201
|
Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttilä T. Influence of phosphorylation of p35, an activator of cyclin-dependent kinase 5 (cdk5), on the proteolysis of p35. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 106:50-6. [PMID: 12393264 DOI: 10.1016/s0169-328x(02)00409-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) is involved in the development of the nervous system and neuronal process outgrowth, and it regulates several intracellular processes including cytoskeletal dynamics. Dysregulation of cdk5 has been implicated in many disorders of the nervous system. The activity of the kinase is regulated by binding of cdk5 activators (p35, p39, p67). We examined the phosphorylation of p35, and the role of phosphorylation in regulating the proteolysis of the p35 protein. By detecting changes in electrophoretic mobility, we observed that a significant proportion of p35 is phosphorylated in rat brain tissue. In cultured neurons, the phosphorylation was prevented by roscovitine, an inhibitor of cdk5 and some other cdks. The phosphatase inhibitor okadaic acid induced p35 degradation in neuronal cultures which was sensitive to the proteasome inhibitor lactacystin. These latter results agree with some previous studies showing that phosphorylation regulates proteasomal degradation of p35. Treatment of brain homogenate with okadaic acid in the presence of ATP led to accumulation of p35 phosphorylated also by a kinase that was not inhibited by roscovitine. This implies that the effect of okadaic acid on p35 degradation could also be contributed by a non-cdk kinase. The calpain protease has been shown to cleave p35. Our results suggest that this process may also be modulated by p35 phosphorylation under some conditions. We conclude that p35 phosphorylation influences the proteasome-mediated degradation of p35 and calpain-mediated cleavage of p35 to p25.
Collapse
Affiliation(s)
- Petri Kerokoski
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, Finland.
| | | | | | | | | |
Collapse
|
202
|
Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, Yagi T, Taniguchi M, Nakayama T, Kishida R, Kudo Y, Ohno S, Nakamura F, Goshima Y. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 2002; 35:907-20. [PMID: 12372285 DOI: 10.1016/s0896-6273(02)00857-7] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.
Collapse
Affiliation(s)
- Yukio Sasaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Zhang J, Luan CH, Chou KC, Johnson GVW. Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Proteins 2002; 48:447-53. [PMID: 12112670 DOI: 10.1002/prot.10173] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cyclin dependent kinase (Cdk) 5, an atypical member of the Cdk family, plays a fundamental role in the development of the nervous system, and may also be involved in the pathogenesis of certain neurodegenerative diseases. Further, Cdk5 is activated by the specific regulatory proteins p39, p35, or p25 rather than cyclins, and in contrast to other members of the Cdk family is not involved in the progression of the cell cycle. A three-dimensional computer model of Cdk5-p25-ATP has been generated previously [Chou et al., Biochem Biophys Res Commun 1999;259:420-428], providing a structural basis for the study of the mechanisms of Cdk5 activation. To assess the predicted ATP and p25 binding domains at the N-terminal of Cdk5, two mutants of Cdk5 were prepared in which amino acids 9-15 (Delta9-15) or 9-47 (Delta9-47) were deleted. The results of these studies clearly demonstrate that an N-terminal loop and the PSSALRE helix are indispensable for Cdk5-p25 interactions, and amino acids 9-15 are necessary for ATP binding but are not involved in Cdk5-p25 interactions. Predicted models of Delta9-15 Cdk5 and Delta9-47 Cdk5 were generated, and were used to interpret the experimental data. The experimental and molecular modeling results confirm and extend specific aspects of the original predicted computer model, and may provide useful information for the design of highly selective inhibitors of Cdk5, which could be used in the treatment of certain neurodegenerative conditions.
Collapse
Affiliation(s)
- Jianwen Zhang
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | | | |
Collapse
|
204
|
Abstract
The pathophysiology of Alzheimer's disease (AD) involves the deposition of amyloid in the brain and the extensive loss of neurons. The mechanisms subserving neuronal death in the disease remain unclear, although it has been postulated that this is due to apoptosis. There is compelling evidence that inflammatory processes play a role in disease progression and pathology. Amyloid plaque deposition is accompanied by the association of microglia with the senile plaque, and this interaction stimulates these cells to undergo phenotypic activation and the subsequent elaboration of proinflammatory and neurotoxic products. This review focuses on the mechanisms by which neurons are lost in AD and the role microglial proinflammatory products play in neuronal death.
