201
|
Udayakumar P, Das R, Kannadasan A. Significance of probiotics in remodeling the gut consortium to enhance the immunity of Caenorhabditis elegans. Genesis 2021; 59:e23454. [PMID: 34664387 DOI: 10.1002/dvg.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022]
Abstract
In the recent past, Caenorhabditis elegans has emerged as one of the leading nematode models for studying host-microbe interactions on molecular, cellular, or organismal levels. In general, morphological and functional similarities of the gut of C. elegans with respect to that of human has brought in speculations on the study of the intestinal microbiota. On the other hand, probiotics have proved their efficacy in metabolism, development, and pathogenesis thereby inducing an immune response in C. elegans. Nurturing C. elegans with probiotics has led to immunomodulatory effects in the intestinal microbiota, proposing C. elegans as one of the in vivo screening criteria to select potential probiotic bacteria for host health-promoting factors. The major prospect of these probiotics is to exert longevity toward the host in diverse environmental conditions. The extent of research on probiotic metabolism has shed light on mechanisms of the immunomodulatory effect exerted by the nematode model. This review discusses various aspects of the effects of probiotics in improving the health and mechanisms involved in conferring immunity in C. elegans.
Collapse
Affiliation(s)
- Prithika Udayakumar
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Reena Das
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Anandbabu Kannadasan
- Dr. APJ Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
202
|
Kumar V, Viviani SL, Ismail J, Agarwal S, Bonomo RA, van den Akker F. Structural analysis of the boronic acid β-lactamase inhibitor vaborbactam binding to Pseudomonas aeruginosa penicillin-binding protein 3. PLoS One 2021; 16:e0258359. [PMID: 34653211 PMCID: PMC8519428 DOI: 10.1371/journal.pone.0258359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) mediated by β-lactamases is the major and leading cause of resistance to penicillins and cephalosporins among Gram-negative bacteria. β-Lactamases, periplasmic enzymes that are widely distributed in the bacterial world, protect penicillin-binding proteins (PBPs), the major cell wall synthesizing enzymes, from inactivation by β-lactam antibiotics. Developing novel PBP inhibitors with a non-β-lactam scaffold could potentially evade this resistance mechanism. Based on the structural similarities between the evolutionary related serine β-lactamases and PBPs, we investigated whether the potent β-lactamase inhibitor, vaborbactam, could also form an acyl-enzyme complex with Pseudomonas aeruginosa PBP3. We found that this cyclic boronate, vaborbactam, inhibited PBP3 (IC50 of 262 μM), and its binding to PBP3 increased the protein thermal stability by about 2°C. Crystallographic analysis of the PBP3:vaborbactam complex reveals that vaborbactam forms a covalent bond with the catalytic S294. The amide moiety of vaborbactam hydrogen bonds with N351 and the backbone oxygen of T487. The carboxyl group of vaborbactam hydrogen bonds with T487, S485, and S349. The thiophene ring and cyclic boronate ring of vaborbactam form hydrophobic interactions, including with V333 and Y503. The active site of the vaborbactam-bound PBP3 harbors the often observed ligand-induced formation of the aromatic wall and hydrophobic bridge, yet the residues involved in this wall and bridge display much higher temperature factors compared to PBP3 structures bound to high-affinity β-lactams. These insights could form the basis for developing more potent novel cyclic boronate-based PBP inhibitors to inhibit these targets and overcome β-lactamases-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Samantha L. Viviani
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeeda Ismail
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Shreya Agarwal
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert A. Bonomo
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland Veteran’s Affairs Medical Center Research Service, Cleveland, Ohio, United States of America
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
- VA Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
203
|
Lammens EM, Boon M, Grimon D, Briers Y, Lavigne R. SEVAtile: a standardised DNA assembly method optimised for Pseudomonas. Microb Biotechnol 2021; 15:370-386. [PMID: 34651450 PMCID: PMC8719830 DOI: 10.1111/1751-7915.13922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
To meet the needs of synthetic biologists, DNA assembly methods have transformed from simple 'cut-and-paste' procedures to highly advanced, standardised assembly techniques. Implementing these standardised DNA assembly methods in biotechnological research conducted in non-model hosts, including Pseudomonas putida and Pseudomonas aeruginosa, could greatly benefit reproducibility and predictability of experimental results. SEVAtile is a Type IIs-based assembly approach, which enables the rapid and standardised assembly of genetic parts - or tiles - to create genetic circuits in the established SEVA-vector backbone. Contrary to existing DNA assembly methods, SEVAtile is an easy and straightforward method, which is compatible with any vector, both SEVA- and non-SEVA. To prove the efficiency of the SEVAtile method, a three-vector system was successfully generated to independently co-express three different proteins in P. putida and P. aeruginosa. More specifically, one of the vectors, pBGDes, enables genomic integration of assembled circuits in the Tn7 landing site, while self-replicatory vectors pSTDesX and pSTDesR enable inducible expression from the XylS/Pm and RhaRS/PrhaB expression systems, respectively. Together, we hope these vector systems will support research in both the microbial SynBio and Pseudomonas field.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 Box 2462, Leuven, 3001, Belgium
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 Box 2462, Leuven, 3001, Belgium
| | - Dennis Grimon
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, Gent, 9000, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, Gent, 9000, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KULeuven, Kasteelpark Arenberg 21 Box 2462, Leuven, 3001, Belgium
| |
Collapse
|
204
|
Novović K, Malešević M, Gardijan L, Kojić M, Jovčić B. Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase. Res Microbiol 2021; 173:103885. [PMID: 34648877 DOI: 10.1016/j.resmic.2021.103885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
The rapid and appropriate response of Pseudomonas spp. to environmental fluctuations has been enabled by numerous signal transduction regulatory systems. Regulatory systems in Pseudomonas aeruginosa are organized in a complex network which provides quick and fine-tuned cellular response through regulation of virulence and antibiotic resistance determinants production. Mobile integrons represent genetic elements included in the rapid dissemination of multiple antibiotic resistance determinants. The key factor of integron dynamics is enzyme integrase. So far, global regulators LexA, RpoS and PsrA have been recognized as regulators of the intI1 transcription. In this study, we discovered novel activator of the intI1 transcription, sensor kinase RclS, in P. putida WCS358. This regulation is limited to stationary growth phase and appears to be indirect, at least through regulation of the rpoS expression. Sensor kinase RclS is a part of novel three-component system Rcl (Roc-like) together with two response regulators, RclR and RclA. RclS acted as a negative regulator of the rclA transcription, while the role in the rclR transcription regulation could not be defined. The RclSAR regulatory system seems to be a part of complex intI1 regulatory network which includes major stress response (SOS and RpoS) regulons.
Collapse
Affiliation(s)
- Katarina Novović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Milka Malešević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Lazar Gardijan
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Milan Kojić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Branko Jovčić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia; University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
205
|
Oluwabusola ET, Adebisi OO, Reyes F, Acquah KS, De La Cruz M, Mweetwa LL, Rajakulendran JE, Warner DF, Hai D, Ebel R, Jaspars M. Isolation and characterization of new phenolic siderophores with antimicrobial properties from Pseudomonas sp. UIAU-6B. Beilstein J Org Chem 2021; 17:2390-2398. [PMID: 34621401 PMCID: PMC8450953 DOI: 10.3762/bjoc.17.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
Five new phenolic siderophores 1–5 were isolated from the organic extract of a culture broth in a modified SGG medium of Pseudomonas sp. UIAU-6B, obtained from sediments collected from the Oyun river in North Central Nigeria. The structure of the new compounds, pseudomonin A–C (1–3) and pseudomobactin A and B (4 and 5) isolated alongside two known compounds, pseudomonine (6) and salicylic acid (7), were elucidated based on high-resolution mass spectrometry, 1D and 2D NMR analyses. The absolute configuration of the threonine residue in compounds 1–5 was determined by Marfey analysis. The antimicrobial evaluation of compound 4 exhibited the most potent activity against vancomycin-sensitive Enterococcus faecium VS144754, followed by 3 and 5, with MIC values ranging from 8 to 32 µg/mL. Compounds 2 and 3 exhibited moderate activity against Mycobacterium tuberculosis H37Rv, with MIC values of 7.8 and 15.6 µg/mL, respectively. Plausible biosynthetic hypotheses toward the new compounds 1–5 were proposed.
