201
|
Dresselhaus T, Amien S, Márton M, Strecke A, Brettschneider R, Cordts S. TRANSPARENT LEAF AREA1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize. THE PLANT CELL 2005; 17:730-45. [PMID: 15705951 PMCID: PMC1069695 DOI: 10.1105/tpc.104.028340] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 12/09/2004] [Indexed: 05/19/2023]
Abstract
We report the identification and functional analysis of TRANSPARENT LEAF AREA1 (TLA1), a maize (Zea mays) gene representing a novel class of secreted, extremely hydrophobic peptides (proteolipids) with a C-terminal Caax box-like motif. ZmTLA1 encodes 27 amino acid residues and is most strongly expressed in the egg cell and microspores. Lower transcript amounts were detected during vegetative development. Transgenic maize expressing an antisense transcript displayed a variety of phenotypes. The most visible phenotypes were dwarfism and transparent leaf areas resulting from defective morphogenesis of mesophyll, bundle sheath, stomatal, and epidermal cells during leaf development. Incomplete cell walls were observed, indicating a defect of cytokinesis. The accumulation of gerontoplasts was probably a secondary effect caused by defects of leaf cell morphogenesis. A defect of anther maturation was observed in approximately 30% of the plants displaying the tla phenotype. Male sterility was mainly caused by incomplete disintegration of the tapetal cell layers and tetrad callose as 90% of the microspores developed into functional pollen. Overexpression of ZmTLA1 seemed to have a lethal effect both in maize and Arabidopsis thaliana. Development of primary roots, root hairs, primary leaves, and chloroplasts was suppressed in Arabidopsis seedlings expressing an inducible ZmTLA1-green fluorescent protein (GFP) fusion protein. GFP signals were exclusively detected in cell walls. Based on our observations, we suggest that the ZmTLA1 peptide represents a class of novel plant morphogens required for the development and maturation of leaf and reproductive tissues.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
202
|
Wang X, Mitchum MG, Gao B, Li C, Diab H, Baum TJ, Hussey RS, Davis EL. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2005; 6:187-91. [PMID: 20565649 DOI: 10.1111/j.1364-3703.2005.00270.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SUMMARY The Hg-SYV46 parasitism gene is expressed exclusively in the dorsal oesophageal gland cell of parasitic stages of the soybean cyst nematode, Heterodera glycines, and it encodes a secretory protein that contains a C-terminal motif of the CLAVATA3/ESR-related (CLE) family in Arabidopsis thaliana. In shoot and floral meristems of Arabidopsis, the stem cells secret CLV3, a founding member of the CLE protein family, that activates the CLV1/CLV2 receptor complex and negatively regulates WUSCHEL expression to restrict the size of the stem cell population. Mis-expression of Hg-SYV46 in Arabidopsis (ecotype Columbia-0) under control of the CaMV35S promoter resulted in a wus-like phenotype including premature termination of the shoot apical meristem and the development of flowers lacking the central gynoecium. The wus-like phenotype observed was similar to reports of over-expression of CLV3 and CLE40 in Arabidopsis, as was down-regulation of WUS expression in the shoot apices of 35S::Hg-SYV46/Col-0 plants. Expression of 35S::Hg-SYV46 in a clv3-1 mutant of Arabidopsis was able partially or fully to rescue the mutant phenotype, probably dependent upon localization and level of transgene expression. A short root phenotype, as reported for over-expression of CLV3, CLE40 and CLE19 in roots, was also produced in primary 35S::Hg-SYV46/Col-0 transgenic plants. The results suggest a functional similarity of HG-SYV46 to plant-secreted CLE ligands that may play a role in the differentiation or division of feeding cells induced in plant roots by parasitic nematodes.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Plant Pathology, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 2005; 132:1235-45. [PMID: 15716347 DOI: 10.1242/dev.01671] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development in higher plants depends on the activity of meristems, formative regions that continuously initiate new organs at their flanks. Meristems must maintain a balance between stem cell renewal and organ initiation. In fasciated mutants, organ initiation fails to keep pace with meristem proliferation. The thick tassel dwarf1 (td1) mutation of maize affects both male and female inflorescence development. The female inflorescence, which results in the ear, is fasciated, with extra rows of kernels. The male inflorescence, or tassel, shows an increase in spikelet density. Floral meristems are also affected in td1 mutants; for example, male florets have an increase in stamen number. These results suggest that td1 functions in the inflorescence to limit meristem size. In addition, td1 mutants are slightly shorter than normal siblings, indicating that td1 also plays a role in vegetative development. td1 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that is a putative ortholog of the Arabidopsis CLAVATA1 protein. These results complement previous work showing that fasciated ear2 encodes a CLAVATA2-like protein, and suggest that the CLAVATA signaling pathway is conserved in monocots. td1 maps in the vicinity of quantitative trait loci that affect seed row number, spikelet density and plant height. We discuss the possible selection pressures on td1 during maize domestication.
Collapse
Affiliation(s)
- Peter Bommert
- Institut für Entwicklungsbiologie, Universität zu Köln, Gyrhofstrasse 17, D-50923 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Decreux A, Messiaen J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. PLANT & CELL PHYSIOLOGY 2005; 46:268-78. [PMID: 15769808 DOI: 10.1093/pcp/pci026] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wall-associated kinase 1 (WAK1) is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell walls. In order to characterize further the interaction of WAK1 with pectin, a 564 bp DNA sequence corresponding to amino acids 67-254 of the extracellular domain of WAK1 from Arabidopsis thaliana was cloned and expressed as a soluble recombinant peptide in yeast. Using enzyme-linked immunosorbent assays (ELISA), we show that peptide WAK(67-254) binds to polygalacturonic acid (PGA), oligogalacturonides, pectins extracted from A. thaliana cell walls and to structurally related alginates. Our results suggest that both ionic and steric interactions are required to match the relatively linear pectin backbone. Binding of WAK(67-254) to PGA, oligogalacturonides and alginates occurred only in the presence of calcium and in ionic conditions promoting the formation of calcium bridges between oligo-and polymers (also known as 'egg-boxes'). The conditions inhibiting the formation of calcium bridges (EDTA treatment, calcium substitution, high NaCl concentrations, depolymerization and methylesterification of pectins) also inhibited the binding of WAK(67-254) to calcium-induced egg-boxes. The relevance of this non-covalent link between WAK(67-254) and cell wall pectins is discussed in terms of cell elongation, cell differentiation and host-pathogen interactions.