Collapse
Affiliation(s)
- Maria E Bamberger
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
205
|
Augustinack JC, Sanders JL, Tsai LH, Hyman BT. Colocalization and fluorescence resonance energy transfer between cdk5 and AT8 suggests a close association in pre-neurofibrillary tangles and neurofibrillary tangles. J Neuropathol Exp Neurol 2002; 61:557-64. [PMID: 12071639 DOI: 10.1093/jnen/61.6.557] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclin-dependent kinase 5 (cdk5) is a serine/threonine kinase that, when activated, induces neurite outgrowth. Recent in vitro studies have shown that cdk5 phosphorylates tau at serine 199, serine 202, and threonine 205 and that p25, an activator of cdk5, is increased in Alzheimer disease (AD). Since tau is hyperphosphorylated at these sites in neurofibrillary tangles, we examined brain tissue from patients with AD and normal elderly control cases to determine whether cdk5 and these phosphoepitopes colocalize in neurofibrillary tangles. Adjacent temporal lobe sections were double immunostained with a polyclonal anti-cdk5 and monoclonal AT8 (which recognizes phosphorylated serine 199, serine 202, and threonine 205 in tau) antibodies. A subset of AT8 phosphotau-positive neurons was immunoreactive for cdk5 in entorhinal (area 28) and perirhinal (area 35) cortices and CA1 of the hippocampus. We assessed the ratio of cdk5-positive cells to AT8-positive cells and found that there is a higher degree of colocalization in pre-neurofibrillary tangles as opposed to intraneuronal and extraneuronal neurofibrillary tangles. We further examined colocalization using fluorescence resonance energy transfer. This suggests a close, stable intermolecular association between cdk5 and phosphorylated tau, consistent with phosphorylation of tau by cdk5 in AD brain.
Collapse
Affiliation(s)
- Jean C Augustinack
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | |
Collapse
|
206
|
Negash S, Wang HS, Gao C, Ledee D, Zelenka P. Cdk5 regulates cell-matrix and cell-cell adhesion in lens epithelial cells. J Cell Sci 2002; 115:2109-17. [PMID: 11973352 DOI: 10.1242/jcs.115.10.2109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdk5 is a member of the cyclin-dependent kinase family, which is expressed predominantly in terminally differentiated neurons. Lower levels of Cdk5 are also found in a wide variety of cell types, including the lens. Although Cdk5 has been shown to play an important role in neuronal migration and neurite outgrowth, its function in non-neuronal cells is not known. Therefore, this study was undertaken to explore the role of Cdk5 in the lens. Results showed that, within the adult mouse lens, Cdk5 was localized to the cytoplasm,especially along the lateral membranes of differentiating primary fiber cells,which suggests a role in cell-cell adhesion. Staining at the tips of elongating fiber cells was also particularly strong, suggesting a role in cell-matrix adhesion. To examine the possible role of Cdk5 in lens epithelial cell adhesion, we stably transfected N/N1003A rabbit lens epithelial cells with cDNAs for Cdk5 or a dominant-negative mutation, Cdk5-T33. Attachment to a fibronectin matrix, as measured with substrate-coated cell adhesion strips,was increased by Cdk5 overexpression, while an equivalent overexpression of Cdk5-T33 had no effect. Cdk5 also increased the rate of cell attachment and spreading as measured by electric cell-substrate impedance sensing (ECIS). In addition, Cdk5 overexpression decreased cell-cell adhesion as measured by a cell aggregation assay. These findings suggest that Cdk5 plays a role in regulating both cell-matrix and cell-cell interactions in the lens.
Collapse
Affiliation(s)
- Sewite Negash
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
207
|
Abstract
Cyclin dependent kinase 5 (Cdk5) is a proline-direct protein kinase that is most active in the CNS, and has been implicated as a contributing factor in certain neurodegenerative diseases. Further, there is evidence to suggest that Cdk5 may facilitate the progression of apoptosis. However, the mechanisms involved have not been elucidated. The tumor suppressor protein p53, a transcription factor that is regulated by phosphorylation, increases the expression of genes that control growth arrest or cell death. To understand how Cdk5 could facilitate apoptosis, the effects of Cdk5 on p53 activity were examined. In the present study it is shown that in apoptotic PC12 cells the levels of p53 and Cdk5 increase concomitantly. Further, Cdk5/p25 effectively phosphorylates recombinant p53 in vitro. Transient transfection of Cdk5/p25 into cells results in an increase in p53 levels, as well as the expression of the p53-responsive genes p21 and Bax. Furthermore, evidence is provided that increased Cdk5 activity increases p53 transcriptional activity significantly, suggesting that p53 is modulated in situ by Cdk5. This is the first demonstration that p53 is a substrate of Cdk5, and that Cdk5 can modulate p53 levels and activity.
Collapse
Affiliation(s)
- Jianwen Zhang
- Department of Psychiatry and Neurobiology, University of Alabama at Birmingham, 35294-0017, USA
| | | | | |
Collapse
|
208
|
Patzke H, Tsai LH. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem 2002; 277:8054-60. [PMID: 11784720 DOI: 10.1074/jbc.m109645200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of cyclin-dependent kinase-5 (Cdk5) is tightly regulated by binding of its neuronal activators p35 and p39. Upon neurotoxic insults, p35 is cleaved to p25 by the Ca(2+)-dependent protease calpain. p25 is accumulated in ischemic brains and in brains of patients with Alzheimer's disease. p25 deregulates Cdk5 activity by causing prolonged activation and mislocalization of Cdk5. It is unknown whether p39, which is expressed throughout the adult rat brain, is cleaved by calpain, and whether this contributes to deregulation of Cdk5. Here, we show that calpain cleaved p39 in vitro, resulting in generation of a C-terminal p29 fragment. In vivo, p29 was generated in ischemic brain concomitant with increased calpain activity. In fresh brain lysates, generation of p29 was Ca(2+)-dependent, and calpain inhibitors abolished p29 production. The Ca(2+) ionophore ionomycin and the excitotoxin glutamate induced production of p29 in cultures of cortical neurons in a calpain-dependent manner. Like p25, p29 was more stable than p39 and caused redistribution of Cdk5 in cortical neurons. Our data suggest that neurotoxic insults lead to calpain-mediated conversion of p39 to p29, which might contribute to deregulation of Cdk5.
