201
|
Yen TH, Wright NA. The gastrointestinal tract stem cell niche. STEM CELL REVIEWS 2006; 2:203-212. [PMID: 17625256 DOI: 10.1007/s12015-006-0048-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
The gastrointestinal epithelium is unique in that cell proliferation, differentiation, and apoptosis occur in an orderly fashion along the crypt-villus axis. The intestinal crypt is mainly a proliferative compartment, is monoclonal and is maintained by stem cells. The villus represents the differentiated compartment, and is polyclonal as it receives cells from multiple crypts. In the small intestine, cell migration begins near the base of the crypt, and cells migrate from here emerging onto the villi. The basal crypt cells at position 5 are candidate stem cells. As the function of stem cells is to maintain the integrity of the intestinal epithelium, it must self-renew, proliferate, and differentiate within a protective niche. This niche is made up of proliferating and differentiating epithelial cells and surrounding mesenchymal cells. These mesenchymal cells promote the epithelial- mesenchymal crosstalk required to maintain the niche. A stochastic model of cell division has been proposed to explain how a single common ancestral stem cell exists from which all stem cells in a niche are descended. Our group has argued that these crypts then clonally expand by crypt fission, forming two daughters' crypts, and that this is the mechanism by which mutated stem cells or even cancer stem cell clones expand in the colon and in the entire gastrointestinal tract. Until recently, the differentiation potential of stem cells into adult tissues has been thought to be limited to cell lineages in the organ from which they were derived. Bone marrow cells are rare among adult stem cells regarding their abundance and role in the continuous, lifelong, physiological replenishment of circulating cells. In human and mice experiments, we have shown that bone marrow can contribute to the regeneration of intestinal myofibroblasts and thereby after epithelium following damage, through replacing the cells, which maintain the stem cells niche. Little is known about the markers characterizing the stem and transit amplifying populations of the gastrointestinal tract, although musashi-1 and hairy and enhancer of split homolog-1 have been proposed. As the mammalian gastrointestinal tract develops from the embryonic gut, it is made up of an endodermally-derived epithelium surrounded by cells of mesoderm origin. Cell signaling between these two tissue layers plays a critical role in coordinating patterning and organogenesis of the gut and its derivatives. Many lines of evidence have revealed that Wnt signaling is the most dominant force in controlling cell proliferation, differentiation, and apoptosis along the crypt-villus axis. We have found Wnt messenger RNAs expression in intestinal subepithelial myofibroblasts and frizzled messenger RNAs expression in both myofibroblasts and crypt epithelium. Moreover, there are many other factors, for example, bone morphogenetic protein, homeobox, forkhead, hedgehog, homeodomain, and platelet-derived growth factor that are also important to stem cell signaling in the gastrointestinal tract.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Histopathology Unit, Cancer Research UK, London Research Institute, London, UK.
| | | |
Collapse
|
202
|
Abstract
Adult stem cells (ASCs) are the engines that drive the renewal of adult mammalian tissues. They divide continuously, throughout life, to produce new progeny cells that undergo a robust development program of differentiation and maturation to replace older expired tissue cells. The same cell turnover program may function to provide limited repair and regeneration of adult tissues in some cases. The regenerative potential of ASCs drives the current intense interest in adapting them for applications in cell replacement therapy. However, research to explore this potential has been blunted by an unyielding biological problem. ASCs have proven highly refractory to expansion of their numbers and long-term propagation in culture. A review of reported strategies to overcome this problem reveals that many studies focus on traditional cell culture factors that may not apply to ASCs and overlook a special property of ASCs that may be universally critical for successful expansion, asymmetric cell kinetics (ACK). This property is reflected by the different kinetics fate of the two sister cells resulting from an ASC division: one cell remains an ASC and keeps the potential to divide for the entire life span of the tissue, while the other cell's progeny eventually differentiates and undergoes terminal division arrest. This unique property of ASCs may prove to be the obligatory factor that must be breached by any method that will succeed in accomplishing routine expansion of ASCs of diverse tissue origin.
Collapse
Affiliation(s)
- Jean-François Paré
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
203
|
Abstract
The adult intestinal epithelium contains a relatively simple, highly organized, and readily accessible stem cell system. Excellent methods exist for the isolation of intestinal epithelium from adults, and as a result collecting large quantities of intestinal stem and progenitor cells for study or culture and subsequent clinical applications should be routine. It is not, however, for two reasons: (1) adult intestinal epithelial cells rapidly initiate apoptosis on detachment from the basement membrane, and (2) in vitro conditions necessary for survival, proliferation, and differentiation are poorly understood. Thus to date the study of intestinal stem and progenitor cells has been largely dependent on in vivo approaches. We discuss existing in vivo assays for stem and progenitor cell behavior as well as current methods for isolating and culturing the intestinal epithelium.
Collapse
|
204
|
Leedham SJ, Schier S, Thliveris AT, Halberg RB, Newton MA, Wright NA. From gene mutations to tumours--stem cells in gastrointestinal carcinogenesis. Cell Prolif 2005; 38:387-405. [PMID: 16300652 PMCID: PMC6496903 DOI: 10.1111/j.1365-2184.2005.00359.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/02/2005] [Indexed: 12/18/2022] Open
Abstract
Stem cells share many properties with malignant cells, such as the ability to self-renew and proliferate. Cancer is believed to be a disease of stem cells. The gastrointestinal tract has high cancer prevalence partly because of rapid epithelial cell turnover and exposure to dietary toxins. The molecular pathways of carcinogenesis differ according to the tissue. Work on hereditary cancer syndromes including familial adenomatous polyposis (FAP) has led to advances in our understanding of the events that occur in tumour development from a gastrointestinal stem cell. The initial mutation involved in the adenoma-carcinoma sequence is in the 'gatekeeper' tumour-suppressor gene adenomatous polyposis coli (APC). Somatic hits in this gene are non-random in FAP, with the type of mutation selected for by the position of the germline mutation. In the stomach, a metaplasia-dysplasia sequence occurs and is often related to Helicobacter pylori infection. Clonal expansion of mutated cells occurs by niche succession. Further expansion of the aberrant clone then occurs by the longitudinal division of crypts into two daughter units--crypt fission. Two theories seek to explain the early development of adenomas--the 'top down' and 'bottom up' hypotheses. Initial studies suggested that colorectal tumours were monoclonal; however, later work on chimeric mice and a sex chromosome mixoploid patient with FAP suggested that up to 76% of early adenomas were polyclonal. Introduction of a homozygous resistance allele has reduced tumour multiplicity in the mouse and has been used to rule out random collision of polyps as the cause of these observations. It is likely that short-range interaction between adjacent initiated crypts is responsible for polyclonality.
Collapse
Affiliation(s)
- S J Leedham
- Histopathology Unit, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|
205
|
Kim JY, Tavaré S, Shibata D. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci U S A 2005; 102:17739-44. [PMID: 16314580 PMCID: PMC1308885 DOI: 10.1073/pnas.0503976102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell proliferation may be altered in many diseases, but it is uncertain exactly how to measure total numbers of divisions. Although it is impossible to count every division directly, potentially total numbers of stem cell divisions since birth may be inferred from numbers of somatic errors. The idea is that divisions are surreptitiously recorded by random errors that occur during replication. To test this "molecular clock" hypothesis, epigenetic errors encoded in certain methylation patterns were counted in glands from 30 uteri. Endometrial divisions can differ among women because of differences in estrogen exposures or numbers of menstrual cycles. Consistent with an association between mitotic age and methylation, there was an age-related increase in methylation with stable levels after menopause, and significantly less methylation was observed in lean or older multiparous women. Methylation patterns were diverse and more consistent with niche rather than immortal stem cell lineages. There was no evidence for decreased stem cell survival with aging. An ability to count lifetime numbers of stem cell divisions covertly recorded by random replication errors provides new opportunities to link cell proliferation with aging and cancer.