Collapse
Affiliation(s)
- Annabelle Decreux
- FUNDP, Unité de Recherche en Biologie Végétale, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
205
|
Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 2005; 131:5649-57. [PMID: 15509765 DOI: 10.1242/dev.01441] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of floral organ number is closely associated with floral meristem size. Mutations in the gene FLORAL ORGAN NUMBER1 (FON1) cause enlargement of the floral meristem in Oryza sativa (rice), resulting in an increase in the number of all floral organs. Ectopic floral organs develop in the whorl of each organ and/or in the additional whorls that form. Inner floral organs are more severely affected than outer floral organs. Many carpel primordia develop indeterminately, and undifferentiated meristematic tissues remain in the center in almost-mature flowers. Consistent with this result, OSH1, a molecular marker of meristematic indeterminate cells in rice, continues to be expressed in this region. Although floral meristems are strongly affected by the fon1-2 mutation, vegetative and inflorescence meristems are largely normal, even in this strong allele. We isolated the FON1 gene by positional cloning and found that it encodes a leucine-rich repeat receptor-like kinase most similar to CLAVATA1 (CLV1) in Arabidopsis thaliana. This suggests that a pathway similar to the CLV signaling system that regulates meristem maintenance in Arabidopsis is conserved in the grass family. Unlike CLV1, which is predominantly expressed in the L3 layer of the shoot meristem, FON1 is expressed throughout the whole floral meristem, suggesting that small modifications to the CLV signaling pathway may be required to maintain the floral meristem in rice. In addition, FON1 transcripts are detected in all meristems responsible for development of the aerial part of rice, suggesting that genes sharing functional redundancy with FON1 act in the vegetative and inflorescence meristems to mask the effects of the fon1 mutation.
Collapse
Affiliation(s)
- Takuya Suzaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
206
|
Abstract
Cytokinesis partitions the cytoplasm between two or more nuclei. In higher plants, cytokinesis is initiated by cytoskeleton-assisted targeted delivery of membrane vesicles to the plane of cell division, followed by local membrane fusion to generate tubulo-vesicular networks. This initial phase of cytokinesis is essentially the same in diverse modes of plant cytokinesis whereas the subsequent transformation of the tubulo-vesicular networks into the partitioning membrane may be different between systems. This review focuses on membrane and cytoskeleton dynamics in cell plate formation and expansion during somatic cytokinesis.
Collapse
Affiliation(s)
- Gerd Jürgens
- ZMBP, Entwicklungsgenetik, Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
207
|
Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY. Genetics and evolution of inflorescence and flower development in grasses. PLANT & CELL PHYSIOLOGY 2005; 46:69-78. [PMID: 15659432 DOI: 10.1093/pcp/pci504] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inflorescences and flowers in the grass species have characteristic structures that are distinct from those in eudicots. Owing to the availability of genetic tools and their genome sequences, rice and maize have become model plants for the grasses and for the monocots in general. Recent studies have provided much insight into the genetic control of inflorescence and flower development in grasses, especially in rice and maize. Progress in elucidating the developmental mechanisms in each of these plants may contribute greatly to our understanding of the evolution of development in higher plants.
Collapse
Affiliation(s)
- Peter Bommert
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
208
|
Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. THE PLANT CELL 2004; 16:3285-303. [PMID: 15539469 PMCID: PMC535874 DOI: 10.1105/tpc.104.027078] [Citation(s) in RCA: 447] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vacuoles play central roles in plant growth, development, and stress responses. To better understand vacuole function and biogenesis we have characterized the vegetative vacuolar proteome from Arabidopsis thaliana. Vacuoles were isolated from protoplasts derived from rosette leaf tissue. Total purified vacuolar proteins were then subjected either to multidimensional liquid chromatography/tandem mass spectrometry or to one-dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry (nano-LC MS/MS). To ensure maximum coverage of the proteome, a tonoplast-enriched fraction was also analyzed separately by one-dimensional SDS-PAGE followed by nano-LC MS/MS. Cumulatively, 402 proteins were identified. The sensitivity of our analyses is indicated by the high coverage of membrane proteins. Eleven of the twelve known vacuolar-ATPase subunits were identified. Here, we present evidence of four tonoplast-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), representing each of the four groups of SNARE proteins necessary for membrane fusion. In addition, potential cargo of the N- and C-terminal propeptide sorting pathways, association of the vacuole with the cytoskeleton, and the vacuolar localization of 89 proteins of unknown function are identified. A detailed analysis of these proteins and their roles in vacuole function and biogenesis is presented.
Collapse
Affiliation(s)
- Clay Carter
- Center for Plant Cell Biology, Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
209
|
Lee SJ, Saravanan RS, Damasceno CMB, Yamane H, Kim BD, Rose JKC. Digging deeper into the plant cell wall proteome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:979-88. [PMID: 15707835 DOI: 10.1016/j.plaphy.2004.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/18/2004] [Indexed: 05/03/2023]
Abstract
The proteome of the plant cell wall/apoplast is less well characterized than those of other subcellular compartments. This largely reflects the many technical challenges involved in extracting and identifying extracellular proteins, many of which resist isolation and identification, and in capturing a population that is both comprehensive and relatively uncontaminated with intracellular proteins. However, a range of disruptive techniques, involving tissue homogenization and subsequent sequential extraction and non-disruptive approaches has been developed. These approaches have been complemented more recently by other genome-scale screens, such as secretion traps that reveal the genes encoding proteins with N-terminal signal peptides that are targeted to the secretory pathway, many of which are subsequently localized in the wall. While the size and complexity of the wall proteome is still unresolved, the combination of experimental tools and computational prediction is rapidly expanding the catalog of known wall-localized proteins, suggesting the unexpected extracellular localization of other polypeptides and providing the basis for further exploration of plant wall structure and function.