Collapse
Affiliation(s)
- Holger Patzke
- Department of Pathology, Harvard Medical School and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
209
|
Qu D, Li Q, Lim HY, Cheung NS, Li R, Wang JH, Qi RZ. The protein SET binds the neuronal Cdk5 activator p35nck5a and modulates Cdk5/p35nck5a activity. J Biol Chem 2002; 277:7324-32. [PMID: 11741927 DOI: 10.1074/jbc.m107270200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a).
Collapse
Affiliation(s)
- Dianbo Qu
- Proteomics Group, Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609
| | | | | | | | | | | | | |
Collapse
|
210
|
Ross S, Tienhaara A, Lee MS, Tsai LH, Gill G. GC box-binding transcription factors control the neuronal specific transcription of the cyclin-dependent kinase 5 regulator p35. J Biol Chem 2002; 277:4455-64. [PMID: 11724806 DOI: 10.1074/jbc.m110771200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (cdk5)/p35 kinase activity is highest in post-mitotic neurons of the central nervous system and is critical for development and function of the brain. The neuronal specific activity of the cdk5/p35 kinase is achieved through the regulated expression of p35 mRNA. We have identified a small 200-bp fragment of the p35 promoter that is sufficient for high levels of neuronal specific expression. Mutational analysis of this TATA-less promoter has identified a 17-bp GC-rich element, present twice, that is both required for promoter activity and sufficient for neuronal specific transcription. A GC box within the 17-bp element is critical for both promoter activity and protein-DNA complex formation. The related transcription factors Sp1, Sp3, and Sp4 constitute most of the GC box DNA binding activity in neurons. We have found that both the relative contribution of the Sp family proteins to GC box binding and the transcriptional activity of these proteins is regulated during neuronal differentiation. Thus, our data show that the GC box-binding Sp proteins contribute to the regulation of p35 expression in neurons, suggesting changes in the Sp transcription factors level and activity may contribute to cell type-specific expression of many genes in the central nervous system.
Collapse
Affiliation(s)
- Sarah Ross
- Department of Pathology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
211
|
Amin ND, Albers W, Pant HC. Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 2002; 67:354-62. [PMID: 11813240 DOI: 10.1002/jnr.10116] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5), in contrast to other members of the cyclin-dependent kinase family, is not activated by cyclins but instead is activated by complexing with neuron-specific activator molecules (p35, p39, and p67). The most effective activator of cdk5 both in vitro and in vivo is p35. We have taken a kinetic approach to study the interaction between p35, its various truncated forms, and cdk5 to understand better the mechanism of its activation. The cdk5 complexes formed with the truncated forms p25 and p21 produced similar maximum active kinase, whereas the cdk5 complexed with full-length p35 and a further truncated form spanning amino acid residues from 138 to 291, with approximate molecular weight of 16 kDa (p16), produced slightly less (80%) activation than p25. P16 was the smallest fragment of p35 that produced activation equal to or greater than that of full-length p35. By examination of further truncations of p16, we found that a small number of residues, 11 and 4 at the N- and C-termini, respectively, of p16, are essential for cdk5 activation. Further truncation, removing both essential N- and C-terminal domains, produces a peptide with markedly higher affinity for cdk5 compared with the peptides that retain either of these domains. Using these inactive truncated peptides as inhibitors, we examined the kinetics of activation. From these studies we conclude that activation involves at least three cdk5-interacting domains, one located at each end of p16 and at least one located in a central domain. The cdk5 activation process is slow: The second-order rate constant for p16 is about 1.2 microM(-1) hr(-1). On the basis of kinetic data, we suggest that cdk5 exists in two conformations. The inactive kinase conformation predominates in the absence of the activator. Activation occurs in two stages: a rapid and reversible interaction of cdk5 with its activator, which involves only one or two binding domains, followed by a slow stabilization of the active conformation as interaction with all three domains is achieved.
Collapse
Affiliation(s)
- Niranjana D Amin
- Laboratory of Neurochemistry, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
212
|
Abstract
Cdk5, a serine/threonine kinase in the cyclin-dependent kinase (Cdk) family, is an important regulator of neuronal positioning during brain development. Cdk5 might also play a role in synaptogenesis and neurotransmission. Loss of Cdk5 in mice is perinatal lethal, and overactive Cdk5 induces apoptosis in cultured cells, indicating that strict regulation of kinase activity is crucial. Indeed, activity depends on the stability of activating partners, subcellular localization and the phosphorylation state of the enzyme itself. Deregulated kinase activity has been linked to neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). This review focuses on links between Cdk5 activity and components of cytoskeletal, membrane and adhesion systems that allow us to postulate a role for Cdk5 in directing intracellular traffic in neurons.
