201
|
Saray P, Roytrakul S, Pangeson T, Phetrungnapha A. Comparative proteomic analysis of hepatopancreas in Macrobrachium rosenbergii responded to Poly (I:C). FISH & SHELLFISH IMMUNOLOGY 2018; 75:164-171. [PMID: 29427716 DOI: 10.1016/j.fsi.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Gel-enhanced liquid chromatography coupled with tandem mass spectrometry (GeLC-MS/MS) was used to analyze the proteome of Macrobrachium rosenbergii hepatopancreas responded to Poly (I:C). GeLC-MS/MS analysis identified 515 differentially-expressed proteins with ≥1.5 and ≤ -0.5 log2 fold change. Of these, 195 differentially-expressed proteins were significantly matched to known proteins in the database, of which 102 proteins were up-regulated and 93 proteins were down-regulated. These proteins were classified into 21 categories, i.e. metabolic process, oxidative stress response, signaling, transcription, translation, cell cycle, transport, etc. Several immune factors were up-regulated upon Poly (I:C) injection. Protein-protein interaction network analysis of these immune factors identified three major protein clusters including RNAi, stress responses, and Toll pathway-proPO system, implying that Poly (I:C) activates immune responses in prawn through several mechanisms.
Collapse
Affiliation(s)
- Pheng Saray
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tanapat Pangeson
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand; Department of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Amnat Phetrungnapha
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
202
|
Tajpara P, Schuster C, Schön E, Kienzl P, Vierhapper M, Mildner M, Elbe-Bürger A. Epicutaneous administration of the pattern recognition receptor agonist polyinosinic-polycytidylic acid activates the MDA5/MAVS pathway in Langerhans cells. FASEB J 2018; 32:4132-4144. [PMID: 29509510 PMCID: PMC6053315 DOI: 10.1096/fj.201701090r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Together with keratinocytes (KCs) and the dense network of Langerhans cells (LCs), the epidermis is an ideal portal for vaccine delivery. Pattern recognition receptor agonists, in particular polyinosinic–polycytidylic acid [p(I:C)], are promising adjuvant candidates for therapeutic vaccination to generate protective T-cell immunity. Here we established an ex vivo skin explant model to study the expression and activation of double-stranded RNA (dsRNA)-sensing pattern recognition receptors in LCs and KCs in human skin. Whereas KCs expressed all known dsRNA sensing receptors at a constitutive and inducible level, LCs exclusively expressed melanoma differentiation–associated protein 5 (MDA5) in untreated skin and freshly isolated cells. Comparative assessments of downstream signaling pathways induced by p(I:C) revealed distinct mitochondrial antiviral-signaling protein, IFN-regulatory factor 3, and NF-κB activation in LCs and KCs. Consequently, p(I:C) treatment of LCs significantly induced IFN-α and IFN-β mRNA expression, while in KCs an up-regulation of IFN-β and TNF-α mRNA was detectable. Stimulation of LCs with specific ligands revealed that not the TLR3- but only the MDA5-specific ligand induced IFN-α2, IFN-β, and TNF-α cytokines, but no IL-6 and -8. In KCs, both ligands induced production of high IL-6 and IL-8 levels, and low IFN-α2 and IFN-β levels, indicating that different dsRNA-sensing receptors and/or downstream signaling pathways are activated in both cell types. Our data suggest that MDA5 may be an attractive adjuvant target for epicutaneous delivery of therapeutic vaccines with the goal to target LCs.—Tajpara, P., Schuster, C., Schön, E., Kienzl, P., Vierhapper, M., Mildner, M., Elbe-Bürger, A. Epicutaneous administration of the pattern recognition receptor agonist polyinosinic–polycytidylic acid activates the MDA5/MAVS pathway in Langerhans cells.
Collapse
Affiliation(s)
- Pooja Tajpara
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Schön
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Philip Kienzl
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Martin Vierhapper
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria; and
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, Laboratory of Cellular and Molecular Immunobiology of the Skin, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
203
|
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:41-52. [PMID: 28196779 DOI: 10.1016/j.dci.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
204
|
Kotov DI, Kotov JA, Goldberg MF, Jenkins MK. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. THE JOURNAL OF IMMUNOLOGY 2018; 200:2004-2012. [PMID: 29436413 DOI: 10.4049/jimmunol.1700420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022]
Abstract
CD4+ Th cells can have cytotoxic activity against cells displaying relevant peptide-MHC class II (p:MHCII) ligands. Cytotoxicity may be a property of Th1 cells and depends on perforin and the Eomes transcription factor. We assessed these assertions for polyclonal p:MHCII-specific CD4+ T cells activated in vivo in different contexts. Mice immunized with an immunogenic peptide in adjuvant or infected with lymphocytic choriomeningitis virus or Listeria monocytogenes bacteria induced cytotoxic Th cells that killed B cells displaying relevant p:MHCII complexes. Cytotoxicity was dependent on Fas expression by target cells but was independent of Eomes or perforin expression by T cells. Although the priming regimens induced different proportions of Th1, Th17, regulatory T cells, and T follicular helper cells, the T cells expressed Fas ligand in all cases. Reciprocally, Fas was upregulated on target cells in a p:MHCII-specific manner. These results indicate that many Th subsets have cytotoxic potential that is enhanced by cognate induction of Fas on target cells.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Jessica A Kotov
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
205
|
McElroy AK, Mühlberger E, Muñoz-Fontela C. Immune barriers of Ebola virus infection. Curr Opin Virol 2018; 28:152-160. [PMID: 29452995 PMCID: PMC5886007 DOI: 10.1016/j.coviro.2018.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023]
Abstract
Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions.
Collapse
Affiliation(s)
- Anita K McElroy
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 3501 Fifth Ave, Pittsburgh, PA 15261, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, 02118 Boston, MA, USA
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
206
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
207
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J Proteomics 2018; 175:144-155. [PMID: 29317357 DOI: 10.1016/j.jprot.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022]
Abstract
Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNβ signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F A Kersten
- Intravacc, Bilthoven, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
208
|
Toll-like receptor 3 in nasal CD103 + dendritic cells is involved in immunoglobulin A production. Mucosal Immunol 2018; 11:82-96. [PMID: 28612840 DOI: 10.1038/mi.2017.48] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/23/2017] [Indexed: 02/04/2023]
Abstract
Intranasal inoculation with influenza hemagglutinin subunit with polyinosine-polycytidylic (polyI:C), a synthetic analog for double-stranded RNA, enhances production of vaccine-specific immunoglobulin (Ig) A, which is superior to IgG in prophylactic immunity. The mechanism whereby polyI:C skews to IgA production in the nasal-associated lymph tissue (NALT) was investigated in mouse models. Nasally instilled polyI:C was endocytosed into CD103+ dendritic cells (DCs) and induced T-cell activation, including interferon (IFN)-γ production. According to knockout mouse studies, polyI:C activated the Toll-like receptor 3 signal via the adapter TICAM-1 (also called TRIF), that mainly caused T-cell-dependent IgA production. Nasal CD103+ DCs activated transforming growth factor-β signaling and activation-induced cytidine deaminase upon polyI:C stimulation. IgA rather than IgG production was impaired in Batf3-/- mice, where CD103+ DCs are defective. Genomic recombination occurred in IgA-producing cells in association with polyI:C-stimulated DCs and nasal microenvironment. PolyI:C induced B-cell-activating factor expression and weakly triggered T-cell-independent IgA production. PolyI:C simultaneously activated mitochondrial antiviral signaling and then type I IFN receptor pathways, which only minimally participated in IgA production. Taken together, CD103+ DCs in NALT are indispensable for the adjuvant activity of polyI:C in enhancing vaccine-specific IgA induction and protective immunity against influenza viruses.
Collapse
|
209
|
Oberson A, Spagnuolo L, Puddinu V, Barchet W, Rittner K, Bourquin C. NAB2 is a novel immune stimulator of MDA-5 that promotes a strong type I interferon response. Oncotarget 2017; 9:5641-5651. [PMID: 29464024 PMCID: PMC5814164 DOI: 10.18632/oncotarget.23725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
Novel adjuvants are needed to increase the efficacy of vaccine formulations and immune therapies for cancer and chronic infections. In particular, adjuvants that promote a strong type I IFN response are required, since this cytokine is crucial for the development of efficient anti-tumoral and anti-viral immunity. Nucleic acid band 2 (NAB2) is a double-stranded RNA molecule isolated from yeast and identified as an agonist of the pattern-recognition receptors TLR3 and MDA-5. We compared the ability of NAB2 to activate innate immunity with that of poly(I:C), a well-characterized TLR3 and MDA-5 agonist known for the induction of type I IFN. NAB2 promoted stronger IFN-α production and induced a higher activation state of both murine and human innate immune cells compared to poly(I:C). This correlated with a stronger activation of the signalling pathway downstream of MDA-5, and IFN-α induction was dependent on MDA-5. Upon injection, NAB2 induced higher levels of serum IFN-α in mice than poly(I:C). These results suggest that NAB2 has the potential to become an efficient adjuvant for the induction of type-I IFN responses in therapeutic immunization against cancer or infections.
