201
|
Baron-Bodo V, Doceur P, Lefebvre ML, Labroquère K, Defaye C, Cambouris C, Prigent D, Salcedo M, Boyer A, Nardin A. Anti-tumor properties of human-activated macrophages produced in large scale for clinical application. Immunobiology 2005; 210:267-77. [PMID: 16164034 DOI: 10.1016/j.imbio.2005.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When properly activated, macrophages can be tumoricidal. To harness the therapeutic potential of these cells, we have developed a process for ex vivo production of large numbers of IFN-gamma-activated monocyte-derived macrophages. These monocyte-derived activated killer (MAK) cells have been safely administered to cancer patients with minimal residual disease in phase I/II clinical studies. To evaluate efficacy of treatment with MAK cells, phase III clinical studies are necessary. The process of MAK cell production has been further optimized and qualified for use in large cohorts of patients. In this study, we characterized MAK cells produced in large scale by studying their phenotype and functions. MAK cells were shown to exert anti-tumor activity by killing tumor cells and inhibiting their proliferation. These activities were enhanced by activation with IFN-gamma and addition of anti-tumor antibodies. Tumor necrosis factor-alpha (TNF-alpha) was one of the mediators used by MAK cells to inhibit tumor proliferation. To facilitate logistics of clinical trials, a process for MAK cell cryopreservation has been developed. We verified in vitro that cryopreserved cells retained the activity of fresh cells and were stable during storage. The safety and efficacy of cryopreserved MAK cells (Bexidem) are currently being assessed on superficial bladder cancer patients in a phase II/III clinical trial.
Collapse
|
202
|
Cassatella MA, Huber V, Calzetti F, Margotto D, Tamassia N, Peri G, Mantovani A, Rivoltini L, Tecchio C. Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators. J Leukoc Biol 2005; 79:123-32. [PMID: 16244105 DOI: 10.1189/jlb.0805431] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils are versatile cells, which play a role, not only in inflammatory processes but also in immune and antitumoral responses. Recently, we have reported that interferon (IFN)-activated neutrophils are able to release biologically active tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2 ligand), a molecule exerting selective, apoptotic activities toward tumor and virus-infected cells, as well as immunoregulatory functions on activated T lymphocytes. Herein, we show that only a minor fraction of the total TRAIL, newly synthesized by IFN-activated neutrophils within 24 h, is released outside, the rest being retained intracellularly, mainly in secretory vesicles and light membrane fractions. We demonstrate that the intracellular pool of TRAIL present in IFN-pretreated neutrophils is rapidly mobilizable to the cell surface and can be secreted following exposure to proinflammatory mediators such as TNF-alpha, lipopolysaccharide, formyl-methionyl-leucyl-phenylalanine, CXC chemokine ligand 8/interleukin-8, insoluble immunocomplexes, and heat shock protein Gp96. These various proinflammatory agonists functioned as effective secretagogue molecules only, in that they failed to augment TRAIL mRNA expression or TRAIL de novo synthesis in freshly isolated neutrophils or cultured with or without IFN. In addition, supernatants from IFN-treated neutrophils stimulated with proinflammatory mediators induced the apoptosis of target cells more effectively than supernatants from neutrophils activated with IFNs alone. Collectively, our results uncover a novel mechanism, whereby the release of soluble TRAIL by neutrophils can be greatly amplified and further reinforce the notion that neutrophils are important cells in tumor surveillance and immunomodulation.
Collapse
Affiliation(s)
- Marco A Cassatella
- Division of General Pathology, Department of Pathology, University of Verona, Itlay.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Huang Y, Erdmann N, Zhao J, Zheng J. The signaling and apoptotic effects of TNF-related apoptosis-inducing ligand in HIV-1 associated dementia. Neurotox Res 2005; 8:135-48. [PMID: 16260391 DOI: 10.1007/bf03033825] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HIV-1 Associated Dementia (HAD) develops during progressive HIV-1 infection and is characterized by cognitive impairments, behavioral disorders and potential progressive motor abnormality. Abnormal inflammation within the central nervous system (CNS), activation of macrophage/microglia and involvement of proinflammatory cytokines have been suggested as primary factors in the pathogenesis of HAD. Impairment of neuronal function and neuronal cell death are believed to be the end pathophysiological result of HAD. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family of cytokines, was suggested to participate in apoptotic cell death during HAD. As a death ligand, TRAIL was originally thought to target only tumor cells. TRAIL is not typically present in CNS; however, emerging data show that TRAIL can be induced by immune stimuli on macrophage and microglia, major disease effector cells during HAD. Upregulated TRAIL may then cause neuronal apoptosis through direct interaction with TRAIL receptors on neurons or through macrophage death-mediated release of neurotoxins. In this review, we summarize the pivotal role of TRAIL in HAD and TRAIL-initiated intracellular death cascades that culminate in neuronal apoptosis as observed in HAD.
Collapse
Affiliation(s)
- Y Huang
- The Laboratory of Neurotoxicology at the Center for Neurovirology & Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
204
|
Vassina E, Leverkus M, Yousefi S, Braathen LR, Simon HU, Simon D. Increased Expression and a Potential Anti-Inflammatory Role of TRAIL in Atopic Dermatitis. J Invest Dermatol 2005; 125:746-52. [PMID: 16185275 DOI: 10.1111/j.0022-202x.2005.23878.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of many transformed but also of non-transformed cells. In addition, TRAIL receptor activation has been reported to activate non-apoptotic signaling pathways. Here, we report an increased expression of TRAIL in peripheral blood T cells and monocytes from patients with atopic dermatitis (AD) compared with control individuals. High TRAIL expression was also observed in skin-infiltrating T cells of AD patients. Topical tacrolimus treatment reduced the total number of T cells in the skin, but the relative proportion of TRAIL-positive cells within both CD4+ and CD8+ cell populations did not change. TRAIL was demonstrated to induce the expression of interleukin-1 receptor antagonist (IL-1Ra) in keratinocytes in a caspase-independent manner in vitro. Moreover, increased expression of IL-1Ra was observed in keratinocytes of AD lesional skin. These data suggest that TRAIL-expressing inflammatory skin cells may contribute to the epidermal activation of the IL-1Ra gene in AD.
Collapse
|
205
|
Enjoji M, Morizono S, Kotoh K, Kohjima M, Miyagi Y, Yoshimoto T, Nakamuta M. Re-evaluation of antitumor effects of combination chemotherapy with interferon-α and 5-fluorouracil for advanced hepatocellular carcinoma. World J Gastroenterol 2005; 11:5685-7. [PMID: 16237765 PMCID: PMC4481488 DOI: 10.3748/wjg.v11.i36.5685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy of combination chemotherapy with interferon-α (IFN α ) and 5-fluorouracil (5-FU) in patients with advanced hepatocellular carcinoma (HCC).
METHODS: Twenty-eight HCC patients in advanced stage were enrolled in the study. They were treated with IFNα / 5-FU combination chemotherapy. One cycle of therapy lasted for 4 wk. IFNα (3×106 units) was subcutaneously injected thrice weekly on days 1, 3, and 5 for 3 wk, and 5-FU (500 mg/d) was administered via the proper hepatic artery for 5 consecutive days per week for 3 wk. No drugs were administered during the 4th wk. The effect of combination chemotherapy was evaluated in each patient after every cycle based on the reduction of tumor volume.
RESULTS: After the 1st cycle of therapy, 16 patients showed a partial response (PR, 57.1%) but none showed a complete response (CR, 0%). At the end of therapy, the number of patients who showed a CR, PR, or no response (NR) was 1, 10, and 17, respectively. The response rate for therapy (CR+PR) was 21.5%. Biochemical tests before therapy were compared between responsive (CR+PR) and non-responsive (NR) patients, but no significant differences were found for any of the parameters examined, indicating that no reasonable predictors could be identified in our analysis.
CONCLUSION: Attempts should be made to discriminate between responders and non-responders by evaluating tumor size after the first cycle of IFNα /5-FU combination chemotherapy. For non-responders, therapy should not proceed to the next cycle, and instead, different combination of anticancer drugs should be explored.
Collapse
Affiliation(s)
- Munechika Enjoji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
206
|
Vermot-Desroches C, Sergent E, Bonnin B, Wijdenes J. Characterization of monoclonal antibodies directed against trail or trail receptors. Cell Immunol 2005; 236:86-91. [PMID: 16157319 DOI: 10.1016/j.cellimm.2005.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 06/11/2005] [Indexed: 11/23/2022]
Abstract
A subset of tumour necrosis factor receptor family members is involved in death transducing signals and is, therefore, referred as the "death receptors." Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many tumour cells but only rarely in normal cells. Five distinct receptors have been described for TRAIL: TRAIL R1 (DR4), TRAIL R2 (DR5, TRICK), TRAIL R3 (TRID, DcR1), TRAIL R4 (TRUNDD, DcR2), and osteoprotegerin. In the Eighth International Workshop on Human Leukocyte Differentiation Antigens, 10 monoclonal antibodies (mAbs) reported to be specific for TRAIL or for TRAIL receptors were submitted. In the present study, the mAb specificity was determined by ELISA. Using these mAbs, investigation on the expression of TRAIL and TRAIL receptors was performed. Some of them were able to modulate TRAIL induced programmed cell death.