Collapse
Affiliation(s)
- Jung Yeon Kim
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
206
|
Miller SJ, Lavker RM, Sun TT. Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochim Biophys Acta Rev Cancer 2005; 1756:25-52. [PMID: 16139432 DOI: 10.1016/j.bbcan.2005.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/12/2005] [Accepted: 07/15/2005] [Indexed: 12/17/2022]
Abstract
Over 90% of all human neoplasia is derived from epithelia. Significant progress has been made in the identification of stem cells of many epithelia. In general, epithelial stem cells lack differentiation markers, have superior in vivo and in vitro proliferative potential, form clusters in association with a specialized mesenchymal environment (the 'niche'), are located in well-protected and nourished sites, and are slow-cycling and thus can be experimentally identified as 'label-retaining cells'. Stem cells may divide symmetrically giving rise to two identical stem cell progeny. Any stem cells in the niche, which defines the size of the stem cell pool, may be randomly expelled from the niche due to population pressure (the stochastic model). Alternatively, a stem cell may divide asymmetrically yielding one stem cell and one non-stem cell that is destined to exit from the stem cell niche (asymmetric division model). Stem cells separated from their niche lose their stemness, although such a loss may be reversible, becoming 'transit-amplifying cells' that are rapidly proliferating but have a more limited proliferative potential, and can give rise to terminally differentiated cells. The identification of the stem cell subpopulation in a normal epithelium leads to a better understanding of many previously enigmatic properties of an epithelium including the preferential sites of carcinoma formation, as exemplified by the almost exclusive association of corneal epithelial carcinoma with the limbus, the corneal epithelial stem cell zone. Being long-term residents in an epithelium, stem cells are uniquely susceptible to the accumulation of multiple, oncogenic changes giving rise to tumors. The application of the stem cell concept can explain many important carcinoma features including the clonal origin and heterogeneity of tumors, the occasional formation of tumors from the transit amplifying cells or progenitor cells, the formation of precancerous 'patches' and 'fields', the mesenchymal influence on carcinoma formation and behavior, and the plasticity of tumor cells. While the concept of cancer stem cells is extremely useful and it is generally assumed that such cells are derived from normal stem cells, more work is needed to identify and characterize epithelial cancer stem cells, to address their precise relationship with normal stem cells, to study their markers and their proliferative and differentiation properties and to design new therapies that can overcome their unusual resistance to chemotherapy and other conventional tumor modalities.
Collapse
Affiliation(s)
- Stanley J Miller
- Department of Dermatology, Johns Hopkins Hospital, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
207
|
Frumkin D, Wasserstrom A, Kaplan S, Feige U, Shapiro E. Genomic variability within an organism exposes its cell lineage tree. PLoS Comput Biol 2005; 1:e50. [PMID: 16261192 PMCID: PMC1274291 DOI: 10.1371/journal.pcbi.0010050] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 09/13/2005] [Indexed: 01/24/2023] Open
Abstract
What is the lineage relation among the cells of an organism? The answer is sought by developmental biology, immunology, stem cell research, brain research, and cancer research, yet complete cell lineage trees have been reconstructed only for simple organisms such as Caenorhabditis elegans. We discovered that somatic mutations accumulated during normal development of a higher organism implicitly encode its entire cell lineage tree with very high precision. Our mathematical analysis of known mutation rates in microsatellites (MSs) shows that the entire cell lineage tree of a human embryo, or a mouse, in which no cell is a descendent of more than 40 divisions, can be reconstructed from information on somatic MS mutations alone with no errors, with probability greater than 99.95%. Analyzing all ~1.5 million MSs of each cell of an organism may not be practical at present, but we also show that in a genetically unstable organism, analyzing only a few hundred MSs may suffice to reconstruct portions of its cell lineage tree. We demonstrate the utility of the approach by reconstructing cell lineage trees from DNA samples of a human cell line displaying MS instability. Our discovery and its associated procedure, which we have automated, may point the way to a future “Human Cell Lineage Project” that would aim to resolve fundamental open questions in biology and medicine by reconstructing ever larger portions of the human cell lineage tree. The human body is made of about 100 trillion cells, all of which are descendants of a single cell, the fertilized egg. The quest to understand their path of descent, called a cell lineage tree, is shared by many branches of biology and medicine, including developmental biology, immunology, stem cell research, brain research, and cancer research. So far, science has been able to determine the cell lineage tree of tiny organisms only, worms with a thousand cells or so. Our team has discovered that the mutations accumulated in each cell in our body during its normal development from the zygote carry sufficient information to reconstruct, in principle, cell lineage trees for large organisms, including humans. Inspired by this discovery, we developed an automated procedure for the reconstruction of cell lineage trees from DNA samples. A direct application of these results may include the analysis of the development of cancer. The results may also inspire a future “Human Cell Lineage Project,” whose aim would be to reconstruct an entire human cell lineage tree.
Collapse
Affiliation(s)
- Dan Frumkin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Wasserstrom
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Shai Kaplan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Uriel Feige
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Shapiro
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
208
|
Meza R, Luebeck EG, Moolgavkar SH. Gestational mutations and carcinogenesis. Math Biosci 2005; 197:188-210. [PMID: 16087198 DOI: 10.1016/j.mbs.2005.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 06/04/2005] [Accepted: 06/15/2005] [Indexed: 01/26/2023]
Abstract
We present a mathematical formulation to evaluate the effects of gestational mutations on cancer risk. The hazard or incidence function of cancer is expressed in terms of the Probability Generating Function (PGF) of the number of normal and mutated cells at birth. Using Filtered Poisson Process Theory, we obtain the PGF for several models for the accumulation of gestational mutations. In particular, we develop expressions for the hazard function when one or two successive mutations could occur during gestation. We also calculate the hazard when the background gestational mutation rates are increased due to exposure to mutagens, such as prenatal radiation. To illustrate the use of our models, we apply them to colorectal cancer in the SEER database. We find that the proportion of cancer risk attributable to developmental mutations depends on age and that it could be quite significant when gestational mutation rates are high. The analysis of the SEER data also shows that gestational mutations could contribute to inter-individual variations in colorectal cancer risk.
Collapse
Affiliation(s)
- Rafael Meza
- Department of Applied Mathematics, University of Washington, and Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
209
|
Schier S, Wright NA. Stem cell relationships and the origin of gastrointestinal cancer. Oncology 2005; 69 Suppl 1:9-13. [PMID: 16210870 DOI: 10.1159/000086625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gastrointestinal stem cells have the capacity for long-term self-replication and the ability to give rise to all other epithelial cell lineages. These properties make them essential since they maintain tissue homeostasis by regulating cell turnover depending on the current demand. However, they are also important players in the earliest stages of gastric and colonic cancer, as they form a target for mutations to accumulate and lead to the development of the malignant phenotype. Due to the lack of reliable markers, gastrointestinal stem cells are difficult to define and characterise. This limits the knowledge about their number and position within the gastric gland and the intestinal crypt, respectively, and consequently about the clonal structure of these units. Therefore, the morphological events of early gastrointestinal carcinoma formation and expansion are hotly debated. In this review we summarize the properties of gastrointestinal stem cells and illuminate their role in the development of the earliest lesions in the gastric and colonic mucosa. We also resume current opinions about the morphological pathways and the clonality of these neoplasias and the subsequent mechanism of spread within the adjacent tissues.