Collapse
Affiliation(s)
- Anne Oberson
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lorenzo Spagnuolo
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Viola Puddinu
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Winfried Barchet
- German Center for Infection Research, Cologne-Bonn, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Germany
| | - Karola Rittner
- Transgene S.A., Parc d'Innovation, CS80166, 67405 Illkirch-Graffenstaden Cedex, France
| | - Carole Bourquin
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
210
|
Antonialli R, Sulczewski FB, Amorim KNDS, Almeida BDS, Ferreira NS, Yamamoto MM, Soares IS, Ferreira LCDS, Rosa DS, Boscardin SB. CpG Oligodeoxinucleotides and Flagellin Modulate the Immune Response to Antigens Targeted to CD8α + and CD8α - Conventional Dendritic Cell Subsets. Front Immunol 2017; 8:1727. [PMID: 29255470 PMCID: PMC5723008 DOI: 10.3389/fimmu.2017.01727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells essential for the induction of adaptive immune responses. Their unprecedented ability to present antigens to T cells has made them excellent targets for vaccine development. In the last years, a new technology based on antigen delivery directly to different DC subsets through the use of hybrid monoclonal antibodies (mAbs) to DC surface receptors fused to antigens of interest opened new perspectives for the induction of robust immune responses. Normally, the hybrid mAbs are administered with adjuvants that induce DC maturation. In this work, we targeted an antigen to the CD8α+ or the CD8α− DC subsets in the presence of CpG oligodeoxinucleotides (ODN) or bacterial flagellin, using hybrid αDEC205 or αDCIR2 mAbs, respectively. We also accessed the role of toll-like receptors (TLRs) 5 and 9 signaling in the induction of specific humoral and cellular immune responses. Wild-type and TLR5 or TLR9 knockout mice were immunized with two doses of the hybrid αDEC205 or αDCIR2 mAbs, as well as with an isotype control, together with CpG ODN 1826 or flagellin. A chimeric antigen containing the Plasmodium vivax 19 kDa portion of the merozoite surface protein (MSP119) linked to the Pan-allelic DR epitope was fused to each mAb. Specific CD4+ T cell proliferation, cytokine, and antibody production were analyzed. We found that CpG ODN 1826 or flagellin were able to induce CD4+ T cell proliferation, CD4+ T cells producing pro-inflammatory cytokines, and specific antibodies when the antigen was targeted to the CD8α+ DC subset. On the other hand, antigen targeting to CD8α− DC subset promoted specific antibody responses and proliferation, but no detectable pro-inflammatory CD4+ T cell responses. Also, specific antibody responses after antigen targeting to CD8α+ or CD8α− DCs were reduced in the absence of TLR9 or TLR5 signaling, while CD4+ T cell proliferation was mainly affected after antigen targeting to CD8α+ DCs and in the absence of TLR9 signaling. These results extend our understanding of the modulation of specific immune responses induced by antigen targeting to DCs in the presence of different adjuvants. Such knowledge may be useful for the optimization of DC-based vaccines.
Collapse
Affiliation(s)
- Renan Antonialli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene Silva Soares
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
211
|
Ngu LN, Nji NN, Ambada G, Ngoh AA, Njambe Priso GD, Tchadji JC, Lissom A, Magagoum SH, Sake CN, Tchouangueu TF, Chukwuma GO, Okoli AS, Sagnia B, Chukwuanukwu R, Tebit DM, Esimone CO, Waffo AB, Park CG, Überla K, Nchinda GW. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8 + T cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:163-175. [PMID: 29205929 PMCID: PMC5818444 DOI: 10.1002/iid3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
Introduction Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune‐modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV‐1 gag protein (DEC‐Gag) vaccine; for the induction of helper CD4+ T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV‐1 Gag P55 (rNDV‐L‐Gag) vaccine. Methods We do so through successive administration of anti‐DEC205‐gagP24 protein plus polyICLC (DEC‐Gag) vaccine and rNDV‐L‐Gag. First strong gag specific helper CD4+ T cells are induced in mice by selected targeting of anti‐DEC205‐gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV‐L‐Gag vaccine and improved both systemic and mucosal gag specific immunity. Results This sequential DEC‐Gag vaccine prime followed by an rNDV‐L‐gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8+ T cells to a pathogenic virus infection site. Conclusion Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8+T cells to a pathogenic virus infection site such as the murine airway.
Collapse
Affiliation(s)
- Loveline N Ngu
- Department of Biochemistry, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon.,Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon
| | - Nadesh N Nji
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Georgia Ambada
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Apeh A Ngoh
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biomedical sciences, University of Dschang, Dschang, Cameroon
| | - Ghislain D Njambe Priso
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Jules C Tchadji
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Suzanne H Magagoum
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Carol N Sake
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Thibau F Tchouangueu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biochemistry, University of Dschang, Dschang, Cameroon
| | - George O Chukwuma
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | | | - Bertrand Sagnia
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Rebecca Chukwuanukwu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | - Denis M Tebit
- Myles Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, Jordan Hall 7088, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22903, USA
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Alain B Waffo
- Department of Biological Sciences # 223, Alabama State University, 1627, Hall Street, Montgomery, Alabama 36104, USA
| | - Chae G Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
212
|
Garg R, Latimer L, Gerdts V, Potter A, van Drunen Littel-van den Hurk S. Intranasal immunization with a single dose of the fusion protein formulated with a combination adjuvant induces long-term protective immunity against respiratory syncytial virus. Hum Vaccin Immunother 2017; 13:2894-2901. [PMID: 28825870 PMCID: PMC5718833 DOI: 10.1080/21645515.2017.1349584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of respiratory tract infections in both children and elderly people. In this study we evaluated the short- and long-term protective efficacy of a single intranasal (IN) immunization with a RSV vaccine formulation consisting of a codon-optimized fusion (F) protein formulated with poly(I:C), an innate defense regulator peptide and a polyphosphazene (ΔF/TriAdj). This vaccine induced strong systemic and local immune responses, including RSV F-specific IgG1 and IgG2a, SIgA and virus neutralizing antibodies in mice. Furthermore, ΔF/TriAdj promoted production of IFN-γ-secreting T cells and RSV F85-93-specific CD8+ effector T cells. After RSV challenge, no virus was recovered from the lungs of the vaccinated mice. To evaluate the duration of immunity induced by a single IN vaccination, mice were again immunized once with ΔF/TriAdj and challenged with RSV five months later. High levels of IgG1, IgG2a and virus neutralizing antibodies were detected in the ΔF/TriAdj-vaccinated animals. Moreover, this vaccine formulation induced robust local SIgA production and IgA-secreting memory B cell development, and conferred complete protection against subsequent RSV challenge. In conclusion, a single IN vaccination with RSV ΔF protein formulated with TriAdj induced robust, long-term protective immune responses against RSV infection.
Collapse
Affiliation(s)
- R. Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
| | - L. Latimer
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
| | - V. Gerdts
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - A. Potter
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - S. van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada
- Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
213
|
Pellefigues C, Tang SC, Schmidt A, White RF, Lamiable O, Connor LM, Ruedl C, Dobrucki J, Le Gros G, Ronchese F. Toll-Like Receptor 4, but Not Neutrophil Extracellular Traps, Promote IFN Type I Expression to Enhance Th2 Responses to Nippostrongylus brasiliensis. Front Immunol 2017; 8:1575. [PMID: 29201030 PMCID: PMC5696323 DOI: 10.3389/fimmu.2017.01575] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
The induction of Th2 responses is thought to be multifactorial, and emerge from specific pathways distinct from those associated with antagonistic antibacterial or antiviral Th1 responses. Here, we show that the recognition of non-viable Nippostrongylus brasiliensis (Nb) in the skin induces a strong recruitment of monocytes and neutrophils and the release of neutrophil extracellular traps (NETs). Nb also activates toll-like receptor 4 (TLR4) signaling with expression of Ifnb transcripts in the skin and the development of an IFN type I signature on helminth antigen-bearing dendritic cells in draining lymph nodes. Co-injection of Nb together with about 10,000 Gram-negative bacteria amplified this TLR4-dependent but NET-independent IFN type I response and enhanced the development of Th2 responses. Thus, a limited activation of antibacterial signaling pathways is able to boost antihelminthic responses, suggesting a role for bacterial sensing in the optimal induction of Th2 immunity.
Collapse
Affiliation(s)
| | | | - Alfonso Schmidt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Ruby F White
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jurek Dobrucki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biophysics, Jagiellonian University, Kraków, Poland
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
214
|
Patchett AL, Tovar C, Corcoran LM, Lyons AB, Woods GM. The toll-like receptor ligands Hiltonol ® (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:352-360. [PMID: 28689773 DOI: 10.1016/j.dci.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Devil facial tumour disease (DFTD) describes two genetically distinct transmissible tumours that pose a significant threat to the survival of the Tasmanian devil. A prophylactic vaccine could protect devils from DFTD transmission. For this vaccine to be effective, potent immune adjuvants will be required. Toll-like receptors (TLRs) promote robust immune responses in human cancer studies and are highly conserved across mammalian species. In this study, we investigated the proficiency of TLR ligands for immune activation in the Tasmanian devil using in vitro mononuclear cell stimulations and in vivo immunisation trials with a model antigen. We identified two such TLR ligands, polyICLC (Hiltonol®) (TLR3) and imiquimod (TLR7), that in combination induced significant IFNγ production from Tasmanian devil lymphocytes in vitro. Immunisation with these ligands and the model antigen keyhole limpet haemocyanin activated robust antigen-specific primary, secondary and long-term memory IgG responses. Our results support the conserved nature of TLR signaling across mammalian species. PolyICLC and imiquimod will be trialed as immune adjuvants in future DFTD vaccine formulations.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia.
