1074/jbc.m207934200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian aminoacyl tRNA synthetases form a macromolecular protein complex with three non-enzymatic cofactors. Among these factors, p43 is also secreted to work as a cytokine on endothelial as well as immune cells. Here we investigated the activity of p43 in angiogenesis and determined the related mediators. It promoted the migration of endothelial cells at low dose but induced their apoptosis at high dose. p43 at low concentration activated extracellular signal-regulating kinase, which resulted in the induction and activation of matrix metalloproteinase 9. In contrast, p43 at high concentration activated Jun N-terminal kinase, which mediated apoptosis of endothelial cells. These results suggest that p43 is a novel cytokine playing a dose-dependent biphasic role in angiogenesis.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
Antiangiogenic drugs are unique for having highly specific targets while carrying the potential to be effective against a wide variety of tumors. Moreover, some of the major limitations of cytotoxic therapies likely will be avoided by this entirely new class of anticancer weapons. After the realization of the potential advantages of antiangiogenic therapy, the field of angiogenesis research is growing exponentially. Still, there is much to learn about the machinery that tumors use to recruit new blood vessels, and the results of the clinical trials will show the best way to apply that knowledge for cancer therapy.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Angiostatins
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Cell Hypoxia/physiology
- Child
- Clinical Trials as Topic
- Collagen/physiology
- Cyclooxygenase Inhibitors/pharmacology
- Cyclooxygenase Inhibitors/therapeutic use
- Drug Design
- Endostatins
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Ephrins/physiology
- Growth Substances/physiology
- Humans
- Immunotherapy
- Integrin alphaVbeta3/antagonists & inhibitors
- Integrin alphaVbeta3/physiology
- Ligases/physiology
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases/physiology
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Neoplasms/blood supply
- Neoplasms/drug therapy
- Neovascularization, Pathologic/drug therapy
- Outcome Assessment, Health Care
- Peptide Fragments/physiology
- Plasminogen/physiology
- Protease Inhibitors/pharmacology
- Protease Inhibitors/therapeutic use
- Receptors, Eph Family/antagonists & inhibitors
- Receptors, Eph Family/physiology
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Growth Factor/physiology
- Thrombospondins/physiology
- Tumor Suppressor Proteins
- Ubiquitin-Protein Ligases
- Von Hippel-Lindau Tumor Suppressor Protein
Collapse
Affiliation(s)
- Kerim Kaban
- Department of Thoracic Head and Neck Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
240
|
Pedersen PL. Transport ATPases in biological systems and relationship to human disease: a brief overview. J Bioenerg Biomembr 2002; 34:327-32. [PMID: 12539959 DOI: 10.1023/a:1021249701287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interest in the field of transport ATPases has grown dramatically during the past 20 years and gained considerable visibility for several reasons. First, it was shown that most transport ATPases can be lumped into only a few categories designated simply as P, V, F, and ABC types, the latter consisting of a large superfamily. Second, it has been shown that many transport ATPases have a clear relevance to human disease. Third, the field of transport ATPases has become rather advanced in the study of the reaction mechanisms and structure-function relationships associated with several of these enzymes. Finally, the Nobel committee recently recognized major accomplishments in this field of research. Here, the author provides a brief discussion of transport ATPases that are present in biological systems and their relevance or possible relevance to human disease.
Collapse
Affiliation(s)
- Peter L Pedersen
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| |
Collapse
|
241
|
Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, Holmgren L, Meir EGV. Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 2002; 298:69-77. [PMID: 12406577 DOI: 10.1016/s0378-1119(02)00928-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiomotin has previously been identified in a yeast two-hybrid screen by its ability to bind to angiostatin, an inhibitor of novel formation of blood vessels (angiogenesis). Angiomotin mediates the inhibitory effect of angiostatin on endothelial cell migration and tube formation in vitro. Here we report that two human protein sequences, of which one is novel and one has been cloned previously, are similar to angiomotin and are members of a novel protein family, which we propose to call motins. These two genes have been named angiomotin-like 1 (amotl1) and angiomotin-like 2 (amotl2). We have cloned mouse angiomotin and identified amotl1 and amotl2 homologs in mice. The alignment of the amino acid sequences encoded by these six sequences spans 455 residues of which 64% was conserved in all six proteins. Sequence analysis showed that these sequences all share putative coiled-coil domains and PDZ-binding motifs. Sequence information from GenBank indicate that motins can be found in several species including the frog Xenopus laevis, the pufferfish Fugu rubripes and the nematode Caenorhabditis elegans. Further phylogenetic analysis indicates that amotl2 is an evolutionary outgroup in relation to angiomotin and amotl1. Northern blot analysis shows distinct expression patterns for each motin in various mouse tissues.