Collapse
Affiliation(s)
| | - Olusoji O Adebisi
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Kwara State, Ilorin, Nigeria
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnoloógico de Ciencias de la Salud, E-18016 Granada, Spain
| | - Kojo S Acquah
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Mercedes De La Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnoloógico de Ciencias de la Salud, E-18016 Granada, Spain
| | - Larry L Mweetwa
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Joy E Rajakulendran
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Digby F Warner
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Deng Hai
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| |
Collapse
|
206
|
Medeiros Filho F, do Nascimento APB, Costa MDOCE, Merigueti TC, de Menezes MA, Nicolás MF, Dos Santos MT, Carvalho-Assef APD, da Silva FAB. A Systematic Strategy to Find Potential Therapeutic Targets for Pseudomonas aeruginosa Using Integrated Computational Models. Front Mol Biosci 2021; 8:728129. [PMID: 34616771 PMCID: PMC8488468 DOI: 10.3389/fmolb.2021.728129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has been a constant global health problem due to its ability to cause infection at different body sites and its resistance to a broad spectrum of clinically available antibiotics. The World Health Organization classified multidrug-resistant Pseudomonas aeruginosa among the top-ranked organisms that require urgent research and development of effective therapeutic options. Several approaches have been taken to achieve these goals, but they all depend on discovering potential drug targets. The large amount of data obtained from sequencing technologies has been used to create computational models of organisms, which provide a powerful tool for better understanding their biological behavior. In the present work, we applied a method to integrate transcriptome data with genome-scale metabolic networks of Pseudomonas aeruginosa. We submitted both metabolic and integrated models to dynamic simulations and compared their performance with published in vitro growth curves. In addition, we used these models to identify potential therapeutic targets and compared the results to analyze the assumption that computational models enriched with biological measurements can provide more selective and (or) specific predictions. Our results demonstrate that dynamic simulations from integrated models result in more accurate growth curves and flux distribution more coherent with biological observations. Moreover, identifying drug targets from integrated models is more selective as the predicted genes were a subset of those found in the metabolic models. Our analysis resulted in the identification of 26 non-host homologous targets. Among them, we highlighted five top-ranked genes based on lesser conservation with the human microbiome. Overall, some of the genes identified in this work have already been proposed by different approaches and (or) are already investigated as targets to antimicrobial compounds, reinforcing the benefit of using integrated models as a starting point to selecting biologically relevant therapeutic targets.
Collapse
|
207
|
Schellenberger R, Crouzet J, Nickzad A, Shu LJ, Kutschera A, Gerster T, Borie N, Dawid C, Cloutier M, Villaume S, Dhondt-Cordelier S, Hubert J, Cordelier S, Mazeyrat-Gourbeyre F, Schmid C, Ongena M, Renault JH, Haudrechy A, Hofmann T, Baillieul F, Clément C, Zipfel C, Gauthier C, Déziel E, Ranf S, Dorey S. Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2101366118. [PMID: 34561304 PMCID: PMC8488661 DOI: 10.1073/pnas.2101366118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Plant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from l-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial surface motility, biofilm development, and thus successful colonization of hosts. Here, we show that the lipidic secretome from the opportunistic pathogen Pseudomonas aeruginosa, mainly comprising RLs and HAAs, stimulates Arabidopsis immunity. We demonstrate that HAAs are sensed by the bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29), which also mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) perception, in the plant Arabidopsis thaliana HAA sensing induces canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, although abolishing sensing by LORE, do not impair their ability to trigger plant defense. Moreover, our results show that the immune response triggered by RLs is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.
Collapse
Affiliation(s)
- Romain Schellenberger
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Lin-Jie Shu
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Alexander Kutschera
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Tim Gerster
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Nicolas Borie
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Sandra Villaume
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jane Hubert
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sylvain Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Florence Mazeyrat-Gourbeyre
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christian Schmid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Jean-Hugues Renault
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arnaud Haudrechy
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Fabienne Baillieul
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada;
| | - Stefanie Ranf
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany;
| | - Stéphan Dorey
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France;
| |
Collapse
|
208
|
Abd El-Ghany WA. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet World 2021; 14:2155-2159. [PMID: 34566334 PMCID: PMC8448624 DOI: 10.14202/vetworld.2021.2155-2159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Zoonotic diseases are diseases that are transmitted from animals to humans and vice versa. Pseudomonas aeruginosa (P. aeruginosa) is a pathogen with zoonotic nature. Commercial poultry could be infected with P. aeruginosa, especially at young ages with great losses. Infection of embryos with P. aeruginosa induced death in the shell, while infection of chicks led to septicemia, respiratory and enteric infections, and high mortality. Humans are also highly susceptible to P. aeruginosa infection, and the disease is associated with severe lung damage, especially in immunocompromised patients. Chicken carcass and related poultry retail products play an important role in the transmission of P. aeruginosa to humans, especially after processing in abattoirs. Treatment of P. aeruginosa infection is extremely difficult due to continuous development of antibiotic resistance. The transfer of antibiotic-resistant genes from poultry products to humans creates an additional public health problem. Accordingly, this study focused on avian pseudomonad, especially P. aeruginosa, with respect to infection of poultry, transmission to humans, and treatment and antibiotic resistance.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
209
|
Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics (Basel) 2021; 10:antibiotics10101164. [PMID: 34680745 PMCID: PMC8532662 DOI: 10.3390/antibiotics10101164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa infections are the primary cause of mortality in people with cystic fibrosis (CF). Yet, it has only recently become appreciated that resistance mutations can also increase P. aeruginosa virulence, even in the absence of antibiotics. Moreover, the mechanisms by which resistance mutations increase virulence are poorly understood. In this study we tested the hypothesis that mutations affecting efflux pumps can directly increase P. aeruginosa virulence. Using genetics, physiological assays, and model infections, we show that efflux pump mutations can increase virulence. Mutations of the mexEF efflux pump system increased swarming, rhamnolipid production, and lethality in a mouse infection model, while mutations in mexR that increased expression of the mexAB-oprM efflux system increased virulence during an acute murine lung infection without affecting swarming or rhamnolipid gene expression. Finally, we show that an efflux pump inhibitor, which represents a proposed novel treatment approach for P. aeruginosa, increased rhamnolipid gene expression in a dose-dependent manner. This finding is important because rhamnolipids are key virulence factors involved in dissemination through epithelial barriers and cause neutrophil necrosis. Together, these data show how current and proposed future anti-Pseudomonal treatments may unintentionally make infections worse by increasing virulence. Therefore, treatments that target efflux should be pursued with caution.
Collapse
|
210
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
211
|
Rudra B, Gupta RS. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: Proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 2021; 71. [PMID: 34546867 DOI: 10.1099/ijsem.0.005011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary relationships among species of the family Pseudomonadaceae were examined based on 255 available genomes representing >85 % of the species from this family. In a phylogenetic tree based on concatenated sequences of 118 core proteins, most species of the genus Pseudomonas grouped within one large cluster which also included members of the genera Azotobacter and Azomonas. Within this large cluster 18-30 clades/subclades of species of the genus Pseudomonas consisting of between 1 and 36 species, were observed. However, a number of species of the genus Pseudomonas branched outside of this main cluster and were interspersed among other genera of the family Pseudomonadaceae. This included a strongly supported clade (Pertucinogena clade) consisting of 19 mainly halotolerant species. The distinctness of this clade from all other members of the family Pseudomonadaceae is strongly supported by 24 conserved signature indels (CSIs) in diverse proteins that are exclusively found in all members of this clade. Nine uncharacterized members of the genus Pseudomonas also shared these CSIs and they branched within the Pertucinogena clade, indicating their affiliation to this clade. On the basis of the strong evidence supporting the distinctness of the Pertucinogena clade, we are proposing transfer of species from this clade into a novel genus Halopseudomonas gen. nov. Pseudomonas caeni also branches outside of the main cluster and groups reliably with Oblitimonas alkaliphila and Thiopseudomonas denitrificans. Six identified CSIs are uniquely shared by these three species and we are proposing their integration into the emended genus Thiopseudomonas, which has priority over the name Oblitimonas. We are also proposing transfer of the deep-branching Pseudomonas hussainii, for which 22 exclusive CSIs have been identified, into the genus Atopomonas gen. nov. Lastly, we present strong evidence that the species Pseudomonas cissicola and Pseudomonas geniculata are misclassified into the genus Pseudomonas and that they are specifically related to the genera Xanthomonas and Stenotrophomonas, respectively. In addition, we are also reclassifying 'Pseudomonas acidophila' as Paraburkholderia acidicola sp. nov. (Type strain: G-6302=ATCC 31363=BCRC 13035).