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia; School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| |
Collapse
|
215
|
Minoda Y, Virshup I, Leal Rojas I, Haigh O, Wong Y, Miles JJ, Wells CA, Radford KJ. Human CD141 + Dendritic Cell and CD1c + Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo. Front Immunol 2017; 8:1419. [PMID: 29163495 PMCID: PMC5670352 DOI: 10.3389/fimmu.2017.01419] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022] Open
Abstract
Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These "humanized" mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs) in mice are categorized into cDC1, which mediate T helper (Th)1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study human DC in vitro and in vivo.
Collapse
Affiliation(s)
- Yoshihito Minoda
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Isaac Virshup
- The Centre for Stem Cell Systems, Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Oscar Haigh
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yide Wong
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, QLD, Australia
| | - Christine A Wells
- The Centre for Stem Cell Systems, Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
216
|
Cheng L, Zhang Z, Li G, Li F, Wang L, Zhang L, Zurawski SM, Zurawski G, Levy Y, Su L. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system. Vaccine 2017; 35:6143-6153. [PMID: 28958808 PMCID: PMC5641266 DOI: 10.1016/j.vaccine.2017.09.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 01/04/2023]
Abstract
TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4+ T cell response, while only R848 and Poly I:C induced CD8+ cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans.
Collapse
Affiliation(s)
- Liang Cheng
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zheng Zhang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Li Wang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sandra M Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204, United States; Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d'immunologie clinique, 94010 Créteil, France
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204, United States; Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d'immunologie clinique, 94010 Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d'immunologie clinique, 94010 Créteil, France
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
217
|
Sanchez MV, Eliçabe RJ, Di Genaro MS, Germanó MJ, Gea S, García Bustos MF, Salomón MC, Scodeller EA, Cargnelutti DE. Total Leishmania antigens with Poly(I:C) induce Th1 protective response. Parasite Immunol 2017; 39. [PMID: 28901553 DOI: 10.1111/pim.12491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Our proposal was to develop a vaccine based on total Leishmania antigens (TLA) adjuvanted with polyinosinic-polycytidylic acid [Poly(I:C)] able to induce a Th1 response which can provide protection against Leishmania infection. Mice were vaccinated with two doses of TLA-Poly(I:C) administered by subcutaneous route at 3-week interval. Humoral and cellular immune responses induced by the immunization were measured. The protective efficacy of the vaccine was evaluated by challenging mice with infective promastigotes of Leishmania (Leishmania) amazonensis into the footpad. Mice vaccinated with TLA-Poly(I:C) showed a high anti-Leishmania IgG titre, as well as increased IgG1 and IgG2a subclass titres compared with mice vaccinated with the TLA alone. The high IgG2a indicated a Th1 bias response induced by the TLA-Poly(I:C) immunization. Accordingly, the cellular immune response elicited by the formulation was characterized by an increased production of IFN-γ and no significant production of IL-4. The TLA-Poly(I:C) immunization elicited good protection, which was associated with decreased footpad swelling, a lower parasite load and a reduced histopathological alteration in the footpad. Our findings demonstrate a promising vaccine against cutaneous leishmaniasis that is relatively economic and easy to develop and which should be taken into account for preventing leishmaniasis in developing countries.
Collapse
Affiliation(s)
- M V Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - R J Eliçabe
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Centro Científico y Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de San Luis, San Luis, Argentina
| | - M S Di Genaro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Centro Científico y Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de San Luis, San Luis, Argentina
| | - M J Germanó
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - S Gea
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Centro Científico y Tecnológico de Córdoba (CCT-Córdoba), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Córdoba, Argentina
| | - M F García Bustos
- Instituto de Patología Experimental (IPE), Centro Científico y Tecnológico de Salta (CCT-Salta), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - M C Salomón
- Area de Parasitología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), UNCUYO Centro Universitario (M5502JMA), Mendoza, Argentina
| | - E A Scodeller
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - D E Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Area de Parasitología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), UNCUYO Centro Universitario (M5502JMA), Mendoza, Argentina
| |
Collapse
|
218
|
Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford) 2017; 56:1662-1675. [PMID: 28122959 DOI: 10.1093/rheumatology/kew431] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. Apart from their important role in antiviral immunity, IFN-Is are increasingly recognized as key players in autoimmune CTDs such as SLE. Novel therapies that target IFN-I appear effective in SLE in early trials, but effectiveness is related to the presence of IFN-I biomarkers. IFN-I biomarkers may also act as positive or negative predictors of response to other biologics. Despite the high failure rate of clinical trials in SLE, subgroups of patients often respond better. Fully optimizing the potential of these agents is therefore likely to require stratification of patients using IFN-I and other biomarkers. This suggests the unified concept of type I IFN-mediated autoimmune diseases as a grouping including patients with a variety of different traditional diagnoses.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Paul Emery
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Edward M Vital
- Leeds Teaching Hospitals NHS Trust, NIHR Leeds Biomedical Research Unit.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
219
|
Sesti-Costa R, Françozo MCS, Silva GK, Proenca-Modena JL, Silva JS. TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells. PLoS One 2017; 12:e0185819. [PMID: 28973047 PMCID: PMC5626506 DOI: 10.1371/journal.pone.0185819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Type B coxsackievirus (CVB) is a common cause of acute and chronic myocarditis, meningitis and pancreatitis, often leading to heart failure and pancreatic deficiency. The polarization of CD4+ T lymphocytes and their cytokine milieu are key factors in the outcome of CVB-induced diseases. Thus, sensing the virus and driving the adaptive immune response are essential for the establishment of a protective immune response. TLR3 is a crucial virus recognition receptor that confers the host with resistance to CVB infection. In the current study, we found that TLR3 expression in dendritic cells plays a role in their activation upon CVB3 infection in vitro, as TLR3-deficient dendritic cells up-regulate CD80 and CD86 to a less degree than WT cells. Instead, they up-regulated the inhibitory molecule PD-L1 and secreted considerably lower levels of TNF-α and IL-10 and a higher level of IL-23. T lymphocyte proliferation in co-culture with CVB3-infected dendritic cells was increased by TLR3-expressing DCs and other cells. Furthermore, in the absence of TLR3, the T lymphocyte response was shifted toward a Th17 profile, which was previously reported to be deleterious for the host. TLR3-deficient mice were very susceptible to CVB3 infection, with increased pancreatic injury and extensive inflammatory infiltrate in the heart that was associated with uncontrolled viral replication. Adoptive transfer of TLR3+ dendritic cells slightly improved the survival of TLR-deficient mice following CVB3 infection. Therefore, our findings highlight the importance of TLR3 signaling in DCs and in other cells to induce activation and polarization of the CD4+ T lymphocyte response toward a Th1 profile and consequently for a better outcome of CVB3 infection. These data provide new insight into the immune-mediated mechanisms by which CVBs are recognized and cleared in order to prevent the development of myocarditis and pancreatitis and may contribute to the design of therapies for enteroviral infections.
Collapse
Affiliation(s)
- Renata Sesti-Costa
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcela Cristina Santiago Françozo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| | - Grace Kelly Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Luiz Proenca-Modena
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
220
|
Shin JH, Noh JY, Kim KH, Park JK, Lee JH, Jeong SD, Jung DY, Song CS, Kim YC. Effect of zymosan and poly (I:C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine. J Control Release 2017; 265:83-92. [PMID: 28890214 DOI: 10.1016/j.jconrel.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Microneedles are the micrometer size devices used for the delivery of vaccines and biotherapeutics. In order to increase the vaccine efficacy and reduce the antigen dose, there is a significant need to find some adjuvants for the microneedle vaccination. In this study, zymosan, which is the cell wall preparation of Saccharomyces cerevisiae, or poly (I:C) was coated on a microneedle with inactivated influenza virus, and then immunized into BALB/c mouse to determine the immunogenicity, protection and synergetic effect between two adjuvants. As a result, the group administered with zymosan and vaccine antigen showed significantly stronger IgG response, HI titer and IgG subtypes without any adverse effects, compared to the group immunized with the vaccine antigen alone. Also, there were enhanced cellular immune responses in the group received adjuvant with vaccine antigen. In addition, they showed superior protection and lung viral reduction against lethal viral challenge. Taken together, this study confirms that zymosan can be used as an immunostimulant for microneedle vaccination.