Collapse
|
207
|
Kemp TJ, Ludwig AT, Earel JK, Moore JM, Vanoosten RL, Moses B, Leidal K, Nauseef WM, Griffith TS. Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood 2005; 106:3474-82. [PMID: 16037389 PMCID: PMC1895062 DOI: 10.1182/blood-2005-03-1327] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used to treat bladder cancer for almost 30 years; however, the effector mechanism of the BCG-induced antitumor response remains enigmatic. Most BCG research has focused on the mononuclear-cell infiltrate, but growing evidence supports a role for neutrophils in the antitumor response. Previously, we demonstrated increased urinary tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo-2L) levels from BCG-responsive patients compared to nonresponders. Interestingly, neutrophils isolated from the urine expressed TRAIL/Apo-2L, leading us to investigate the neutrophil response to BCG. BCG-stimulated neutrophils expressed surface-bound and released functional soluble TRAIL/Apo-2L. Whereas neither interferon alpha (IFN-alpha) nor IFN-gamma directly induced TRAIL/Apo2L expression by neutrophils, IFN-alpha did stimulate TRAIL gene transcription, and IFN-primed neutrophils contained and released more TRAIL/Apo-2L after BCG stimulation than did unprimed neutrophils. In unstimulated neutrophils TRAIL/Apo-2L was present predominantly in the azurophilic granules and plasma-membrane-enriched/secretory-granule fraction. Finally, we observed that killed BCG, Toll-like receptor 2 (TLR2) and TLR4 agonists, and an M tuberculosis cell-wall fraction were each capable of inducing the release of soluble TRAIL/Apo-2L from neutrophils. These results further characterize the potential role neutrophils may play in initiating the antitumor response described with BCG treatment for superficial bladder cancer.
Collapse
Affiliation(s)
- Troy J Kemp
- Department of Urology, Interdisciplinary Graduate Program in Immunolgy, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Mehmut M, Takeda K, Abe M, Ogata H, Hirose S, Okumura K, Fujime M. Fas Ligand and TNF-Related Apoptosis-Inducing Ligand Induction on Infiltrating Lymphocytes in Bladder Carcinoma by Bacillus Calmette-Guérin Treatment. Urol Int 2005; 75:80-7. [PMID: 16037714 DOI: 10.1159/000085934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/16/2004] [Indexed: 01/27/2023]
Abstract
AIM To determine the molecular mechanisms underlying the efficacy of bacillus Calmette-Guérin (BCG) therapy against superficial carcinoma of the urinary bladder, we evaluated the expression of cytotoxic molecules on tumor-infiltrating lymphocytes before and after therapy. METHODS Immunofluorescence staining allowed the specific detection of Fas, Fas ligand (FasL), and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression on tumor cells and the respective leukocyte populations in biopsy samples from 6 patients. RESULTS Significant increases in the infiltration of FasL- and TRAIL-expressing CD4+ T cells and macrophages and FasL-expressing CD8+ T and NK cells were observed after BCG instillation in bladder carcinoma. Moreover, Fas expression was upregulated on tumor cells after BCG instillation. CONCLUSION The data suggested that the enhanced infiltration of FasL- and/or TRAIL-expressing leukocytes (CD4+ T cells, CD8+ T cells, natural killer cells and macrophages) and the induction of Fas expression on tumor cells may play an important role in the therapeutic effect of BCG instillation.
Collapse
Affiliation(s)
- Murat Mehmut
- Department of Urology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
209
|
Choi JW. Relationships between tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and hematopoietic activity in healthy adults. Ann Hematol 2005; 84:728-33. [PMID: 16007425 DOI: 10.1007/s00277-005-1077-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
To investigate the relationship between hematopoiesis and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), we measured soluble TRAIL concentrations, reticulocytes, hemograms, and anthropometric variables in 156 healthy subjects. Serum TRAIL concentrations were analyzed by an enzyme immunoassay. Serum ferritin, thyroid hormone, total cholesterol, creatinine, and blood glucose levels were determined. There were no significant differences in blood cell counts and biochemical parameters between the subjects with TRAIL less than 63.5 pg/ml and TRAIL at least 63.5 pg/ml, nor between those with TRAIL at most 47.5 pg/ml (20th percentile) and TRAIL > or =80.9 pg/ml (80th percentile). However, hemoglobin, mean corpuscular hemoglobin (MCH), and MCH concentration (MCHC) averaged 15.6+/-0.8 g/dl, 31.9+/-1.1 pg, and 34.5+/-0.9 g/dl in the subjects with TRAIL at most 47.5 pg/ml, which were significantly above the values in those with TRAIL at least 80.9 pg/ml (14.7+/-0.9 g/dl, 30.4+/-1.3 pg, and 33.2+/-1.2 g/dl, P<0.05, respectively). Serum TRAIL levels were significantly higher in the subjects with decreased MCH than in those with elevated MCH. Soluble TRAIL concentrations were significantly correlated with hemoglobin (r=-0.25, P<0.05), MCH (r=-0.32, P<0.05), and MCHC (r=-0.29, P<0.05), but not correlated with leukocyte differentials and platelet counts. In conclusion, soluble TRAIL does not seem to influence leukocyte and platelet production but has an important relationship to erythropoiesis in healthy adults.
Collapse
Affiliation(s)
- J W Choi
- Department of Laboratory Medicine, Inha University Hospital, 7-206, 3-ga, Shinheung-dong, Jung-gu, Inchon, 400-711, South Korea.
| |
Collapse
|
210
|
Herzer K, Ganten TM, Schulze-Bergkamen H, Grosse-Wilde A, Koschny R, Krammer PH, Walczak H. Transforming growth factor beta can mediate apoptosis via the expression of TRAIL in human hepatoma cells. Hepatology 2005; 42:183-92. [PMID: 15962328 DOI: 10.1002/hep.20757] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transforming growth factor beta (TGF-beta) has been shown to induce apoptotic cell death in normal and transformed hepatocytes. However, the exact mechanism through which TGF-beta induces cell death is still unknown. We examined a potential role of various death receptor/ligand systems in TGF-beta-induced apoptosis and identified the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a mediator of TGF-beta-induced apoptosis in hepatoma cells. TGF-beta-induced apoptosis is significantly impaired upon blockage of TRAIL. We show that TRAIL is upregulated in hepatoma cells upon treatment with TGF-beta, whereas TRAIL receptor levels remain unchanged. In conclusion, our results provide evidence that the TRAIL system is critically involved in TGF-beta-induced cell death in liver pathology.
Collapse
Affiliation(s)
- Kerstin Herzer
- Division of Immunogenetics, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
211
|
Ishikawa E, Nakazawa M, Yoshinari M, Minami M. Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice. J Virol 2005; 79:7658-63. [PMID: 15919918 PMCID: PMC1143624 DOI: 10.1128/jvi.79.12.7658-7663.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of various tumor cells but not normal cells. However, various cytokines and virus infection differentially regulate TRAIL and TRAIL receptor expression. It has been demonstrated that virus infection changes the pattern of human TRAIL-receptor expression on normal cells, which were resistant to TRAIL-mediated apoptosis, and makes them susceptible to TRAIL-mediated apoptosis. Since previous studies on the function of TRAIL have been performed mainly in vitro, its physiological role in the immune response to virus infection remains unknown. In the present study, we investigated the expression of TRAIL in the lungs of influenza virus-infected mice and the function of TRAIL in the immune response to infection. Influenza virus infection increased TRAIL mRNA expression in the lung. TRAIL protein expression was induced on NK cells in the lung 4 days after infection. At 7 days after infection, TRAIL protein expression was also detected on CD4(+) and CD8(+) T cells. However, NK cells and T cells in the lungs of uninfected mice did not express a detectable level of TRAIL on their cell surfaces. DR5, which is a mouse TRAIL receptor, was also induced to express after virus infection. Expression of both TRAIL and DR5 mRNAs was reduced to normal level at 6 weeks after virus infection. Administration of anti-TRAIL monoclonal antibody, which blocks TRAIL without killing TRAIL-expressing cells, to mice during influenza virus infection significantly delayed virus clearance in the lung. These results suggest that TRAIL plays an important role in the immune response to virus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Apoptosis Regulatory Proteins
- Humans
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Influenza, Human/immunology
- Influenza, Human/virology
- Killer Cells, Natural/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Eri Ishikawa
- Department of Immunology, Yokohama City University School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | |
Collapse
|
212
|
Abstract
Apoptosis has been suggested to cause severe CD4+ T cell depletion in patients infected with HIV. This review focuses on the biological events involved in death ligand-induced apoptosis during HIV infection. Among these ligands, TRAIL appears critical in HIV-infection. Death ligand-induced apoptosis might be a major pathogenic event in many virus-induced diseases including AIDS and the clarification of its mechanism will aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yoshiharu Miura
- Laboratory of Viral Pathogenesis, Research Center for AIDS, Institute for Virus Research, Kyoto University, Japan.
| | | |
Collapse
|
213
|
Konur A, Schulz U, Eissner G, Andreesen R, Holler E. Interferon (IFN)-gamma is a main mediator of keratinocyte (HaCaT) apoptosis and contributes to autocrine IFN-gamma and tumour necrosis factor-alpha production. Br J Dermatol 2005; 152:1134-42. [PMID: 15948973 DOI: 10.1111/j.1365-2133.2005.06508.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Apoptosis of keratinocytes or intestinal epithelial cells is an important pathophysiological mechanism of organ damage during acute graft-versus-host disease. OBJECTIVES To analyse in detail the mediators and their mutual interaction leading to keratinocyte apoptosis. METHODS Experiments were performed using a keratinocyte cell line (HaCaT) and human skin explant cultures. RESULTS Supernatants (SN) of major histocompatibility complex nonmatched mixed lymphocyte cultures (MLCs) induced apoptosis in HaCaT cells and also in keratinocytes from skin biopsies. Although both interferon (IFN)-gamma and Fas ligand (FasL) were detected in MLC-SN by enzyme-linked immunosorbent assay, the apoptosis-inducing capacity could be fully abrogated by neutralization of IFN-gamma, but not by neutralization of FasL. Recombinant (r) IFN-gamma induced HaCaT keratinocyte apoptosis in a dose- and time-dependent manner. Induction of HaCaT apoptosis by rFasL alone was induced only at higher doses than present in MLC-SN, but apoptosis was dramatically enhanced in the presence of rIFN-gamma. Further synergistic effects with IFN-gamma in the induction of apoptosis were also observed with agonistic antitumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 antibody, soluble TRAIL and TNF-alpha. However, in contrast to FasL and TRAIL, TNF-alpha alone did not induce HaCaT apoptosis. Interleukin-1beta and lipopolysaccharide did not enhance the apoptosis-inducing effect of IFN-gamma. Beside its apoptosis-inducing capacity in HaCaT cells, rIFN-gamma also induced autocrine IFN-gamma production, and combined treatment with IFN-gamma and TNF-alpha induced autocrine TNF-alpha production. Neutralization of autocrine IFN-gamma protected HaCaT cells from apoptosis. CONCLUSIONS Taken together, our data suggest a central role for IFN-gamma in HaCaT keratinocyte apoptosis but also show the importance of co-acting mediators such as TNF-alpha, TRAIL and FasL, which potentiate the effect of paracrine and autocrine IFN-gamma and TNF-alpha release.