Collapse
Affiliation(s)
- Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
212
|
Aman M, Aneeqha N, Bristi K, Deeksha J, Afza N, Sindhuja V, Shastry RP. Lactic acid bacteria inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa strain JUPG01 isolated from rancid butter. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
213
|
Genome-driven elucidation of phage-host interplay and impact of phage resistance evolution on bacterial fitness. ISME JOURNAL 2021; 16:533-542. [PMID: 34465897 PMCID: PMC8776877 DOI: 10.1038/s41396-021-01096-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
When considering the interactions between bacteriophages and their host, the issue of phage-resistance emergence is a key element in understanding the ecological impact of phages on the bacterial population. It is also an essential parameter for the implementation of phage therapy to combat antibiotic-resistant pathogens. This study investigates the phenotypic and genetic responses of five Pseudomonas aeruginosa strains (PAO1, A5803, AA43, CHA, and PAK) to the infection by seven phages with distinct evolutionary backgrounds and recognised receptors (LPS/T4P). Emerging phage-insensitivity was generally accompanied by self and cross-resistance mechanisms. Significant differences were observed between the reference PAO1 responses compared to other clinical representatives. LPS-dependent phage infections in clinical strains selected for mutations in the "global regulatory" and "other" genes, rather than in the LPS-synthesis clusters detected in PAO1 clones. Reduced fitness, as proxied by the growth rate, was correlated with large deletion (20-500 kbp) and phage carrier state. Multi-phage resistance was significantly correlated with a reduced growth rate but only in the PAO1 population. In addition, we observed that the presence of prophages decreased the lytic phage maintenance seemingly protecting the host against carrier state and occasional lytic phage propagation, thus preventing a significant reduction in bacterial growth rate.
Collapse
|
214
|
Espinosa-Camacho LF, Delgado G, Cravioto A, Morales-Espinosa R. Diversity in the composition of the accessory genome of Mexican Pseudomonas aeruginosa strains. Genes Genomics 2021; 44:53-77. [PMID: 34410625 DOI: 10.1007/s13258-021-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.
Collapse
Affiliation(s)
- Luis F Espinosa-Camacho
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Alejandro Cravioto
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
215
|
Saati-Santamaría Z, Peral-Aranega E, Velázquez E, Rivas R, García-Fraile P. Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera. BIOLOGY 2021; 10:782. [PMID: 34440014 PMCID: PMC8389581 DOI: 10.3390/biology10080782] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Pseudomonas is a large and diverse genus broadly distributed in nature. Its species play relevant roles in the biology of earth and living beings. Because of its ubiquity, the number of new species is continuously increasing although its taxonomic organization remains quite difficult to unravel. Nowadays the use of genomics is routinely employed for the analysis of bacterial systematics. In this work, we aimed to investigate the classification of species of the genus Pseudomonas on the basis of the analyses of the type strains whose genomes are currently available. Based on these analyses, we propose the creation of three new genera (Denitrificimonas gen nov. comb. nov., Neopseudomonas gen nov. comb. nov. and Parapseudomonas gen nov. comb. nov) to encompass several species currently included within the genus Pseudomonas and the reclassification of several species of this genus in already described taxa.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - Ezequiel Peral-Aranega
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - Encarna Velázquez
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| |
Collapse
|
216
|
Liu K, Li L, Yao W, Wang W, Huang Y, Wang R, Li P. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid. Sci Rep 2021; 11:16451. [PMID: 34385485 PMCID: PMC8361184 DOI: 10.1038/s41598-021-94674-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ling Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China.
| | - Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| |
Collapse
|
217
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
218
|
Minnebo Y, De Paepe K, Raes J, Van de Wiele T. Nutrient load acts as a driver of gut microbiota load, community composition and metabolic functionality in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2021; 97:6329685. [PMID: 34320208 DOI: 10.1093/femsec/fiab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
A recently introduced quantitative framework for gut microbiota analysis indicated that microbial load alterations can be linked to various diseases, making it essential to pinpoint its determinants. We identified nutrient load as a main driver of the quantitative microbial community composition and functionality in vitro by stepwise decreasing standardised feed concentrations from 100% to 33, 20 and 10% in five-day intervals. While the proportional composition and metabolic profile were mainly determined by the inter-individual variability (35 and 41%), nutrient load accounted for 58%, 23% and 65% of the observed variation in the microbial load, quantitative composition and net daily metabolite production, respectively. After the tenfold nutrient reduction, the microbial load decreased by 79.72 ± 9% and 82.96 ± 1.66% in the proximal and distal colon, respectively, while the net total short-chain fatty acid production dropped by 79.42 ± 4.42% and 84.58 ± 2.42%, respectively. The majority of microbial taxa quantitatively decreased, whereas a select group of nutritional specialists, such as Akkermansia muciniphila and Bilophila wadsworthia and a number of opportunistic pathogens remained unaffected. This shows that nutrient load is an important driver of the human gut microbiome and should be considered in future in vitro and in vivo dietary research.
Collapse
Affiliation(s)
- Yorick Minnebo
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.,Center for Microbiology, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
219
|
Redfern J, Wallace J, van Belkum A, Jaillard M, Whittard E, Ragupathy R, Verran J, Kelly P, Enright MC. Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. BMC Genomics 2021; 22:572. [PMID: 34311706 PMCID: PMC8314537 DOI: 10.1186/s12864-021-07818-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a ubiquitous environmental microorganism and also a common cause of infection. Its ability to survive in many different environments and persistently colonize humans is linked to its presence in biofilms formed on indwelling device surfaces. Biofilm promotes adhesion to, and survival on surfaces, protects from desiccation and the actions of antibiotics and disinfectants. RESULTS We examined the genetic basis for biofilm production on polystyrene at room (22 °C) and body temperature (37 °C) within 280 P. aeruginosa. 193 isolates (69 %) produced more biofilm at 22 °C than at 37 °C. Using GWAS and pan-GWAS, we found a number of accessory genes significantly associated with greater biofilm production at 22 °C. Many of these are present on a 165 kb region containing genes for heavy metal resistance (arsenic, copper, mercury and cadmium), transcriptional regulators and methytransferases. We also discovered multiple core genome SNPs in the A-type flagellin gene and Type II secretion system gene xpsD. Analysis of biofilm production of isolates of the MDR ST111 and ST235 lineages on stainless-steel revealed several accessory genes associated with enhanced biofilm production. These include a putative translocase with homology to a Helicobacter pylori type IV secretion system protein, a TA system II toxin gene and the alginate biosynthesis gene algA, several transcriptional regulators and methytransferases as well as core SNPs in genes involved in quorum sensing and protein translocation. CONCLUSIONS Using genetic association approaches we discovered a number of accessory genes and core-genome SNPs that were associated with enhanced early biofilm formation at 22 °C compared to 37 °C. These included a 165 kb genomic island containing multiple heavy metal resistance genes, transcriptional regulators and methyltransferases. We hypothesize that this genomic island may be associated with overall genotypes that are environmentally adapted to survive at lower temperatures. Further work to examine their importance in, for example gene-knockout studies, are required to confirm their relevance. GWAS and pan-GWAS approaches have great potential as a first step in examining the genetic basis of novel bacterial phenotypes.