Collapse
Affiliation(s)
- Deanna S Smith
- Dept of Biological Sciences, CLS 607, University of South Carolina, Columbia 29208, USA
| | | |
Collapse
|
213
|
Rashid T, Banerjee M, Nikolic M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 2001; 276:49043-52. [PMID: 11604394 DOI: 10.1074/jbc.m105599200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.
Collapse
Affiliation(s)
- T Rashid
- Molecular and Developmental Neurobiology Medical Research Council Centre, New Hunt's House, King's College London, London, SE1 1UL, United Kingdom
| | | | | |
Collapse
|
214
|
Abstract
Since it was identified a decade ago, cyclin-dependent kinase 5 (CDK5) has emerged as a crucial regulator of neuronal migration in the developing central nervous system. CDK5 phosphorylates a diverse list of substrates, implicating it in the regulation of a range of cellular processes - from adhesion and motility, to synaptic plasticity and drug addiction. Recent evidence indicates that deregulation of this kinase is involved in the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- R Dhavan
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
215
|
Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 2001; 8:657-69. [PMID: 11583627 DOI: 10.1016/s1097-2765(01)00343-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.
Collapse
Affiliation(s)
- C Tarricone
- Structural Biology Unit, Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, I-20141 Milan, Italy
| | | | | | | | | | | |
Collapse
|
216
|
Grant P, Sharma P, Pant HC. Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. ACTA ACUST UNITED AC 2001. [PMID: 11248670 DOI: 10.1046/j.1432-1327.2001.02025.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.
Collapse
Affiliation(s)
- P Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
217
|
Gao C, Negash S, Wang HS, Ledee D, Guo H, Russell P, Zelenka P. Cdk5 mediates changes in morphology and promotes apoptosis of astrocytoma cells in response to heat shock. J Cell Sci 2001; 114:1145-53. [PMID: 11228158 DOI: 10.1242/jcs.114.6.1145] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent kinase member, Cdk5, is expressed in a variety of cell types, but neuron-specific expression of its activator, p35, is thought to limit its activity to neurons. Here we demonstrate that both Cdk5 and p35 are expressed in the human astrocytoma cell line, U373. Cdk5 and p35 are present in the detergent-insoluble cytoskeletal fraction of this cell line and Cdk5 localizes to filopodia and vinculin-rich regions of cell-matrix contact in lamellopodia. When exposed to a 46(o)C heat shock, U373 cells change shape, lose cell-matrix contacts and show increased levels of apoptosis. To test whether Cdk5 activation might play a role in these events, U373 cells were stably transfected with histidine-tagged or green fluorescent protein-tagged constructs of Cdk5 or a dominant negative mutation, Cdk5T33. Under normal growth conditions, growth characteristics of the stably transfected lines were indistinguishable from untransfected U373 cells and Cdk5 localization was not changed. However, when subjected to heat shock, cells stably transfected with Cdk5-T33 remained flattened, showed little loss of cell-matrix adhesion, and exhibited significantly lower levels of apoptosis. In contrast, cells that overexpressed wild-type Cdk5 showed morphological changes similar to those seen in untransfected U373 cells in response to heat shock and had significantly higher levels of apoptosis. Heat-shocked cells showed changes in p35 mobility and stability of the Cdk5/p35 complex consistent with endogenous Cdk5 activity. Together these findings suggest that endogenous Cdk5 activity may play a key role in regulating morphology, attachment, and apoptosis in U373 cells, and raise the possibility that Cdk5 may be a general regulator of cytoskeletal organization and cell adhesion in both neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- C Gao
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Affiliation(s)
- M Nikolic
- Molecular Neurobiology Group, King's College, London, England, United Kingdom
| | | |
Collapse
|
219
|
Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR. The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 2000; 113 Pt 23:4363-71. [PMID: 11069780 DOI: 10.1242/jcs.113.23.4363] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Survivin, a human inhibitor of apoptosis protein (IAP), plays an important role in both cell cycle regulation and inhibition of apoptosis. Survivin is expressed in cells during the G(2)/M phase of the cell cycle, followed by rapid decline of both mRNA and protein levels at the G(1) phase. It has been suggested that cell cycle-dependent expression of survivin is regulated at the transcriptional level. In this study we demonstrate involvement of the ubiquitin-proteasome pathway in post-translational regulation of survivin. Survivin is a short-lived protein with a half-life of about 30 minutes and proteasome inhibitors greatly stabilise survivin in vivo. Expression of the survivin gene under the control of the CMV promoter cannot block cell cycle-dependent degradation of the protein. Proteasome inhibitors can block survivin degradation during the G(1) phase and polyubiquitinated derivatives can be detected in vivo. Mutation of critical amino acid residues within the baculovirus IAP repeat (BIR) domain or truncation of the N terminus or the C terminus sensitises survivin to proteasome degradation. Together, these results indicate that the ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner and structural changes greatly destabilise the survivin protein.