Collapse
Affiliation(s)
- Stefanie Schier
- Histopathology Unit, London Research Institute, Cancer Research, London, UK
| | | |
Collapse
|
210
|
Kim JY, Siegmund KD, Tavaré S, Shibata D. Age-related human small intestine methylation: evidence for stem cell niches. BMC Med 2005; 3:10. [PMID: 15975143 PMCID: PMC1168897 DOI: 10.1186/1741-7015-3-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 06/23/2005] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The small intestine is constructed of many crypts and villi, and mouse studies suggest that each crypt contains multiple stem cells. Very little is known about human small intestines because mouse fate mapping strategies are impractical in humans. However, it is theoretically possible that stem cell histories are inherently written within their genomes. Genomes appear to record histories (as exemplified by use of molecular clocks), and therefore it may be possible to reconstruct somatic cell dynamics from somatic cell errors. Recent human colon studies suggest that random somatic epigenetic errors record stem cell histories (ancestry and total numbers of divisions). Potentially age-related methylation also occurs in human small intestines, which would allow characterization of their stem cells and comparisons with the colon. METHODS Methylation patterns in individual crypts from 13 small intestines (17 to 78 years old) were measured by bisulfite sequencing. The methylation patterns were analyzed by a quantitative model to distinguish between immortal or niche stem cell lineages. RESULTS Age-related methylation was observed in the human small intestines. Crypt methylation patterns were more consistent with stem cell niches than immortal stem cell lineages. Human large and small intestine crypt niches appeared to have similar stem cell dynamics, but relatively less methylation accumulated with age in the small intestines. There were no apparent stem cell differences between the duodenum and ileum, and stem cell survival did not appear to decline with aging. CONCLUSION Crypt niches containing multiple stem cells appear to maintain human small intestines. Crypt niches appear similar in the colon and small intestine, and the small intestinal stem cell mitotic rate is the same as or perhaps slower than that of the colon. Although further studies are needed, age-related methylation appears to record somatic cell histories, and a somatic epigenetic molecular clock strategy may potentially be applied to other human tissues to reconstruct otherwise occult stem cell histories.
Collapse
Affiliation(s)
- Jung Yeon Kim
- Departments of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Kimberly D Siegmund
- Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Simon Tavaré
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA, and Department of Oncology, University of Cambridge, Cambridge, UK
| | - Darryl Shibata
- Departments of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
211
|
Kim JY, Beart RW, Shibata D. Stability of colon stem cell methylation after neo-adjuvant therapy in a patient with attenuated familial adenomatous polyposis. BMC Gastroenterol 2005; 5:19. [PMID: 15941485 PMCID: PMC1164411 DOI: 10.1186/1471-230x-5-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 06/07/2005] [Indexed: 11/11/2022] Open
Abstract
Background Methylation at certain human CpG rich sequences increases with age. The mechanisms underlying such age-related changes are unclear, but methylation may accumulate slowly in a clock-like manner from birth and record lifetime numbers of stem cell divisions. Alternatively, methylation may fluctuate in response to environmental stimuli. The relative stability of methylation patterns may be inferred through serial observations of the same colon. Case presentation A 22 year-old male with attenuated familial adenomatous polyposis received neo-adjuvant chemotherapy and radiation prior to surgery for rectal adenocarcinoma. Colon crypt methylation patterns before and after neo-adjuvant therapy (62 days apart) were essentially identical with respect to percent methylation and diversity. Consistent with previous studies, methylation patterns recorded no evidence for enhanced colon crypt stem cell survival with a germline mutation (codon 215) proximal to the mutation cluster region of APC. Conclusion The inability of neo-adjuvant therapy to significantly alter crypt methylation patterns suggests stem cells are relatively protected from transient environmental changes. Age-related methylation appears to primarily reflect epigenetic errors in stem cells that slowly accumulate in a clock-like manner from birth. Therefore, life-long human stem cell histories are potentially written within and may be read from somatic cell epigenomes.
Collapse
Affiliation(s)
- Jung Yeon Kim
- Departments of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Robert W Beart
- Colorectal Surgery, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Darryl Shibata
- Departments of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
212
|
Abstract
The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or isolated, data over the past decade have strongly implicated the Wnt/beta-catenin signalling pathway in their maintenance and progression to cancer. This review will (i) describe the distinctive features of the intestinal epithelium in relation to stem-cell function, (ii) illustrate the major genetic alterations that can lead to cancer, and (iii) show how Wnt/beta-catenin signalling controls homoeostasis in this tissue.
Collapse
Affiliation(s)
- Daniel Pinto
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
213
|
Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA. Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 2005; 15:43-9. [PMID: 15613287 DOI: 10.1016/j.semcancer.2004.09.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancers result from the accumulation of inherited and somatic mutations in oncogenes and tumor suppressor genes. These genes encode proteins that function in growth regulatory and differentiation pathways. Mutations in those genes increase the net reproductive rate of cells. Chromosomal instability (CIN) is a feature of most human cancers. Mutations in CIN genes increase the rate at which whole chromosomes or large parts of chromosomes are lost or gained during cell division. CIN causes an imbalance in chromosome number (aneuploidy) and an enhanced rate of loss of heterozygosity, which is an important mechanism of inactivating tumor suppressor genes. A crucial question of cancer biology is whether CIN is an early event and thus a driving force of tumorigenesis. Here we discuss mathematical models of situations where inactivation of one or two tumor suppressor genes is required for tumorigenesis. If two tumor suppressor genes have to be inactivated in rate-limiting steps, then CIN is likely to emerge before the inactivation of the first tumor suppressor gene.
Collapse
Affiliation(s)
- Franziska Michor
- Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
214
|
Abstract
The intestinal tract has a rapid epithelial cell turnover, which continues throughout life. The process is regulated and maintained by a population of stem cells, which give rise to all the intestinal epithelial cell lineages. Studies in both the mouse and the human show that these cells are capable of forming clonal crypt populations. Stem cells remain hard to identify, however it is thought that they reside in a 'niche' towards the base of the crypt and their activity is regulated by the paracrine secretion of growth factors and cytokines from surrounding mesenchymal cells. Stem cell division is usually asymmetric with the formation of an identical daughter stem cell and committed progenitor cells. Progenitor cells retain the ability to divide until they terminally differentiate. Occasional symmetric division produces either 2 daughter cells with stem cell loss, or 2 stem cells and eventual clone dominance. This stochastic extinction of stem cell lines with eventual dominance of one cell line is called 'niche succession'. The discovery of plasticity, the ability of stem cells to engraft into, and in some cases replace the function of damaged host tissues has generated a large amount of scientific and clinical interest: however the concept remains controversial and is still a subject of hot debate. Studies are beginning to identify the complex molecular, genetic and cellular pathways underlying stem cell function such as Wnt signalling, bone morphogenetic protein (BMP) and Notch/Delta pathways. The derangement of these pathways within stem cells plays an integral part in the development of malignancy within the intestinal tract.
Collapse
Affiliation(s)
- S J Leedham
- Histopathology Unit, Cancer Research UK, London, WC2A 3PX, UK.
| | | | | | | |
Collapse
|
215
|
Abstract
Genetic instability is a defining feature of human cancer. The main type of genetic instability, chromosomal instability (CIN), enhances the rate of gross chromosomal changes during cell division. CIN is brought about by mutations of CIN genes, i.e. genes that are involved in maintaining the genomic integrity of the cell. A major question in cancer genetics is whether genetic instability is a cause and hence a driving force of tumorigenesis. A mathematical framework for studying the somatic evolution of cancer sheds light onto the causal relations between CIN and human cancer.
Collapse
Affiliation(s)
- Franziska Michor
- Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA.
| |
Collapse
|
216
|
Matsubayashi H, Sato N, Brune K, Blackford AL, Hruban RH, Canto M, Yeo CJ, Goggins M. Age- and Disease-Related Methylation of Multiple Genes in Nonneoplastic Duodenum and in Duodenal Juice. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.573.11.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Purpose: Methylation of CpG islands contributes to gene silencing during cancer development, and although some methylation alterations are promising diagnostic markers of cancer, some CpG islands are also methylated in normal tissues. We have previously observed that some normally unmethylated CpG islands that undergo methylation in pancreatic cancers are normally methylated in the adjacent duodenum. Because duodenal methylation patterns are an important consideration when sampling pancreatic tissues for pancreatic cancer methylation alterations, we determined the DNA methylation patterns of 24 genes in the normal duodenum of patients with pancreatic disease and related these patterns to demographic factors.