Collapse
Affiliation(s)
- James Redfern
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Janine Wallace
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | | | | | - Elliot Whittard
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Roobinidevi Ragupathy
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Joanna Verran
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Peter Kelly
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Mark Charles Enright
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom.
| |
Collapse
|
220
|
Involvement of the MxtR/ErdR (CrbS/CrbR) Two-Component System in Acetate Metabolism in Pseudomonas putida KT2440. Microorganisms 2021; 9:microorganisms9081558. [PMID: 34442637 PMCID: PMC8402216 DOI: 10.3390/microorganisms9081558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022] Open
Abstract
MxtR/ErdR (also called CrbS/CrbR) is a two-component system previously identified as important for the utilization of acetate in Vibrio cholerae and some Pseudomonas species. In addition, evidence has been found in Pseudomonas aeruginosa for a role in regulating the synthesis and expression, respectively, of virulence factors such as siderophores and RND transporters. In this context, we investigated the physiological role of the MxtR/ErdR system in the soil bacterium Pseudomonas putida KT2440. To that end, mxtR and erdR were individually deleted and the ability of the resulting mutants to metabolize different carbon sources was analyzed in comparison to wild type. We also assessed the impact of the deletions on siderophore production, expression of mexEF-oprN (RND transporter), and the biocontrol properties of the strain. Furthermore, the MxtR/ErdR-dependent expression of putative target genes and binding of ErdR to respective promoter regions were analyzed. Our results indicated that the MxtR/ErdR system is active and essential for acetate utilization in P. putida KT2440. Expression of scpC, pp_0354, and acsA-I was stimulated by acetate, while direct interactions of ErdR with the promoter regions of the genes scpC, pp_0354, and actP-I were demonstrated by an electromobility shift assay. Finally, our results suggested that MxtR/ErdR is neither involved in regulating siderophore production nor the expression of mexEF-oprN in P. putida KT2440 under the conditions tested.
Collapse
|
221
|
Zhou T, Huang J, Liu Z, Xu Z, Zhang LH. Molecular Mechanisms Underlying the Regulation of Biofilm Formation and Swimming Motility by FleS/FleR in Pseudomonas aeruginosa. Front Microbiol 2021; 12:707711. [PMID: 34367113 PMCID: PMC8335546 DOI: 10.3389/fmicb.2021.707711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa, a major cause of nosocomial infection, can survive under diverse environmental conditions. Its great adaptive ability is dependent on its multiple signaling systems such as the two-component system (TCS). A TCS FleS/FleR has been previously identified to positively regulate a variety of virulence-related traits in P. aeruginosa PAO1 including motility and biofilm formation which are involved in the acute and chronic infections, respectively. However, the molecular mechanisms underlying these regulations are still unclear. In this study, we first analyzed the regulatory roles of each domains in FleS/FleR and characterized key residues in the FleS-HisKA, FleR-REC and FleR-AAA domains that are essential for the signaling. Next, we revealed that FleS/FleR regulates biofilm formation in a c-di-GMP and FleQ dependent manner. Lastly, we demonstrated that FleR can regulate flagellum biosynthesis independently without FleS, which explains the discrepant regulation of swimming motility by FleS and FleR.
Collapse
Affiliation(s)
- Tian Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
222
|
Mulet M, Duman M, Altun S, Saticioglu IB, Gomila M, Matthijs S, Lalucat J, García-Valdés E. Pseudomonas arcuscaelestis sp. nov., isolated from rainbow trout and water. Int J Syst Evol Microbiol 2021; 71. [PMID: 34242155 DOI: 10.1099/ijsem.0.004860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells of strains P66T, V1 and W15Feb18 are Gram-stain-negative short rods and motile by one polar flagellum. Strain P66T was isolated from rainbow trout (Oncorhynchus mykiss) cultivated at a fish farm in Turkey. Strain V1 was isolated from sand of an intertidal shore on the Galicia coast in Spain and strain W15Feb18 was isolated from water collected at the Woluwe River in Belgium. Based on 16S rRNA sequence similarity values, the strains were grouped under the genus Pseudomonas and the Pseudomonas putida phylogenetic group of species. The DNA G+C content ranged from 58.5 to 58.9 mol%. The strains were characterized phenotypically by the API 20NE and Biolog GEN III tests, and chemotaxonomically by their whole-cell MALDI-TOF MS protein profiles and fatty acid contents. The absence of the hydrolysis of gelatin and the assimilation of arabinose, mannose and mannitol differentiated these strains from the closest species, Pseudomonas alkylphenolica. The major fatty acid components were C16:0 (29.91-31.68 %) and summed feature 3 (36.44-37.55 %). Multilocus sequence analysis with four and 83 housekeeping gene sequences and a core proteome analysis showed that these strains formed a phylogenetic cluster in the P. putida group of species. Genome comparisons by the average nucleotide identity based on blast and the Genome-to-Genome Distance Calculator demonstrated that the three strains belonged to the same genomic species and were distant from any known species, with similarity values lower than the thresholds established for species in the genus Pseudomonas. These data permitted us to conclude that strains P66T, V1 and W15Feb18 belong to a novel species in the genus Pseudomonas, for which the name Pseudomonas arcuscaelestis sp. nov. is proposed. The type strain is P66T (=CECT 30176T=CCUG 74872T). The other strains have been deposited in the CECT with the corresponding collection numbers: V1 (=CECT 30356) and W15Feb18 (=CECT 30355).
Collapse
Affiliation(s)
- Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Muhammed Duman
- Department of Aquatic Animal Diseases, Bursa Uludag University, 16059, Bursa, Turkey
| | - Soner Altun
- Department of Aquatic Animal Diseases, Bursa Uludag University, 16059, Bursa, Turkey
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Sandra Matthijs
- Institut de recherche LABIRIS, Avenue Emile Gryzon, 1 - 1070 Bruxelles, Belgium
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain.,Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
223
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
224
|
Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 2021; 23:5378-5394. [PMID: 34190383 PMCID: PMC8519069 DOI: 10.1111/1462-2920.15623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two‐partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eva Augustiny
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
225
|
Hassen W, Cherif H, Werhani R, Raddadi N, Neifar M, Hassen A, Cherif A. Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas species as detoxification agents. Arch Microbiol 2021; 203:4641-4651. [PMID: 34173006 DOI: 10.1007/s00203-021-02451-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Pentachlorophenol (PCP) is a toxic compound, which is widely used as a wood preservative product and general biocide. It is persistent in the environment and has been classified as a persistent organic pollutant to be reclaimed in many countries. Bioremediation is an emerging approach to rehabilitating areas polluted by recalcitrant xenobiotics. In the present study, we evaluated the potential of three strains of Pseudomonas (P. putida S121, P. rhizophila S211, and P. fuscovagiceae S115) as bioremediation agents in depletion and detoxification of PCP in soil microcosms. PCP removal was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum PCP removal yield (85 ± 5%) were: 500 mg/kg PCP concentration, 108 UFC/g soil inoculum size of each strain and 55 days incubation period. The bacterial strains, P. putida, P. rhizophila, and P. fuscovagiceae, showed good capability to tolerate and degrade PCP so that they could be successfully used in synergistic effect to treat PCP polluted soils.
Collapse
Affiliation(s)
- Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", University of Monastir, 5100, Mahdia, Tunisia. .,LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia.
| | - Hanene Cherif
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| | - Rim Werhani
- Laboratory of Treatment and Recycle of Wastewater, Centre of Research and Technologies of Water (CERTE), Borj Cédria Technology Park, BP 273, 8020, Tunis, Tunisia
| | - Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Mohamed Neifar
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| | - Abdennaceur Hassen
- Laboratory of Treatment and Recycle of Wastewater, Centre of Research and Technologies of Water (CERTE), Borj Cédria Technology Park, BP 273, 8020, Tunis, Tunisia
| | - Ameur Cherif
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| |
Collapse
|
226
|
Hwang W, Yong JH, Min KB, Lee KM, Pascoe B, Sheppard SK, Yoon SS. Genome-wide association study of signature genetic alterations among pseudomonas aeruginosa cystic fibrosis isolates. PLoS Pathog 2021; 17:e1009681. [PMID: 34161396 PMCID: PMC8274868 DOI: 10.1371/journal.ppat.1009681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes diverse human infections including chronic airway infection in patients with cystic fibrosis (CF). Comparing the genomes of CF and non-CF PA isolates has great potential to identify the genetic basis of pathogenicity. To gain a deeper understanding of PA adaptation in CF airways, we performed a genome-wide association study (GWAS) on 1,001 PA genomes. Genetic variations identified among CF isolates were categorized into (i) alterations in protein-coding regions, either large- or small-scale, and (ii) polymorphic variation in intergenic regions. We introduced each CF-associated genetic alteration into the genome of PAO1, a prototype PA strain, and validated the outcomes experimentally. Loci readily mutated among CF isolates included genes encoding a probable sulfatase, a probable TonB-dependent receptor (PA2332~PA2336), L-cystine transporter (YecS, PA0313), and a probable transcriptional regulator (PA5438). A promoter region of a heme/hemoglobin uptake outer membrane receptor (PhuR, PA4710) was also different between the CF and non-CF isolate groups. Our analysis highlights ways in which the PA genome evolves to survive and persist within the context of chronic CF infection.