Collapse
Affiliation(s)
- Sang-Jik Lee
- Department of Plant Biology, 228 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
210
|
Abstract
Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
Collapse
Affiliation(s)
- Viola Willemsen
- Department of Molecular Genetics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
211
|
Abstract
Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
Collapse
Affiliation(s)
- Gerd Jurgens
- ZMBP, Entwicklungsgenetik, Universitat Tubingen, 72076 Tubingen, Germany.
| |
Collapse
|
212
|
Abstract
Photoperiod has been known to regulate flowering time in many plant species. In Arabidopsis, genes in the long day (LD) pathway detect photoperiod and promote flowering under LD. It was previously reported that clavata2 (clv2) mutants grown under short day (SD) conditions showed suppression of the flower meristem defects, namely the accumulation of stem cells and the resulting production of extra floral organs. Detailed analysis of this phenomenon presented here demonstrates that the suppression is a true photoperiodic response mediated by the inactivation of the LD pathway under SD. Inactivation of the LD pathway was sufficient to suppress the clv2 defects under LD, and activation of the LD pathway under SD conditions restored clv2 phenotypes. These results reveal a novel role of photoperiod in flower meristem development in Arabidopsis. Flower meristem defects of clv1 and clv3 mutants are also suppressed under SD, and 35S:CO enhanced the defects of clv3, indicating that the LD pathway works independently from the CLV genes. A model is proposed to explain the interactions between photoperiod and the CLV genes.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
213
|
Friedman WE, Moore RC, Purugganan MD. The evolution of plant development. AMERICAN JOURNAL OF BOTANY 2004; 91:1726-1741. [PMID: 21652320 DOI: 10.3732/ajb.91.10.1726] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The last decade has witnessed a resurgence in the study of the evolution of plant development, combining investigations in systematics, developmental morphology, molecular developmental genetics, and molecular evolution. The integration of phylogenetic studies, structural analyses of fossil and extant taxa, and molecular developmental genetic information allows the formulation of explicit and testable hypotheses for the evolution of morphological characters. These comprehensive approaches provide opportunities to dissect the evolution of major developmental transitions among land plants, including those associated with apical meristems, the origins of the root/shoot dichotomy, diversification of leaves, and origin and subsequent modification of flower structure. The evolution of these major developmental innovations is discussed within both phylogenetic and molecular genetic contexts. We conclude that it is the combination of these approaches that will lead to the greatest understanding of the evolution of plant development.
Collapse
Affiliation(s)
- William E Friedman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | | | |
Collapse
|
214
|
HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis W⃞. THE PLANT CELL 2004; 16:2586-2600. [PMID: 15367721 PMCID: PMC520957 DOI: 10.1105/tpc.104.024869] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/10/2004] [Indexed: 10/12/2024]
Abstract
We have isolated a new mutant, hanaba taranu (han ), which affects both flower and shoot apical meristem (SAM) development in Arabidopsis thaliana . Mutants have fused sepals and reduced organ numbers in all four whorls, especially in the 2nd (petal) and 3rd (stamen) whorls. han meristems can become flatter or smaller than in the wild type. HAN encodes a GATA-3–like transcription factor with a single zinc finger domain. HAN is transcribed at the boundaries between the meristem and its newly initiated organ primordia and at the boundaries between different floral whorls. It is also expressed in vascular tissues, developing ovules and stamens, and in the embryo. han interacts strongly with clavata (clv ) mutations (clv1 , clv2 , and clv3 ), resulting in highly fasciated SAMs, and we find that WUS expression is altered in han mutants from early embryogenesis. In addition, HAN is ectopically expressed both in clv1 and clv3 mutants. We propose that HAN is normally required for establishing organ boundaries in shoots and flowers and for controlling the number and position of WUS -expressing cells. Ectopic HAN expression causes growth retardation, aberrant cell division patterns, and loss of meristem activity, suggesting that HAN is involved in controlling cell proliferation and differentiation.
Collapse
|
215
|
Ingram GC. Between the sheets: inter-cell-layer communication in plant development. Philos Trans R Soc Lond B Biol Sci 2004; 359:891-906. [PMID: 15306405 PMCID: PMC1693377 DOI: 10.1098/rstb.2003.1356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of plant meristems and embryos are arranged in an organized, and sometimes extremely beautiful, layered pattern. This pattern is maintained by the controlled orientation of cell divisions within layers. However, despite this layered structure, cell behaviour during plant development is not lineage dependent, and does not occur in a mosaic fashion. Many studies, both classical and recent, have shown that plant cell identity can be re-specified according to position, allowing plants to show remarkable developmental plasticity. However, the layered structure of meristems and the implications of this during plant development, remain subjects of some speculation. Of particular interest is the question of how cell layers communicate, and how communication between cell layers could allow coordinated developmental processes to take place. Recent research has uncovered several examples both of the molecular mechanisms by which cell layers can communicate, and of how this communication can infringe on developmental processes. A range of examples is used to illustrate the diversity of mechanisms potentially implicated in cell-layer communication during plant development.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
216
|
Byrne ME, Kidner CA, Martienssen RA. Plant stem cells: divergent pathways and common themes in shoots and roots. Curr Opin Genet Dev 2004; 13:551-7. [PMID: 14550423 DOI: 10.1016/j.gde.2003.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stem cells in plant shoot and root meristems are maintained throughout the life of the plant and produce somatic daughter cells that make up the body of the plant. Plant stem cells can also be derived from somatic cells in vivo and in vitro. Recent findings are refining our knowledge of signaling pathways that define stem cell fate and specify either shoot or root stem cell function. New evidence also highlights a role for epigenetic mechanisms in controlling stem cell fate.
Collapse
Affiliation(s)
- Mary E Byrne
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
217
|
Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci U S A 2004; 101:7815-20. [PMID: 15128936 PMCID: PMC419689 DOI: 10.1073/pnas.0402385101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/18/2022] Open
Abstract
Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.
Collapse
Affiliation(s)
- Mark P Running
- U.S. Department of Agriculture-Agricultural Research Service Plant Gene Expression Center, Albany, CA 94710, USA
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Despite the presence of more than 400 genes that encode receptor-like kinases (RLKs) in the Arabidopsis thaliana genome, very little is known about the range of biological processes that they control, or the mechanisms by which they function. This review focuses on the most recent findings from studies of several leucine-rich-repeat (LRR) class RLKs in A. thaliana, and their implications for our understanding of plant receptor function and signaling. We compare the biological functions of plant and animal LRR-containing receptors, and the potential commonalities in the signaling mechanisms employed.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
219
|
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D. Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 2004; 101:1775-80. [PMID: 14736918 PMCID: PMC341852 DOI: 10.1073/pnas.0307842100] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Indexed: 11/18/2022] Open
Abstract
The switch from vegetative to reproductive development in plants necessitates a switch in the developmental program of the descendents of the stem cells in the shoot apical meristem. Genetic and molecular investigations have demonstrated that the plant-specific transcription factor and meristem identity regulator LEAFY (LFY) controls this developmental transition by inducing expression of a second transcription factor, APETALA1, and by regulating the expression of additional, as yet unknown, genes. Here we show that the additional LFY targets include the APETALA1-related factor, CAULIFLOWER, as well as three transcription factors and two putative signal transduction pathway components. These genes are up-regulated by LFY even when protein synthesis is inhibited and, hence, appear to be direct targets of LFY. Supporting this conclusion, cis-regulatory regions upstream of these genes are bound by LFY in vivo. The newly identified LFY targets likely initiate the transcriptional changes that are required for the switch from vegetative to reproductive development in Arabidopsis.