Collapse
Affiliation(s)
- J Zhao
- ICRF Molecular Oncology Unit, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | | | | | |
Collapse
|
220
|
Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, Greengard P. Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci U S A 2000; 97:12840-5. [PMID: 11050161 PMCID: PMC18851 DOI: 10.1073/pnas.220410397] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine and cAMP-regulated phosphoprotein of M(r) 32,000 (DARPP-32) plays an obligatory role in most of the actions of dopamine. In resting neostriatal slices, cyclin-dependent kinase 5 (Cdk5) phosphorylates DARPP-32 at Thr-75, thereby reducing the efficacy of dopaminergic signaling. We report here that dopamine, in slices, and acute cocaine, in whole animals, decreases the state of phosphorylation of striatal DARPP-32 at Thr-75 and thereby removes this inhibitory constraint. This effect of dopamine is achieved through dopamine D1 receptor-mediated activation of cAMP-dependent protein kinase (PKA). The activated PKA, by decreasing the state of phosphorylation of DARPP-32-Thr-75, de-inhibits itself. Dopamine D2 receptor stimulation has the opposite effect. The ability of activated PKA to reduce the state of phosphorylation of DARPP-32-Thr-75 is apparently attributable to increased protein phosphatase-2A activity, with Cdk5 being unaffected. Together, these results indicate that via positive feedback mechanisms, Cdk5 signaling and PKA signaling are mutually antagonistic.
Collapse
Affiliation(s)
- A Nishi
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
221
|
Hébert SS, Daviau A, Grondin G, Latreille M, Aubin RA, Blouin R. The mixed lineage kinase DLK is oligomerized by tissue transglutaminase during apoptosis. J Biol Chem 2000; 275:32482-90. [PMID: 10922377 DOI: 10.1074/jbc.m006528200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current evidence suggests that the mixed lineage kinase family member dual leucine zipper-bearing kinase (DLK) might play a significant role in the regulation of cell growth and differentiation, particularly during the process of tissue remodeling. To further explore this working model, we have investigated the regulation of host and recombinant DLK in NIH3T3 and COS-1 cells undergoing apoptosis. Using calphostin C, a potent and selective inhibitor of protein kinase C and a recognized apoptosis inducer for various cell types, we demonstrate, by immunoblot analysis, that DLK protein levels are rapidly and dramatically down-regulated during the early phases of apoptosis. Down-regulation in calphostin C-treated cells was also accompanied by the appearance of SDS- and mercaptoethanol-resistant high molecular weight DLK immunoreactive oligomers. Experiments aimed at elucidating the mechanism(s) underlying DLK oligomerization revealed that the tissue transglutaminase (tTG) inhibitor monodansylcadaverine antagonized the effects of calphostin C almost completely, thereby suggesting the involvement of a tTG-catalyzed reaction as the root cause of DLK down-regulation and accumulation as high molecular weight species. In support of this notion, we also show that DLK can serve as a substrate for tTG-dependent cross-linking in vitro and that this covalent post-translational modification leads to the functional inactivation of DLK. Taken together, these observations suggest that transglutamination and oligomerization may constitute a relevant physiological mechanism for the regulation of DLK activity.
Collapse
Affiliation(s)
- S S Hébert
- Centre de Recherche sur les Mécanismes d'Expression Génétique, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 and Santé Canada, France
| | | | | | | | | | | |
Collapse
|
222
|
Tomizawa K, Cai XH, Moriwaki A, Matsushita M, Matsui H. Involvement of cyclin-dependent kinase 5/p35(nck5a) in the synaptic reorganization of rat hippocampus during kindling progression. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:525-32. [PMID: 11120919 DOI: 10.2170/jjphysiol.50.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To test the hypothesis that a complex of cyclin-dependent kinase 5 (Cdk5) and p35(nck5a) plays an important role in sprouting in the kindling rat hippocampus, we studied the changes in kinase activity, expression level and subcellular localization during kindling progression. The kinase activity in kindling rats was significantly higher than that in normal rats. The changes in kinase activity coincided with those of the p35(nck5a) expression in kindling rats. In contrast, the expression of Cdk5 was constant at all stages of kindling. Subcellular localization of Cdk5, however, changed markedly in the hippocampal neurons during kindling progression. Cdk5 translocated from axon to soma when the kinase activity was high. The phosphorylation level of tau protein was in good agreement with the Cdk5 kinase activity. In contrast, MAP kinase activity was not correlated with tau phosphorylation during kindling progression. These findings suggest that Cdk5/p35(nck5a) plays an important role in synaptic reorganization, and the translocation of Cdk5 to soma from axons is a crucial regulatory mechanism of kinase activity.