Collapse
Affiliation(s)
- Wontae Hwang
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Ji Hyun Yong
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Kyung Bae Min
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Kang-Mu Lee
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
227
|
Butaitė E, Kramer J, Kümmerli R. Local adaptation, geographical distance and phylogenetic relatedness: Assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J Evol Biol 2021; 34:1266-1278. [PMID: 34101930 PMCID: PMC8453950 DOI: 10.1111/jeb.13883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
228
|
Zhu L, Yan H, Zhou GS, Jiang CH, Liu P, Yu G, Guo S, Wu QN, Duan JA. Insights into the mechanism of the effects of rhizosphere microorganisms on the quality of authentic Angelica sinensis under different soil microenvironments. BMC PLANT BIOLOGY 2021; 21:285. [PMID: 34157988 PMCID: PMC8220839 DOI: 10.1186/s12870-021-03047-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/11/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Angelica sinensis (Oliv.) Diels (A. sinensis) is a Chinese herb grown in different geographical locations. It contains numerous active components with therapeutic value. Rhizosphere microbiomes affect various aspects of plant performance, such as nutrient acquisition, growth and development and plant diseases resistance. So far, few studies have investigated how the microbiome effects level of active components of A. sinensis. This study investigated whether changes in rhizosphere microbial communities and metabolites of A. sinensis vary with the soil microenvironment. Soils from the two main A. sinensis-producing areas, Gansu and Yunnan Province, were used to conduct pot experiments. The soil samples were divided into two parts, one part was sterilized and the other was unsterilized planting with the seedling variety of Gansu danggui 90-01. All seedlings were allowed to grow for 180 days. At the end of the experiment, radix A. sinensis were collected and used to characterize growth targets and chemical compositions. Rhizosphere soils were subjected to microbial analyses. RESULTS Changes in metabolic profiles and rhizosphere microbial communities of A. sinensis grown under different soil microenvironments were similar. The GN (Gansu non-sterilized), YN (Yunnan non-sterilized), GS (Gansu sterilized), and YS (Yunnan sterilized) groups were significantly separated. Notably, antagonistic bacteria such as Sphingomonas, Pseudomonas, Lysobacter, Pseudoxanthomonas, etc. were significantly (p < 0.05) enriched in Gansu soil compared with Yunnan soil. Moreover, senkyunolide I and ligustilide dimers which were enriched in GS group were strongly positively correlated with Pseudomonas parafulva; organic acids (including chlorogenic acid, dicaffeoylquinic acid and 5-feruloylquinic acid) and their ester coniferyl ferulate which were enriched in YS Group were positively associated with Gemmatimonadetes bacterium WY71 and Mucilaginibater sp., respectively. CONCLUSIONS The soil microenvironment influences growth and level/type of active components in A. sinensis. Further studies should explore the functional features of quality-related bacteria, identify the key response genes and clarify the interactions between genes and soil environments. This will reveal the mechanisms that determine the quality formation of genuine A. sinensis.
Collapse
Affiliation(s)
- Lei Zhu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Gui-Sheng Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun-Hao Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Pei Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Nan Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
229
|
Xu Z, Li Y, Cao H, Si M, Zhang G, Woo PCY, Yan A. A transferrable and integrative type I-F Cascade for heterologous genome editing and transcription modulation. Nucleic Acids Res 2021; 49:e94. [PMID: 34157103 PMCID: PMC8450077 DOI: 10.1093/nar/gkab521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/18/2021] [Accepted: 06/05/2021] [Indexed: 12/31/2022] Open
Abstract
The Class 1 type I CRISPR–Cas systems represent the most abundant and diverse CRISPR systems in nature. However, their applications for generic genome editing have been hindered due to difficulties of introducing the class-specific, multi-component effectors (Cascade) in heterologous hosts for functioning. Here we established a transferrable Cascade system that enables stable integration and expression of a highly active type I-F Cascade in heterologous bacterial hosts for various genetic exploitations. Using the genetically recalcitrant Pseudomonas species as a paradigm, we show that the transferred Cascade displayed substantially higher DNA interference activity and greater editing capacity than both the integrative and plasmid-borne Cas9 systems, and enabled deletion of large fragments such as the 21-kb integrated cassette with efficiency and simplicity. An advanced I-F-λred system was further developed to enable editing in genotypes with poor homologous recombination capacity, clinical isolates lacking sequence information, and cells containing anti-CRISPR elements Acrs. Lastly, an ‘all-in-one’ I-F Cascade-mediated CRISPRi platform was developed for transcription modulation by simultaneous introduction of the Cascade and the programmed mini-CRISPR array in one-step. This study provides a framework for expanding the diverse type I Cascades for widespread, heterologous genome editing and establishment of editing techniques in ‘non-model’ bacterial species.
Collapse
Affiliation(s)
- Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanran Li
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meiru Si
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,School of Biological Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Guangming Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
230
|
Carbapenem Resistance Determinants Acquired through Novel Chromosomal Integrations in Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:e0028921. [PMID: 33941520 PMCID: PMC8373256 DOI: 10.1128/aac.00289-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Two novel blaDIM-1- or blaIMP-1-containing genomic islands (GIs) were discovered by whole-genome sequence analyses in four extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates from inpatients at a tertiary hospital in Ghana. The strains were of sequence type 234 (ST234) and formed a phylogenetic clade together with ST111, which is recognized as a global high-risk clone. Their carbapenem resistance was encoded by two Tn402-type integrons, In1592 (blaDIM-1) and In1595 (blaIMP-1), both carrying complete tni mobilization modules. In1595 was bound by conserved 25-bp inverted repeats (IRs) flanked by 5-bp direct repeats (DRs) associated with target site duplication. The integrons were embedded in two GIs that contained cognate integrases and were distinguished by a lower GC content than the chromosomal average. PAGI-97A (52.659 bp; In1592), which encoded a P4-type site-specific integrase of the tyrosine recombinase family in its 3′ border, was integrated into tRNA-Pro(ggg) and bracketed by a 49-bp perfect DR created by 3′-end target duplication. GIs with the same structural features, but diverse genetic content, were identified in 41/226 completed P. aeruginosa genomes. PAGI-97B (22,636 bp; In1595), which encoded an XerC/D superfamily integrase in its 5′ border, was inserted into the small RNA (sRNA) PrrF1/PrrF2 locus. Specific insertions into this highly conserved locus involved in iron-dependent regulation, all leaving PrrF1 intact, were identified in an additional six phylogenetically unrelated P. aeruginosa genomes. Our molecular analyses unveiled a hospital-associated clonal dissemination of carbapenem-resistant ST234 P. aeruginosa in which the XDR phenotype resulted from novel insertions of two GIs into specific chromosomal sites.