Collapse
Affiliation(s)
- Anders Bratt
- Department of Oncology and Pathology, Karolinska Institutet, CCK R8:03 Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Gerasimovskaya EV, Ahmad S, White CW, Jones PL, Carpenter TC, Stenmark KR. Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth. Signaling through extracellular signal-regulated kinase-1/2 and the Egr-1 transcription factor. J Biol Chem 2002; 277:44638-50. [PMID: 12244041 DOI: 10.1074/jbc.m203012200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Important autocrine/paracrine functions for the adenine nucleotides have been proposed in several tissues. We addressed the possibility that extracellular ATP would modulate/mediate hypoxia-induced adventitial fibroblast growth. Acute hypoxia (3% O(2), 10-60 min) increased extracellular ATP concentrations in adventitial fibroblasts and in lung microvascular endothelial cells, and chronic hypoxia (3% O(2), 14-30 days) markedly attenuated the rate of extracellular ATP hydrolysis by ecto-nucleotidase(s). Exogenous ATP stimulated [(3)H]thymidine incorporation in fibroblasts as did UTP, ADPbeta, 2-methylthioadenosine triphosphate, adenosine 5'-(alpha,beta-methylene)triphosphate, and benzoylbenzoyl-ATP (2'-3'-O-(4-benzoylbenzoyl)-ATP), indicating that both P2Y and P2X purinoceptors can mediate mitogenic responses. Suramin (100 microm), Cibacron blue 3GA (100 microm), and pyridoxalphosphate-6-azophenyl-2',-4'-disulfonic acid (100 microm) as well as apyrase (5 units/ml) attenuated hypoxia- and ATP-induced and DNA synthesis, indicating activation and a functional role of purinoceptors under hypoxic conditions. ATP-induced DNA synthesis was augmented by hypoxia in an additive fashion, whereas ATP and hypoxia synergistically increased growth factor-induced DNA synthesis, again suggesting that ATP and hypoxia utilize similar signaling pathways to induce proliferation. Indeed, we found that ATP (100 microm) and hypoxia (3% O(2)) induced expression and activation of Egr-1 transcription factor, and both stimuli acted, in part, through a G(alpha)(i)/ERK1/2-dependent signaling pathway. Suramin, Cibacron blue 3GA, and apyrase attenuated hypoxia-induced ERK1/2 activation and Egr-1 expression. We conclude that hypoxia induces ATP release from endothelial cells and fibroblasts and that the activation of P2 purinoceptors is involved in the regulation of DNA synthesis by fibroblasts under hypoxic conditions.
Collapse
Affiliation(s)
- Evgenia V Gerasimovskaya
- Developmental Lung Biology Research Laboratory, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
243
|
Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22:887-93. [PMID: 12067894 DOI: 10.1161/01.atv.0000017728.55907.a9] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The process of angiogenesis plays an important role in many physiological and pathological conditions. Inhibition of endothelial cell (EC) apoptosis providing EC survival is thought to be an essential mechanism during angiogenesis. Many of the angiogenic growth factors inhibit EC apoptosis. In addition, the adhesion of ECs to the extracellular matrix or intercellular adhesion promotes EC survival. In contrast, increasing evidence suggests that the induction of EC apoptosis may counteract angiogenesis. In this review, we focus on the regulation of EC survival and apoptosis during angiogenesis and especially on the effects and intracellular signaling promoted by angiogenic growth factors, endogenous angiogenic inhibitors (such as angiostatin, endostatin, and thrombospondin-1), and the adhesion to the extracellular matrix. Furthermore, we discuss the effects of cross talk between adhesion molecules and growth factors. Understanding the molecular mechanisms involved in the regulation of EC survival and apoptosis may provide new targets for the development of new therapies to enhance angiogenesis in the case of tissue-ischemia (eg, the neovascularization of myocardium) or to inhibit angiogenesis in the case of neovascularization-dependent disease (eg, tumor, diabetic retinopathy).
Collapse
Affiliation(s)
- Emmanouil Chavakis
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
244
|
Chang SY, Park SG, Kim S, Kang CY. Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase. Its functional implication in endothelial cell proliferation. J Biol Chem 2002; 277:8388-94. [PMID: 11741979 DOI: 10.1074/jbc.m108792200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human p43 is associated with macromolecular tRNA synthase complex and known as a precursor of endothelial monocyte-activating polypeptide II (EMAP II). Interestingly, p43 is also secreted to induce proinflammatory genes. Although p43 itself seems to be a cytokine working at physiological conditions, most of the functional studies have been obtained with its C-terminal equivalent, EMAP II. To gain an insight into the working mechanism of p43/EMAP II, we used EMAP II and searched for an interacting cell surface molecule. The level of EMAP II-binding molecule(s) was significantly increased in serum-starved tumor cells. Thus, the EMAP II-binding molecule was isolated from the membrane of the serum-starved CEM cell. The isolated protein was determined to be the alpha subunit of ATP synthase. The interaction of EMAP II and alpha-ATP synthase was confirmed by enzyme-linked immunosorbent assay and in vitro pull down assays and blocked with the antibodies raised against EMAP II and alpha-ATP synthase. The binding of EMAP II to the surface of serum-starved cells was inhibited in the presence of soluble alpha-ATP synthase. EMAP II inhibited the growth of endothelial cells, and this effect was relieved by soluble alpha-ATP synthase. Anti-alpha-ATP synthase antibody also showed an inhibitory effect on the proliferation of endothelial cells mimicking the activity of EMAP II. These results suggest the potential interaction of p43/EMAP II with alpha-ATP synthase and its role in the proliferation of endothelial cells.