Collapse
Affiliation(s)
- K Tomizawa
- First Department of Physiology, Okayama University Medical School, Okayama, 700-8558 Japan.
| | | | | | | | | |
Collapse
|
223
|
Masaki R, Saito T, Yamada K, Ohtani-Kaneko R. Accumulation of phosphorylated neurofilaments and increase in apoptosis-specific protein and phosphorylated c-Jun induced by proteasome inhibitors. J Neurosci Res 2000; 62:75-83. [PMID: 11002289 DOI: 10.1002/1097-4547(20001001)62:1<75::aid-jnr8>3.0.co;2-v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ubiquitin-proteasome system has been regarded as being important in the progression of neurodegenerative diseases, although its exact role remains uncertain. This in vitro study using PC12h cell cultures examined whether interference with the ubiquitin-proteasome system by proteasome inhibitors induces the neuropathological features of neurodegenerative diseases. Perikaryal accumulation of phosphorylated neurofilaments and an increase in c-Jun as well as phosphorylated form of c-Jun and apoptosis-specific protein were induced by the proteasome inhibitors lactacystin and N-carbobenzoxy-leucyl-leucyl-leucinal. These changes were not observed when only calpain was inhibited. The present study therefore suggests the possibility that a perturbation of the ubiquitin-proteasome system may be one of the causes that result in the development of neuropathological features. Additionally, activity assays showed that the proteasome inhibitor caused an increase in the activity of c-Jun N-terminal kinase (JNK/SAPK), which can phosphorylate neurofilaments and c-Jun, suggesting the possible involvement of JNK in phosphorylation of these proteins.
Collapse
Affiliation(s)
- R Masaki
- Department of Anatomy, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Japan
| | | | | | | |
Collapse
|
224
|
Affiliation(s)
- Y T Kwon
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
225
|
Nath R, Davis M, Probert AW, Kupina NC, Ren X, Schielke GP, Wang KK. Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 2000; 274:16-21. [PMID: 10903889 DOI: 10.1006/bbrc.2000.3070] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, it was shown that conversion of cdk5 activator protein p35 to a C-terminal fragment p25 promotes a deregulation of cdk5 activity, which may contribute to neurodegeneration in Alzheimer's disease. In this study, we present evidence that calpain is a protease involved in the conversion of p35 to p25. To activate calpain, rat cerebellar granule neurons were treated with maitotoxin (MTX). A C-terminus-directed anti-p35 antibody detected that p35 conversion to p25 paralleled the formation of calpain-generated alpha-spectrin (alpha-fodrin) breakdown products (SBDP's) in a maitotoxin-dose-dependent manner. Two calpain inhibitors (MDl28170 and SJA6017) reduced p35 processing but were unchanged when exposed to the caspase inhibitor carbobenzoxy-Asp-CH(2)OC(=O)-2, 6-dichlorobenzene or the proteasome inhibitors (lactacystin and Z-Ile-Glu(OtBu)Ala-Leu-CHO). p35 protein was also degraded to p25 when rat brain lysate was subjected to in vitro digestion with purified mu- and m-calpains. Additionally, in a rat temporary middle cerebral artery occlusion model, p35 processing to p25 again paralleled SBDP formation in the ischemic core. Lastly, in malonate-injured rat brains, the ipsilateral side showed a striking correlation of SBDP formation with p35 to p25 conversion and tau phosphorylation (at Ser202 and Thr205) increase. These data suggest that calpain is a major neuronal protease capable of converting p35 to p25 and might play a pathological role of activating cdk5 and its phosphorylation of tau in Alzheimer's disease.
Collapse
Affiliation(s)
- R Nath
- Department of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Kusakawa G, Saito T, Onuki R, Ishiguro K, Kishimoto T, Hisanaga S. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem 2000; 275:17166-72. [PMID: 10748088 DOI: 10.1074/jbc.m907757199] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.
Collapse
Affiliation(s)
- G Kusakawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiohji, Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
227
|
Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM, Gertler FB, Vidal M, Van Etten RA, Tsai LH. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 2000; 26:633-46. [PMID: 10896159 DOI: 10.1016/s0896-6273(00)81200-3] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a small serine/threonine kinase that plays a pivotal role during development of the CNS. Cables, a novel protein, interacts with Cdk5 in brain lysates. Cables also binds to and is a substrate of the c-Abl tyrosine kinase. Active c-Abl kinase leads to Cdk5 tyrosine phosphorylation, and this phosphorylation is enhanced by Cables. Phosphorylation of Cdk5 by c-Abl occurs on tyrosine 15 (Y15), which is stimulatory for p35/Cdk5 kinase activity. Expression of antisense Cables in primary cortical neurons inhibited neurite outgrowth. Furthermore, expression of active Abl resulted in lengthening of neurites. The data provide evidence for a Cables-mediated interplay between the Cdk5 and c-Abl signaling pathways in the developing nervous system.