Collapse
Affiliation(s)
- Ju-Hyung Shin
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kwon-Ho Kim
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ji-Ho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dae-Yoon Jung
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
221
|
Hu Y, Yoshikawa T, Chung S, Hirono I, Kondo H. Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:7-10. [PMID: 28546019 DOI: 10.1016/j.fsi.2017.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Two novel type I interferon genes (JfIFN3 and JfIFN4) have been identified in Japanese flounder Paralichthys olivaceus. Open reading frames of JfIFN3 and JfIFN4 were 555bp and 528bp, encoding 184aa and 175aa, respectively. The genomic structures of JfIFN3 and JfIFN4 are composed of 5 exons and 4 introns. JfIFN4 has 2 conserved cysteine residues, while JfIFN3 has 4. JfIFN3 and JfIFN4 showed the highest amino acid sequence identities to turbot IFN1 (74%) and IFN2 (62%), respectively. Interestingly, JfIFN3 and JfIFN4 were clustered in distinct branches with JfIFN1 and JfIFN2, which have reported so far. The mRNA levels of JfIFN4 were apparently increased in the kidney and spleen at 3 h after ployI:C injection, while JfIFN1-3 were not detected by RT-PCR.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No. 1 of Haida Street, Zhoushan, Zhejiang 316022, China
| | - Takaki Yoshikawa
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Seangmin Chung
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan.
| |
Collapse
|
222
|
Vasou A, Sultanoglu N, Goodbourn S, Randall RE, Kostrikis LG. Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses. Viruses 2017; 9:v9070186. [PMID: 28703784 PMCID: PMC5537678 DOI: 10.3390/v9070186] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation.
Collapse
Affiliation(s)
- Andri Vasou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglatzia, Nicosia 2109, Cyprus.
| | - Nazife Sultanoglu
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglatzia, Nicosia 2109, Cyprus.
| | - Stephen Goodbourn
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK.
| | - Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglatzia, Nicosia 2109, Cyprus.
| |
Collapse
|
223
|
Raymond SL, Rincon JC, Wynn JL, Moldawer LL, Larson SD. Impact of Early-Life Exposures to Infections, Antibiotics, and Vaccines on Perinatal and Long-term Health and Disease. Front Immunol 2017; 8:729. [PMID: 28690615 PMCID: PMC5481313 DOI: 10.3389/fimmu.2017.00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Essentially, all neonates are exposed to infections, antibiotics, or vaccines early in their lives. This is especially true for those neonates born underweight or premature. In contrast to septic adults and children who are at an increased risk for subsequent infections, exposure to infection during the neonatal period is not associated with an increased risk of subsequent infection and may be paradoxically associated with reductions in late-onset sepsis (LOS) in the most premature infants. Perinatal inflammation is also associated with a decreased incidence of asthma and atopy later in life. Conversely, septic neonates are at increased risk of impaired long-term neurodevelopment. While the positive effects of antibiotics in the setting of infection are irrefutable, prolonged administration of broad-spectrum, empiric antibiotics in neonates without documented infection is associated with increased risk of LOS, necrotizing enterocolitis, or death. Vaccines provide a unique opportunity to prevent infection-associated disease; unfortunately, vaccinations have been largely unsuccessful when administered in the first month of life with the exception of vaccines against hepatitis B and tuberculosis. Future vaccines will require the use of novel adjuvants to overcome this challenge. This review describes the influence of infections, antibiotics, and vaccines during the first days of life, as well as the influence on future health and disease. We will also discuss potential immunomodulating therapies, which may serve to train the preterm immune system and reduce subsequent infectious burden without subjecting neonates to the risks accompanied by virulent pathogens.
Collapse
Affiliation(s)
- Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - James L Wynn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
224
|
Gibb DR, Liu J, Natarajan P, Santhanakrishnan M, Madrid DJ, Eisenbarth SC, Zimring JC, Iwasaki A, Hendrickson JE. Type I IFN Is Necessary and Sufficient for Inflammation-Induced Red Blood Cell Alloimmunization in Mice. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28630094 DOI: 10.4049/jimmunol.1700401] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During RBC transfusion, production of alloantibodies against RBC non-ABO Ags can cause hemolytic transfusion reactions and limit availability of compatible blood products, resulting in anemia-associated morbidity and mortality. Multiple studies have established that certain inflammatory disorders and inflammatory stimuli promote alloimmune responses to RBC Ags. However, the molecular mechanisms underlying these findings are poorly understood. Type I IFNs (IFN-α/β) are induced in inflammatory conditions associated with increased alloimmunization. By developing a new transgenic murine model, we demonstrate that signaling through the IFN-α/β receptor is required for inflammation-induced alloimmunization. Additionally, mitochondrial antiviral signaling protein-mediated signaling through cytosolic pattern recognition receptors was required for polyinosinic-polycytidylic acid-induced IFN-α/β production and alloimmunization. We further report that IFN-α, in the absence of an adjuvant, is sufficient to induce RBC alloimmunization. These findings raise the possibility that patients with IFN-α/β-mediated conditions, including autoimmunity and viral infections, may have an increased risk of RBC alloimmunization and may benefit from personalized transfusion protocols and/or targeted therapies.
Collapse
Affiliation(s)
- David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Prabitha Natarajan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | | | - David J Madrid
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - James C Zimring
- Bloodworks Northwest Research Institute, Seattle, WA 98102.,Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195.,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195; and
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520; .,Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
225
|
Sadat SM, Snider M, Garg R, Brownlie R, van Drunen Littel-van den Hurk S. Local innate responses and protective immunity after intradermal immunization with bovine viral diarrhea virus E2 protein formulated with a combination adjuvant in cattle. Vaccine 2017; 35:3466-3473. [DOI: 10.1016/j.vaccine.2017.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/15/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
|
226
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
227
|
Dowling DJ, van Haren SD, Scheid A, Bergelson I, Kim D, Mancuso CJ, Foppen W, Ozonoff A, Fresh L, Theriot TB, Lackner AA, Fichorova RN, Smirnov D, Vasilakos JP, Beaurline JM, Tomai MA, Midkiff CC, Alvarez X, Blanchard JL, Gilbert MH, Aye PP, Levy O. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight 2017; 2:e91020. [PMID: 28352660 DOI: 10.1172/jci.insight.91020] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection is the most common cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, newborns fail to respond optimally to most vaccines. Adjuvantation is a key approach to enhancing vaccine immunogenicity, but responses of human newborn leukocytes to most candidate adjuvants, including most TLR agonists, are functionally distinct. Herein, we demonstrate that 3M-052 is a locally acting lipidated imidazoquinoline TLR7/8 agonist adjuvant in mice, which, when properly formulated, can induce robust Th1 cytokine production by human newborn leukocytes in vitro, both alone and in synergy with the alum-adjuvanted pneumococcal conjugate vaccine 13 (PCV13). When admixed with PCV13 and administered i.m. on the first day of life to rhesus macaques, 3M-052 dramatically enhanced generation of Th1 CRM-197-specific neonatal CD4+ cells, activation of newborn and infant Streptococcus pneumoniae polysaccharide-specific (PnPS-specific) B cells as well as serotype-specific antibody titers, and opsonophagocytic killing. Remarkably, a single dose at birth of PCV13 plus 0.1 mg/kg 3M-052 induced PnPS-specific IgG responses that were approximately 10-100 times greater than a single birth dose of PCV13 alone, rapidly exceeding the serologic correlate of protection, as early as 28 days of life. This potent immunization strategy, potentially effective with one birth dose, could represent a new paradigm in early life vaccine development.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Simon D van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Annette Scheid
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Newborn Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dhohyung Kim
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christy J Mancuso
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Willemina Foppen
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Al Ozonoff
- Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Center for Patient Safety and Quality Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lynn Fresh
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Terese B Theriot
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Raina N Fichorova
- Harvard Medical School, Boston, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Mark A Tomai
- 3M Drug Delivery Systems, Saint Paul, Minnesota, USA
| | - Cecily C Midkiff
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - James L Blanchard
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Pyone Pyone Aye
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
228
|
Ngu LN, Nji NN, Ambada GE, Sagnia B, Sake CN, Tchadji JC, Njambe Priso GD, Lissom A, Tchouangueu TF, Manga Tebit D, Waffo AB, Park CG, Steinman RM, Überla K, Nchinda GW. In vivo targeting of protein antigens to dendritic cells using anti-DEC-205 single chain antibody improves HIV Gag specific CD4 + T cell responses protecting from airway challenge with recombinant vaccinia-gag virus. IMMUNITY INFLAMMATION AND DISEASE 2017; 7:55-67. [PMID: 28474788 PMCID: PMC6485703 DOI: 10.1002/iid3.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022]
Abstract
Introduction Targeting antigens to dendritic cells (DCs) in vivo via a DC‐restricted endocytic receptor, DEC205, has been validated to enhance immunity in several vaccine platforms. Particularly atttractive is selected delivery of proteins to DCs in vivo because it enables proteins to be more immunogenic and provides a cheaper and effective way for repeated immunizations. Methods In this study, we tested the efficacy of a single chain antibody to DEC205 (scDEC) to deliver protein antigens selectively to DCs in vivo and to induce protective immunity. Results In comparison to soluble Ovalbumin (OVA) antigen, when recombinant scDEC:OVA protein was injected subcutaneously (s.c.) into mice, the OVA protein was selectively presented by DCs to both TCR transgenic CD8+ and CD4+ T cells approximately 500 and 100 times more efficient than soluble OVA, respectively, and could persist for seven days following s.c. injection of the scDEC205:OVA. Similarly selective targeting of HIV Gag P24 to DCs in vivo using scDEC‐Gag protein plus polyICLC vaccine resulted in strong, long lasting, polyfuntional CD4+ T cells in mice which were protective against airway challenge by a recombinant vaccinia‐gag virus. Conclusion Thus targeting protein antigens to DCs using scDEC can be used either alone or in combination with other strategies for effective immunization.