Collapse
|
231
|
Perepelov AV, Filatov AV, Shashkov AS, Grouzdev DS, Babich TL, Popova NM, Safonov AV. Structure elucidation and gene cluster annotation of the O-antigen of Pseudomonas veronii SHC-8-1 containing 2-acetamido-2,4,6-trideoxy-4-(3,5-dihydroxyhexanoylamino)-d-glucose. Carbohydr Res 2021; 504:108306. [PMID: 33930760 DOI: 10.1016/j.carres.2021.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
O-polysaccharide (O-antigen, OPS) was isolated from the lipopolysaccharide of Pseudomonas veronii SHC-8-1 and studied by component analyses and 1D and 2D NMR spectroscopy. The following structure of the O-polysaccharide was established: where QuipNAc4N(dHh) is 2,4-diamino-2,4,6-trideoxy-dglucose (Bacillosamine) in which N-2 is acetylated and N-4 is acylated with 3,5-dihydroxyhexanoic acid (dHh). The O-antigen gene cluster of Pseudomonas veronii SHC-8-1 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Denis S Grouzdev
- S. N. Vinogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 117312
| | - Tamara L Babich
- S. N. Vinogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 117312
| | - Nadezhda M Popova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexey V Safonov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
232
|
Timsy, Spanner T, Ulrich A, Kublik S, Foesel BU, Kolb S, Horn MA, Behrendt U. Pseudomonas campi sp. nov., a nitrate-reducing bacterium isolated from grassland soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34016249 DOI: 10.1099/ijsem.0.004799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas. The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes. Computation of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.
Collapse
Affiliation(s)
- Timsy
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Tobias Spanner
- Leibniz University Hannover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Susanne Kublik
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Bärbel U Foesel
- Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Marcus A Horn
- Leibniz University Hannover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| |
Collapse
|
233
|
Metagenomics Analysis Reveals the Microbial Communities, Antimicrobial Resistance Gene Diversity and Potential Pathogen Transmission Risk of Two Different Landfills in China. DIVERSITY 2021. [DOI: 10.3390/d13060230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.
Collapse
|
234
|
Bellassi P, Rocchetti G, Morelli L, Senizza B, Lucini L, Cappa F. A Milk Foodomics Investigation into the Effect of Pseudomonas fluorescens Growth under Cold Chain Conditions. Foods 2021; 10:foods10061173. [PMID: 34073686 PMCID: PMC8225104 DOI: 10.3390/foods10061173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas fluorescens is a psychrotrophic species associated with milk spoilage because of its lipolytic and proteolytic activities. Consequently, monitoring P. fluorescens or its antecedent activity in milk is critical to preventing quality defects of the product and minimizing food waste. Therefore, in this study, untargeted metabolomics and peptidomics were used to identify the changes in milk related to P. fluorescens activity by simulating the low-temperature conditions usually found in milk during the cold chain. Both unsupervised and supervised multivariate statistical approaches showed a clear effect caused by the P. fluorescens inoculation on milk samples. Our results showed that the levels of phosphatidylglycerophosphates and glycerophospholipids were directly related to the level of contamination. In addition, our metabolomic approach allowed us to detect lipid and protein degradation products that were directly correlated with the degradative metabolism of P. fluorescens. Peptidomics corroborated the proteolytic propensity of P. fluorescens-contaminated milk, but with lower sensitivity. The results obtained from this study provide insights into the alterations related to P. fluorescens 39 contamination, both pre and post heat treatment. This approach could represent a potential tool to retrospectively understand the actual quality of milk under cold chain storage conditions, either before or after heat treatments.
Collapse
|
235
|
Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:AEM.03089-20. [PMID: 33771779 DOI: 10.1128/aem.03089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause problematic infections at different sites throughout the human body. P. aeruginosa encodes a large suite of over 60 two-component signaling systems that enable cells to rapidly sense and respond to external signals. Previous work has shown that some of these sensory systems contribute to P. aeruginosa pathogenesis, but the virulence-associated processes and phenotypic traits that each of these systems controls are still largely unclear. To aid investigations of these sensory systems, we have generated deletion strains for each of 64 genes encoding histidine kinases and one histidine phosphotransferase in P. aeruginosa PA14. We carried out initial phenotypic characterizations of this collection by assaying these mutants for over a dozen virulence-associated traits, and we found that each of these phenotypes is regulated by multiple sensory systems. Our work highlights the usefulness of this collection for further studies of P. aeruginosa two-component signaling systems and provides insight into how these systems may contribute to P. aeruginosa infection.IMPORTANCE Pseudomonas aeruginosa can grow and survive under a wide range of conditions, including as a human pathogen. As such, P. aeruginosa must be able to sense and respond to diverse signals and cues in its environment. This sensory capability is endowed in part by the hundreds of two-component signaling proteins encoded in the P. aeruginosa genome, but the precise roles of each remain poorly defined. To facilitate systematic study of the signaling repertoire of P. aeruginosa PA14, we generated a library of deletion strains, each lacking one of the 64 histidine kinases. By subjecting these strains to a battery of phenotypic assays, we confirmed the functions of many and unveiled roles for dozens of previously uncharacterized histidine kinases in controlling various traits, many of which are associated with P. aeruginosa virulence. Thus, this work provides new insight into the functions of two-component signaling proteins and provides a resource for future investigations.
Collapse
|
236
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
237
|
Ferreiro MD, Gallegos MT. Distinctive features of the Gac-Rsm pathway in plant-associated Pseudomonas. Environ Microbiol 2021; 23:5670-5689. [PMID: 33939255 DOI: 10.1111/1462-2920.15558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Productive plant-bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
238
|
Valenzuela‐Heredia D, Henríquez‐Castillo C, Donoso R, Lavín P, Ringel MT, Brüser T, Campos JL. An unusual overrepresentation of genetic factors related to iron homeostasis in the genome of the fluorescent Pseudomonas sp. ABC1. Microb Biotechnol 2021; 14:1060-1072. [PMID: 33492712 PMCID: PMC8085936 DOI: 10.1111/1751-7915.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas inhabit diverse environments, such as soil, water, plants and humans. The variability of habitats is reflected in the diversity of the structure and composition of their genomes. This cosmopolitan bacterial genus includes species of biotechnological, medical and environmental importance. In this study, we report on the most relevant genomic characteristics of Pseudomonas sp. strain ABC1, a siderophore-producing fluorescent strain recently isolated from soil. Phylogenomic analyses revealed that this strain corresponds to a novel species forming a sister clade of the recently proposed Pseudomonas kirkiae. The genomic information reveals an overrepresented repertoire of mechanisms to hoard iron when compared to related strains, including a high representation of fecI-fecR family genes related to iron regulation and acquisition. The genome of the Pseudomonas sp. ABC1 contains the genes for non-ribosomal peptide synthetases (NRPSs) of a novel putative Azotobacter-related pyoverdine-type siderophore, a yersiniabactin-type siderophore and an antimicrobial betalactone; the last two are found only in a limited number of Pseudomonas genomes. Strain ABC1 can produce siderophores in a low-cost medium, and the supernatants from cultures of this strain promote plant growth, highlighting their biotechnological potential as a sustainable industrial microorganism.
Collapse
Affiliation(s)
| | - Carlos Henríquez‐Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA)Centro de Estudios Avanzados de Zonas Áridas (CEAZA)CoquimboChile
- Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Raúl Donoso
- Programa Institucional de Fomento a la InvestigaciónDesarrollo, e Innovación (PIDi)Universidad Tecnológica MetropolitanaSantiagoChile
| | - Paris Lavín
- Facultad de Ciencias del Mar y Recursos BiológicosDepartamento de BiotecnologíaLaboratorio de Complejidad Microbiana y Ecología FuncionalInstituto AntofagastaUniversidad de AntofagastaAntofagastaChile
- Network for Extreme Environments Research (NEXER)Universidad de AntofagastaUniversidad de La Frontera y Universidad de MagallanesPunta ArenasChile
| | | | - Thomas Brüser
- Institute of MicrobiologyLeibniz University HannoverHannoverGermany
| | - José Luis Campos
- Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
| |
Collapse
|
239
|
Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19:331-342. [PMID: 33214718 DOI: 10.1038/s41579-020-00477-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
Intense genome sequencing of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) airways has shown inefficient eradication of the infecting bacteria, as well as previously undocumented patient-to-patient transmission of adapted clones. However, genome sequencing has limited potential as a predictor of chronic infection and of the adaptive state during infection, and thus there is increasing interest in linking phenotypic traits to the genome sequences. Phenotypic information ranges from genome-wide transcriptomic analysis of patient samples to determination of more specific traits associated with metabolic changes, stress responses, antibiotic resistance and tolerance, biofilm formation and slow growth. Environmental conditions in the CF lung shape both genetic and phenotypic changes of P. aeruginosa during infection. In this Review, we discuss the adaptive and evolutionary trajectories that lead to early diversification and late convergence, which enable P. aeruginosa to succeed in this niche, and we point out how knowledge of these biological features may be used to guide diagnosis and therapy.