Collapse
Affiliation(s)
- L R Zukerberg
- Howard Hughes Medical Institute, Department of Pathology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Dobashi Y, Shoji M, Kitagawa M, Noguchi T, Kameya T. Simultaneous suppression of cdc2 and cdk2 activities induces neuronal differentiation of PC12 cells. J Biol Chem 2000; 275:12572-80. [PMID: 10777547 DOI: 10.1074/jbc.275.17.12572] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of cdc2 and cdk2 during neuronal differentiation in rat pheochromocytoma PC12 cells was examined. When PC12 cells were cultured with nerve growth factor (NGF), expression of cdc2 decreased significantly after day 5, while expression of cdk2 decreased gradually after day 7. Cells overexpressing cdc2 or cdk2 were resistant to NGF-induced differentiation and growth suppression, and maintained high cdc2 or cdk2 kinase activity, respectively, during NGF treatment. In contrast, the NGF-treated parental cells showed a marked decline in these kinase activities after day 3. When PC12 cells were treated with specific inhibitors of cdc2/cdk2 (butyrolactone-I, olomoucin), they showed marked neurite extension and up-regulation of microtubule-associated protein 2 expression. In addition, treatment with mixtures of antisense oligonucleotides for cdc2 and cdk2 resulted in down-regulation of both cdc2 and cdk2 kinase activities as well as significant neurite outgrowth and up-regulation of microtubule-associated protein 2 expression. However, neurite outgrowth was not observed in cells treated with either single antisense oligonucleotide, or antisense cdc2 + cdk4 or cdk2 + cdk4 oligonucleotide mixtures. These results suggest that simultaneous down-regulation of cdc2 and cdk2 activity is sufficient and necessary for neuronal differentiation in PC12 cells.
Collapse
Affiliation(s)
- Y Dobashi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
229
|
Humbert S, Dhavan R, Tsai L. p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 2000; 113 ( Pt 6):975-83. [PMID: 10683146 DOI: 10.1242/jcs.113.6.975] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cyclin-dependent kinase 5 (cdk5) is a small serine/threonine kinase that displays close sequence homology to the mitotically active cyclin-dependent kinases. Cdk5 has been shown to play an essential role in the development of the nervous system, including neuronal migration and neurite outgrowth. Cdk5 activation requires the presence of a regulatory activator such as p35. cdk5 -/- mice have much more extensive defects in the development of the nervous system than p35 -/- mice, leading to the speculation that other regulatory activators of cdk5 exist. Indeed, p39 is a p35 related protein isolated by sequence homology to p35. We show here that p39 associates with cdk5 in brain lysates, and that this complex is active in phosphorylation of histone H1. By extensive characterization of p39 subcellular localization in different cell types, we demonstrate the presence of p39 in lamellipodial and fillopodial structures of cells and in growth cones of neurons. We show that p39 colocalizes with actin, and cofractionates with the detergent insoluble cytoskeleton from brain. Further, p39 coimmunoprecipitates with actin in brain lysates. Finally, disruption of the actin cytoskeleton alters p39 subcellular localization as well as kinase activity of the p39/cdk5 complex. Therefore, our results reveal the existence of the p39/cdk5 complex in vivo and suggest that it might play a role in regulating actin cytoskeletal dynamics in cells.
Collapse
Affiliation(s)
- S Humbert
- Howard Hughes Medical Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
230
|
Taylor GA, Hudson E, Resau JH, Vande Woude GF. Regulation of P311 expression by Met-hepatocyte growth factor/scatter factor and the ubiquitin/proteasome system. J Biol Chem 2000; 275:4215-9. [PMID: 10660586 DOI: 10.1074/jbc.275.6.4215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P311 is a mouse cDNA originally identified for its high expression in late-stage embryonic brain and adult cerebellum, hippocampus, and olfactory bulb. The protein product of P311, however, had not been identified previously, and its function remains unknown. We report here that P311 expression is regulated at multiple levels by pathways that control cellular transformation. P311 mRNA expression was decreased sharply in both neural and smooth muscle cells when the cells were transformed by coexpression of the oncogenic tyrosine kinase receptor Met and its ligand hepatocyte growth factor/scatter factor. The P311 mRNA was found to encode an 8-kDa polypeptide that was subject to rapid degradation by the lactacystin-sensitive ubiquitin/proteasome system and an unidentified metalloprotease, resulting in a protein half-life of about 5 min. These data suggest that P311 expression is dramatically decreased by several pathways that regulate cellular growth.