Experimental Design: The nonneoplastic duodenal mucosa of 158 patients with pancreatic carcinoma and 41 patients with chronic pancreatitis was analyzed using methylation-specific PCR and combined bisulfite restriction analysis. Secretin-stimulated pancreatic/duodenal juice from 15 individuals undergoing endoscopic investigation for upper gastrointestinal disease was also analyzed.
Results: Low-level methylation was detectable by methylation-specific PCR in the nonneoplastic duodenum of many patients with pancreatic cancer and chronic pancreatitis as well as in the pancreaticoduodenal secretions of patients without pancreaticobiliary disease. For many genes, the prevalence of methylation increased with age and was more prevalent in patients with pancreatic cancer than in age-matched patients with chronic pancreatitis.
Our results indicate that strategies to detect pancreatic cancer using aberrantly methylated genes should rely on analysis of pure pancreatic juice rather than on pancreatic juice collected within the duodenal lumen. Patients who develop pancreatic cancer may have a greater propensity to methylate CpG islands than age-matched controls.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- 1Pathology, Departments of
- 6Fourth Department of Internal Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
Fifteen years after the first demonstration of epigenetic tumor-suppressor gene inactivation associated with promoter methylation, the field has reached a level of understanding that threatens a re-writing of established biologic concepts. In gastrointestinal malignancies, epigenetic analysis has led to novel hypotheses regarding the etiology of age-associated cancer susceptibility and the interactions between environmental exposures and neoplasia. Methylation profiling has uncovered a distinct pathway to colorectal neoplasia that may arise from a hitherto underestimated precursor lesion, the proximal hyperplastic polyp-serrated adenoma pathway. Epigenetic information has shown promise in clarifying susceptibility to cancer and defining poor prognosis groups in gastrointestinal cancers. Finally, the field has engendered renewed interest in therapeutic targeting of epigenetic regulatory molecules, and several such drugs are currently in clinical trials. It is likely that epigenetic pathways will be integrated in the routine management of gastrointestinal malignancies over the next decade.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
218
|
Lynch MD. Selective pressure for a decreased rate of asymmetrical divisions within stem cell niches may contribute to age-related alterations in stem cell function. Rejuvenation Res 2004; 7:111-25. [PMID: 15312298 DOI: 10.1089/1549168041553008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most mammalian continuously renewing tissues are maintained by stem cells located within stem cell niches. Each niche contains a number of stem cells that replicate asymmetrically to give differentiated cells and also undergo periodic deletion and compensatory replacement by symmetrical "self-renewal" divisions of stem cells remaining within the niche. It has been recognized that there is selective pressure for an increased rate of self-renewal divisions and that the increasingly likely consequence is neoplasia. However, to date it has not been appreciated that there is also an independent selective pressure for a decreased rate of asymmetrical divisions. In this article, the origin of this second type of selective pressure is explained and its consequences explored through the use of computer modeling. It is shown that age-related changes in a range of mammalian stem cell compartments can be understood in the context of a decreased rate of asymmetrical stem cell divisions with an increased propensity for self-renewal divisions. It is proposed that a decreased rate of asymmetrical divisions impairs the ability of old stem cell compartments to respond effectively to stress.
Collapse
Affiliation(s)
- M D Lynch
- Addenbrooke's Hospital, Cambridge, England.
| |
Collapse
|
219
|
Abstract
The intestinal epithelium is a relatively simple developmental system and a prime example of tissue renewal from a source of multipotent stem cells. Throughout adulthood, intestinal epithelial proliferation, cell-fate specification and differentiation are coupled to migration in discrete units known as crypts of Lieberkühn. Physically guided by Eph receptors and their ligands, the ephrins, stem cell progeny transit through the proliferation/differentiation switch, and Notch diversifies their subsequent fates. Wnt signalling appears to control most of these events.
Collapse
Affiliation(s)
- Elena Sancho
- Centre for Biomedical Genetics, Hubrecht Laboratorium, Koninklijke Nederlandse Akademie van Wetenschappen, Utrecht, The Netherlands
| | | | | |
Collapse
|
220
|
Abstract
Somatic mutation plays a key role in transforming normal cells into cancerous cells. The analysis of cancer progression therefore requires the study of how point mutations and chromosomal mutations accumulate in cellular lineages. The spread of somatic mutations depends on the mutation rate, the number of cell divisions in the history of a cellular lineage, and the nature of competition between different cellular lineages. We consider how various aspects of tissue architecture and cellular competition affect the pace of mutation accumulation. We also discuss the rise and fall of somatic mutation rates during cancer progression.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology & Evolutionary Biology, University of California, Irvine CA 92717, USA.
| | | |
Collapse
|
221
|
Shendure J, Mitra RD, Varma C, Church GM. Advanced sequencing technologies: methods and goals. Nat Rev Genet 2004; 5:335-44. [PMID: 15143316 DOI: 10.1038/nrg1325] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jay Shendure
- Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
222
|
Yatabe Y, Mitsudomi T, Takahashi T. Maspin expression in normal lung and non-small-cell lung cancers: cellular property-associated expression under the control of promoter DNA methylation. Oncogene 2004; 23:4041-9. [PMID: 15048080 DOI: 10.1038/sj.onc.1207557] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maspin has been demonstrated to be a suppressor of invasion and cell motility in vitro, whereas in vivo analyses have reported that increased expression of maspin is associated with malignant behavior. The present study examined maspin expression in normal lung and non-small-cell lung cancers. Only proximal airway cells in the normal lung expressed maspin, and the expression was associated with decreased methylation. This association was also observed in non-small-cell lung cancers, but the expression was quite different among histologic subtypes; 20 of 21 squamous cell carcinomas showed intense, uniform expression, whereas the expression status varied among adenocarcinomas. Of the 119 adenocarcinomas, 60 were negative, 23 positive and 36 showed a heterogeneous expression pattern. The expression was inversely correlated with markers of peripheral airway cells. Taken together, the results suggest that maspin may be expressed in association with the proximal airway cell type. It is of note that the heterogeneous expression pattern of maspin is quite distinctive, showing geographic positivity in the individual tumors. Separate analysis of methylation status in positive and negative portions of individual tumors provided an instance of intratumor diversity associated with promoter DNA methylation.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan.
| | | | | |
Collapse
|
223
|
Kim SJ, Cheung S, Hellerstein MK. Isolation of nuclei from label-retaining cells and measurement of their turnover rates in rat colon. Am J Physiol Cell Physiol 2004; 286:C1464-73. [PMID: 14960413 DOI: 10.1152/ajpcell.00139.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here a new technique for isolating nuclei from long-term label-retaining cells (LRCs), a subpopulation enriched with stem cells from colon, and for measuring their proliferation rates in vivo. A double-label approach was developed, combining the use of bromodeoxyuridine (BrdU) and 2H2O. Male Fisher 344 rats were administered BrdU in drinking water continuously for 2–8 wk. BrdU was then discontinued (BrdU washout), and animals ( n = 33) were switched to 2H2O in drinking water and killed after 2, 4, and 8 wk. Nuclei from BrdU-positive cells (LRCs) were collected by flow cytometry. The percentages of LRCs were 7 and 3.8% after 4 and 8 wk of BrdU washout, respectively. Turnover rates of LRCs were measured on the basis of deuterium incorporation from 2H2O into DNA of LRC nuclei, as determined by mass spectrometry. The proliferation rate of the LRCs collected was 0.33–0.90% per day (half-life of 77–210 days). Significant contamination from other potentially long-lived colon cells was excluded. In conclusion, this double-labeling method allows both physical isolation of nuclei from colon epithelial LRCs and measurement of their in vivo proliferation rates. Use of this approach may allow better understanding of mechanisms by which agents induce or protect against colon carcinogenesis.