Collapse
Affiliation(s)
- Loveline N Ngu
- Department of Biochemistry, University of Yaounde, Yaounde, Cameroon.,Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for Research on The Prevention and Management of HIV/AIDS, Yaounde, Cameroon
| | - Nadesh N Nji
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for Research on The Prevention and Management of HIV/AIDS, Yaounde, Cameroon
| | - Georgia E Ambada
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for Research on The Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaoundeone, Yaounde, Cameroon
| | - Bertrand Sagnia
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for Research on The Prevention and Management of HIV/AIDS, Yaounde, Cameroon
| | - Carol Ngane Sake
- Department of Microbiology, University of Yaoundeone, Yaounde, Cameroon
| | - Jules Colinc Tchadji
- Department of Animal Biology and Physiology, University of Yaoundeone, Yaounde, Cameroon
| | | | - Abel Lissom
- Department of Animal Biology and Physiology, University of Yaoundeone, Yaounde, Cameroon
| | | | - Denis Manga Tebit
- Myles Thaler Center for AIDS and Human Retrovirus Research Department of Microbiology, Immunology and Cancer Biology, Charlottesville, Virginia, USA
| | - Alain Bopda Waffo
- Department of Biological Sciences # 223 Alabama State University, Montgomery, Alabama, USA
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York, USA
| | - Ralph M Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York, USA
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for Research on The Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York, USA
| |
Collapse
|
229
|
Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol 2017; 8:259. [PMID: 28344581 PMCID: PMC5344902 DOI: 10.3389/fimmu.2017.00259] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Immune responses to lung infections must be tightly regulated in order to permit pathogen eradication while maintaining organ function. Exuberant or dysregulated inflammation can impair gas exchange and underlies many instances of lung disease. An important driver of inflammation in the lung is the interferon (IFN) response. Type I IFNs are antiviral cytokines that induce a large range of proteins that impair viral replication in infected cells. This cell-intrinsic action plays a crucial role in protecting the lungs from spread of respiratory viruses. However, type I IFNs have also recently been found to be central to the initiation of lung inflammatory responses, by inducing recruitment and activation of immune cells. This helps control virus burden but can cause detrimental immunopathology and contribute to disease severity. Furthermore, there is now increasing evidence that type I IFNs are not only induced after viral infections but also after infection with bacteria and fungi. The pro-inflammatory function of type I IFNs in the lung opens up the possibility of immune modulation directed against this antiviral cytokine family. In this review, the initiation and signaling of type I IFNs as well as their role in driving and maintaining lung inflammation will be discussed.
Collapse
Affiliation(s)
- Spyridon Makris
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Michelle Paulsen
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| |
Collapse
|
230
|
Pérez-Toledo M, Valero-Pacheco N, Pastelin-Palacios R, Gil-Cruz C, Perez-Shibayama C, Moreno-Eutimio MA, Becker I, Pérez-Tapia SM, Arriaga-Pizano L, Cunningham AF, Isibasi A, Bonifaz LC, López-Macías C. Salmonella Typhi Porins OmpC and OmpF Are Potent Adjuvants for T-Dependent and T-Independent Antigens. Front Immunol 2017; 8:230. [PMID: 28337196 PMCID: PMC5344031 DOI: 10.3389/fimmu.2017.00230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
Several microbial components, such as bacterial DNA and flagellin, have been used as experimental vaccine adjuvants because of their inherent capacity to efficiently activate innate immune responses. Likewise, our previous work has shown that the major Salmonella Typhi (S. Typhi) outer membrane proteins OmpC and OmpF (porins) are highly immunogenic protective antigens that efficiently stimulate innate and adaptive immune responses in the absence of exogenous adjuvants. Moreover, S. Typhi porins induce the expression of costimulatory molecules on antigen-presenting cells through toll-like receptor canonical signaling pathways. However, the potential of major S. Typhi porins to be used as vaccine adjuvants remains unknown. Here, we evaluated the adjuvant properties of S. Typhi porins against a range of experimental and clinically relevant antigens. Co-immunization of S. Typhi porins with ovalbumin (OVA), an otherwise poorly immunogenic antigen, enhanced anti-OVA IgG titers, antibody class switching, and affinity maturation. This adjuvant effect was dependent on CD4+ T-cell cooperation and was associated with an increase in IFN-γ, IL-17A, and IL-2 production by OVA-specific CD4+ T cells. Furthermore, co-immunization of S. Typhi porins with an inactivated H1N1 2009 pandemic influenza virus experimental vaccine elicited higher hemagglutinating anti-influenza IgG titers, antibody class switching, and affinity maturation. Unexpectedly, co-administration of S. Typhi porins with purified, unconjugated Vi capsular polysaccharide vaccine (Vi CPS)—a T-independent antigen—induced higher IgG antibody titers and class switching. Together, our results suggest that S. Typhi porins OmpC and OmpF are versatile vaccine adjuvants, which could be used to enhance T-cell immune responses toward a Th1/Th17 profile, while improving antibody responses to otherwise poorly immunogenic T-dependent and T-independent antigens.
Collapse
Affiliation(s)
- Marisol Pérez-Toledo
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nuriban Valero-Pacheco
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen , St. Gallen , Switzerland
| | | | - Mario A Moreno-Eutimio
- Immunity and Inflammation Research Unit, Hospital Juárez de México, Ministry of Health , Mexico City , Mexico
| | - Ingeborg Becker
- Facultad de Medicina, Departamento de Medicina Experimental, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Sonia Mayra Pérez-Tapia
- Unit of R&D in Bioprocesses (UDIBI), Department of Immunology, National School of Biological Sciences, National Polytechnic Institute , Mexico City , Mexico
| | - Lourdes Arriaga-Pizano
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Laura C Bonifaz
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
231
|
Zhong M, Zhong C, Wang T, Hu P, Wang G, Ren R, Zhang J, Gao H, Cui W, Duan W, Che J. Activation of dendritic cells by low molecular weight oyster polysaccharides. Int Immunopharmacol 2017; 44:183-190. [DOI: 10.1016/j.intimp.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/27/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
232
|
Cytokine regulation of lung Th17 response to airway immunization using LPS adjuvant. Mucosal Immunol 2017; 10:361-372. [PMID: 27328989 PMCID: PMC5179326 DOI: 10.1038/mi.2016.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 02/04/2023]
Abstract
Infections caused by bacteria in the airway preferentially induce a Th17 response. However, the mechanisms involved in the regulation of CD4 T-cell responses in the lungs are incompletely understood. Here, we have investigated the mechanisms involved in the regulation of Th17 differentiation in the lungs in response to immunization with lipopolysaccharide (LPS) as an adjuvant. Our data show that both Myd88 and TRIF are necessary for Th17 induction. This distinctive fate determination can be accounted for by the pattern of inflammatory cytokines induced by airway administration of LPS. We identified the production of interleukin (IL)-1β and IL-6 by small macrophages and IL-23 by alveolar dendritic cells (DCs), favoring Th17 responses, and IL-10 repressing interferon (IFN)-γ production. Furthermore, we show that exogenous IL-1β can drastically alter Th1 responses driven by influenza and lymphocytic choriomeningitis virus infection models and induce IL-17 production. Thus, the precision of the lung immune responses to potential threats is orchestrated by the cytokine microenvironment, can be repolarized and targeted therapeutically by altering the cytokine milieu. These results indicate that how the development of Th17 responses in the lung is regulated by the cytokines produced by lung DCs and macrophages in response to intranasal immunization with LPS adjuvant.
Collapse
|
233
|
De Beuckelaer A, Grooten J, De Koker S. Type I Interferons Modulate CD8 + T Cell Immunity to mRNA Vaccines. Trends Mol Med 2017; 23:216-226. [PMID: 28185789 DOI: 10.1016/j.molmed.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have emerged as potent tools to elicit antitumor T cell immunity. They are characterized by a strong induction of type I interferons (IFNs), potent inflammatory cytokines affecting T cell differentiation and survival. Recent reports have attributed opposing roles for type I IFNs in modulating CD8+ T cell immunity to mRNA vaccines, from profoundly stimulatory to strongly inhibitory. The mechanisms behind this duality are unclear. Disentangling the factors governing the beneficial or detrimental impact of type I IFNs on CD8+ T cell responses is vital to the design of mRNA vaccines of increased potency. In light of recent advancements regarding the complex role of type I IFNs in regulating CD8+ T cell immunity to infectious diseases, we posit that the dual outcome of type I IFNs on CD8+ T cell responses to mRNA vaccination is determined by the timing and intensity of type I IFN induction relative to T cell receptor (TCR) activation.