Collapse
Affiliation(s)
- G A Taylor
- Advanced Bioscience Laboratories Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
231
|
Meijer L, Thunnissen AM, White AW, Garnier M, Nikolic M, Tsai LH, Walter J, Cleverley KE, Salinas PC, Wu YZ, Biernat J, Mandelkow EM, Kim SH, Pettit GR. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. CHEMISTRY & BIOLOGY 2000; 7:51-63. [PMID: 10662688 DOI: 10.1016/s1074-5521(00)00063-6] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Over 2000 protein kinases regulate cellular functions. Screening for inhibitors of some of these kinases has already yielded some potent and selective compounds with promising potential for the treatment of human diseases. RESULTS The marine sponge constituent hymenialdisine is a potent inhibitor of cyclin-dependent kinases, glycogen synthase kinase-3beta and casein kinase 1. Hymenialdisine competes with ATP for binding to these kinases. A CDK2-hymenialdisine complex crystal structure shows that three hydrogen bonds link hymenialdisine to the Glu81 and Leu83 residues of CDK2, as observed with other inhibitors. Hymenialdisine inhibits CDK5/p35 in vivo as demonstrated by the lack of phosphorylation/down-regulation of Pak1 kinase in E18 rat cortical neurons, and also inhibits GSK-3 in vivo as shown by the inhibition of MAP-1B phosphorylation. Hymenialdisine also blocks the in vivo phosphorylation of the microtubule-binding protein tau at sites that are hyperphosphorylated by GSK-3 and CDK5/p35 in Alzheimer's disease (cross-reacting with Alzheimer's-specific AT100 antibodies). CONCLUSIONS The natural product hymenialdisine is a new kinase inhibitor with promising potential applications for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- L Meijer
- CNRS, Station Biologique, Roscoff cedex, 29682, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999; 402:615-22. [PMID: 10604467 DOI: 10.1038/45159] [Citation(s) in RCA: 1193] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is required for proper development of the mammalian central nervous system. To be activated, Cdk5 has to associate with its regulatory subunit, p35. We have found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease. This accumulation correlates with an increase in Cdk5 kinase activity. Unlike p35, p25 is not readily degraded, and binding of p25 to Cdk5 constitutively activates Cdk5, changes its cellular location and alters its substrate specificity. In vivo the p25/Cdk5 complex hyperphosphorylates tau, which reduces tau's ability to associate with microtubules. Moreover, expression of the p25/Cdk5 complex in cultured primary neurons induces cytoskeletal disruption, morphological degeneration and apoptosis. These findings indicate that cleavage of p35, followed by accumulation of p25, may be involved in the pathogenesis of cytoskeletal abnormalities and neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- G N Patrick
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
233
|
Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, Stuenkel EL. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem 1999; 274:4027-35. [PMID: 9933594 DOI: 10.1074/jbc.274.7.4027] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Munc18a, a mammalian neuronal homologue of Saccharomyces cerevisiae Sec1p protein, is essential for secretion, likely as a result of its high affinity interaction with the target SNARE protein syntaxin 1a (where SNARE is derived from SNAP receptor (the soluble N-ethylmaleimide-sensitive fusion protein)). However, this interaction inhibits vesicle SNARE interactions with syntaxin that are required for secretory vesicles to achieve competency for membrane fusion. As such, regulation of the interaction between Munc18a and syntaxin 1a may provide an important mechanism controlling secretory responsiveness. Cyclin-dependent kinase 5 (Cdk5), a member of the Cdc2 family of cell division kinases, co-purifies with Munc18a from rat brain, interacts directly with Munc18a in vitro, and utilizes Munc18a as a substrate for phosphorylation. We have now demonstrated that Cdk5 is capable of phosphorylating Munc18a in vitro within a preformed Munc18a.syntaxin 1a heterodimer complex and that this results in the disassembly of the complex. Using site-directed mutagenesis, the Cdk5 phosphorylation site on Munc18a was identified as Thr574. Stimulation of secretion from neuroendocrine cells produced a corresponding rapid translocation of cytosolic Cdk5 to a particulate fraction and an increase of Cdk5 kinase activity. Inhibition of Cdk5 with olomoucine decreased evoked norepinephrine secretion from chromaffin cells, an effect not observed with the inactive analogue iso-olomoucine. The effects of olomoucine were independent of calcium influx as evidenced by secretory inhibition in permeabilized chromaffin cells and in cells under whole-cell voltage clamp. Furthermore, transfection and expression in chromaffin cells of a neural specific Cdk5 activator, p25, led to a strong increase in nicotinic agonist-induced secretory responses. Our data suggest a model whereby Cdk5 acts to regulate Munc18a interaction with syntaxin 1a and thereby modulates the level of vesicle SNARE interaction with syntaxin 1a and secretory responsiveness.
Collapse
Affiliation(s)
- A I Fletcher
- Departments of Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
234
|
Saito T, Ishiguro K, Onuki R, Nagai Y, Kishimoto T, Hisanaga S. Okadaic acid-stimulated degradation of p35, an activator of CDK5, by proteasome in cultured neurons. Biochem Biophys Res Commun 1998; 252:775-8. [PMID: 9837783 DOI: 10.1006/bbrc.1998.9739] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degradation of p35, a neuron-specific activator of CDK5, was studied in rat cortical neurons in primary culture. Treatment of cultured neurons with cyclohexamide induced the rapid disappearance of p35 accompanied by parallel inactivation of the kinase activity of CDK5. The disappearance of p35 was blocked with proteasome inhibitors benzyloxycarbonyl-leucyl-leucyl-leucinal and lactacystin, indicating the involvement of proteasome. The degradation of p35 was induced with okadaic acid in the presence of ATP in neuron extracts. The degradation of p35 by proteasome in cultured neurons was stimulated by okadaic acid in the absence of cyclohexamide. These results indicate that p35 is degraded by proteasome in a phosphorylation-dependent manner in neurons.
Collapse
Affiliation(s)
- T Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-ohsawa, Tokyo, Hachiohji, 192-0397, Japan.
| | | | | | | | | | | |
Collapse
|