Collapse
Affiliation(s)
- Dilusha A William
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
220
|
Fiers M, Hause G, Boutilier K, Casamitjana-Martinez E, Weijers D, Offringa R, van der Geest L, van Lookeren Campagne M, Liu CM. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 2004; 327:37-49. [PMID: 14960359 DOI: 10.1016/j.gene.2003.11.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/30/2003] [Accepted: 11/14/2003] [Indexed: 11/25/2022]
Abstract
Mild heat shock treatment (32 degrees C) of isolated Brassica napus microspores triggers a developmental switch from pollen maturation to embryo formation. This in vitro system was used to identify genes expressed in globular to heart-shape transition embryos. One of the genes isolated encodes a putative extra-cellular protein that exhibits high sequence similarity with the in silico identified CLV3/ESR-related 19 polypeptide from Arabidopsis (AtCLE19) and was therefore named BnCLE19. BnCLE19 is expressed in the primordia of cotyledons, sepals and cauline leaves, and in some pericycle cells in the root maturation zone. Mis-expression of BnCLE19 or AtCLE19 in Arabidopsis under the control of the CaMV 35S promoter resulted in a dramatic consumption of the root meristem, the formations of pin-shaped pistils and vascular islands. These results imply a role of CLE19 in promoting cell differentiation or inhibiting cell division.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/ultrastructure
- Arabidopsis Proteins/genetics
- Base Sequence
- Brassica napus/genetics
- Cryoelectron Microscopy
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Meristem/genetics
- Meristem/growth & development
- Meristem/ultrastructure
- Molecular Sequence Data
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/ultrastructure
- Plants, Genetically Modified
- Pollen/embryology
- Pollen/genetics
- Pollen/growth & development
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Temperature
Collapse
Affiliation(s)
- Martijn Fiers
- Plant Research International, BV, PO Box 16, 6700 AA Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
Although roots and shoots exhibit profound differences in their pattern of organogenesis, both apices share the capacity for indeterminate growth. Ongoing molecular and genetic analyses have revealed relatively little overlap between the genes that regulate organogenesis in the root and shoot apices. In the shoot, an ensemble of transcription factors lays the foundations for the leaf, in which indeterminacy is exchanged for more limited and polarized growth. Class-I KNOX genes are downregulated in the anlagen of the leaf early in its establishment, but are maintained in other regions of the shoot apex. This persistent expression of KNOX genes may serve to prevent the precocious determination of apical initial derivatives, and thus may allow the production of a large number of pluripotent cells from a relatively small number of stem cells. Greater commonality between roots and shoots is seen in mechanisms that underlie histogenesis and radial-patterning processes. Recent work suggests that undetermined stem cells in both the root and the shoot may be maintained by related mechanisms, which feature regulation of WUSCHEL-like organizer activities by feedback mechanisms that involve receptor-like kinases.
Collapse
Affiliation(s)
- Bruce Veit
- AgResearch, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
222
|
Stefanova K, Atanassov A, Atanassov I. Shuttle Vectors for Direct In FrameCloning and Construction of GFPand GUS/GFPReporter Gene Fusions. BIOTECHNOL BIOTEC EQ 2004. [DOI: 10.1080/13102818.2004.10817085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
223
|
Rinne PLH, Schoot CVD. Plasmodesmata at the crossroads between development, dormancy, and defense. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-123] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plants are frequently exposed to environmental stress and organisms that seek to benefit from their autotrophic nature. To cope with these challenges plants have developed stress-resistance mechanisms, which involve sensing, activation of signal transduction cascades, changes in gene expression, and physiological adjustment. Exposure to one kind of stress often leads to cross-tolerance, that is, resistance to different kinds of stresses. The search for a common underlying mechanism concentrates mostly on changes in cellular physiology and gene expression. We focus on the cross-protective measures that are taken at the level above the single cell. We argue that the controlled alterations in symplasmic permeability that underlie development also play a role in survival and defense strategies. In development, most of the alterations are transient and dynamic, whereas the more persistent alterations function predominantly in dormancy and defense and are under the control of two key enzymes: 1,3-β-D-glucan synthase and 1,3-β-D-glucanase. 1,3-β-D-Glucan synthase functions in the narrowing or closing of plasmodesmata, whereas 1,3-β-D-glucanase counteracts this process. We propose that the closing of symplasmic paths constitutes an unspecific but effective early measure in adaptation and defense, which is accompanied by specific strategies tailored to the various challenges plants face.Key words: cross-adaptation, dormancy sphincter, 1,3-β-D-glucanase, 1,3-β-D-glucan synthase, meristem, overwintering, plasmodesmata, virus movement.
Collapse
|
224
|
Abstract
During postembryonic development, all organs of a plant are ultimately derived from a few pluripotent stem cells found in specialized structures called apical meristems. Here we discuss our current knowledge about the regulation of plant stem cells and their environments with main emphasis on the shoot apical meristem of Arabidopsis thaliana. Recent studies suggest that stem cells are localized in specialized niches where signals from surrounding cells maintain their undifferentiated state. In the shoot meristem, initiation of stem cells during embryogenesis, regulation of stem-cell homeostasis and termination of stem-cell maintenance during flower development appear to primarily involve regulation of the stem-cell niche.
Collapse
Affiliation(s)
- Isabel Bäurle
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
225
|
Lohar DP, Bird DM. Lotus japonicus: a new model to study root-parasitic nematodes. PLANT & CELL PHYSIOLOGY 2003; 44:1176-84. [PMID: 14634154 DOI: 10.1093/pcp/pcg146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sedentary plant-parasitic nematodes engage in complex interactions, and induce specialized feeding structures by redirecting plant developmental pathways, and parallels have been observed with rhizobial nodule development on legumes. A model legume would greatly facilitate a better understanding of the differences between parasitic (nematode) and mutualistic (rhizobia and mycorrhizae) symbioses, and we have developed Lotus japonicus as such a model. Conditions for efficient parasitism by root-knot nematode (Meloidogyne spp.) of the widely used Lotus "Gifu" ecotype were established. Features of Lotus biology, such as thin and translucent roots, proved ideal for monitoring the progress of nematode infection both on live specimens and post-staining. We examined L. japonicus mutants with nodulation phenotypes. One, har1, which is a hypernodulated mutant defective in a CLAVATA1-like receptor kinase gene, was found to be hyperinfected by M. incognita. However, another hypernodulated Lotus mutant exhibited the same level of M. incognita infection as wild-type plants. We also established conditions for infection of Lotus by soybean cyst nematode (Heterodera glycines). In contrast to the response to root-knot nematode, the Gifu ecotype is resistant to H. glycines, and elicits a hypersensitive response. This pattern of resistance recapitulates that seen on nematode-resistant soybean plants. We conclude that L. japonicus is a powerful model legume for studying compatible and incompatible plant-nematode interactions.