Collapse
Affiliation(s)
- Ans De Beuckelaer
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cytokine Receptor Laboratory, Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
234
|
Mirotti L, Alberca Custódio RW, Gomes E, Rammauro F, de Araujo EF, Garcia Calich VL, Russo M. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10. Front Immunol 2017; 8:47. [PMID: 28220116 PMCID: PMC5289984 DOI: 10.3389/fimmu.2017.00047] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022] Open
Abstract
Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes.
Collapse
Affiliation(s)
- Luciana Mirotti
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | | | - Eliane Gomes
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Florencia Rammauro
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Eliseu Frank de Araujo
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
235
|
Consecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge. Vaccine 2017; 35:1001-1007. [PMID: 28111142 DOI: 10.1016/j.vaccine.2017.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/19/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022]
Abstract
Mucosal immunity induced through natural infection by influenza virus has potent cross-protective activity, compared to subcutaneous vaccination-induced systemic immunity. Compared to natural infection with influenza virus, however, a single intranasal vaccination with an inactivated influenza virus vaccine and poly(I:C) is not sufficient to induce primary immune response in naïve animals. The reasons for this moderate effect are not fully understood. Here, we demonstrated that intranasal vaccination with formalin-inactivated influenza virus vaccine and poly(I:C) for five consecutive days elicits high levels of virus-specific nasal IgA and serum IgG responses, while vaccination without poly(I:C) induced little response. Mice immunized with influenza virus vaccine and poly(I:C) for five consecutive days sustained high levels of virus-specific IgA in nasal wash and IgG in serum until at least 6months after vaccination. Furthermore, intranasal vaccination with influenza virus vaccine and poly(I:C) protected mice against homologous and heterologous influenza virus challenge. These results suggest that consecutive inoculations of influenza virus vaccine and poly(I:C) is an alternative method to induce primary immune responses in naïve subjects.
Collapse
|
236
|
Newby BN, Mathews CE. Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment. Front Endocrinol (Lausanne) 2017; 8:232. [PMID: 28959234 PMCID: PMC5604085 DOI: 10.3389/fendo.2017.00232] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
A detailed understanding of the molecular pathways and cellular interactions that result in islet beta cell (β cell) destruction is essential for the development and implementation of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events that define the pathogenesis of human T1D have remained elusive. This gap in our knowledge results from the complex interaction between genetics, the immune system, and environmental factors that precipitate T1D in humans. A link between genetics, the immune system, and environmental factors are type 1 interferons (T1-IFNs). These cytokines are well known for inducing antiviral factors that limit infection by regulating innate and adaptive immune responses. Further, several T1D genetic risk loci are within genes that link innate and adaptive immune cell responses to T1-IFN. An additional clue that links T1-IFN to T1D is that these cytokines are a known constituent of the autoinflammatory milieu within the pancreas of patients with T1D. The presence of IFNα/β is correlated with characteristic MHC class I (MHC-I) hyperexpression found in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic β cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in the islet microenvironment.
Collapse
Affiliation(s)
- Brittney N. Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Clayton E. Mathews,
| |
Collapse
|
237
|
Pahari S, Khan N, Aqdas M, Negi S, Kaur J, Agrewala JN. Infergen Stimulated Macrophages Restrict Mycobacterium tuberculosis Growth by Autophagy and Release of Nitric Oxide. Sci Rep 2016; 6:39492. [PMID: 28000752 PMCID: PMC5175149 DOI: 10.1038/srep39492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
IFN alfacon-1 (Infergen) is a synthetic form of Interferon (IFN)-α2b. Infergen has immunomodulatory activity and is effective against hepatitis C virus. However, the effect of Infergen (IFG) on Mycobacterium tuberculosis (Mtb) has not yet been reported. Therefore, for the first time, we have studied the influence of IFG in constraining the survival of Mtb in human macrophages. We observed that IFG significantly enhanced the maturation and activation of macrophages. Further, it substantially augmented the secretion of IL-6, nitric oxide (NO) and antigen uptake. Moreover, macrophages exhibited remarkably higher bactericidal activity, as evidenced by reduction in the Mtb growth. Infergen-mediated mechanism was different from the type-1 interferons; since it worked through the activation of NF-κB, phosphorylation of STAT-3 and Akt-PI3K that improved the bactericidal activity through autophagy and NO release. In future, IFG immunotherapy can be a novel strategy for treating patients and controlling TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Nargis Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Javed N. Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
238
|
Amorim KNS, Rampazo EV, Antonialli R, Yamamoto MM, Rodrigues MM, Soares IS, Boscardin SB. The presence of T cell epitopes is important for induction of antibody responses against antigens directed to DEC205 + dendritic cells. Sci Rep 2016; 6:39250. [PMID: 28000705 PMCID: PMC5175286 DOI: 10.1038/srep39250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
In vivo antigen targeting to dendritic cells (DCs) has been used as a way to improve immune responses. Targeting is accomplished with the use of monoclonal antibodies (mAbs) to receptors present on the DC surface fused with the antigen of interest. An anti-DEC205 mAb has been successfully used to target antigens to the DEC205+CD8α+ DC subset. The administration of low doses of the hybrid mAb together with DC maturation stimuli is able to activate specific T cells and induce production of high antibody titres for a number of different antigens. However, it is still not known if this approach would work with any fused protein. Here we genetically fused the αDEC205 mAb with two fragments (42-kDa and 19-kDa) derived from the ~200 kDa Plasmodium vivax merozoite surface protein 1 (MSP1), known as MSP142 and MSP119, respectively. The administration of two doses of αDEC-MSP142, but not of αDEC-MSP119 mAb, together with an adjuvant to two mouse strains induced high anti-MSP119 antibody titres that were dependent on CD4+ T cells elicited by peptides present in the MSP133 sequence, indicating that the presence of T cell epitopes in antigens targeted to DEC205+ DCs increases antibody responses.
Collapse
Affiliation(s)
- Kelly N. S. Amorim
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Eline V. Rampazo
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Renan Antonialli
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Marcio M. Yamamoto
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Mauricio M. Rodrigues
- CTCMol, Federal University of São Paulo, São Paulo, 04044-010, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, 31270-910, Brazil
| | - Irene S. Soares
- National Institute for Science and Technology in Vaccines, Belo Horizonte, 31270-910, Brazil
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Silvia B. Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, 31270-910, Brazil
| |
Collapse
|
239
|
Connor LM, Tang SC, Cognard E, Ochiai S, Hilligan KL, Old SI, Pellefigues C, White RF, Patel D, Smith AAT, Eccles DA, Lamiable O, McConnell MJ, Ronchese F. Th2 responses are primed by skin dendritic cells with distinct transcriptional profiles. J Exp Med 2016; 214:125-142. [PMID: 27913566 PMCID: PMC5206495 DOI: 10.1084/jem.20160470] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/20/2016] [Accepted: 11/01/2016] [Indexed: 01/25/2023] Open
Abstract
Connor et al. show that transcriptomic profiling of DCs exposed to two different Th2 stimuli in vivo reveals large numbers of differentially expressed genes but few similarities between conditions. The dendritic cell signals required for the in vivo priming of IL-4–producing T cells are unknown. We used RNA sequencing to characterize DCs from skin LN of mice exposed to two different Th2 stimuli: the helminth parasite Nippostrongylus brasiliensis (Nb) and the contact sensitizer dibutyl phthalate (DBP)-FITC. Both Nb and DBP-FITC induced extensive transcriptional changes that involved multiple DC subsets. Surprisingly, these transcriptional changes were highly distinct in the two models, with only a small number of genes being similarly regulated in both conditions. Pathway analysis of expressed genes identified no shared pathways between Nb and DBP-FITC, but revealed a type-I IFN (IFN-I) signature unique to DCs from Nb-primed mice. Blocking the IFN-I receptor at the time of Nb treatment had little effect on DC migration and antigen transport to the LN, but inhibited the up-regulation of IFN-I–induced markers on DCs and effectively blunted Th2 development. In contrast, the response to DBP-FITC was not affected by IFN-I receptor blockade, a finding consistent with the known dependence of this response on the innate cytokine TSLP. Thus, the priming of Th2 responses is associated with distinct transcriptional signatures in DCs in vivo, reflecting the diverse environments in which Th2 immune responses are initiated.