Collapse
Affiliation(s)
- A Konur
- Department of Haematology and Oncology, University of Regensburg, Germany.
| | | | | | | | | |
Collapse
|
214
|
Lub-de Hooge MN, de Vries EGE, de Jong S, Bijl M. Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis 2005; 64:854-8. [PMID: 15564310 PMCID: PMC1755511 DOI: 10.1136/ard.2004.029058] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Increased apoptosis may induce autoimmune conditions. Apoptosis is induced by binding of death receptor ligands, members of the tumour necrosis factor (TNF) superfamily, to their cognate receptors. The Fas-Fas ligand pathway has been studied extensively in relation to systemic lupus erythematosus (SLE). However, other death pathways are also considered important. TNF related apoptosis inducing ligand (TRAIL), another ligand of the TNF superfamily, induces apoptosis in sensitive cells. OBJECTIVE To assess soluble (s) TRAIL concentrations in sera of SLE patients. METHODS 40 SLE patients were studied (20 with active and 20 with inactive disease). Serum sTRAIL concentrations were measured by a solid phase sandwich enzyme linked immunosorbent assay. Levels in SLE patients were compared with those in patients with rheumatoid arthritis (n = 20), Wegener's granulomatosis (n = 20), and healthy controls (n = 20). RESULTS Mean (SEM) serum sTRAIL concentration in SLE patients (936.0 (108.2) pg/ml) was higher than in healthy controls (509.4 (33.8) pg/ml; p<0.01) or in disease control patients with rheumatoid arthritis (443.8 (36.1) pg/ml, p<0.001) or Wegener's granulomatosis (357.1 (32.2) pg/ml; p<0.001). The mean serum sTRAIL concentration was 1010.2 (168.0) pg/ml for patients with inactive disease and 861.8 (138.7) pg/ml for those with active disease. sTRAIL values were not correlated with specific manifestations of the disease, such as leucopenia or lymphopenia, or with SLE disease activity index. CONCLUSIONS Serum sTRAIL concentrations are increased SLE patients. This seems to be disease specific and could indicate a role for TRAIL in SLE pathophysiology.
Collapse
Affiliation(s)
- M N Lub-de Hooge
- Department of Clinical Immunology University Hospital Groningen, PO Box 30.001, 9700 RB Groningen, Netherlands
| | | | | | | |
Collapse
|
215
|
Kaduka Y, Takeda K, Nakayama M, Kinoshita K, Yagita H, Okumura K. TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage. Biochem Biophys Res Commun 2005; 331:384-90. [PMID: 15850771 DOI: 10.1016/j.bbrc.2005.03.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Indexed: 11/19/2022]
Abstract
TWEAK induces diverse cellular responses, including pro-inflammatory chemokine production, migration, proliferation, and cell death through the TWEAK receptor, Fn14. In the present study, we examined the effect of TWEAK or Fn14 expression in tumor cells on tumor outgrowth in vivo. Administration of neutralizing anti-TWEAK mAb significantly reduced the frequency of tumor rejection and shortened the survival of mice intraperitoneally inoculated with TWEAK-sensitive Fn14-expressing tumor cells. Moreover, anti-TWEAK mAb treatment promoted the subcutaneous growth of TWEAK-sensitive Fn14-expressing tumor cells, and this promotion was abolished by the inhibition of macrophage infiltration but not NK cell depletion. In contrast, administration of anti-TWEAK mAb had no apparent effect on the growth of TWEAK-resistant tumor cells, even if tumor cells expressed Fn14. On the other hand, TWEAK expression in tumor cells had no significant effect on subcutaneous tumor growth. These results indicate that TWEAK mediates anti-tumor effect of macrophages in vivo.
Collapse
Affiliation(s)
- Yuki Kaduka
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
216
|
Yamamoto T, Nagano H, Sakon M, Wada H, Eguchi H, Kondo M, Damdinsuren B, Ota H, Nakamura M, Wada H, Marubashi S, Miyamoto A, Dono K, Umeshita K, Nakamori S, Yagita H, Monden M. Partial contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway to antitumor effects of interferon-alpha/5-fluorouracil against Hepatocellular Carcinoma. Clin Cancer Res 2005; 10:7884-95. [PMID: 15585621 DOI: 10.1158/1078-0432.ccr-04-0794] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Our purpose was to explore the contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway to antitumor effects of IFNalpha and 5-fluorouracil (5-FU) combination therapy for hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN Susceptibility of HCC cell lines to TRAIL and/or 5-FU was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effects of 5-FU, IFNalpha, or both on the expression of TRAIL receptors (R1, R2, R3, and R4) on HCC cells or TRAIL in peripheral blood mononuclear cells (PBMC) were examined by flow cytometry. IFNalpha-induced cytotoxic effects of PBMC on HCC cell lines were examined by (51)Cr release assay. TRAIL expression in peripheral blood mononuclear cells and liver tissue from patients was examined by real-time reverse transcription-PCR or immunohistochemistry. RESULTS HLE and HepG2 were sensitive to TRAIL, but HuH7, PLC/PRF/5, and HLF were resistant. 5-FU had synergistic effect on TRAIL in HLF and additive effect in four other HCC cell lines. TRAIL receptors on HCC cells were up-regulated by 5-FU, and IFNalpha induced TRAIL on CD4(+) T cells, CD14(+) monocytes, and CD56(+) NK cells. Treatment of effector cells by IFNalpha and target HCC cells by 5-FU enhanced the cytotoxicity of CD14(+) monocytes and CD56(+) NK cells against HCC cells via a TRAIL-mediated pathway. TRAIL mRNA overexpression was noted in PBMC of HCC patients who clinically responded to IFNalpha/5-FU combination therapy, and TRAIL(+) mononuclear cells were found in cancer tissue of a responder. CONCLUSION Our results suggest that modulation of TRAIL/TRAIL receptor-mediated cytotoxic pathway might partially contribute to the anti-HCC effect of IFNalpha and 5-FU combination therapy.
Collapse
Affiliation(s)
- Tameyoshi Yamamoto
- Department of Surgery and Clinical Oncology, Graduate School of Medicine, Osaka, University, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Ramaswamy M, Efimova EV, Martinez O, Mulherkar NU, Singh SP, Prabhakar BS. IG20 (MADD splice variant-5), a proapoptotic protein, interacts with DR4/DR5 and enhances TRAIL-induced apoptosis by increasing recruitment of FADD and caspase-8 to the DISC. Oncogene 2005; 23:6083-94. [PMID: 15208670 DOI: 10.1038/sj.onc.1207804] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, we identified Insulinoma-Glucagonoma clone 20 (IG20) that can render cells more susceptible to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. In addition, it can slow cell proliferation, and enhance drug- and radiation-induced cell death. TNF-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in some cancer cells and render others susceptible to cotreatment with drugs and irradiation, with little or no effect on most normal cells. In this study, we investigated the potential of IG20 to enhance TRAIL-induced apoptosis and found that it can render cells more susceptible to TRAIL treatment through enhanced activation of caspases. Further, we showed that this effect can be suppressed by caspase inhibitors, p35 and CrmA, and a dominant-negative Fas-associated death domain-containing protein (DN-FADD). Results from colocalization and immunoprecipitation studies showed that IG20 can interact with TRAIL death receptors (DR), DR4 and DR5 and increase recruitment of FADD and caspase-8 into the TRAIL death-inducing signaling complex (DISC). These results indicate that IG20 is a novel protein that can enhance TRAIL-induced apoptosis by facilitating DISC formation.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Department of Microbiology and Immunology, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
218
|
Shi J, Ikeda K, Fujii N, Kondo E, Shinagawa K, Ishimaru F, Kaneda K, Tanimoto M, Li X, Pu Q. Activated human umbilical cord blood dendritic cells kill tumor cells without damaging normal hematological progenitor cells. Cancer Sci 2005; 96:127-33. [PMID: 15723658 PMCID: PMC11160073 DOI: 10.1111/j.1349-7006.2005.00017.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Apart from their role as antigen presenting cells, human peripheral blood monocyte and CD34+ cell-derived dendritic cells (DC), have been demonstrated to exert cytotoxicity against some tumor cells, and their tumoricidal activity can be enhanced by some stimili. However, there have been no reports concerning the tumoricidal activity of human cord blood dendritic cells (CBDC). In this article, we report that human cord blood monocyte-derived DC acquire the ability to kill hematological tumor cells, after activation with lipopolysaccharide (LPS) or gamma-interferon (IFN-gamma), associated with the enhanced TNF-alpha-related apoptosis-inducing ligand (TRAIL) expression in CBDC cytoplasm. The CD14-positive cells collected from cord blood were induced to CBDC in vitro. After activation with IFN-gamma for 12 h, CBDC exhibited cytotoxicity against HL60 and Jurkat cells, while activation with LPS induced cytotoxicity against Daudi and Jurkat cells. However, both LPS- and IFN-gamma-stimulated CBDC showed no cytotoxic activity against normal CD14-negative cord blood mononuclear cells. The formation of umbilical cord hematopoietic progenitor colonies, identified as burst-forming unit-erythroid and colony-forming unit granulocyte-macrophage, was not inhibited by stimulated or unstimulated CBDC. IFN-gamma or LPS stimulation enhanced intracellular but not cellular surface TRAIL, and neither intracellular nor cellular surface tumor necrosing factor-alpha and Fas Ligand as analyzed by flow cytometry. Our results show that activated CBDC can serve as cytotoxic cells against hematological tumor cells without damaging the normal hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Jun Shi
- Hematology Department, Sixth Hospital of Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Diehl GE, Yue HH, Hsieh K, Kuang AA, Ho M, Morici LA, Lenz LL, Cado D, Riley LW, Winoto A. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 2005; 21:877-89. [PMID: 15589175 DOI: 10.1016/j.immuni.2004.11.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 11/04/2004] [Accepted: 11/10/2004] [Indexed: 12/20/2022]
Abstract
TRAIL receptor (TRAIL-R) signaling has been implicated in inducing apoptosis in tumor cells, but little is understood about its physiological function. Here, we report the generation and characterization of TRAIL-R(-/-) mice, which develop normal lymphocyte populations but possess enhanced innate immune responses. TRAIL-R(-/-) mice exhibited increased clearance of murine cytomegalovirus that correlated with increased levels of IL-12, IFN-alpha, and IFN-gamma. Stimulation of macrophages with Mycobacterium and Toll-like receptor (TLR)-2, -3, and -4, but not TLR9, ligands resulted in high levels of TRAIL upregulation and enhanced cytokine production in TRAIL-R(-/-) cells. The immediate-early TLR signaling events in TRAIL-R(-/-) macrophages and dendritic cells are normal, but I kappa B-alpha homeostatic regulation and NF-kappa B activity at later time points is perturbed. These data suggest that TRAIL-R negatively regulates innate immune responses.