Collapse
Affiliation(s)
- Sylvia Jeewon Kim
- Graduate Group in Molecular and Biochemical Nutrition, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
224
|
Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004; 279:29147-54. [PMID: 15131116 DOI: 10.1074/jbc.m403618200] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present work investigates the occurrence and significance of aberrant DNA methylation patterns during early stages of atherosclerosis. To this end, we asked whether the genetically atherosclerosis-prone APOE-null mice show any changes in DNA methylation patterns before the appearance of histologically detectable vascular lesion. We exploited a combination of various techniques: DNA fingerprinting, in vitro methyl-accepting assay, 5-methylcytosine quantitation, histone post-translational modification analysis, Southern blotting, and PCR. Our results show that alterations in DNA methylation profiles, including both hyper- and hypomethylation, were present in aortas and PBMC of 4-week-old mutant mice with no detectable atherosclerotic lesion. Sequencing and expression analysis of 60 leukocytic polymorphisms revealed that epigenetic changes involve transcribed genic sequences, as well as repeated interspersed elements. Furthermore, we showed for the first time that atherogenic lipoproteins promote global DNA hypermethylation in a human monocyte cell line. Taken together, our results unequivocally show that alterations in DNA methylation profiles are early markers of atherosclerosis in a mouse model and may play a causative role in atherogenesis.
Collapse
Affiliation(s)
- Gertrud Lund
- Department of Plant Biochemistry, Royal Veterinary and Agricultural College, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Kim KM, Calabrese P, Tavaré S, Shibata D. Enhanced stem cell survival in familial adenomatous polyposis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1369-77. [PMID: 15039224 PMCID: PMC1615334 DOI: 10.1016/s0002-9440(10)63223-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Individuals with heterozygous germline adenomatous polyposis coli (APC) mutations or familial adenomatous polyposis (FAP) are born with normal appearing colons but later develop hundreds to thousands of polyps. Tumor progression apparently starts after somatic loss of the normal APC allele, but germline APC mutations may potentially alter niche stem cell survival through dominant-negative interactions or haploinsufficiency. Although morphologically occult, altered stem cell turnover or clonal evolution rates may be detected by measuring the diversity of crypt sequences, with greater diversity expected with longer lived stem cell lineages. Methylation pattern diversity (numbers of unique patterns per crypt) was higher in normal appearing crypts from four of five FAP colons compared to six non-FAP colons and one attenuated FAP colon. Simulations indicate higher FAP crypt diversity is consistent with slower clonal evolution from enhanced stem cell survival, either through increased stem cell numbers or decreased stem cell lineage extinction, which is predicted to increase progression rates to cancer. Enhanced stem cell survival was associated with APC mutations that remove some but not all catenin-binding repeats. Therefore, some APC mutations may be common in colorectal cancers because they confer occult pretumor "caretaker" and "gatekeeper" defects. FAP crypts accumulate more alterations from slower stem cell clonal evolution rather than increased error rates. In non-FAP crypts, enhanced stem cell survival conferred by somatic heterozygous APC mutations would favor fixation through occult clonal niche expansions. Heterozygous APC mutations may change stem cell survival during colorectal pretumor progression.
Collapse
Affiliation(s)
- Kyoung-Mee Kim
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
226
|
Calabrese P, Tavaré S, Shibata D. Pretumor progression: clonal evolution of human stem cell populations. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1337-46. [PMID: 15039221 PMCID: PMC1615336 DOI: 10.1016/s0002-9440(10)63220-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multistep carcinogenesis through sequential cycles of mutation and clonal succession is usually described as tumor progression, or the clonal evolution of tumor cell populations. However, many mutations found in cancers are also compatible with normal appearing phenotypes and therefore genetic progression may precede tumor progression. To better characterize such pretumor progression (mutations in the absence of visible phenotypic changes), a quantitative model was developed that postulates most oncogenic cancer mutations first accumulate in normal appearing colon crypt niche stem cells. Each crypt contains multiple stem cells, and random niche stem cell loss with replacement eventually leads to the loss of all stem cell lineages except one. This niche succession or crypt clonal evolution is similar to the clonal succession of tumor progression except it does not require selection or change visible phenotype. Mutations may sequentially accumulate during stem cell clonal evolution either through drift (passenger mutations) or selection. To determine the feasibility of pretumor progression, mutation rates sufficient to recreate the epidemiology of colorectal cancer were estimated. Pretumor progression may completely substitute for visible tumor progression because it is theoretically possible for all cancer mutations to first accumulate in normal appearing colon with normal replication fidelity. Elevated mutation rates or tumorigenesis may be unnecessary for early progression.
Collapse
Affiliation(s)
- Peter Calabrese
- Department of Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
227
|
Kim KM, Shibata D. Tracing ancestry with methylation patterns: most crypts appear distantly related in normal adult human colon. BMC Gastroenterol 2004; 4:8. [PMID: 15059289 PMCID: PMC400737 DOI: 10.1186/1471-230x-4-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 04/01/2004] [Indexed: 11/17/2022] Open
Abstract
Background The ability to discern ancestral relationships between individual human colon crypts is limited. Widely separated crypts likely trace their common ancestors to a time around birth, but closely spaced adult crypts may share more recent common ancestors if they frequently divide by fission to form clonal patches. Alternatively, adult crypts may be long-lived structures that infrequently divide or die. Methods Methylation patterns (the 5' to 3' order of methylation) at CpG sites that exhibit random changes with aging were measured from isolated crypts by bisulfite genomic sequencing. This epigenetic drift may be used to infer ancestry because recently related crypts should have similar methylation patterns. Results Methylation patterns were different between widely separated ("unrelated") crypts greater than 15 cm apart. Evidence for a more recent relationship between directly adjacent or branched crypts could not be found because their methylation pattern distances were not significantly different than widely separated crypt pairs. Methylation patterns are essentially equally different between two adult human crypts regardless of their relative locations. Conclusions Methylation patterns appear to record somatic cell trees. Starting from a single cell at conception, sequences replicate and may drift apart. Most adult human colon crypts appear to be long-lived structures that become mosaic with respect to methylation during aging.
Collapse
Affiliation(s)
- Kyoung-Mee Kim
- Department of Pathology, Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Darryl Shibata
- Department of Pathology, Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
228
|
Abstract
The longevity of adult stem cells, and their potential for vast tissue regeneration, makes them a focal point of current research and debate, with future aspirations for the use of stem cells in the treatment of a number of human pathological conditions. Due to the rapid rate of cell turnover in the gastrointestinal tract, the stem cells of this tissue are amongst the most assiduous in the body, although they remain unidentified to this day due to their immature, undifferentiated phenotype. However, our knowledge of the mechanisms regulating gastrointestinal stem cell function is evolving, with the identification of putative cellular markers and the elucidation of signalling pathways which regulate cell behaviour in the normal and neoplastic gastrointestinal tract. This review describes the fundamental properties of the gastrointestinal stem cell including: (i) their number, location and origins, (ii) their primary function of deriving gastrointestinal cell lineages and maintaining tissue homeostasis, (iii) the acquisition of gastrointestinal cell lineages from adult stem cells of extraneous tissues and the consequences of this in a therapeutic context, and (iv) the genetic and morphological phenomena surrounding neoplastic transformation in the gastrointestinal tract.