Collapse
|
240
|
Luo YH, Lai YS, Zheng C, Ilhan ZE, Ontiveros-Valencia A, Long X, Krajmalnik-Brown R, Rittmann BE. Increased expression of antibiotic-resistance genes in biofilm communities upon exposure to cetyltrimethylammonium bromide (CTAB) and other stress conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144264. [PMID: 33418325 DOI: 10.1016/j.scitotenv.2020.144264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O2-based membrane biofilm reactors (O2-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O2-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O2 and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of ARG, such as shown here in a O2-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA.
| | - Chenwei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; INRAE, Micalis Institute, Université Paris-Saclay, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Division de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, ZC 78216 San Luis Potosí, Mexico
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
241
|
Chen W, Dong B, Liu W, Liu Z. Recent Advances in Peptide Nucleic Acids as Antibacterial Agents. Curr Med Chem 2021; 28:1104-1125. [PMID: 32484766 DOI: 10.2174/0929867327666200602132504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
The emergence of antibiotic-resistant bacteria and the slow progress in searching for new antimicrobial agents makes it hard to treat bacterial infections and cause problems for the healthcare system worldwide, including high costs, prolonged hospitalizations, and increased mortality. Therefore, the discovery of effective antibacterial agents is of great importance. One attractive alternative is antisense peptide nucleic acid (PNA), which inhibits or eliminates gene expression by binding to the complementary messenger RNA (mRNA) sequence of essential genes or the accessible and functionally important regions of the ribosomal RNA (rRNA). Following 30 years of development, PNAs have played an extremely important role in the treatment of Gram-positive, Gram-negative, and acidfast bacteria due to their desirable stability of hybrid complex with target RNA, the strong affinity for target mRNA/rRNA, and the stability against nucleases. PNA-based antisense antibiotics can strongly inhibit the growth of pathogenic and antibiotic-resistant bacteria in a sequence-specific and dose-dependent manner at micromolar concentrations. However, several fundamental challenges, such as intracellular delivery, solubility, physiological stability, and clearance still need to be addressed before PNAs become broadly applicable in clinical settings. In this review, we summarize the recent advances in PNAs as antibacterial agents and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Bo Dong
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| |
Collapse
|
242
|
High fluoride resistance and virulence profile of environmental Pseudomonas isolated from water sources. Folia Microbiol (Praha) 2021; 66:569-578. [PMID: 33821405 DOI: 10.1007/s12223-021-00867-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
In our previous study, all Pseudomonas strains THP6, THP41, and OHP5 were identified as fluoride-resistant bacteria isolated from Dindigul district, Tamilnadu, India. The selected strains exhibiting a high level of fluoride resistance was determined in Luria broth (LB) medium and LB agar plates. In a further effort, fluoride-resistant organisms were tested for hemolytic activity and showed β-hemolysis on blood agar plates. The virulence factors such as gyrB, toxA, algD and lasB, plcH, rhlC and biofilm response genes (pslA, pelA, ppyR) were detected by PCR analysis. The putative genus-specific and species-specific PCR also confirmed that the selected fluoride-resistant strains were belonging to Pseudomonas aeruginosa species. Fluoride-resistance gene crcB was amplified by gene-specific primers. The crcB gene was cloned in TA vector and transformed into E. coli DH5α. Comparative and blast analysis of THP6, THP41, and OHP5 strains crcB gene sequences were high homology with P. aeruginosa fluoride efflux transporter crcB and P. aeruginosa putative fluoride ion transporter crcB. The recombinants were efficiently growing in the NaF containing LB agar plates. The fluoride tolerance of these strains was also associated with resistance to multiple antibiotics. These results can lead to the use of the fluoride resistance gene of P. aeruginosa for the development of a biosensor for fluoride detection.
Collapse
|
243
|
Grosjean M, Guénard S, Giraud C, Muller C, Plésiat P, Juarez P. Targeted Genome Reduction of Pseudomonas aeruginosa Strain PAO1 Led to the Development of Hypovirulent and Hypersusceptible rDNA Hosts. Front Bioeng Biotechnol 2021; 9:640450. [PMID: 33777913 PMCID: PMC7991573 DOI: 10.3389/fbioe.2021.640450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections, which is largely used as a model organism to study antibiotic resistance and pathogenesis. As other species of the genus, its wide metabolic versatility appears to be attractive to study biotechnological applications. However, its natural resistance to antibiotics and its capacity to produce a wide range of virulence factors argue against its biotechnological potential. By reducing the genome of the reference strain PAO1, we explored the development of four hypovirulent and hypersusceptible recombinant DNA hosts (rDNA hosts). Despite deleting up to 0.8% of the core genome, any of the developed strains presented alterations of fitness when cultured under standard laboratory conditions. Other features such as antibiotic susceptibility, cytotoxicity, in vivo pathogenesis, and expression of heterologous peptides were also explored to highlight the potential applications of these models. This work stands as the first stage of the development of a safe-platform strain of Pseudomonas aeruginosa that will be further optimized for biotechnological applications.
Collapse
Affiliation(s)
- Mélanie Grosjean
- Département Recherche et Développement, Smaltis SAS, Besançon, France.,Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Sophie Guénard
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | | | - Cédric Muller
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - Paulo Juarez
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| |
Collapse
|
244
|
Kullappan M, Mallavarapu Ambrose J, Surapaneni KM. Understanding the binding conformation of ceftolozane/tazobactam with Metallo-β-lactamases VIM-5 and IMP-7 of Pseudomonas aeruginosa: A molecular docking and virtual screening process. J Mol Recognit 2021; 34:e2898. [PMID: 33780080 DOI: 10.1002/jmr.2898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the community-acquired and healthcare-associated infections causing organisms. It has become resistant to most of the available antibiotics and is termed multi-drug resistance (MDR). There are a limited number of antibiotics are available to treat such MDR organism causing infections. The ceftolozane/tazobactam is one among the combination drug therapy (CDT) prescribed for the treatment of MDR causing infections. The resistance for the same CDT was observed in the MDR P. aeruginosa harboring VIM-5 and IMP-7 Metallo beta (β)-lactamases (MBLs). To explore the resistance mechanism at the molecular level, docking studies were carried out for antibiotics against VIM-5 and IMP-7 MBLs. The Zn2 metal ions carry out the nucleophile attack on the carbonyl carbon of the β-lactam ring along with conserved water molecules. To find lead compounds against the MBLs, a virtual screening process was carried out. We have employed MODELLER for structure modeling, AutoDock for molecular docking and AutoDock Vina, Molinspiration, PASS prediction & admetSAR in virtual screening. The search of low binding energy ceftolozane analogs against VIM-5 and IMP-7 MBLs has resulted in the ZINC000029060075 and ZINC000009163636 analogs. Similarly, the screening of high binding energy inhibitors against VIM-5 and IMP-7 MBLs has resulted in ZINC000003831503 and ZINC000000897247 tazobactam analogs respectively. The ADMET prediction results in the non-toxicity of the lead compounds. Our study may provide new insights for the scientist who are designing novel drugs against MDR P. aeruginosa causing infections.