Collapse
Affiliation(s)
- Lisa M Connor
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Shiau-Choot Tang
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | | | - Sotaro Ochiai
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand.,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington 6242, New Zealand
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand.,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington 6242, New Zealand
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | | | - Ruby F White
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Deepa Patel
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | | | - David A Eccles
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand .,School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
240
|
Lubaki NM, Younan P, Santos RI, Meyer M, Iampietro M, Koup RA, Bukreyev A. The Ebola Interferon Inhibiting Domains Attenuate and Dysregulate Cell-Mediated Immune Responses. PLoS Pathog 2016; 12:e1006031. [PMID: 27930745 PMCID: PMC5145241 DOI: 10.1371/journal.ppat.1006031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by deficient T-lymphocyte responses, T-lymphocyte apoptosis and lymphopenia. We previously showed that disabling of interferon-inhibiting domains (IIDs) in the VP24 and VP35 proteins effectively unblocks maturation of dendritic cells (DCs) and increases the secretion of cytokines and chemokines. Here, we investigated the role of IIDs in adaptive and innate cell-mediated responses using recombinant viruses carrying point mutations, which disabled IIDs in VP24 (EBOV/VP24m), VP35 (EBOV/VP35m) or both (EBOV/VP35m/VP24m). Peripheral blood mononuclear cells (PBMCs) from cytomegalovirus (CMV)-seropositive donors were inoculated with the panel of viruses and stimulated with CMV pp65 peptides. Disabling of the VP35 IID resulted in increased proliferation and higher percentages of CD4+ T cells secreting IFNγ and/or TNFα. To address the role of aberrant DC maturation in the IID-mediated suppression of T cell responses, CMV-stimulated DCs were infected with the panel of viruses and co-cultured with autologous T-lymphocytes. Infection with EBOV/VP35m infection resulted in a significant increase, as compared to wt EBOV, in proliferating CD4+ cells secreting IFNγ, TNFα and IL-2. Experiments with expanded CMV-specific T cells demonstrated their increased activation following co-cultivation with CMV-pulsed DCs pre-infected with EBOV/VP24m, EBOV/VP35m and EBOV/VP35m/VP24m, as compared to wt EBOV. Both IIDs were found to block phosphorylation of TCR complex-associated adaptors and downstream signaling molecules. Next, we examined the effects of IIDs on the function of B cells in infected PBMC. Infection with EBOV/VP35m and EBOV/VP35m/VP24m resulted in significant increases in the percentages of phenotypically distinct B-cell subsets and plasma cells, as compared to wt EBOV, suggesting inhibition of B cell function and differentiation by VP35 IID. Finally, infection with EBOV/VP35m increased activation of NK cells, as compared to wt EBOV. These results demonstrate a global suppression of cell-mediated responses by EBOV IIDs and identify the role of DCs in suppression of T-cell responses.
Collapse
Affiliation(s)
- Ndongala Michel Lubaki
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Younan
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle Meyer
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathieu Iampietro
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Bukreyev
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
241
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
242
|
Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, Casanova-Acebes M, Khudoynazarova M, Agudo J, Tung N, Chakarov S, Rivera C, Hogstad B, Bosenberg M, Hashimoto D, Gnjatic S, Bhardwaj N, Palucka AK, Brown BD, Brody J, Ginhoux F, Merad M. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity 2016; 44:924-38. [PMID: 27096321 DOI: 10.1016/j.immuni.2016.03.012] [Citation(s) in RCA: 914] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/19/2015] [Accepted: 12/21/2015] [Indexed: 12/26/2022]
Abstract
Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.
Collapse
Affiliation(s)
- Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adeeb Rahman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marylène Leboeuf
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Remark
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Makhzuna Khudoynazarova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judith Agudo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis 138648, Singapore
| | - Christina Rivera
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brandon Hogstad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Brian D Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Brody
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis 138648, Singapore
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
243
|
Aravantinou M, Frank I, Hallor M, Singer R, Tharinger H, Kenney J, Gettie A, Grasperge B, Blanchard J, Salazar A, Piatak M, Lifson JD, Robbiani M, Derby N. PolyICLC Exerts Pro- and Anti-HIV Effects on the DC-T Cell Milieu In Vitro and In Vivo. PLoS One 2016; 11:e0161730. [PMID: 27603520 PMCID: PMC5014349 DOI: 10.1371/journal.pone.0161730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022] Open
Abstract
Myeloid dendritic cells (mDCs) contribute to both HIV pathogenesis and elicitation of antiviral immunity. Understanding how mDC responses to stimuli shape HIV infection outcomes will inform HIV prevention and treatment strategies. The long double-stranded RNA (dsRNA) viral mimic, polyinosinic polycytidylic acid (polyIC, PIC) potently stimulates DCs to focus Th1 responses, triggers direct antiviral activity in vitro, and boosts anti-HIV responses in vivo. Stabilized polyICLC (PICLC) is being developed for vaccine adjuvant applications in humans, making it critical to understand how mDC sensing of PICLC influences HIV infection. Using the monocyte-derived DC (moDC) model, we sought to describe how PICLC (vs. other dsRNAs) impacts HIV infection within DCs and DC-T cell mixtures. We extended this work to in vivo macaque rectal transmission studies by administering PICLC with or before rectal SIVmac239 (SIVwt) or SIVmac239ΔNef (SIVΔNef) challenge. Like PIC, PICLC activated DCs and T cells, increased expression of α4β7 and CD169, and induced type I IFN responses in vitro. The type of dsRNA and timing of dsRNA exposure differentially impacted in vitro DC-driven HIV infection. Rectal PICLC treatment similarly induced DC and T cell activation and pro- and anti-HIV factors locally and systemically. Importantly, this did not enhance SIV transmission in vivo. Instead, SIV acquisition was marginally reduced after a single high dose challenge. Interestingly, in the PICLC-treated, SIVΔNef-infected animals, SIVΔNef viremia was higher, in line with the importance of DC and T cell activation in SIVΔNef replication. In the right combination anti-HIV strategy, PICLC has the potential to limit HIV infection and boost HIV immunity.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Magnus Hallor
- Center for Biomedical Research, Population Council, New York, NY, United States of America
- Linköping University, Linköping, Sweden
| | - Rachel Singer
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| |
Collapse
|
244
|
Combination of TLR1/2 and TLR3 ligands enhances CD4(+) T cell longevity and antibody responses by modulating type I IFN production. Sci Rep 2016; 6:32526. [PMID: 27580796 PMCID: PMC5007540 DOI: 10.1038/srep32526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023] Open
Abstract
Despite the possibility of combining Toll-like receptor (TLR) ligands as adjuvants to improve vaccine efficacy, it remains unclear which combinations of TLR ligands are effective or what their underlying mechanisms may be. Here, we investigated the mechanism of action of L-pampo, a proprietary adjuvant composed of TLR1/2 and TLR3 ligands. L-pampo dramatically increased humoral immune responses against the tested target antigens, which was correlated with an increase in follicular helper T cells and the maintenance of antigen-specific CD4+ T cells. During the initial priming phase, in contrast to the induction of type I interferon (IFN) and pro-inflammatory cytokines stimulated by polyI:C, L-pampo showed a greatly diminished induction of type I IFN, but not of other cytokines, and remarkably attenuated IRF3 signaling, which appeared to be critical to L-pampo-mediated adjuvanticity. Collectively, our results demonstrate that the adjuvant L-pampo contributes to the promotion of antigen-specific antibodies and CD4+ T cell responses via a fine regulation of the TLR1/2 and TLR3 signaling pathways, which may be helpful in the design of improved vaccines.
Collapse
|
245
|
Kano Y, Iguchi T, Matsui H, Adachi K, Sakoda Y, Miyakawa T, Doi S, Hazama S, Nagano H, Ueyama Y, Tamada K. Combined adjuvants of poly(I:C) plus LAG-3-Ig improve antitumor effects of tumor-specific T cells, preventing their exhaustion. Cancer Sci 2016; 107:398-406. [PMID: 27079438 PMCID: PMC4832865 DOI: 10.1111/cas.12861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/03/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are designed to treat cancer by boosting the endogenous immune system to fight against the cancer. In the development of clinically effective cancer vaccines, one of the most practical objectives is to identify adjuvants that are capable of optimizing the vaccine effects. In this study, we explored the potential of polyinosinic-polycytidylic acid (poly(I:C)) and LAG-3-Ig (soluble recombinant protein of lymphocyte activation gene-3 [LAG-3] extracellular domain fused with human IgG Fc region) as adjuvants for P1A tumor antigen peptide vaccine in a pre-established P815 mouse tumor model with a transfer of tumor-specific T cells. Whereas the use of poly(I:C) or LAG-3-Ig as a signal adjuvant induced a slight enhancement of P1A vaccine effects compared to incomplete Freund's adjuvant, combined treatment with poly(I:C) plus LAG-3-Ig remarkably potentiated antitumor effects, leading to complete rejection of pre-established tumor and long-term survival of mice. The potent adjuvant effects of poly(I:C) plus LAG-3-Ig were associated with an enhanced infiltration of T cells in the tumor tissues, and an increased proliferation and Th1-type cytokine production of tumor-reactive T cells. Importantly, the combined adjuvant of poly(I:C) plus LAG-3-Ig downregulated expressions of PD-1, LAG-3, and TIGIT on P1A-specific T cells, indicating prevention of T cell exhaustion. Taken together, the results of the current study show that the combined adjuvants of poly(I:C) plus LAG-3-Ig with tumor peptide vaccine induce profound antitumor effects by activating tumor-specific T cells.