Collapse
Affiliation(s)
- Sun Young Chang
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Shillimdong, Kwanakgu, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
245
|
Ancellin N, Colmont C, Su J, Li Q, Mittereder N, Chae SS, Stefansson S, Liau G, Hla T. Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem 2002; 277:6667-75. [PMID: 11741921 DOI: 10.1074/jbc.m102841200] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a bioactive lipid that acts extracellularly on G protein-coupled receptors of the S1P(1)/EDG-1 subfamily. Although S1P is formed in the cytosol of various cells, S1P release is not understood and is controversial because this lipid mediator is also regarded as a second messenger. In this report, we describe the existence of an extracellular S1P-generating system in vascular endothelial cells. Endothelial cells release SK constitutively and form S1P in the range of receptor stimulation. Levels of sphingosine but not ATP in the extracellular environment are rate-limiting. Treatment of endothelial cells with small interfering RNA for SK-1 transcript specifically inhibited SK export, and SK-1-transfected human embryonic kidney 293 cells exhibited enhanced release of SK-1. The export of SK-1 is constitutive and is inhibited by cytochalasin D and treatment at 4 degrees C but not by brefeldin A or nocodazole, suggesting that a nonclassical secretory pathway that requires the actin cytoskeleton dynamics is involved. Because S1P regulates angiogenesis and vascular maturation, we overexpressed SK-1 using an adenoviral vector in vivo in the Matrigel system of angiogenesis. Overexpression of SK-1 resulted in enhanced release of SK activity and induced angiogenesis and vascular maturation. These findings suggest that S1P is made in the extracellular milieu and that extracellular export of SK contributes to the action of S1P in the vascular system.
Collapse
Affiliation(s)
- Nicolas Ancellin
- Center for Vascular Biology, Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3501, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Benelli R, Morini M, Carrozzino F, Ferrari N, Minghelli S, Santi L, Cassatella M, Noonan DM, Albini A. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 2002; 16:267-9. [PMID: 11772950 DOI: 10.1096/fj.01-0651fje] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Angiostatin effectively blocks tumor angiogenesis through still poorly understood mechanisms. Given the close association between immune and vascular regulation, we investigated the effects of angiostatin on angiogenesis-associated leukocytes. Angiostatin inhibited the migration of monocytes and, even more markedly, neutrophils. Angiostatin blocked chemotaxis of neutrophils to CXCR2 chemokine receptor agonists (IL-8, MIP-2, and GROalpha), formyl-Met-Leu-Phe (fMLP), and 12-O-tetradecanoylphorbol 13-acetate, and repressed fMLP-induced mitochondrial activity. Two different angiostatin forms (kringles 1-4 and 1-3) were effective, whereas whole plasminogen had no effect. IL-8, MIP-2, and GROalpha induced intense angiogenic reactions in vivo, but no angiogenic response to these factors was observed in neutropenic mice, demonstrating an essential role for neutrophils. Angiostatin potently inhibited chemokine-induced angiogenesis in vivo, and consistent with in vitro observations, both angiostatin forms were active and whole plasminogen had little effect. Angiostatin inhibition of angiogenesis in vivo was accompanied by a striking reduction in the number of recruited leukocytes. In vivo, the inflammatory agent lipopolysaccharide also induced extensive leukocyte infiltration and angiogenesis that were blocked by angiostatin. Neutrophils expressed mRNAs for ATP synthase and angiomotin, two known angiostatin receptors. These data show that angiostatin directly inhibits neutrophil migration and neutrophil-mediated angiogenesis and indicate that angiostatin might inhibit inflammation.