Collapse
Affiliation(s)
- Dasharath Prasad Lohar
- Center for the Biology of Nematode Parasitism, Box 7253, North Carolina State University, Raleigh, NC 27695-7253, U.S.A
| | | |
Collapse
|
226
|
Lertpiriyapong K, Sung ZR. The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. PLANT MOLECULAR BIOLOGY 2003; 53:581-95. [PMID: 15010620 DOI: 10.1023/b:plan.0000019067.05185.d6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coordinated cell growth and differentiation is crucial for the development of higher plants. Using the elongation defective 1-1 (eld1-1) mutant, we cloned the ELD1 gene, which encodes a serine-rich protein. Genes homologous to ELD1 can be found in plants, including Arabidopsis, rice, and tobacco, but not in other organisms. Using reverse genetics, we identified a new allele, eld1-2, which is phenotypically indistinguishable from eld1-1, but does not produce a detectable ELD1 transcript. The ELD1 gene sequence is the same as that of the KOBITO1 sequence. However, the kob1 mutants display weak phenotype relative to the two eld1 mutants, which are likely null alleles. KOB1 was reported to be a membrane protein involved in cellulose synthesis. However, based on ELD1-GFP localization in plasmolyzed cells, we found that ELD1 is localized to the cell wall/extracellular matrix, rather than the membrane. Thus, ELD1/KOB1 is a secreted protein involved in promoting cell growth. To investigate the relationship between ELD1 and Arabidopsis genes with high sequence similarity, we analyzed the possible subcellular location of their proteins as well as their amino acid sequence. The ELD1-related proteins in Arabidopsis were predicted to be localized to subcellular compartments different from that of ELD1. Thus, ELD1 is likely to be functionally distinct from related Arabidopsis genes. These results suggest that ELD1 is a single-copy gene which belongs to a small family of plant-specific genes with diverse function.
Collapse
Affiliation(s)
- Kvin Lertpiriyapong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
227
|
Moussian B, Haecker A, Laux T. ZWILLE buffers meristem stability in Arabidopsis thaliana. Dev Genes Evol 2003; 213:534-40. [PMID: 14564520 DOI: 10.1007/s00427-003-0359-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 09/15/2003] [Indexed: 11/29/2022]
Abstract
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristem's size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.
Collapse
Affiliation(s)
- Bernard Moussian
- Lehrstuhl für Entwicklungsgenetik, Eberhard-Karl-Universität Tübingen, Auf der Morgenstelle 1, 72074 Tübingen, Germany.
| | | | | |
Collapse
|
228
|
Diévart A, Clark SE. Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:507-16. [PMID: 12972053 DOI: 10.1016/s1369-5266(03)00089-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The leucine-rich-repeat class of receptor-like kinase (RLK)-encoding genes represents the largest class of putative receptor-encoding genes in the Arabidopsis genome. The biological functions of several of these genes have been determined through genetic analysis. With dozens of mutant alleles described for various RLKs in Arabidopsis and other plants, comparisons of the mutations found in different receptors, as well as of structural features that are conserved between receptors, can provide insights into the common and/or divergent regulation and functions of these receptors.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | |
Collapse
|
229
|
Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. THE PLANT CELL 2003. [PMID: 12972671 DOI: 10.1105/tpc.0143655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Abscission is an active process that enables plants to shed unwanted organs. Because the purpose of the flower is to facilitate pollination, it often is abscised after fertilization. We have identified an Arabidopsis ethylene-sensitive mutant, inflorescence deficient in abscission (ida), in which floral organs remain attached to the plant body after the shedding of mature seeds, even though a floral abscission zone develops. The IDA gene, positioned in the genomic DNA flanking the single T-DNA present in the ida line, was identified by complementation. The gene encodes a small protein with an N-terminal signal peptide, suggesting that the IDA protein is the ligand of an unknown receptor involved in the developmental control of floral abscission. We have identified Arabidopsis genes, and cDNAs from a variety of plant species, that encode similar proteins, which are distinct from known ligands. IDA and the IDA-like proteins may represent a new class of ligands in plants.
Collapse
Affiliation(s)
- Melinka A Butenko
- Division of Cell and Molecular Biology, University of Oslo, N-0315 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
Extensive studies on plant signaling molecules over the past decade indicate that plant cell-to-cell communication, as is the case with animal systems, makes use of small peptide signals and specific receptors. To date, four peptide-ligand-receptor pairs have been identified and shown to be involved in a variety of processes. Systemin and phytosulfokine (PSK), the first and second signaling peptides identified in plants, were isolated by biochemical purification based on their biological activities. Furthermore, their receptors have been biochemically purified from plasma membranes on the basis of specific ligand-receptor interactions. By contrast, the two other peptide signals, CLAVATA3 (CLV3) and the pollen S determinant SCR/SP11, were genetically identified during searches for specific ligands for receptors that had already been cloned. Systemin functions in the plant wound response, whereas PSK appears to cooperate with auxin and cytokinin to regulate cellular dedifferentiation and redifferentiation. CLV3 is important for meristem organization, binding to a heterodimeric receptor comprising the CLV1 and CLV2 proteins. SCR/SP11 instead plays a role in self-incompatibility, where it activates a signalling cascade that leads to rejection of pollen with the same S haplotype. These ligands all seem to bind to receptors that possess intrinsic kinase activity, and al least two of them are generated by proteolytic processing of larger precursor proteins.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
231
|
Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. THE PLANT CELL 2003; 15:2296-2307. [PMID: 12972671 PMCID: PMC197296 DOI: 10.1105/tpc.014365] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 07/18/2003] [Indexed: 11/08/2022]
Abstract
Abscission is an active process that enables plants to shed unwanted organs. Because the purpose of the flower is to facilitate pollination, it often is abscised after fertilization. We have identified an Arabidopsis ethylene-sensitive mutant, inflorescence deficient in abscission (ida), in which floral organs remain attached to the plant body after the shedding of mature seeds, even though a floral abscission zone develops. The IDA gene, positioned in the genomic DNA flanking the single T-DNA present in the ida line, was identified by complementation. The gene encodes a small protein with an N-terminal signal peptide, suggesting that the IDA protein is the ligand of an unknown receptor involved in the developmental control of floral abscission. We have identified Arabidopsis genes, and cDNAs from a variety of plant species, that encode similar proteins, which are distinct from known ligands. IDA and the IDA-like proteins may represent a new class of ligands in plants.