Collapse
Affiliation(s)
- M Brittan
- Histopathology Unit, Cancer Research UK, London, UK.
| | | |
Collapse
|
229
|
Abstract
In multicellular organisms, cells cooperate within a well-defined developmental program. Cancer is a breakdown of such cooperation: cells mutate to phenotypes of uncoordinated proliferation. We study basic principles of the architecture of solid tissues that influence the rate of cancer initiation. In particular, we explore how somatic selection acts to prevent or to promote cancer. Cells with mutations in oncogenes or tumor suppressor genes often have increased proliferation rates. Somatic selection increases their abundance and thus enhances the risk of cancer. Many potentially harmful mutations, however, increase the probability of triggering apoptosis and, hence, initially lead to cells with reduced net proliferation rates. Such cells are eliminated by somatic selection, which therefore also works to reduce the risk of cancer. We show that a tissue organization into small compartments avoids the rapid spread of mutations in oncogenes and tumor suppressor genes, but promotes genetic instability. In small compartments, genetic instability, which confers a selective disadvantage for the cell, can spread by random drift. If both deleterious and advantageous mutations participate in tumor initiation, then we find an intermediate optimum for the compartment size.
Collapse
Affiliation(s)
- Franziska Michor
- Program in Theoretical Biology and Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
230
|
Affiliation(s)
- Franziska Michor
- Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
231
|
Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TBL, Turnbull DM. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 2003; 112:1351-60. [PMID: 14597761 PMCID: PMC228466 DOI: 10.1172/jci19435] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/09/2003] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell.
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Neurology, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
The role of DNA methylation in immune function is discussed extensively in other papers in this issue. Many of these discussions assume that DNA methylation, a major mediator of epigenetic information, is fairly immutable and uniform in adult cells and tissues. There is, however, growing evidence that DNA methylation changes subtly with age. Normal aging cells and tissues show a progressive loss of 5-methylcytosine content, primarily within DNA repeated sequences, but also in potential gene regulatory areas. In parallel, selected genes show progressive age-related increases in promoter methylation, which, once a critical methylation density is reached, have the potential to permanently silence gene expression. These changes are highly mosaic within a given tissue and introduce a high degree of epigenetic variability in aging cells. Such epigenetic phenomena could impact immune response through masking/unmasking potential tissue antigens as well as by modulating the differentiation and response of immune effector cells. The contribution of epigenetic changes to the altered immune function observed in aging humans deserves careful investigation.
Collapse
Affiliation(s)
- Jean-Pierre Issa
- Department of Leukemia, University of Texas at M D Anderson Cancer Center, Houston, TX 77401, USA.
| |
Collapse
|
233
|
Komarova NL, Sengupta A, Nowak MA. Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol 2003; 223:433-50. [PMID: 12875822 DOI: 10.1016/s0022-5193(03)00120-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, we derive analytic solutions of stochastic mutation-selection networks that describe early events of cancer formation. A main assumption is that cancer is initiated in tissue compartments, where only a relatively small number of cells are at risk of mutating into cells that escape from homeostatic regulation. In this case, the evolutionary dynamics can be approximated by a low-dimensional stochastic process with a linear Kolmogorov forward equation that can be solved analytically. Most of the time, the cell population is homogeneous with respect to relevant mutations. Occasionally, such homogeneous states are connected by 'stochastic tunnels'. We give a precise analysis of the existence of tunnels and calculate the rate of tunneling. Finally, we calculate the conditions for chromosomal instability (CIN) to precede inactivation of the first tumor suppressor gene. In this case, CIN is an early event and a driving force of cancer progression. The techniques developed in this paper can be used to study arbitrarily complex mutation-selection networks of the somatic evolution of cancer.
Collapse
|
234
|
Endoh H, Yatabe Y, Shimizu S, Tajima K, Kuwano H, Takahashi T, Mitsudomi T. RASSF1A gene inactivation in non-small cell lung cancer and its clinical implication. Int J Cancer 2003; 106:45-51. [PMID: 12794755 DOI: 10.1002/ijc.11184] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Methylation-associated inactivation of RASSF1, a putative tumor suppressor identified at 3p21.3, is reported in several cancers. We examined RASSF1 in non-small lung cancer (NSCLC) to search for clinical implications. RT-PCR analysis showed no expression of RASSF1A in 12 of 20 lung cancer cell lines. Loss of expression correlated well with promoter methylation status of these lines. Sequence analysis revealed 2 polymorphisms (codons 21 and 133) in RASSF1A transcripts, but not in RASSF1C transcripts. No somatic mutations were found. Of 7 cell lines with K-ras mutations at codon 12 or 61, 2 lost expression of RASSF1A, whereas in 13 cell lines with wild-type K-ras gene, 10 lost RASSF1A gene expression (p = 0.0521). We investigated methylation status of this putative tumor suppressor gene in 100 primary NSCLCs to determine whether there is a clinical significance. Forty-two of primary NSCLCs demonstrated methylated allele. There is no correlation between promoter methylation of RASSF1A and clinicopathological findings, including histological type or grade, tumor staging, p53 and K-ras mutational status, or patients' survival. In the cases of Stage I and II disease, however, RASSF1A methylation was associated with earlier recurrence (p = 0.0247). Epigenetic silencing of RASSF1A is a frequent event in non-small lung cancer and will provide novel opportunities to develop diagnosis and therapy of NSCLC.
Collapse
Affiliation(s)
- Hideki Endoh
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
235
|
Tanaka M, Kyo S, Kanaya T, Yatabe N, Nakamura M, Maida Y, Okabe M, Inoue M. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:295-301. [PMID: 12819034 PMCID: PMC1868187 DOI: 10.1016/s0002-9440(10)63653-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endometrium is a highly regenerative tissue that plays a crucial role in implantation. We examined the clonal constitution of glandular cells as well as the luminal epithelium of this unique tissue. Using collagenase-based digestion techniques with microscopic manipulation, we isolated individual human endometrial glands and examined their clonality using a polymerase chain reaction-based assay for nonrandom X chromosome inactivation with an X-linked androgen receptor gene. Most of the glands analyzed were composed of monoclonal populations of epithelial cells and one of the glands exhibited a loss of heterogeneity in the androgen receptor gene. In addition, adjacent glands within a 1-mm(2) area shared clonality, suggesting that clonality of the luminal epithelium is regionally defined. The clonality of endometrium was further confirmed in a study of female mice that harbor the green fluorescent protein gene on either the maternal or paternal X chromosome. Fluorescent microscopy of uterine sections revealed that individual endometrial glands consisted completely of either fluorescent or nonfluorescent cells and that the surface epithelium exhibited a clear boundary between these cell types. These findings suggest that single or multiple stem cells with uniform clonality exist on the bottom of each endometrial gland and genetic alterations occurring in such cells may play a critical role in endometrial carcinogenesis. The possible association between area-specific X inactivation of the endometrial surface and the endometrial receptivity of embryo implantation remains to be clarified.
Collapse
Affiliation(s)
- Masaaki Tanaka
- Department of Obstetrics and Gynecology, Kanazawa University, School of Medicine, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, Sasieni P, Carta P, Contini M, Pasca A, Palmieri G, Bodmer W, Tanda F, Wright N. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A 2003; 100:3311-4. [PMID: 12610207 PMCID: PMC152288 DOI: 10.1073/pnas.0437825100] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most models of tumorigenesis assume that tumors are monoclonal in origin. This conclusion is based largely on studies using X chromosome-linked markers in females. One important factor, often ignored in such studies, is the distribution of X-inactivated cells in tissues. Because lyonization occurs early in development, many of the progeny of a single embryonic stem cell are grouped together in the adult, forming patches. As polyclonality can be demonstrated only at the borders of X-inactivation patches, the patch size is crucial in determining the chance of demonstrating polyclonality and hence the number of tumors that need to be examined to exclude polyclonality. Previously studies using X-linked genes such as glucose-6-phosphate dehydrogenase have been handicapped by the need to destroy the tissues to study the haplotypes of glucose-6-phosphate dehydrogenase [Fialkow, P.-J. (1976) Biochim. Biophys. Acta 458, 283-321] or to determine the restriction fragment length polymorphisms of X chromosome-linked genes [Vogelstein, B., Fearon, E. R., Hamilton, S. R. & Feinberg, A. P. (1985) Science 227, 642-645]. Here we visualize X-inactivation patches in human females directly. Results show that the patch size is relatively large in both the human colon and breast, confounding assessment of tumor clonality with traditional X-inactivation studies.