Collapse
Affiliation(s)
- Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Jenifer Mallavarapu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Clinical Skills & Simulation and Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| |
Collapse
|
245
|
Analysis of the Structure and Biosynthesis of the Lipopolysaccharide Core Oligosaccharide of Pseudomonas syringae pv. tomato DC3000. Int J Mol Sci 2021; 22:ijms22063250. [PMID: 33806795 PMCID: PMC8005017 DOI: 10.3390/ijms22063250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is important for bacterial viability in general and host-pathogen interactions in particular. Negative charges at its core oligosaccharide (core-OS) contribute to membrane integrity through bridging interactions with divalent cations. The molecular structure and synthesis of the core-OS have been resolved in various bacteria including the mammalian pathogen Pseudomonas aeruginosa. A few core-OS structures of plant-associated Pseudomonas strains have been solved to date, but the genetic components of the underlying biosynthesis remained unclear. We conducted a comparative genome analysis of the core-OS gene cluster in Pseudomonas syringae pv. tomato (Pst) DC3000, a widely used model pathogen in plant-microbe interactions, within the P. syringae species complex and to other plant-associated Pseudomonas strains. Our results suggest a genetic and structural conservation of the inner core-OS but variation in outer core-OS composition within the P. syringae species complex. Structural analysis of the core-OS of Pst DC3000 shows an uncommonly high phosphorylation and presence of an O-acetylated sugar. Finally, we combined the results of our genomic survey with available structure information to estimate the core-OS composition of other Pseudomonas species.
Collapse
|
246
|
de Oliveira Luz AC, da Silva Junior WJ, do Nascimento Junior JB, da Silva JMA, de Queiroz Balbino V, Leal-Balbino TC. Genetic characteristics and phylogenetic analysis of Brazilian clinical strains of Pseudomonas aeruginosa harboring CRISPR/Cas systems. Curr Genet 2021; 67:663-672. [PMID: 33751147 DOI: 10.1007/s00294-021-01173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The CRISPR-Cas are adaptive immune systems found in archaea and bacteria, responsible for providing sequence-specific resistance against foreign DNA. Strains of Pseudomonas aeruginosa may carry CRISPR/Cas system types I-F, I-E and/or I-C; however, several aspects related to the epidemiology and functionality of these systems have not yet been revealed. Here, we report 13 genomes of clinical strains of P. aeruginosa from Brazil that were positive for CRISPR/Cas system types I-F and I-E, a rare feature in this species. The phylogenetic tree, which was constructed with 161 other publicly available genomes, suggested no direct relationship between positive strains, and the various types of CRISPR/Cas systems were spread throughout the tree. Comparative analysis of the genetic locations of type I-F and a specific orphan CRISPR array (without cas genes), named the LES locus, showed sequence similarities between this orphan locus and type I-F, but these LES loci were inserted in a different genomic location. We also report the presence of prophages, the presence of anti-CRISPR genes, and possibly the presence of self-targeting spacers. Here, we conclude that CRISPR/Cas is highly associated with certain lineages and is spread throughout the phylogenetic tree, showing no clear pattern of evolutionary distribution. Moreover, the LES locus might be a CRISPR1 locus related to type I-F that may have been misplaced and maintained over time. Furthermore, strains carrying I-F and I-E are rare, and not all of them are closely related. Further functional work is needed to better comprehend if aspects reported in this study are functional, including the LES locus, self-targeting spacers, anti-CRISPR protection, and I-F/I-E-carrying lineages.
Collapse
Affiliation(s)
| | - Wilson José da Silva Junior
- Laboratory of Bioinformatics and Evolutionary Biology, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - José Bandeira do Nascimento Junior
- Laboratory of Bioinformatics and Evolutionary Biology, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Valdir de Queiroz Balbino
- Laboratory of Bioinformatics and Evolutionary Biology, Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
247
|
Li M, Ma Q, Kong D, Han X, Che J, Zhou Y, Jiang X, Ruan Z, Zhang Q. Pseudomonas nicosulfuronedens sp. nov., a nicosulfuron degrading bacterium, isolated from a microbial consortium. Int J Syst Evol Microbiol 2021; 71. [PMID: 33411665 DOI: 10.1099/ijsem.0.004632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, motile, short-rod-shaped bacterium with nicosulfuron-degrading ability, designated strain LAM1902T, was isolated from a microbial consortium enriched with nicosulfuron as a sole nitrogen and energy source. The optimal temperature and pH for growth of strain LAM1902T were 30 °C and pH 6.0, respectively. Strain LAM1902T could grow in the presence of NaCl with concentration up to 4.0 % (w/v). Comparative analysis of 16S rRNA gene sequences revealed that LAM1902T was closely related to the members of the family Pseudomonadaceae to the genus Pseudomonas, with the highest similarity to Pseudomonas nitroreducens DSM 14399T (99.6 %), Pseudomonas nitritireducens WZBFD3-5A2T (99.3 %) and Pseudomonas panipatensis Esp-1T (98.8 %). Multi-locus sequence analysis based on both concatenated sequences of the 16S rRNA gene and three housekeeping genes (gyrB, rpoB and rpoD) further confirmed the intrageneric phylogenetic position of strain LAM1902T. The genomic DNA G+C content of LAM1902T was 64.8 mol%. The low values of in silico DNA-DNA hybridization (less than 43.7 %) and average nucleotide identity (less than 90.9 %) also showed that the strain was distinctly different from known species of the genus Pseudomonas. The major fatty acids were C16 : 0, C17 : 0 cyclo and anteiso C15 : 0. Ubiquinone Q-9 was detected as the predorminant respiratory quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. Based on phylogenetic, phenotypic and chemotaxonomic analyses and genome comparisons, we conclude that strain LAM1902T represents a novel species, for which the name Pseudomonas nicosulfuronedens sp. nov. is proposed. The type strain is LAM1902T (=JCM 33860T=KCTC 72830T).
Collapse
Affiliation(s)
- Miaomiao Li
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China.,College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qingyun Ma
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Delong Kong
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Xiaoyan Han
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China.,College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Juan Che
- College of Life Science, Xinjiang Normal University, Urumqi, XinJiang, 830046, PR China.,Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Yiqing Zhou
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China.,College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Tibet, PR China
| | - Qinghua Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| |
Collapse
|
248
|
Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing. J Bacteriol 2021; 203:JB.00432-20. [PMID: 33257523 DOI: 10.1128/jb.00432-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.
Collapse
|
249
|
Vega-Celedón P, Bravo G, Velásquez A, Cid FP, Valenzuela M, Ramírez I, Vasconez IN, Álvarez I, Jorquera MA, Seeger M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021; 9:microorganisms9030538. [PMID: 33807836 PMCID: PMC7998784 DOI: 10.3390/microorganisms9030538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Alexis Velásquez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Fernanda P. Cid
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid Ramírez
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid-Nicole Vasconez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Inaudis Álvarez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| |
Collapse
|
250
|
Obermeier MM, Wicaksono WA, Taffner J, Bergna A, Poehlein A, Cernava T, Lindstaedt S, Lovric M, Müller Bogotá CA, Berg G. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. THE ISME JOURNAL 2021; 15:921-937. [PMID: 33177608 PMCID: PMC8027415 DOI: 10.1038/s41396-020-00822-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022]
Abstract
The expanding antibiotic resistance crisis calls for a more in depth understanding of the importance of antimicrobial resistance genes (ARGs) in pristine environments. We, therefore, studied the microbiome associated with Sphagnum moss forming the main vegetation in undomesticated, evolutionary old bog ecosystems. In our complementary analysis of culture collections, metagenomic data and a fosmid library from different geographic sites in Europe, we identified a low abundant but highly diverse pool of resistance determinants, which targets an unexpectedly broad range of 29 antibiotics including natural and synthetic compounds. This derives both, from the extraordinarily high abundance of efflux pumps (up to 96%), and the unexpectedly versatile set of ARGs underlying all major resistance mechanisms. Multi-resistance was frequently observed among bacterial isolates, e.g. in Serratia, Rouxiella, Pandoraea, Paraburkholderia and Pseudomonas. In a search for novel ARGs, we identified the new class A β-lactamase Mm3. The native Sphagnum resistome comprising a highly diversified and partially novel set of ARGs contributes to the bog ecosystem´s plasticity. Our results reinforce the ecological link between natural and clinically relevant resistomes and thereby shed light onto this link from the aspect of pristine plants. Moreover, they underline that diverse resistomes are an intrinsic characteristic of plant-associated microbial communities, they naturally harbour many resistances including genes with potential clinical relevance.
Collapse
Affiliation(s)
- Melanie Maria Obermeier
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Alessandro Bergna
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstrasse 8, 37077, Göttingen, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Stefanie Lindstaedt
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Mario Lovric
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Christina Andrea Müller Bogotá
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| |
Collapse
|