Collapse
Affiliation(s)
- Melinka A Butenko
- Division of Cell and Molecular Biology, University of Oslo, N-0315 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
232
|
Sharma VK, Carles C, Fletcher JC. Maintenance of stem cell populations in plants. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11823-9. [PMID: 12930889 PMCID: PMC304093 DOI: 10.1073/pnas.1834206100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flowering plants have the unique ability to produce new organs continuously, for hundreds of years in some species, from stem cell populations maintained at their actively growing tips. The shoot tip is called the shoot apical meristem, and it acts as a self-renewing source of undifferentiated, pluripotent stem cells whose descendents become incorporated into organ and tissue primordia and acquire different fates. Stem cell maintenance is an active process, requiring constant communication between different regions of the shoot apical meristem to coordinate loss of stem cells from the meristem through differentiation with their replacement through cell division. Stem cell research in model plant systems is facilitated by the fact that mutants with altered meristem cell identity or accumulation are viable, allowing dissection of stem cell behavior by using genetic, molecular, and biochemical methods. Such studies have determined that in the model plant Arabidopsis thaliana stem cell maintenance information flows via a signal transduction pathway that is established during embryogenesis and maintained throughout the life cycle. Signaling through this pathway results in the generation of a spatial feedback loop, involving both positive and negative interactions, that maintains stem cell homeostasis. Stem cell activity during reproductive development is terminated by a temporal feedback loop involving both stem cell maintenance genes and a phase-specific flower patterning gene. Our current investigations provide additional insights into the molecular mechanisms that regulate stem cell activity in higher plants.
Collapse
Affiliation(s)
- Vijay K Sharma
- U.S. Department of Agriculture Plant Gene Expression Center, University of California at Berkeley, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | |
Collapse
|
233
|
Nolan KE, Irwanto RR, Rose RJ. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. PLANT PHYSIOLOGY 2003; 133:218-30. [PMID: 12970488 PMCID: PMC196599 DOI: 10.1104/pp.103.020917] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 04/21/2003] [Accepted: 06/18/2003] [Indexed: 05/11/2023]
Abstract
We have cloned a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) gene from Medicago truncatula (MtSERK1) and examined its expression in culture using real time PCR. In the presence of the auxin 1-naphthaleneacetic acid (NAA) alone, root differentiation occurs from the proliferating calli in both the cultured highly embryogenic seed line (2HA) and a low to nonembryogenic seed line (M. truncatula cv Jemalong). Auxin stimulated MtSERK1 expression in both 2HA and M. truncatula cv Jemalong. Embryo induction in proliferating calli requires a cytokinin in M. truncatula and unlike root formation is substantively induced in 2HA, not M. truncatula cv Jemalong. On embryo induction medium containing NAA and the cytokinin 6-benzylaminopurine (BAP), expression of MtSERK1 is elevated within 2 d of initiation of culture in both M. truncatula cv Jemalong and 2HA. However, MtSERK1 expression is much higher when both NAA and BAP are in the medium. BAP potentiates the NAA induction because MtSERK1 expression is not up-regulated by BAP alone. The 2HA genotype is able to increase its embryo formation because of the way it responds to cytokinin, but not because of the cytokinin effect on MtSERK1. Although the studies with M. truncatula indicate that somatic embryogenesis is associated with high SERK expression, auxin alone does not induce somatic embryogenesis as in carrot (Daucus carota) and Arabidopsis. Auxin in M. truncatula induces roots, and there is a clear up-regulation of MtSERK1. Although our analyses suggest that MtSERK1 is orthologous to AtSERK1, which in Arabidopsis is involved in somatic embryogenesis, in legumes, MtSERK1 may have a broader role in morphogenesis in cultured tissue rather than being specific to somatic embryogenesis.
Collapse
Affiliation(s)
- Kim E Nolan
- University of Newcastle and Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences University, Dr. Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
234
|
Casamitjana-Martínez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, Scheres B. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 2003; 13:1435-41. [PMID: 12932329 DOI: 10.1016/s0960-9822(03)00533-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the Arabidopsis shoot apical meristem, an organizing center signals in a non-cell-autonomous manner to specify the overlying stem cells. Stem cells express the small, secreted protein CLAVATA3 (CLV3; ) that activates the CLV1-CLV2 receptor complex, which negatively controls the size of the organizing center. Consistently, CLV3 overexpression restricts shoot meristem size. The root meristem also contains a stem cell organizer, and here we show that localized overexpression in roots of CLE19, encoding a CLV3 homolog, restricts the size of the root meristem. This suggests that CLE19 acts by overactivating an endogenous CLV-like pathway involved in root meristem maintenance. Surprisingly, CLE19 restricts meristem size without directly interfering with organizer and stem cell specification. We isolated mutations in two loci, SOL1 and SOL2, which suppress the CLE19 overexpression phenotype. sol2 plants display floral phenotypes reminiscent of clv weak alleles; these phenotypes suggest that components of a CLV pathway are shared in roots and shoots. SOL1 encodes a putative Zn(2+)-carboxypeptidase, which may be involved in ligand processing.
Collapse
|
235
|
Di Matteo A, Federici L, Mattei B, Salvi G, Johnson KA, Savino C, De Lorenzo G, Tsernoglou D, Cervone F. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc Natl Acad Sci U S A 2003; 100:10124-8. [PMID: 12904578 PMCID: PMC187787 DOI: 10.1073/pnas.1733690100] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall proteins that protect plants from fungal invasion. They interact with endopolygalacturonases secreted by phytopathogenic fungi, inhibit their enzymatic activity, and favor the accumulation of oligogalacturonides, which activate plant defense responses. PGIPs are members of the leucine-rich repeat (LRR) protein family that in plants play crucial roles in development, defense against pathogens, and recognition of beneficial microbes. Here we report the crystal structure at 1.7-A resolution of a PGIP from Phaseolus vulgaris. The structure is characterized by the presence of two beta-sheets instead of the single one originally predicted by modeling studies. The structure also reveals a negatively charged surface on the LRR concave face, likely involved in binding polygalacturonases. The structural information on PGIP provides a basis for designing more efficient inhibitors for plant protection.