Collapse
Affiliation(s)
- Marco Novelli
- Department of Histopathology, Rockefeller Building, University Street, University College London Hospitals, London WC1E 6JJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih IM, Vogelstein B, Lengauer C. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci U S A 2002; 99:16226-31. [PMID: 12446840 PMCID: PMC138593 DOI: 10.1073/pnas.202617399] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosomal instability (CIN) is a defining characteristic of most human cancers. Mutation of CIN genes increases the probability that whole chromosomes or large fractions of chromosomes are gained or lost during cell division. The consequence of CIN is an imbalance in the number of chromosomes per cell (aneuploidy) and an enhanced rate of loss of heterozygosity. A major question of cancer genetics is to what extent CIN, or any genetic instability, is an early event and consequently a driving force for tumor progression. In this article, we develop a mathematical framework for studying the effect of CIN on the somatic evolution of cancer. Specifically, we calculate the conditions for CIN to initiate the process of colorectal tumorigenesis before the inactivation of tumor suppressor genes.
Collapse
|
238
|
Yatabe Y, Osada H, Tatematsu Y, Mitsudomi T, Takahashi T. Decreased expression of 14-3-3sigma in neuroendocrine tumors is independent of origin and malignant potential. Oncogene 2002; 21:8310-9. [PMID: 12447694 DOI: 10.1038/sj.onc.1206014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 08/22/2002] [Accepted: 09/03/2002] [Indexed: 12/16/2022]
Abstract
We recently reported that 14-3-3sigma is frequently inactivated in small cell lung cancer (SCLC) and a part of large cell carcinomas. Subsequent studies revealed that the large cell carcinomas could be morphologically categorized as large cell neuroendocrine carcinomas (LCNEC). The present study therefore examines 14-3-3sigma expression in a spectrum of neuroendocrine lung tumors, which had varied p53 status, proliferative activity and clinical aggressiveness. The expression of 14-3-3sigma was decreased in all four categories of the spectrum, (5 out of 5 typical carcinoids, 2 out of 2 atypical carcinoids, 5 out of 7 LCNECs and 15 out of 18 SCLCs). In sharp contrast, the level of 14-3-3sigma expression in 75 non-small cell lung cancers (NSCLCs) was the same as that in normal lung tissue, with only one exception. The expression status of neuroendocrine tumors and NSCLCs was not affected by p53 status, but dense promoter hypermethylation of the 14-3-3sigma gene was specifically observed in neuroendocrine tumors, suggesting that methylation plays a regulatory role in 14-3-3sigma expression in vivo as well as in vitro. Furthermore, the expression was not only down-regulated in pulmonary neuroendocrine tumors, but also in neuroendocrine tumors arising from various other organs, through examination of 123 non-pulmonary tumors. Since various carcinogenic machineries are involved in the neuroendocrine tumors, a reduced expression of 14-3-3sigma might be required for the development of neuroendocrine tumors. Constitutive 14-3-3sigma expression was distributed exclusively in putative stem cells of the normal lung, namely the basal cells of the bronchus, and type II pneumocytes. Notably, 14-3-3sigma expression was up-regulated during the regeneration of type II pneumocytes, suggesting that 14-3-3sigma plays a biological role when a regenerative and/or differentiating drive is activated, facilitating exit from stem cells.
Collapse
Affiliation(s)
- Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
239
|
Luebeck EG, Moolgavkar SH. Multistage carcinogenesis and the incidence of colorectal cancer. Proc Natl Acad Sci U S A 2002; 99:15095-100. [PMID: 12415112 PMCID: PMC137549 DOI: 10.1073/pnas.222118199] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We use general multistage models to fit the age-specific incidence of colorectal cancers in the Surveillance, Epidemiology, and End Results registry, which covers approximately 10% of the U.S. population, while simultaneously adjusting for birth cohort and calendar year effects. The incidence of colorectal cancers in the Surveillance, Epidemiology, and End Results registry is most consistent with a model positing two rare events followed by a high-frequency event in the conversion of a normal stem cell into an initiated cell that expands clonally to give rise to an adenomatous polyp. Only one more rare event appears to be necessary for malignant transformation. The two rare events involved in initiation are interpreted to represent the homozygous loss of adenomatous polyposis coli gene function. The subsequent transition of a preinitiated stem cell into an initiated cell capable of clonal expansion via symmetric division is predicted to occur with a frequency too high for a mutational event but may reflect a positional effect in colonic crypts. Our results suggest it is not necessary to invoke genomic instability to explain colorectal cancer incidence rates in human populations. Temporal trends in the incidence of colon cancer appear to be dominated by calendar year effects. The model also predicts that interventions, such as administration of nonsteroidal anti-inflammatory drugs, designed to decrease the growth rate of adenomatous polyps, are very efficient at lowering colon cancer risk substantially, even when begun later in life. By contrast, interventions that decrease the rate of mutations at the adenomatous polyposis coli locus are much less effective in reducing the risk of colon cancer.
Collapse
Affiliation(s)
- E Georg Luebeck
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
240
|
Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer 2002; 101:335-41. [PMID: 12209957 DOI: 10.1002/ijc.10593] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic process involved in embryonic development, differentiation and aging. It is 1 of the mechanisms resulting in gene silencing in carcinogenesis, especially in tumor suppressor genes (e.g., p16, Rb). Telomerase, the DNA polymerase adding TTAGGG repeats to the chromosome end, is involved in the regulation of the replicative life span by maintaining telomere length. This enzyme is activated in germ and stem cells, repressed in normal somatic cells and reactivated in a large majority of tumor cells. The promoter region of the hTERT gene, encoding for the catalytic subunit of human telomerase, has been located in a CpG island and may therefore be regulated at least in part by DNA methylation. We analyzed the methylation status of 27 CpG sites within the hTERT promoter core region by methylation-sensitive single-strand conformation analysis (MS-SSCA) and direct sequencing using bisulfite-modified DNA in 56 human tumor cell lines, as well as tumor and normal tissues from different organs. A positive correlation was observed among hypermethylation of the hTERT promoter, hTERT mRNA expression and telomerase activity (p < 0.00001). Furthermore, this correlation was confirmed in normal tissues where hypermethylation of the hTERT promoter was found exclusively in hTERT-expressing telomerase-positive samples and was absent in telomerase-negative samples (p < 0.00002). Since tumor tissues contain also nonneoplastic stromal elements, we performed microdissection to allow confirmation that the hTERT promoter methylation truly occurred in tumor cells. Our results suggest that methylation may be involved in the regulation of hTERT gene expression. To our knowledge, this is the first gene in which methylation of its promoter sequence has been found to be positively correlated with gene expression.
Collapse
Affiliation(s)
- Isabelle Guilleret
- Institut de Pathologie and Institut de Médecine Légale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
241
|
Abstract
An understanding of the mechanisms that explain the initiation and early evolution of colorectal cancer should facilitate the development of new approaches to effective prevention and intervention. This review highlights deficiencies in the current model for colorectal neoplasia in which APC mutation is placed at the point of initiation. Other genes implicated in the regulation of apoptosis and DNA repair may underlie the early development of colorectal cancer. Inactivation of these genes may occur not by mutation or loss but through silencing mediated by methylation of the gene's promoter region. hMLH1 and MGMT are examples of DNA repair genes that are silenced by methylation. Loss of expression of hMLH1 and MGMT protein has been demonstrated immunohistochemically in serrated polyps. Multiple lines of evidence point to a "serrated" pathway of neoplasia that is driven by inhibition of apoptosis and the subsequent inactivation of DNA repair genes by promoter methylation. The earliest lesions in this pathway are aberrant crypt foci (ACF). These may develop into hyperplastic polyps or transform while still of microscopic size into admixed polyps, serrated adenomas, or traditional adenomas. Cancers developing from these lesions may show high- or low-level microsatellite instability (MSI-H and MSI-L, respectively) or may be microsatellite stable (MSS). The suggested clinical model for this alternative pathway is the condition hyperplastic polyposis. If colorectal cancer is a heterogeneous disease comprising discrete subsets that evolve through different pathways, it is evident that these subsets will need to be studied individually in the future.