Collapse
Affiliation(s)
- Gretchen E Diehl
- Department of Molecular and Cell Biology, Division of Immunology and Cancer Research Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Meyerholz DK, Grubor B, Fach SJ, Sacco RE, Lehmkuhl HD, Gallup JM, Ackermann MR. Reduced clearance of respiratory syncytial virus infection in a preterm lamb model. Microbes Infect 2004; 6:1312-9. [PMID: 15555538 PMCID: PMC2791065 DOI: 10.1016/j.micinf.2004.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 08/20/2004] [Indexed: 11/23/2022]
Abstract
Respiratory syncytial virus (RSV) causes significant respiratory disease in children worldwide. For the study of severe RSV disease seen in preterm infants, a suitable animal model is lacking. The novel hypothesis of this study was that preterm lambs are susceptible to bovine RSV (bRSV) infection, an analogous pneumovirus with ruminant host specificity, and that there would be age-dependent differences in select RSV disease parameters. During RSV infection, preterm lambs had elevated temperatures and respiration rates with mild anorexia and cough compared to controls. Gross lesions included multifocal consolidation and atelectasis with foci of hyperinflation. Microscopic lesions included multifocal alveolar septal thickening and bronchiolitis. Immunohistochemistry localized the RSV antigen to all layers of bronchiolar epithelium from a few basal cells to numerous sloughing epithelia. A few mononuclear cells were also immunoreactive. To assess for age-dependent differences in RSV infection, neonatal lambs were infected similarly to the preterm lambs or with a high-titer viral inoculum. Using morphometry at day 7 of infection, preterm lambs had significantly more cellular immunoreactivity for RSV antigen (P <0.05) and syncytial cell formation (P <0.05) than either group of neonatal lambs. This work suggests that perinatal RSV clearance is age-dependent, which may explain the severity of RSV infection in preterm infants. The preterm lamb model is useful for assessing age-dependent mechanisms of severe RSV infection.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Veterinary Pathology, Iowa State University, 2740 Veterinary Medicine, Ames, IA 50011-1250, USA.
| | | | | | | | | | | | | |
Collapse
|
221
|
Shankar S, Srivastava RK. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 2004; 7:139-56. [PMID: 15158769 DOI: 10.1016/j.drup.2004.03.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/28/2022]
Abstract
Activation of cell surface death receptors by their cognate ligands triggers apoptosis. Several human death receptors (Fas, TNF-R1, TRAMP, DR4, DR5, DR6, EDA-R and NGF-R) have been identified. The most promising cytokine for anticancer therapy is TRAIL/APO-2L, which induces apoptosis in cancer cells by binding to death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. The cytotoxic activity of TRAIL is relatively selective to cancer cells compared to normal cells. Signaling by TRAIL and its receptors is tightly regulated process essential for key physiological functions in a variety of organs, as well as the maintenance of immune homeostasis. Despite early promising results, recent studies have identified several TRAIL-resistant cancer cells of various origins. Based on molecular analysis of death-receptor signaling pathways several new approaches have been developed to increase the efficacy of TRAIL. Resistance of cancer cells to TRAIL appears to occur through the modulation of various molecular targets. They may include differential expression of death receptors, constitutively active Akt and NFkappaB, overexpression of cFLIP and IAPs, mutations in Bax and Bak genes, and defects in the release of mitochondrial proteins in resistant cells. Conventional chemotherapeutic and chemopreventive drugs, and irradiation can sensitize TRAIL-resistant cells to undergo apoptosis. Thus, these agents enhance the therapeutic potential of TRAIL in TRAIL-sensitive cells and sensitize TRAIL-resistant cells. TRAIL and TRAIL-receptor antibodies may prove to be useful for cancer therapy, either alone or in association with conventional approaches such as chemotherapy or radiation therapy. This review discusses intracellular mechanisms of TRAIL resistance and various approaches that can be taken to sensitize TRAIL-resistant cancer cells.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pharmaceutical Sciences, Greenebaum Cancer Center, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
222
|
Bron LP, Scolyer RA, Thompson JF, Hersey P. Histological expression of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in human primary melanoma. Pathology 2004; 36:561-5. [PMID: 15841691 DOI: 10.1080/00313020400011268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS Tumour necrosis factor-related apoptosis ligand (TRAIL) appears to selectively induce apoptosis in a wide range of cultured malignant cells, including melanoma. This study was designed to attempt to clarify the role of TRAIL in the biology of human melanoma. METHODS Tissue sections cut from formalin-fixed, paraffin-embedded tissue blocks of 45 primary cutaneous melanomas were tested for expression of TRAIL using immunohistochemistry. The intensity, pattern of staining and percentage of positively stained tumour cells were evaluated in each melanoma. Breslow thickness, ulcerative state, dermal mitotic rate and the presence of tumour infiltrating lymphocytes were measured/determined in each case. Median follow up for the cohort of patients was 10 months (range 1-18). Survival analysis was conducted using the Kaplan-Meier method. The level of expression of TRAIL was compared with the various histological determinants using the two-tailed Fisher's exact test and the chi2-test. RESULTS Overall and disease-free survival were 72 and 48%, respectively, and did not correlate with TRAIL expression. Among the pathological prognostic determinants, only mitotic rate showed a statistically significant correlation with TRAIL expression using the chi2-test (P=0.04). CONCLUSION We conclude that TRAIL expression in melanoma defines a more aggressive/proliferative phenotype, either through selection of apoptotic resistant cells or by secondary induction of other factors enhancing proliferation of more malignant cells. Analysis of a larger group of patients with longer follow-up is required to determine whether TRAIL expression correlates with survival of patients.
Collapse
Affiliation(s)
- Luc P Bron
- Sydney Head and Neck Cancer Institute, Royal Prince Alfred Hospital, Sydney, Australia
| | | | | | | |
Collapse
|
223
|
Fong RN, Gonzalez BPE, Fuentealba IC, Cherian MG. Role of tumor necrosis factor-alpha in the development of spontaneous hepatic toxicity in Long-Evans Cinnamon rats. Toxicol Appl Pharmacol 2004; 200:121-30. [PMID: 15476865 DOI: 10.1016/j.taap.2004.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/31/2004] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the potential role of TNF-alpha in the onset of acute hepatitis in the Long-Evans Cinnamon (LEC) rat, an animal model for inherited copper (Cu) toxicosis. In LEC rats, Cu is accumulated in the liver with age, and clinical signs of acute hepatitis were observed as, icterus, reduced body weight, nasal bleeding, dehydration, and reduced food intake at 12 weeks of age. Cellular changes such as apoptosis in the liver were evident in these rats with increasing age. Positive TNF-alpha and TNFR1 immunostainings were observed in hepatocytes and Kupffer cells in LEC rats. Hepatic levels of caspase-3 activity, TNF-alpha mRNA, and protein were also increased in LEC rats from 6 to 12 weeks of age as compared with control Long-Evans (LE) rats. The neutralization of TNF-alpha by passive immunization or the inhibition of caspase activity can block the apoptotic process initiated by TNF-alpha. In this study, we evaluated the effects of passive immunization of LEC rats with weekly administration of anti-rat TNF-alpha on Cu-induced acute hepatitis. This treatment resulted in a reduction of the percentage of apoptotic cells in the liver, decreased activity of caspase-3, and also in down-regulation of the TNF-alpha gene expression. Thus, these results suggest a major role for TNF-alpha on the pathogenesis of Cu-induced acute hepatitis in LEC rats.
Collapse
Affiliation(s)
- Rodolfo Niño Fong
- Department of Pathology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada N6A 5C1
| | | | | | | |
Collapse
|
224
|
Hussain SP, Trivers GE, Hofseth LJ, He P, Shaikh I, Mechanic LE, Doja S, Jiang W, Subleski J, Shorts L, Haines D, Laubach VE, Wiltrout RH, Djurickovic D, Harris CC. Nitric oxide, a mediator of inflammation, suppresses tumorigenesis. Cancer Res 2004; 64:6849-53. [PMID: 15466171 DOI: 10.1158/0008-5472.can-04-2201] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inflammation influences the development of cancer. The nitric oxide synthase (NOS2) is induced by inflammatory cytokines, e.g., tumor necrosis factor alpha and interleukin 1beta, and produces nitric oxide (NO*), a critical mediator of the inflammatory response. Because p53 governs NO* production by transcriptionally transrepressing NOS2, we used a genetic strategy to determine whether NO* and p53 cooperatively regulate tumorigenesis. Lymphomas developed more rapidly in p53-/-NOS2-/- or p53-/-NOS2+/- mice than in p53-/-NOS2+/+ mice that were cross-bred into a >95% C57BL6 background and maintained in a pathogen-free condition. Likewise, sarcomas and lymphomas developed faster in p53+/-NOS2-/- or p53+/-NOS2+/- than in p53+/-NOS2+/+ mice. When compared with the double knockout mice, p53-/-NOS2+/+ mice showed a higher apoptotic index and a decreased proliferation index with an increased expression of death receptor ligands, CD95-L and tumor necrosis factor-related apoptosis-inducing ligand, and the cell cycle checkpoint protein, p21(waf1), in the spleen and thymus before tumor development. Furthermore, mice deficient in both p53 and NOS2 produced a high level of anti-inflammatory interleukin 10 when compared with p53-deficient mice. These studies provide genetic and mechanistic evidence that NO* can suppress tumorigenesis.