Collapse
Affiliation(s)
- A Di Matteo
- Department of Biochemical Sciences and Consiglio Nazionale delle Ricerche, Institute for Molecular Biology and Pathology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Biochemical and genetic studies have identified peptides that play crucial roles in plant defense, growth, and development. The number of known, functionally active, peptides is currently small, but genome sequencing has revealed many potential peptide-encoding genus. A major challenge of the post-genomic era is to determine the function of these molecules.
Collapse
Affiliation(s)
- Paul Chilley
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
237
|
Carles CC, Fletcher JC. Shoot apical meristem maintenance: the art of a dynamic balance. TRENDS IN PLANT SCIENCE 2003; 8:394-401. [PMID: 12927973 DOI: 10.1016/s1360-1385(03)00164-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aerial structure of higher plants derives from cells at the tip of the stem, in the shoot apical meristem (SAM). Throughout the life of a plant, the SAM produces stem tissues and lateral organs, and also regenerates itself. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent stem cells offsets the output of differentiating cells. This flow depends on extracellular signaling within the SAM, governed by a spatial regulatory feedback loop that maintains a reservoir of stem cells, and on factors that prevent meristem cells from differentiating prematurely. The terminating floral meristem incorporates the spatial regulation scheme into a temporal regulation pathway involving flower patterning factors.
Collapse
Affiliation(s)
- Cristel C Carles
- USDA/UC Berkeley, Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
238
|
Hobe M, Müller R, Grünewald M, Brand U, Simon R. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol 2003; 213:371-81. [PMID: 12743822 DOI: 10.1007/s00427-003-0329-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 03/24/2003] [Indexed: 10/26/2022]
Abstract
Continuous growth and development of plants is controlled by meristems that harbour stem cell pools. Division of stem cells and differentiation of their progeny are coordinated by intercellular signaling. In Arabidopsis, stem cells in shoot and floral meristems secrete CLAVATA3, a member of the CLE protein family that activates the CLV1/CLV2 receptor complex in underlying cells to restrict the size of the stem cell population. We found that CLE40 encodes a potentially secreted protein that is distantly related to CLV3. While CLV3 transcripts are confined to stem cells of the shoot system, CLE40 is expressed at low levels in all tissues, including roots. Misexpression and promoter swap experiments show that CLE40 can fully substitute for CLV3 to activate CLV signalling in the shoot, indicating that CLV3 and CLE40 are functionally equivalent proteins that differ mainly in their expression patterns. Analysis of cle40 mutants shows that wild-type expression levels of CLE40 are insufficient to contribute to CLV signalling. High level expression of CLV3 or CLE40 results in a premature loss of root meristem activity, indicating that activation of a CLV-like signaling pathway may restrict cell fate also in roots. The cellular organization of cle40 root meristems is normal, but mutant roots grow in a strongly waving pattern, suggesting a role for CLE40 in a signaling pathway that controls movement of the root tip.
Collapse
Affiliation(s)
- Martin Hobe
- Institut für Entwicklungsbiologie der Universität zu Köln, Gyrhofstr. 17, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
239
|
Lenhard M, Laux T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 2003; 130:3163-73. [PMID: 12783788 DOI: 10.1242/dev.00525] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stem cell maintenance in the Arabidopsis shoot meristem is regulated by communication between the apical stem cells and the underlying organizing centre. Expression of the homeobox gene WUSCHEL in the organizing centre induces stem cell identity in the overlying neighbours, which then express the CLAVATA3 gene whose activity in turn restricts the size of the WUSCHEL expression domain. We have analyzed how the stem cells and the organizing centre communicate, by studying the mode of action of CLAVATA3 protein. We provide direct evidence that CLAVATA3 protein functions as a mobile intercellular signal in the shoot apical meristem that spreads laterally from the stem cells and acts both on their lateral neighbours and on the stem cells themselves to repress WUSCHEL transcription. We also show that the spread and range of action of CLAVATA3 can be limited by binding to its receptor CLAVATA1, which offers an explanation for how CLAVATA3 is prevented from entering the organizing centre and repressing WUSCHEL transcription there. This regulated spread of a secreted signalling molecule enables the shoot meristem to permit the onset of cell differentiation in the periphery, but at the same time to maintain a stable niche for its stem cells in the center.
Collapse
Affiliation(s)
- Michael Lenhard
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
240
|
Diévart A, Dalal M, Tax FE, Lacey AD, Huttly A, Li J, Clark SE. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. THE PLANT CELL 2003; 15:1198-211. [PMID: 12724544 PMCID: PMC153726 DOI: 10.1105/tpc.010504] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 02/25/2003] [Indexed: 05/18/2023]
Abstract
The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Pimpl P, Hanton SL, Taylor JP, Pinto-daSilva LL, Denecke J. The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole. THE PLANT CELL 2003; 15:1242-56. [PMID: 12724547 PMCID: PMC153729 DOI: 10.1105/tpc.010140] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 02/17/2003] [Indexed: 05/18/2023]
Abstract
We have studied the transport of soluble cargo molecules by inhibiting specific transport steps to and from the Golgi apparatus. Inhibition of export from the Golgi via coexpression of a dominant-negative GTP-restricted ARF1 mutant (Q71L) inhibits the secretion of alpha-amylase and simultaneously induces the secretion of the vacuolar protein phytepsin to the culture medium. By contrast, specific inhibition of endoplasmic reticulum export via overexpression of Sec12p or coexpression of a GTP-restricted form of Sar1p inhibits the anterograde transport of either cargo molecule in a similar manner. Increased secretion of the vacuolar protein was not observed after incubation with the drug brefeldin A or after coexpression of the GDP-restricted mutant of ARF1 (T31N). Therefore, the differential effect of inducing the secretion of one cargo molecule while inhibiting the secretion of another is dependent on the GTP hydrolysis by ARF1p and is not caused by a general inhibition of Golgi-derived COPI vesicle traffic. Moreover, we demonstrate that GTP-restricted ARF1-stimulated secretion is observed only for cargo molecules that are expected to be sorted in a BP80-dependent manner, exhibiting sequence-specific, context-independent, vacuolar sorting signals. Induced secretion of proteins carrying C-terminal vacuolar sorting signals was not observed. This finding suggests that ARF1p influences the BP80-mediated transport route to the vacuole in addition to transport steps of the default secretory pathway to the cell surface.