Collapse
Affiliation(s)
- Jeremy R Jass
- Department of Molecular and Cellular Pathology, University of Queensland Medical School, Australia.
| | | | | | | |
Collapse
|
242
|
Abstract
Knowledge about breast carcinogenesis has accumulated during the last decades but has barely been translated into strategies for early detection or prevention of this common disease. Changes in DNA methylation have been recognized as one of the most common molecular alterations in human neoplasia and hypermethylation of gene-promoter regions is being revealed as one of the most frequent mechanisms of loss of gene function. The heritability of methylation states and the secondary nature of the decision to attract or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory. According to Hanahan and Weinberg, there are six novel capabilities a cell has to acquire to become a cancer cell: limitless replicative potential, self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, sustained angiogenesis and tissue invasion and metastasis. This review highlights how DNA-methylation contributes to these features and offers suggestions about how these changes could be prevented, reverted or used as a 'tag' for early detection of breast cancer or, preferably, for detection of premalignant changes.
Collapse
Affiliation(s)
- Martin Widschwendter
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, 1441 Eastlake Avenue, MS 8302L, Los Angeles, California, CA 90089-9181, USA.
| | | |
Collapse
|
243
|
Abstract
Little it known about human stem cells although they are likely to be the earliest progenitors of carcinomas. Just as methylation can substitute for mutations to inactivate tumor suppressor genes, methylation can also substitute for mutations in a phylogenetic analysis. This review explains why stem cell dynamics may be important to tumor progression and how methylation patterns found in a normal human colon can be used to reconstruct the behavior of crypt stem cells. Histories are recorded in sequences and strategies used to reconstruct phylogenies from sequences likely apply to methylation patterns because both exhibit somatic inheritance. Such a quantitative analysis of colon methylation patterns infers stem cells live in niches containing multiple 'stem' cells. Although niche stem cell numbers remain constant, clonal succession is inherent to niches because periodically progeny from a single stem cell become dominant. These niche succession cycles may potentially accumulate multiple alterations because they resemble superficially the clonal succession of tumor progression except that they occur invisibly in the absence of selection or phenotypic change. Alterations without immediate selective value may hitchhike passively in the stem cells that become dominant during niche succession cycles. The inherent ability of a niche to fix alterations (Muller's ratchet) is another potential mechanism besides instability and selection to sequentially accumulate multiple alterations. Many alterations found in colorectal tumors may reflect such occult clonal progression in normal colon.
Collapse
Affiliation(s)
- Kyoung-Mee Kim
- Department of Pathology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | |
Collapse
|
244
|
Abstract
Cytosine guanine dinucleotide (CpG) island methylation is a known mechanism of epigenetic inheritance in postmeiotic cells. Through associated chromatin changes and silencing, such epigenetic states can influence cellular physiology and affect disease risk and severity. Our studies of CpG island methylation in normal colorectal mucosa revealed progressive age-related increases at multiple gene loci, suggesting genome-wide molecular alterations with potential to silence gene expression. However, there was considerable variation in the degree of methylation among individuals of comparable ages. Such variation could be related to genetic factors, lifestyle, or environmental exposures. Studies in ulcerative colitis and hepatocellular cirrhosis and neoplasia revealed that chronic inflammatory states are accompanied by marked increases in CpG island methylation in normal-appearing tissues, confirming the hypothesis that proinflammatory exposures could account for part of the epigenetic variation in human populations. Preliminary data also suggest potential influences of lifestyle and exposure factors on CpG island methylation. It is suggested that epigenetic variation related to aging, lifestyle, exposures and possibly genetic factors, is one of the modulators of acquired, age-related human diseases, including neoplasia.
Collapse
Affiliation(s)
- Jean-Pierre Issa
- Department of Leukemia, The University of Texas at M.D. Anderson Cancer Center, Houston 77030, USA.
| |
Collapse
|
245
|
Abstract
Turnover of the epithelial cell lineages within the gastrointestinal tract is a constant process, occurring every 2-7 days under normal homeostasis and increasing after damage. This process is regulated by multipotent stem cells, which give rise to all gastrointestinal epithelial cell lineages and can regenerate whole intestinal crypts and gastric glands. The stem cells of the gastrointestinal tract are as yet undefined, although it is generally agreed that they are located within a 'niche' in the intestinal crypts and gastric glands. Studies of allophenic tetraparental chimeric mice and targeted stem cell mutations suggest that a single stem cell undergoes asymmetrical division to produce an identical daughter cell, and thus replicate itself, and a committed progenitor cell which further differentiates into an adult epithelial cell type. The discovery of stem cell plasticity in many tissues, including the ability of transplanted bone marrow to transdifferentiate into intestinal subepithelial myofibroblasts, provides a potential use of bone marrow cells to deliver therapeutic genes to damaged tissues, for example, in treatment of mesenchymal diseases in the gastrointestinal tract, such as fibrosis and Crohn's disease. Studies are beginning to identify the molecular pathways that regulate stem cell proliferation and differentiation into adult gastrointestinal cell lineages, such as the Wnt and Notch/Delta signalling pathways, and the importance of mesenchymal-epithelial interactions in normal gastrointestinal epithelium and in development and disease.
Collapse
|
246
|
Frigola J, Ribas M, Risques RA, Peinado MA. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res 2002; 30:e28. [PMID: 11917034 PMCID: PMC101852 DOI: 10.1093/nar/30.7.e28] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alterations of the DNA methylation pattern have been related to generalized chromosomal disruption and inactivation of multiple tumor suppressor genes in neoplasia. To screen for tumor-specific alterations and to make a global assessment of methylation status in cancer cells, we have modified the methylated CpG island amplification method to generate easily readable fingerprints representing the cell's DNA methylation profile. The method is based on the differential cleavage of isoschizomers with distinct methylation sensitivity. Specific adaptors are ligated to the methylated ends of the digested genomic DNA. The ligated sequences are amplified by PCR using adaptor- specific primers extended at the 3' end with two to four arbitrarily chosen nucleotidic residues to reduce the complexity of the product. Fingerprints consist of multiple anonymous bands, representing DNA sequences flanked by two methylated sites, which can be isolated and individually characterized. Hybridization of the whole product to metaphase chromosomes revealed that most bands originate from the isochore H3, which identifies the regions of the genome with the highest content of CpG islands and genes. Comparison of the fingerprints obtained from normal colon mucosa, colorectal carcinomas and cell lines revealed tumor-specific alterations that are putative recurrent markers of the disease and include tumor-specific hypo- and hypermethylations.
Collapse
Affiliation(s)
- Jordi Frigola
- Institut de Recerca Oncològica, Hospital Duran i Reynals, Autovia Castelldefels km 2,7, 08907 L'Hospitalet, Barcelona, Spain
| | | | | | | |
Collapse
|
247
|
Glaser V. Tales from the crypt. J Biophys Biochem Cytol 2001. [PMCID: PMC2242972 DOI: 10.1083/jcb1546rr2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
248
|
Ro S, Rannala B. Methylation patterns and mathematical models reveal dynamics of stem cell turnover in the human colon. Proc Natl Acad Sci U S A 2001; 98:10519-21. [PMID: 11553798 PMCID: PMC58493 DOI: 10.1073/pnas.201405498] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- S Ro
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|