Collapse
Affiliation(s)
- S Perwez Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K. TRAIL and its receptors as targets for cancer therapy. Cancer Sci 2004; 95:777-83. [PMID: 15504243 PMCID: PMC11159975 DOI: 10.1111/j.1349-7006.2004.tb02181.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 07/23/2004] [Accepted: 07/26/2004] [Indexed: 01/27/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines, which can induce apoptotic cell death in a variety of tumor cells by engaging the death receptors DR4 and DR5, while sparing most normal cells. Preclinical studies in mice and non-human primates have shown the potential utility of recombinant soluble TRAIL and agonistic anti-DR5 or DR4 antibodies for cancer therapy. Moreover, we have recently revealed a vital role for endogenously expressed TRAIL in immunosurveillance of developing and metastatic tumors. In this review, we summarize recent knowledge about TRAIL and its receptors as promising targets for cancer therapy.
Collapse
Affiliation(s)
- Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | |
Collapse
|
226
|
Hasegawa H, Yamada Y, Harasawa H, Tsuji T, Murata K, Sugahara K, Tsuruda K, Masuda M, Takasu N, Kamihira S. Restricted expression of tumor necrosis factor-related apoptosis-inducing ligand receptor 4 in human peripheral blood lymphocytes. Cell Immunol 2004; 231:1-7. [PMID: 15919363 DOI: 10.1016/j.cellimm.2004.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor but not normal cells, thus providing therapeutic possibilities for human cancers. However, it is not fully clear how widespread TRAIL receptors are, or how TRAIL signaling is modulated in normal cells. We characterized cell surface expression of TRAIL receptors in normal healthy donor peripheral blood and report that each of the TRAIL receptors are characteristically expressed on restricted cell populations. TRAIL-R1 is distinctively expressed on B-lymphocytes, TRAIL-R2 on monocytes, TRAIL-R3 on neutrophils and most impressively, CD8+ lymphocytes and NKT lymphocytes but not CD4+ lymphocytes express TRAIL-R4.
Collapse
Affiliation(s)
- Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Kemp TJ, Moore JM, Griffith TS. Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation. THE JOURNAL OF IMMUNOLOGY 2004; 173:892-9. [PMID: 15240676 DOI: 10.4049/jimmunol.173.2.892] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CpG-containing oligodeoxynucleotides (CpG ODN) have broad-ranging immunostimulatory effects, including the generation of antitumor immune responses. Analysis of different CpG ODN have identified two classes: CpG-A ODN, which stimulate high levels of IFN-alpha production from plasmacytoid dendritic cells and weakly activate B cells, and CpG-B ODN, which strongly activate B cells but stimulate low production of IFN-alpha from plasmacytoid dendritic cells. Previously, we observed that CpG-B ODN (2006) induces TRAIL/Apo-2 ligand (Apo-2L)-mediated killing of tumor cells by CD14(+) PBMC. In this study, we extend our investigation of CpG ODN-induced TRAIL/Apo-2L expression and activity in PBMC to include CpG-A ODN. Of the two classes, IFN-alpha production and TRAIL/Apo-2L-mediated killing of tumor cells was greatest with CpG-A ODN. Surprisingly, CD3(+), CD14(+), CD19(+), and CD56(+) PBMC expressed high levels of TRAIL/Apo-2L following CpG-A ODN stimulation. When isolated, the CD19(+) PBMC (B cells) were able to kill tumor cells in a TRAIL/Apo-2L-dependent manner. As with CD14(+) PBMC, CD19(+) sorted B cells were capable of up-regulating TRAIL/Apo-2L expression when stimulated with IFN-alpha alone. Interestingly, agonist anti-CD40 mAb further enhanced the IFN-alpha-induced TRAIL/Apo-2L expression on CD19(+) B cells. These results are the first to demonstrate human B cell-mediated killing of tumor cells in a TRAIL/Apo-2L-dependent fashion.
Collapse
Affiliation(s)
- Troy J Kemp
- Department of Urology, Interdisciplinary Graduate Program in Immunology, and Prostate Cancer Research Program of the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
228
|
Halaas Ø, Liabakk NB, Vik R, Beninati C, Henneke P, Sundan A, Espevik T. Monocytes Stimulated with Group B Streptococci or Interferons Release Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand. Scand J Immunol 2004; 60:74-81. [PMID: 15238075 DOI: 10.1111/j.0300-9475.2004.01448.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a cytotoxic member of the TNF family. Some reports have shown that TRAIL is released from cells in a soluble form. In this work, we have investigated the mechanism of release of TRAIL from monocytes. First, we show that whole gram-positive, gram-negative and mycoplasmal bacteria as well as lipopolysaccharide (LPS), interferon-alpha (IFN-alpha), -beta and -gamma all induced upregulation of TRAIL on the surface of human monocytes. Next, we show that IFN-alpha, -beta and -gamma all induced a dose-dependent release of TRAIL, giving significant amounts of soluble TRAIL after 2 days. Of the bacteria, only the Group B streptococcus COH-1 (GBS) induced release of TRAIL and concomittantly induced IFN-alpha. Monocytes stimulated with GBS or IFN-alpha also showed extensive cell death. When monocyte apoptosis was prevented by interleukin-1, GM-CSF, LPS or the caspase inhibitor zVADfmk, the IFN-alpha-induced release of TRAIL was reduced, whereas agents inducing necrosis caused increased release of TRAIL. LPS also prevented release of TRAIL from GBS-stimulated monocytes. The release of TRAIL from IFN-alpha-stimulated monocytes was reduced by inhibitors of both cysteine and metalloproteases. We conclude that bacteria and IFN induce upregulation of membrane TRAIL and that release of TRAIL is associated with cell death.
Collapse
Affiliation(s)
- Ø Halaas
- Institute of Cancer Research and Molecular Biology, NTNU, N-7489 Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
229
|
Abadie A, Besançon F, Wietzerbin J. Type I interferon and TNFalpha cooperate with type II interferon for TRAIL induction and triggering of apoptosis in SK-N-MC EWING tumor cells. Oncogene 2004; 23:4911-20. [PMID: 15077162 DOI: 10.1038/sj.onc.1207614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ewing's sarcoma is the second most common human bone tumor in childhood. Here, we investigated the sensitivity of the Ewing tumor cell line, SK-N-MC, to the apoptotic effect of type I (IFNalpha) and type II (IFNgamma) interferons and TNFalpha. We demonstrate that although IFNalpha and TNFalpha alone are unable to induce cell death, they act in synergy with IFNgamma to induce SK-N-MC cell apoptosis. The synergistic induction of apoptosis correlated with the synergistic induction of TNFalpha-related apoptosis-inducing ligand (TRAIL) mRNA and TRAIL protein synthesis as well as of TRAIL secretion. Preparations of inducer-free supernatants from SK-N-MC cells stimulated with combinations of cytokines were shown to be cytotoxic for untreated SK-N-MC cells. This cytotoxicity was partially inhibited by addition of TRAILR2/Fc fusion protein, indicating that the secreted TRAIL mediates, at least in part, the apoptotic effect displayed by the supernatants of stimulated SK-N-MC cells. We have shown that the presence of IFNgamma is required to allow the sustained expression of IRF1 in SK-N-MC cells stimulated by addition of IFNalpha or TNFalpha suggesting that IRF1 plays a role in the synergistic induction of apoptosis by combinations of cytokines. Furthermore, we have shown that inhibition of NF-kappaB activation contributes to the IFNgamma-mediated sensitization to the apoptotic effect of TNFalpha. To our knowledge, this is the first report showing that interferon/cytokine combinations are able to induce TRAIL gene expression and TRAIL protein synthesis and secretion in Ewing sarcoma-derived cells. We believe that the observations reported here might contribute to the development of alternative new approaches to the treatment of Ewing tumors resistant to conventional therapy.
Collapse
Affiliation(s)
- Annie Abadie
- INSERM U365 Institut Curie, Section Recherche, 26, rue D'Ulm, 75 248, Paris Cedex 05, France
| | | | | |
Collapse
|
230
|
Spierings DC, de Vries EG, Vellenga E, van den Heuvel FA, Koornstra JJ, Wesseling J, Hollema H, de Jong S. Tissue distribution of the death ligand TRAIL and its receptors. J Histochem Cytochem 2004; 52:821-31. [PMID: 15150291 DOI: 10.1369/jhc.3a6112.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recombinant human (rh) TNF-related apoptosis-inducing ligand (TRAIL) harbors potential as an anticancer agent. RhTRAIL induces apoptosis via the TRAIL receptors TRAIL-R1 and TRAIL-R2 in tumors and is non-toxic to nonhuman primates. Because limited data are available about TRAIL receptor distribution, we performed an immunohistochemical (IHC) analysis of the expression of TRAIL-R1, TRAIL-R2, the anti-apoptotic TRAIL receptor TRAIL-R3, and TRAIL in normal human and chimpanzee tissues. In humans, hepatocytes stained positive for TRAIL and TRAIL receptors and bile duct epithelium for TRAIL, TRAIL-R1, and TRAIL-R3. In brains, neurons expressed TRAIL-R1, TRAIL-R2, TRAIL-R3 but no TRAIL. In kidneys, TRAIL-R3 was negative, tubuli contorti expressed TRAIL-R1, TRAIL-R2, and TRAIL, and cells in Henle's loop expressed only TRAIL-R2. Heart myocytes showed positivity for all proteins studied. In colon, TRAIL-R1, TRAIL-R2, and TRAIL were present. Germ and Leydig cells were positive for all proteins studied. Endothelium in liver, heart, kidney, and testis lacked TRAIL-R1 and TRAIL-R2. In alveolar septa and bronchial epithelium TRAIL-R2 was expressed, brain vascular endothelium expressed TRAIL-R2 and TRAIL-R3, and in heart vascular endothelium only TRAIL-R3 was present. Only a few differences were observed between human and chimpanzee liver, brain, and kidney. In contrast to human, chimpanzee bile duct epithelium lacked TRAIL, TRAIL-R1, and TRAIL-R3, lung and colon showed no TRAIL or its receptors, TRAIL-R3 was absent in germ and Leydig cells, and vascular endothelium showed only TRAIL-R2 expression in the brain. In conclusion, comparable expression of TRAIL and TRAIL receptors was observed in human and chimpanzee tissues. Lack of liver toxicity in chimpanzees after rhTRAIL administration despite TRAIL-R1 and TRAIL-R2 expression is reassuring for rhTRAIL application in humans.