Collapse
Affiliation(s)
- Yosuke Kano
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Iguchi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroto Matsui
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Keishi Adachi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yukimi Sakoda
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroaki Nagano
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshiya Ueyama
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
246
|
Zeng M, Nourishirazi E, Guinet E, Nouri-Shirazi M. The genetic background influences the cellular and humoral immune responses to vaccines. Clin Exp Immunol 2016; 186:190-204. [PMID: 27393001 DOI: 10.1111/cei.12841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 11/30/2022] Open
Abstract
The assessment of Toll-like receptor (TLR) agonists as candidate adjuvants for induction of effective T helper type 1 (Th1) immunity continues to rely on the use of mice. However, the genetic variation among inbred mice may influence the efficacy of adjuvants and bias a study's conclusions. Here, we evaluated the differences in cellular and humoral responses of genetically non-identical mouse strains immunized with ovalbumin (OVA) plus alum, TLR-3, TLR-4, TLR-7/8 or TLR-9 agonists. We found that all the tested TLR agonists recruited dendritic cells (DCs) and natural killer (NK) cells significantly into the lymph nodes, promoted DC-NK cross-talk and enhanced the cellular responses in B6 strain. In contrast, TLR-3 and TLR-7/8 were the only two agonists that showed the cellular adjuvanticity in the BALB/c strain. Compared with other TLR agonists, TLR-3 and TLR-7/8 were demonstrated to be the most effective adjuvants to generate interferon (IFN)-γ-producing effector NK, CD4, and CD8 T cells in B6 and BALB/c strains, respectively. We also found that compared with alum, all adjuvants induced the recruitment of B cells and production of OVA-specific immunoglobulin (Ig)G2a more effectively in both strains. In addition, the B6 strain recruited more B cells, but surprisingly produced significantly lower amounts of OVA-specific IgG2a in response to all adjuvants. However, consistent with the frequency of IFN-γ-producing effector cells observed in individual strains following immunizations, we detected more OVA-specific IgG2a in serum of B6 and BALB/c strains in response to TLR-3 and TLR-7/8, respectively. Our data suggest that genetic background should be taken into consideration when evaluating the activities of TLR agonists for the development of prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- M Zeng
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, Boca Raton, FL, USA.,Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - E Nourishirazi
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, Boca Raton, FL, USA.,Leonard M. Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - E Guinet
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, Boca Raton, FL, USA
| | - M Nouri-Shirazi
- Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
247
|
Gutjahr A, Tiraby G, Perouzel E, Verrier B, Paul S. Triggering Intracellular Receptors for Vaccine Adjuvantation. Trends Immunol 2016; 37:573-587. [PMID: 27474233 DOI: 10.1016/j.it.2016.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022]
Abstract
Immune adjuvants are components that stimulate, potentiate, or modulate the immune response to an antigen. They are key elements of vaccines in both the prophylactic and therapeutic domains. In the past decade substantial progress in our understanding of innate immunity has paved the way for the design of next-generation adjuvants that stimulate a wide range of receptors. Within the framework of vaccine adjuvant design, this review outlines the interest of targeting endosomal and intracellular receptors to enhance and guide the immune response. We present and compare the molecules as well as potential combinations which are currently in the spotlight. We emphasize how targeting the appropriate receptor can direct immunity towards the appropriate response, such as a cytotoxic or mucosal response.
Collapse
Affiliation(s)
- Alice Gutjahr
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et Chimie des Protéines (IBCP)-Lyon, France; InvivoGen, Toulouse, France; Groupe Immunité des Muqueuses et Agents Pathogènes, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique 1408 Vaccinologie, Faculté de Médecine de Saint-Etienne-Saint-Etienne, France
| | | | | | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et Chimie des Protéines (IBCP)-Lyon, France
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique 1408 Vaccinologie, Faculté de Médecine de Saint-Etienne-Saint-Etienne, France.
| |
Collapse
|
248
|
Enhancing Antitumor Immune Responses by Optimized Combinations of Cell-penetrating Peptide-based Vaccines and Adjuvants. Mol Ther 2016; 24:1675-85. [PMID: 27377043 DOI: 10.1038/mt.2016.134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 11/08/2022] Open
Abstract
Cell penetrating peptides (CPPs) from the protein ZEBRA are promising candidates to exploit in therapeutic cancer vaccines, since they can transport antigenic cargos into dendritic cells and induce tumor-specific T cells. Employing CPPs for a given cancer indication will require engineering to include relevant tumor-associated epitopes, administration with an appropriate adjuvant, and testing for antitumor immunity. We assessed the importance of structural characteristics, efficiency of in vitro transduction of target cells, and choice of adjuvant in inducing the two key elements in antitumor immunity, CD4 and CD8 T cells, as well as control of tumor growth in vivo. Structural characteristics associated with CPP function varied according to CPP truncations and cargo epitope composition, and correlated with in vitro transduction efficiency. However, subsequent in vivo capacity to induce CD4 and CD8 T cells was not always predicted by in vitro results. We determined that the critical parameter for in vivo efficacy using aggressive mouse tumor models was the choice of adjuvant. Optimal pairing of a particular ZEBRA-CPP sequence and antigenic cargo together with adjuvant induced potent antitumor immunity. Our results highlight the irreplaceable role of in vivo testing of novel vaccine constructs together with adjuvants to select combinations for further development.
Collapse
|
249
|
Alipour Talesh G, Ebrahimi Z, Badiee A, Mansourian M, Attar H, Arabi L, Jalali SA, Jaafari MR. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett 2016; 176:57-64. [PMID: 27260485 DOI: 10.1016/j.imlet.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/07/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
Abstract
In the current study we aimed at developing a vaccine delivery/adjuvant system to enhance anti-tumor immunity against the natural multi-epitope HER2/Neu-derived P5 peptide. Polyriboinosinic: polyribocytidylic acid [Poly (I:C)] is a strong immunoadjuvant able to enhance specific antitumor immunity induced by peptide-based vaccines. Nevertheless, delivering the peptide and adjuvant intracellularly into their target site remains a challenging issue. We hypothesized this barrier could be overcome through the use of a cationic nanoliposome carrier system which can carry and protect the antigen and adjuvant in the extracellular environment and augment the induction of antitumor immunity. P5 was encapsulated in cationic nanoliposomes composed of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-Cholesterol either alone or complexed with Poly (I:C). Immunocompetent BALB/c mice were immunized with the formulations 3 times in two-week intervals and the efficiency and type of immune response were then evaluated both in vitro and in vivo. The groups immunized with Lip-P5+PIC (DOTAP-Cholestrol-P5+Poly (I:C)) and Lip+PIC (DOTAP-Cholestrol+Poly (I:C)) enhanced the release of Interferon (IFN)-γ in comparison with other groups. Flow cytometry analysis revealed that Lip-P5+PIC formulation induced the highest level of IFN-γ in CD8(+) lymphocytes. Lip-P5+PIC, Lip+PIC and Lip-P5 (DOTAP-Cholestrol-P5) provided some extent of protection in terms of tumor regression in TUBO tumor mice model during the first 65days post tumor challenge but at the end only the tumors of mice immunized with Lip-P5+PIC were significantly smaller than all other groups. Furthermore, tumors of mice receiving Lip-P5+PIC grew at a significantly slower rate throughout the observation period. Our results showed that the combination of Poly (I:C) and DOTAP with the tumor antigen and without applying additional T-helper epitope induced strong antitumor responses. The observations presented here are of great interest for future vaccine studies.
Collapse
Affiliation(s)
- Ghazal Alipour Talesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Ebrahimi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mercedeh Mansourian
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Attar
- Department of Biochemical Engineering, Science & Research Branch Islamic Azad University, Tehran, Iran
| | - Leila Arabi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Jalali
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
250
|
Zhu M, Xu W, Su H, Huang Q, Wang B. Addition of CpG ODN and Poly (I:C) to a standard maturation cocktail generates monocyte-derived dendritic cells and induces a potent Th1 polarization with migratory capacity. Hum Vaccin Immunother 2016; 11:1596-605. [PMID: 26039883 DOI: 10.1080/21645515.2015.1046659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocyte-derived dendritic cells (DCs) are used as immunoadjuvant cells in cancer vaccines and have made great progress. However, an optimal DCs subset is vital for this treatment effect, the current 'gold standard' cytokine cocktail DCs have a shortcoming in their cytokines secretion, especially IL-12p70, mainly because of the existence of PGE2. Therefore, it is necessary to find an appropriate DCs-based immunotherapeutic protocol. In this study, we compared a novel 'improved' maturation cytokine cocktail with the current 'gold standard' maturation cytokine cocktail used for generating standard DCs. The 'improved' maturation cytokine cocktail DCs showed a higher levels surface markers expression (CD80, CD83, CD86 and HLA-DR), the chemokine receptors CXCR4 and CCR7 and chemokine CCL19, CCL21 and CXCL21, whereas CCR5 expression was reduced. Most importantly, in contrast to 'gold standard' DCs, which secrete little IL-12p70 and as a result induce mainly Th2 immunity, 'improved' cytokine cocktail DCs secreted higher levels IL-12p70 and also secreted similar concentration IL-10. To removal of PGE2 from the 'improved' DCs did increase the IL-12p70 production. In conclusion, we here present the 'improved' DCs, as an optimal maturation cocktail protocol, can induce high migratory potential, generate immunostimulatory DCs, produce higher levels IL-12p70 with superior capacity to induce Th1 immunity, when compared with the 'gold standard' DCs.
Collapse
Affiliation(s)
- Mei Zhu
- a Department of Laboratory Medicine ; Affiliated Provincial Hospital of Anhui Medical University ; Hefei , Anhui , China
| | | | | | | | | |
Collapse
|