Collapse
Affiliation(s)
- Peter Pimpl
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
242
|
Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T. Making inroads into plant receptor kinase signalling pathways. TRENDS IN PLANT SCIENCE 2003; 8:231-7. [PMID: 12758041 DOI: 10.1016/s1360-1385(03)00062-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cell-membrane-located receptor kinases play important roles in many plant signal-transduction pathways. Exciting progress has been made in recent years with the characterization of four ligand-receptor systems involved in physiological processes as diverse as self-pollen rejection, stem-cell maintenance and differentiation at the shoot meristem, the response to the brassinosteroid hormones and the innate response to bacterial pathogens. These new findings emphasize the remarkably high diversity of these signalling pathways, although some downstream components are shared. This observation supports the idea that the wide diversification of plant receptors is associated with a high degree of specialization, one receptor potentially regulating a single developmental process. However, the possibility that one receptor might have a dual recognition function cannot be ruled out.
Collapse
Affiliation(s)
- Gabrielle Tichtinsky
- Reproduction et Développement des Plantes, UMR 5667 CNRS-INRA-ENSL-UCBL, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
243
|
Abstract
A small group of pluripotent stem cells in the shoot meristem is the ultimate source for all aerial parts in higher plants: the shoot axis, side branches, leaves and flowers. The stem cells are maintained in an undifferentiated state by signals from an underlying cell group, the organizing center. Genetic and molecular analyses have shown that a feedback signaling loop between stem cells and the organizing center balances stem cell renewal versus differentiation, which allows the plant to maintain the organization of the shoot meristem despite a changing cellular context. Emerging common principles indicate that plant and animal stem cells are functionally equivalent.
Collapse
Affiliation(s)
- Rita Gross-Hardt
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
244
|
Abstract
Recent studies have provided significant new insights into the gene actions that specify and maintain stem cells in plant shoots and roots. New layers of genetic control and potential signalling pathways and effector mechanisms have emerged from these new studies and will be reviewed here. These new findings refine the current model in which stem cells in plant meristems are regulated by negative feedback loops and uncover a fundamental mechanism for stem cell maintenance that might be common to shoots and roots.
Collapse
Affiliation(s)
- Peter Doerner
- Institute for Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
245
|
Yu LP, Miller AK, Clark SE. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol 2003; 13:179-88. [PMID: 12573213 DOI: 10.1016/s0960-9822(03)00042-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Receptor kinases are a large gene family in plants and have more than 600 members in Arabidopsis. Receptor kinases in plants regulate a broad range of developmental processes, including steroid hormone perception, organ elongation, self-incompatibility, and abscission. Intracellular signaling components for receptor kinases in plants are largely unknown. The CLAVATA 1 (CLV1) receptor kinase in Arabidopsis regulates stem cell identity and differentiation through its repression of WUSCHEL (WUS) expression. Mutations at the POLTERGEIST (POL) gene were previously described as phenotypic suppressors of mutations within the CLV1 gene. Genetic evidence placed POL as a downstream regulator of CLAVATA1 signaling. RESULTS We provide evidence that POL functions in both the CLV1-WUS pathway and a novel WUS-independent CLV1 pathway regulating stem cell identity. We demonstrate that POL encodes a protein phosphatase 2C (PP2C) with a predicted nuclear localization sequence, indicating that it has a role in signal transduction downstream of the CLV1 receptor. The N terminus of POL has a possible regulatory function, and the C terminus has PP2C-like phosphatase catalytic activity. Although the POL catalytic domain is conserved in other PP2Cs, the POL protein represents a unique subclass of plant PP2Cs. POL is broadly expressed throughout the plant. CONCLUSIONS POL represents a novel component of the CLV1 receptor kinase signaling pathway. The ubiquitous expression of POL and pol phenotypes outside the meristem suggest that POL may be a common regulator of many signaling pathways.
Collapse
Affiliation(s)
- Lita P Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
246
|
Sharma VK, Ramirez J, Fletcher JC. The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. PLANT MOLECULAR BIOLOGY 2003; 51:415-25. [PMID: 12602871 DOI: 10.1023/a:1022038932376] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Members of the receptor-like kinase gene family play crucial regulatory roles in many aspects of plant development, but the ligands to which they bind are largely unknown. In Arabidopsis, the receptor kinase CLAVATA1 (CLV1) binds to the small secreted polypeptide CLV3, and three proteins act as key elements of a signal transduction pathway that regulates shoot apical meristem maintenance. To better understand the signal transduction mechanisms involving small polypeptides, we are studying 25 Arabidopsis CLV3/ESR (CLE) proteins that share a conserved C-terminal domain with CLV3 and three maize ESR proteins. Members of the CLE gene family were identified in database searches and only a few are known to be expressed. We have identified an additional member of the CLE gene family in Arabidopsis, which is more similar in gene structure to CLV3 than the other CLE genes. Phylogenetic analysis reveals that few of the putative CLE gene products are closely related, suggesting there may be little functional overlap between them. We show that 24 of the 25 Arabidopsis CLE genes are transcribed in one or more tissues during development, indicating that they do encode functional products. Many are widely expressed, but others are restricted to one or a few tissue types. We have also determined the sub-cellular localization of several CLE proteins, and find that they are exported to the plasma membrane or extracellular space. Our results suggest that the Arabidopsis CLE proteins, like CLV3, may function as secreted signaling molecules that act in diverse pathways during growth and development.
Collapse
Affiliation(s)
- Vijay K Sharma
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
247
|
Lord EM, Mollet JC. Plant cell adhesion: a bioassay facilitates discovery of the first pectin biosynthetic gene. Proc Natl Acad Sci U S A 2002; 99:15843-5. [PMID: 12461188 PMCID: PMC138523 DOI: 10.1073/pnas.012685099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizabeth M Lord
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
248
|
Abstract
Functional analysis of exocytosis in yeast and animal cells has led to the identification of conserved elements and mechanisms of the trafficking machinery over the last decade. Although functional studies of protein secretion in plants are still fairly limited, the Arabidopsis genome sequence provides an opportunity to identify key players of vesicle trafficking that are conserved across the eukaryotic kingdoms. Here, we review and add to recent genome analyses of trafficking components and highlight some plant-specific modifications of the common eukaryotic machinery. Furthermore, we discuss the evidence for targeted, polarised secretion in plant cells, and speculate about possible underlying cargo sorting processes at the trans-Golgi network and endosomes, based on what is known in animals and yeast.
Collapse
Affiliation(s)
- Gerd Jürgens
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076 Tübingen, Federal Republic of Germany.
| | | |
Collapse
|