Collapse
Affiliation(s)
- Diana C Spierings
- Department of Medical Oncology, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that can induce apoptosis when binding to either of two receptors bearing an intracellular death domain. The physiologic function of the TRAIL system, which also comprises three receptors not mediating a death signal has just begun to be elucidated. Expression of TRAIL, mostly upon stimulation by interferons, in different cytotoxic immune cells suggested it has a role as an important effector molecule in immune surveillance. In addition to its ability to induce apoptosis in transformed tumor cells, TRAIL has attracted attention for its possibly critical role in the defense against viral infection. Viruses may induce TRAIL expression in host and?or immune cells and sensitize host cells toward TRAIL-mediated apoptosis. On the other hand, viruses have evolved a variety of strategies to prevent TRAIL-mediated host cell death early in infection, which may contribute to allowing their replication and the spread of viral progeny. The knowledge of the molecular mechanisms leading to modification of TRAIL sensitivity in virus-host cell interactions may also impact upon future (virus-based) strategies to increase TRAIL sensitivity of tumor cells.
Collapse
Affiliation(s)
- Jörn Sträter
- Department of Pathology, University Hospital of Ulm, D-89081 Ulm, Germany
| | | |
Collapse
|
232
|
Robertson NM, Rosemiller M, Lindemeyer RG, Steplewski A, Zangrilli JG, Litwack G. TRAIL in the airways. VITAMINS AND HORMONES 2004; 67:149-67. [PMID: 15110176 DOI: 10.1016/s0083-6729(04)67009-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is an important immunomodulatory factor that may play a role in the structural changes observed in the asthmatic airways. In vitro as well as in vivo studies have evidenced a dual role for TRAIL: it can either function as a pro- or anti-inflammatory cytokine on inflammatory cells, participating in the initiation and resolution of inflammatory and immune responses. TRAIL is expressed in the airways by inflammatory cells infiltrated in the bronchial mucosa, as well as by structural cells of the airway wall including fibroblasts, epithelial, endothelial, and smooth muscle cells. By releasing TRAIL, these different cell types may then participate in the increased levels of TRAIL observed in bronchoalveolar lavage fluid from asthmatic patients. Taken together, this suggests that TRAIL may play a role in inflammation in asthma. However, concerning its role is dual in the modulation of inflammation, further studies are needed to elucidate the precise role of TRAIL in the airways.
Collapse
Affiliation(s)
- Noreen M Robertson
- Department of Biochemistry and Molecular Pharmacology Jefferson Medical College, Thomas Jefferson University Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
233
|
Ehrlich S, Infante-Duarte C, Seeger B, Zipp F. Regulation of soluble and surface-bound TRAIL in human T cells, B cells, and monocytes. Cytokine 2004; 24:244-53. [PMID: 14609566 DOI: 10.1016/s1043-4666(03)00094-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF/nerve growth factor superfamily that, apart from inducing cell death in susceptible cells, displays immunoregulatory functions influencing, for instance, T cell proliferation. It can be found in two forms: membrane-bound and soluble protein. The regulation of these is still not fully understood. In this study, we have analyzed the regulation of TRAIL surface expression and secretion in human T cells, B cells, and monocytes in response to specific stimuli. T cells, B cells, and monocytes were cultured in the presence of phytohemagglutinin (PHA)+interleukin (IL-2), anti-CD40+IL-4, and lipopolysaccharide (LPS), respectively. In particular, not only PHA+IL-2 but also LPS were able to induce secretion of soluble TRAIL, but did not enhance the expression of surface-bound TRAIL. Simultaneously, we investigated the effect of the pleiotropic stimulus interferon (IFN)-beta, known to target all leukocyte subsets, on TRAIL. Predominantly, monocytes were affected by IFN-beta, causing both release of soluble TRAIL and upregulation of the surface-bound form. IFN-beta, however, did not cause any upregulation of TRAIL in T cells. Our data serve as a basis to better understand the complex regulation of TRAIL in human peripheral immune cells and might help to clarify the role of the TRAIL system in immunopathology.
Collapse
Affiliation(s)
- Stefan Ehrlich
- Institute of Neuroimmunology, Neuroscience Research Center, Charitè University Hospital, 10098 Berlin, Germany
| | | | | | | |
Collapse
|
234
|
Abadie A, Wietzerbin J. Involvement of TNF-related apoptosis-inducing ligand (TRAIL) induction in interferon gamma-mediated apoptosis in Ewing tumor cells. Ann N Y Acad Sci 2004; 1010:117-20. [PMID: 15033706 DOI: 10.1196/annals.1299.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the effect of IFN gamma or IFN gamma/IFN alpha and IFN gamma/TNF treatment on the apoptosis of Ewing tumor cells (SK-N-MC). The results show that treatment of cells with IFN gamma resulted in 17% of cell death while no effect was observed when cells were treated with IFN alpha or TNF alone. Percentage cell death increased markedly in IFN gamma/IFN alpha- and IFN gamma/TNF-treated cells (42% and 67%, respectively) as compared to IFN gamma-treated cells. These results suggest that IFN alpha and TNF amplified the apoptotic signal(s) induced by IFN gamma. It was shown recently that Ewing cells undergo apoptosis upon treatment with recombinant TRAIL (TNF-related apoptosis inducing ligand), a member of the TNF family. Thus, since cytokines were reported to be able to induce TRAIL in other cell systems, we were prompted to investigate whether TRAIL induction was involved in the mechanism responsible for IFN gamma-mediated cell death in Ewing cells. The results reported here are consistent with the notion that cell-associated and secreted TRAIL contribute in an autocrine or paracrine manner to the triggering of Ewing cell apoptosis induced by IFN gamma alone or combined with IFN alpha or TNF. The observations reported here might contribute to the development of alternative new approaches to the treatment of Ewing tumors resistant to conventional therapy.
Collapse
Affiliation(s)
- Annie Abadie
- INSERM U365, Institut Curie, Section Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05 France
| | | |
Collapse
|
235
|
Ugurel S, Uhlig D, Pföhler C, Tilgen W, Schadendorf D, Reinhold U. Down-regulation of HLA class II and costimulatory CD86/B7-2 on circulating monocytes from melanoma patients. Cancer Immunol Immunother 2004; 53:551-9. [PMID: 14727087 PMCID: PMC11032793 DOI: 10.1007/s00262-003-0489-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/13/2003] [Indexed: 12/16/2022]
Abstract
Antigen-presenting cells are crucial for the induction of an antigen-specific antitumoral immune response. Deteriorations in the expression pattern of cell surface molecules important for the presentation of antigens might therefore be indicative of an impaired immune response status in cancer patients. In the present study we investigated the expression of MHC class I and class II molecules, of the costimulatory molecules CD80/B7-1 and CD86/B7-2, of the adhesion molecule CD11c, and of the marker of activation CD71 on CD14+ peripheral blood monocytes (PBMs) from 144 melanoma patients in different stages of disease and 43 healthy controls, by flow cytometric analysis. We found a decreased expression of HLA-DR (p<0.0005), HLA-DQ (p=0.006), HLA-DP (p<0.0005), and CD86/B7-2 (p=0.001) on PBMs from melanoma patients compared with healthy controls, whereas no significant difference could be detected in the expression of HLA class I antigens and CD80/B7-1. This down-regulated expression was associated with disease progression. In contrast, CD71 expression was stage-dependently increased on PBMs from melanoma patients compared with healthy controls (p=0.024). No correlation was found between the PBM surface expression pattern and age, gender, tumor load, and current mode of therapy of the patients. The observed down-regulation of HLA class II and CD86/B7-2 on melanoma patients' PBMs might reflect an ineffective antigen-presenting function contributing to an impaired antigen-specific immune response in these patients.
Collapse
Affiliation(s)
- Selma Ugurel
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
236
|
Ludwig AT, Moore JM, Luo Y, Chen X, Saltsgaver NA, O'Donnell MA, Griffith TS. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Cancer Res 2004; 64:3386-90. [PMID: 15150089 DOI: 10.1158/0008-5472.can-04-0374] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) use in the treatment of bladder cancer was first reported in 1976, but the mechanism of the induced antitumor activity has still not been fully explained. BCG is a potent immunostimulant, normally producing a Th1 cytokine response, including IFN. Recent studies have shown CpG oligodeoxynucleotide induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression via IFN production. Given that Mycobacterial DNA contains high amounts of CpG motifs, we hypothesized that BCG's antitumor properties are akin to CpG oligodeoxynucleotide, where the cytokine response to BCG induces TRAIL up-regulation. Using ELISA, urine IFN-gamma, and TRAIL levels were initially undetectable in BCG therapy patients but were high after later induction treatments. More importantly, patients that responded to BCG therapy had significantly higher urine TRAIL levels, which killed bladder tumor cells in vitro versus nonresponders. Flow cytometry of fresh urine revealed TRAIL-expressing neutrophils. Given these data, we propose TRAIL plays a role in BCG-induced antitumor effects.