Collapse
|
247
|
Tulin EE, Onoda N, Hasegawa M, Nomura H, Kitamura T. Inhibition of human endothelial cell proliferation by ShIF, a vacuolar H(+)-ATPase-like protein. Oncogene 2002; 21:844-8. [PMID: 11850812 DOI: 10.1038/sj.onc.1205114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Revised: 10/16/2001] [Accepted: 10/29/2001] [Indexed: 01/10/2023]
Abstract
ShIF is a bone marrow stroma cell-derived factor originally identified to support proliferation of bone marrow cells in vitro. This protein shares high sequence homology to the yeast vacuolar H(+)-ATPase subunit, Vph1p, and the 116 kDa proton pump of the rat and bovine synaptic vesicle, Vpp1. We examined the function of ShIF in the proliferation of human umbilical vein endothelial cells (HUVEC). ShIF inhibited HUVEC proliferation in a dose-dependent manner. Recombinant ShIF added at 10 and 20 ng/ml inhibited HUVEC proliferation by 21.6 and 44.3%, respectively and increasing the concentration of ShIF to 100 ng/ml inhibited proliferation by as much as 55.5%. When HUVEC cells were cultured at various concentrations of ShIF in the presence of anti-ShIF antibody, the inhibitory effects of ShIF to HUVEC proliferation were abrogated by 89-91% indicating that the activity of ShIF to HUVEC was specific. HUVEC cultured in the presence of ShIF and bafilomycin, a specific inhibitor of ATPase, resulted to a 90% growth inhibition. Thus, ShIF may act as an antagonist to the ATPase complex by disrupting the production of cellular ATP thereby decreasing the ability of HUVEC to proliferate.
Collapse
Affiliation(s)
- Edgardo E Tulin
- Chugai Research Institute for Molecular Medicine Incorporated, 153-2 Nagai, Niihari, Ibaraki, 300-4101, Japan.
| | | | | | | | | |
Collapse
|
248
|
|
249
|
Meadows GG, Zhang H, Ge X. Specific amino acid deficiency alters the expression of genes in human melanoma and other tumor cell lines. J Nutr 2001; 131:3047S-50S. [PMID: 11694646 DOI: 10.1093/jn/131.11.3047s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study determined the effect of tyrosine (Tyr) and phenylalanine (Phe) deprivation on protein expression and phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4)/stress-activated protein/Erk kinase (SEK1), a metastasis suppressor gene. Differential display and suppressive subtractive hybridization techniques identified genes modulated by Tyr and Phe deprivation. Expression of MKK4/SEK1 protein varied widely among human A375, A375SM and SB2 melanoma, PC-3 and DU145 prostate cancer, and MDA-MB-231 breast cancer cell lines and within the different lines. Phosphorylation of the MKK4/SEK1 protein similarly varied. No differences in MKK4/SEK1 gene expression or in the 41 other metastasis and tumor suppressor genes were found in A375 melanoma cells cultured in Tyr- and Phe-deprived media. A number of up-regulated and down-regulated genes in A375 melanoma cells were identified by differential display and suppressive subtractive hybridization that were pertinent to regulation of cytoskeletal organization, cell movement, gene transcription and metastasis. Two tumor marker genes, the gene for enolase and FUS/CHOP, were down-regulated by Tyr and Phe deprivation. This study shows that tumor cells display heterogeneity in their response to deprivation of Tyr and Phe and that these amino acids may be signaling molecules that regulate gene expression and function in tumor cells.
Collapse
Affiliation(s)
- G G Meadows
- Cancer Prevention and Research Center, Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6510, USA.
| | | | | |
Collapse
|
250
|
Wahl ML, Grant DS. Effects of microenvironmental extracellular pH and extracellular matrix proteins on angiostatin's activity and on intracellular pH. GENERAL PHARMACOLOGY 2000; 35:277-85. [PMID: 11888684 DOI: 10.1016/s0306-3623(01)00115-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antiangiogenic agents target migratory and proliferative endothelial cells (EC) in the process of forming new vessels, resulting in growth inhibition or cell death. Here we have shown that the antiangiogenic activity of angiostatin on EC is enhanced in culture when the microenvironmental extracellular pH (pH(e)) is reduced to levels similar to that of many tumors. In a migration/scratch assay and during tube formation, angiostatin in combination with reduced pH(e) synergistically resulted in an increased EC death--an effect not seen with either stimulus individually. Lowering of pH(e) decreased intracellular pH (pH(i)), and a further lowering of pH(i) occurred when low pH(e) was combined with angiostatin. These data suggest that low pH(e) plays a role in the relative specificity and efficacy of angiostatin for tumor neovasculature and indicate roles for both pH(e) and pH(i) in the mechanism of angiostatin action. A receptor for angiostatin, the alpha-subunit of ATP synthase, was found on the surface of EC. We show that cell surface receptor distribution is increased on Matrigel, a basement-like matrix, as opposed to fibronectin or RGD peptide substrates, and redistributed to a more punctuate appearance at low pH(e). Furthermore, positive cell surface histochemical staining for alpha-ATP synthase was blocked by preincubation with angiostatin. These data indicate that substrate and pH(e) are critical parameters in the evaluation of this antiangiogenic substance, and probably for others as well.
Collapse
Affiliation(s)
- M L Wahl
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South, 10th Street, Room 226, Philadelphia, PA 19107, USA.
| | | |
Collapse
|