Collapse
Affiliation(s)
- Aaron T Ludwig
- Department of Urology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
Eaton CL, Wells JM, Holen I, Croucher PI, Hamdy FC. Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. Prostate 2004; 59:304-10. [PMID: 15042606 DOI: 10.1002/pros.20016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteoprotegerin (OPG) is a tumour and/or bone derived factor that may protect tumour cells from apoptosis. In this study, we have measured serum OPG levels in untreated prostate cancer patients with advanced prostate cancer compared to patients with organ confined disease and in treated patients receiving androgen ablation. METHODS Serum OPG levels were measured by ELISA in samples collected from 104 patients with either newly diagnosed (n = 59) or advanced prostate cancer treated by androgen ablation (n = 45) and compared with levels in serum from patients with benign prostatic hyperplasia (BPH) (n = 10) and young healthy men (n = 10). RESULTS Untreated patients with locally advanced disease had significantly higher OPG levels than those with organ confined disease. Patients with advanced disease responding to androgen ablation (serum PSA < 1 ng/ml) had serum OPG levels that were significantly lower than those with clinically progressing disease (PSA > 10 ng/ml). OPG levels in the latter were not significantly different from levels in patients with early signs of biochemical progression (PSA >1 but <10 ng/ml). CONCLUSIONS OPG is a potential new marker, which is elevated in the serum of patients with advanced prostate cancer and may be an indicator of early disease progression.
Collapse
Affiliation(s)
- Colby L Eaton
- Academic Urology Unit, University of Sheffield Medical School, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
238
|
Tecchio C, Huber V, Scapini P, Calzetti F, Margotto D, Todeschini G, Pilla L, Martinelli G, Pizzolo G, Rivoltini L, Cassatella MA. IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity on leukemic cells. Blood 2004; 103:3837-44. [PMID: 14726404 DOI: 10.1182/blood-2003-08-2806] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily exerting cytotoxic activities toward tumor cells. Herein, we demonstrate that therapeutic concentrations of interferon α (IFNα) stimulate the expression of high levels of TRAIL mRNA and the release of elevated amounts of a soluble bioactive form of TRAIL (sTRAIL) in both human neutrophils and monocytes. Supernatants harvested from IFNα-treated neutrophils/monocytes elicited, on TRAIL-sensitive leukemic cell lines, proapoptotic activities that were significantly reduced by either a combination of TRAIL-R1/Fc and TRAIL-R2/Fc chimeras or neutralizing anti-TRAIL, anti–TRAIL-R1, and anti–TRAIL-R2 antibodies, suggesting that they were mediated by released sTRAIL acting on both TRAIL receptors. Since diseases such as chronic myeloid leukemia (CML) and melanoma are effectively treated with IFNα,we also demonstrate that CML neutrophils and peripheral blood mononuclear cells (PBMCs) cultured with IFNα at therapeutic concentrations retain the capacity of releasing sTRAIL, suggesting that CML leukocytes, in vivo, might represent an important source of sTRAIL. In this regard, we show that sTRAIL serum levels as well as leukocyte-associated TRAIL significantly increase in melanoma patients following IFNα administration. Collectively, these findings indicate that sTRAIL released by IFNα-activated neutrophils and monocytes contributes not only to the immunoregulatory actions but also to the therapeutic activities of IFNα.
Collapse
|
239
|
Huang H, Xiang J. Synergistic effect of lymphotactin and interferon gamma-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. Int J Cancer 2004; 109:817-25. [PMID: 15027114 DOI: 10.1002/ijc.20043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lack of efficient T-cell infiltration of tumors is a major obstacle to successful adoptive T-cell therapy. We have previously demonstrated that adenovirus (AdV)-mediated transgene lymphotactin (Lptn) or IP-10 expression in tumors can significantly enhance T-cell tumor infiltration. In this study, active OVA-specific CD8+ T cells were prepared by coculturing naive OVA-specific CD8+ T cells from transgenic OT I mice with OVA-I peptide-pulsed dendritic cells in vitro. These XCR-1- and CXCR3-expressing T cells predominantly secreted IFN-gamma and displayed significant killing activity (84% at effector:target cell ratio of 1.5) against OVA-expressing EG7 tumor cells through perforin-mediated pathway. Our data also showed that chemokine Lptn and IP-10 not only can chemoattract, but also stimulate proliferation of CD8+ T cells in vitro, and that a mixture of Lptn and IP-10 can more efficiently chemoattract CD8+ T cells than either one of them. Furthermore, we demonstrated that the transferred CD8+ T cells detected in group of tumors treated with both AdVLptn and AdVIP-10 (group a) are around 4 and 2 times more than that in groups of tumors treated with control AdVpLpA (group b) and either AdVIP-10 (group c) or AdVLptn (group d), respectively. Around 87.5% of mice in group a were tumor-free compared to the aggressive tumor growth in all 8 mice of group b and 25% or 37.5% cured mice seen in groups c and d (p<0.05). Thus, our results indicate that enhancement of adoptive T-cell therapy can be obtained by double tranmsgene Lptn and IP-10 expression, which facilitates CD8+ T-cell tumor localization through proliferation and chemoattraction of the transferred CD8+ T cells by in situ chemokine transgene expressions in the tumors. Collectively, our data provide solid evidence of a potent synergy between adoptive T-cell therapy and adenovirus-mediated Lptn and IP-10 gene transfer into tumor tissues, which culminated in the T-cell tumor localization and eradication of well-established tumor masses.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Division
- Chemokine CXCL10
- Chemokines, C
- Chemokines, CXC/genetics
- Chemotaxis, Leukocyte/immunology
- Cytotoxicity, Immunologic
- Dendritic Cells/immunology
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Immunotherapy, Adoptive
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphokines/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sialoglycoproteins/genetics
- Transgenes
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hui Huang
- Research Unit, Saskatchewan Cancer Agency, Department of Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
240
|
Kamohara H, Matsuyama W, Shimozato O, Abe K, Galligan C, Hashimoto SI, Matsushima K, Yoshimura T. Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology 2004; 111:186-94. [PMID: 15027904 PMCID: PMC1782413 DOI: 10.1111/j.0019-2805.2003.01794.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily, which is capable of inducing apoptosis in many cell types, including tumour and virus-infected cells, but rarely in normal cells. Expression of TRAIL mRNA and TRAIL receptors has previously been detected in neutrophils; however, the expression of TRAIL protein and the regulation of TRAIL and TRAIL receptor expression in these cells remain unknown. Here we report, for the first time, that neutrophils constitutively express TRAIL protein on their cell surface and that the TRAIL protein is shed during culture. TNF-alpha is a down-regulator of TRAIL expression, whereas IFN-gamma up-regulates the expression of TRAIL. Neutrophils did not express a detectable level of TRAIL-R1 or -R4, but constitutively expressed a low, but substantial, level of TRAIL-R2 and a high level of TRAIL-R3. Although the level of TRAIL-R2 was not significantly altered during culture under different experimental conditions, approximately 30% of TNF-alpha-treated cells rapidly lost their high-level TRAIL-R3 expression, whereas the majority of IFN-gamma-treated cells retained a high level of TRAIL-R3 expression. Anti-TRAIL neutralizing antibody significantly inhibited neutrophil apoptosis during cultures in medium alone, or in the presence of TNF-alpha or IFN-gamma. Thus, our study identified human neutrophils as a cellular source of TRAIL and suggests that neutrophil-derived TRAIL may play a role in immune surveillance. Our results also suggest a role for the TRAIL/TRAIL receptor system in neutrophil apoptosis.
Collapse
Affiliation(s)
- Hidenobu Kamohara
- Laboratory of Molecular Immunoregulation, National Cancer Institute-FrederickFrederick, MD, USA
| | - Wataru Matsuyama
- Laboratory of Molecular Immunoregulation, National Cancer Institute-FrederickFrederick, MD, USA
| | - Osamu Shimozato
- Laboratory of Experimental Immunology, National Cancer Institute-FrederickFrederick, MD, USA
| | - Koichiro Abe
- Laboratory of Molecular Immunoregulation, National Cancer Institute-FrederickFrederick, MD, USA
| | - Carole Galligan
- Laboratory of Molecular Immunoregulation, National Cancer Institute-FrederickFrederick, MD, USA
| | - Shin-Ichi Hashimoto
- Department of Molecular Preventive Medicine, School of Medicine, University of TokyoTokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, School of Medicine, University of TokyoTokyo, Japan
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, National Cancer Institute-FrederickFrederick, MD, USA
| |
Collapse
|
241
|
Ryan LA, Peng H, Erichsen DA, Huang Y, Persidsky Y, Zhou Y, Gendelman HE, Zheng J. TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J Neuroimmunol 2004; 148:127-39. [PMID: 14975593 DOI: 10.1016/j.jneuroim.2003.11.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/26/2003] [Accepted: 11/18/2003] [Indexed: 11/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a type II integral membrane protein that interacts with multiple receptors and cell types including neurons. In this report, TRAIL protein levels were increased in human monocyte-derived macrophages (MDM) after HIV-1 infection and immune activation. In HIV-1 encephalitic (HIVE) human brain tissue, TRAIL-expressing macrophages were found in association with active caspase-3 positive neurons. Cytotoxic TRAIL receptors 1 and 2 were expressed on neurons in primary human fetal cultures and HIV-1 encephalitic brain tissue. Furthermore, TRAIL induced a dose-dependent effect on neuronal apoptosis. These results support a role for TRAIL in mononuclear phagocyte (MP)-mediated neurotoxicity in HIV-1-associated dementia (HAD).
Collapse
Affiliation(s)
- Lisa A Ryan
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, NE 68195-5215, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Mitochondrion is one of the master players in both apoptosis and necrosis. However, most previous articles report that mitochondrial DNA-depleted cells without oxidative phosphorylation underwent apoptosis by several apoptotic effectors as efficiently as their parental cells, suggesting that intact mitochondrial function is dispensable for the progression of apoptosis. We studied the role of mitochondrial function in several apoptosis models. TRAIL, a recently identified member of the TNF family with cytotoxicity on a wide variety of transformed cells, killed SK-Hep1 cells with characteristic features of apoptosis such as DNA fragmentation, sub-G1 ploidy peak, and cytochrome c translocation. In contrast with parental cells, mitochondrial DNA-deficient SK-Hep1 rho(0) cells were resistant to TRAIL-induced apoptosis. Dissipation of mitochondrial potential or cytochrome c translocation did not occur in rho(0) cells after TRAIL treatment. Bax translocation also was absent in rho(0) cells, accounting for the failure of cytochrome c release in rho(0) cells. SK-Hep1 rho(0) cells were resistant to other death effectors such as staurosporine. Our results indicate that apoptosis of SK-Hep1 hepatoma cells is dependent on intact mitochondrial function. Because aged cells or tumor cells have frequent mutations or deletions of mitochondrial DNA, they might acquire the ability to evade apoptosis or tumor surveillance imposed by TRAIL or other death effectors in vivo, accounting for the selection advantage of cancer cells and frequent development of cancer in aged individuals.
Collapse
Affiliation(s)
- Myung-Shik Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Kangnam-ku, Seoul 135-710, Korea.
| | | | | |
Collapse
|
243
|
|
244
|
Koga Y, Matsuzaki A, Suminoe A, Hattori H, Hara T. Neutrophil-Derived TNF-Related Apoptosis-Inducing Ligand (TRAIL). Cancer Res 2004; 64:1037-43. [PMID: 14871835 DOI: 10.1158/0008-5472.can-03-1808] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To detect the novel genes expressed uniquely in neutrophils and elucidate their function, the gene expression pattern was compared by using cDNA microarray containing 240 cytokine genes between the neutrophils and peripheral blood mononuclear cells (PBMCs) obtained from healthy human donors. Twenty-six genes, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were expressed in neutrophils at a level >10 times higher than that seen in phytohemagglutinin-stimulated PBMCs. The amounts of mRNA and protein of TRAIL were quantified by real-time reverse transcription-PCR and ELISA, respectively. TRAIL was expressed in resting neutrophils at the mRNA and protein levels, and its expression was enhanced after stimulation with IFN-gamma. Neutrophils expressed TRAIL on the cell surface and released it into the culture media. The cytotoxicity of neutrophil-derived TRAIL against Jurkat cells was determined by flow cytometry using FITC-conjugated annexin V. When Jurkat cells were cultured with neutrophils in the presence of IFN-gamma, the number of Jurkat cells undergoing apoptosis increased, and such increase depended on the effector:target ratio. This cytotoxicity was suppressed partially by adding anti-TRAIL antibody to the media. Neutrophils may exert their own antitumor effect by TRAIL. A microarray analysis was found to be a useful tool for detecting novel genes that are suggested to play unknown roles in the neutrophil function.
Collapse
Affiliation(s)
- Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, School of Health Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
245
|
Lichtner M, Marañón C, Vidalain PO, Azocar O, Hanau D, Lebon P, Burgard M, Rouzioux C, Vullo V, Yagita H, Rabourdin-Combe C, Servet C, Hosmalin A. HIV type 1-infected dendritic cells induce apoptotic death in infected and uninfected primary CD4 T lymphocytes. AIDS Res Hum Retroviruses 2004; 20:175-82. [PMID: 15018705 DOI: 10.1089/088922204773004897] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In addition to their essential role in adaptive immunity, dendritic cells (DCs) participate in innate immunity. In the context of measles virus (MV) or cytomegalovirus infections, they develop cytotoxic functions that may contribute in vivo to the elimination of virus-infected cells, but that also kill infected and noninfected T lymphocytes. Because the human immunodeficiency virus (HIV) induces T cell depletion through mechanisms that are still obscure, we investigated its ability to trigger DC cytotoxicity. When incubated with HIV, monocyte-derived DCs induced apoptosis in MDA-231 cells, which are sensitive to MV-induced DC cytotoxicity, and in uninfected as well as HIV-infected H9 CD4+ T cell lines. This apoptosis was inhibited by a mixture of FasL, TRAIL, TNF-alpha, and TWEAK inhibitors. Indeed, HIV infection induced or enhanced sensitivity to TRAIL, TNF-alpha, and TWEAK in H9 cells. Moreover, dendritic cells incubated with HIV-1 BAL or a wildtype HIV-1 isolate induced apoptosis in autologous primary CD4+ T lymphocytes, infected or not with a wild-type HIV-1 isolate. Therefore, induction of DC cytotoxicity by HIV may be relevant to in vivo HIV infection. Induction of cytotoxicity in DCs by HIV might contribute to HIV-associated T cell depletion through induction of apoptosis, especially in the early stages of infection. It may also contribute to elimination of infected cells in vivo, thereby enhancing cross-presentation of HIV by DCs. Therefore this new cytotoxic function of DCs may play an important role in innate and adaptive immunity during HIV infection.
Collapse
Affiliation(s)
- Miriam Lichtner
- Antigen Presentation by Dendritic Cell Group, Département d'Immunologie, Institut Cochin, INSERM U567, UMR CNRS 8104, IFR 116 Paris V University, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Lee J, Shin JS, Park JY, Kwon D, Choi SJ, Kim SJ, Choi IH. p38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis-inducing ligand induced by interferon-gamma in fetal brain astrocytes. J Neurosci Res 2004; 74:884-90. [PMID: 14648593 DOI: 10.1002/jnr.10815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study describes the involvement of the p38 mitogen-activated protein kinase (MAPK) during interferon-gamma (IFN-gamma) signaling in fetal brain astrocytes. In some pathological conditions of brain, p38 MAPK transduces stress-related signals, increases expression of proinflammatory cytokines, and induces cellular damage or apoptosis. In astrocytes, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression level was increased by IFN-gamma. AG490, a JAK inhibitor, blocked TRAIL expression induced by IFN-gamma. SB203580, a specific p38alpha and p38beta2 MAPK inhibitor, decreased the TRAIL expression induced by IFN-gamma. The phosphorylation of the Ser727 site of STAT1, but not the Tyr701 site, was inhibited by SB203580. These results suggest that p38 MAPK modulates STAT1 phosphorylation in IFN-gamma signaling in fetal brain astrocytes.
Collapse
Affiliation(s)
- J Lee
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
247
|
Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, Geisbert JB, Scott DP, Kagan E, Jahrling PB, Davis KJ. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2347-70. [PMID: 14633608 PMCID: PMC1892369 DOI: 10.1016/s0002-9440(10)63591-2] [Citation(s) in RCA: 462] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Hao C, Song JH, Vilimanovich U, Kneteman NM. Modulation of TRAIL signaling complex. VITAMINS AND HORMONES 2004; 67:81-99. [PMID: 15110173 DOI: 10.1016/s0083-6729(04)67006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chunhai Hao
- Department of Laboratory Medicine & Pathology, Canada
| | | | | | | |
Collapse
|
249
|
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a clinically useful cytokine. TRAIL induces apoptosis in a wide variety of transformed cells, but does not cause toxicity to most normal cells. Recent studies show that death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and death inhibitors (FLIP, FAP-1, and IAP) are responsible for the differential sensitivity to TRAIL of normal and tumor cells. Several researchers have also shown that genotoxic agents, such as chemotherapeutic agents and ionizing radiation, enhance TRAIL-induced cytotoxicity by increasing DR5 gene expression or decreasing the intracellular level of FLIP, an antiapoptotic protein. Previous studies have shown that ceramide helps to regulate a cell's response to various forms of stress. Stress-induced alterations in the intracellular concentration of ceramide occur through the activation of a variety of enzymes that synthesize or catabolize ceramide. Increases in intracellular ceramide levels modulate apoptosis by acting through key proteases, phosphatases, and kinases. This review discusses the interaction between TRAIL and ceramide signaling pathways in regulating apoptotic death.
Collapse
Affiliation(s)
- Yong J Lee
- Department of Surgery and Pharmacology, University of Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
250
|
Ruiz de Almodóvar C, López-Rivas A, Ruiz-Ruiz C. Interferon-Gamma and TRAIL in Human Breast Tumor Cells. TRAIL (TNF-RELATED APOPTOSIS-INDUCING LIGAND) 2004; 67:291-318. [PMID: 15110183 DOI: 10.1016/s0083-6729(04)67016-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Induction of apoptosis in tumor cells by death receptor activation is a novel therapeutic strategy. However, in systemic antitumor treatments, severe toxic effects have been observed with tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand. TNF-alpha causes a lethal inflammatory response and CD95L produces lethal liver damage. Preclinical studies in mice and nonhuman primates showed no systemic cytotoxicity upon injection of recombinant TNF-related apoptosis-inducing ligand (TRAIL) at doses that effectively suppressed solid tumors such as colon and mammary carcinomas. Although unwanted effects of some TRAIL preparations have been reported in normal cells, these data suggest that TRAIL could be a suitable approach in cancer therapy. However, several mechanisms of resistance to TRAIL-mediated apoptosis have been described in tumor cells such as lack of TRAIL apoptotic receptors, enhanced expression of TRAIL-decoy receptors, and expression of apoptosis inhibitors. In combination regimes, interferon-gamma (IFN-gamma) could provide a promising antitumor therapeutic approach as it has been described to enhance cellular susceptibility to apoptosis in a variety of tumor cells. The mechanism by which IFN-gamma promotes cell death seems to be via the regulation of the expression of different proteins involved in apoptosis. Altogether, these data suggest a combination strategy to selectively kill tumor cells that need to be further explored.
Collapse
Affiliation(s)
- Carmen Ruiz de Almodóvar
- Department of Cellular Biology and Immunology Instituto de Parasitología y Biomedicina Consejo Superior de Investigaciones Científicas Granada E-18001, Spain
| | | | | |
Collapse
|