201
|
Pavelko KD, Heckman KL, Hansen MJ, Pease LR. An Effective Vaccine Strategy Protective against Antigenically Distinct Tumor Variants. Cancer Res 2008; 68:2471-8. [DOI: 10.1158/0008-5472.can-07-5937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
202
|
Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. ACTA ACUST UNITED AC 2008; 205:711-23. [PMID: 18332179 PMCID: PMC2275391 DOI: 10.1084/jem.20071140] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A diverse T cell repertoire is essential for a vigorous immune response to new infections, and decreasing repertoire diversity has been implicated in the age-associated decline in CD8 T cell immunity. In this study, using the well-characterized mouse influenza virus model, we show that although comparable numbers of CD8 T cells are elicited in the lung and lung airways of young and aged mice after de novo infection, a majority of aged mice exhibit profound shifts in epitope immunodominance and restricted diversity in the TCR repertoire of responding cells. A preferential decline in reactivity to viral epitopes with a low naive precursor frequency was observed, in some cases leading to “holes” in the T cell repertoire. These effects were also seen in young thymectomized mice, consistent with the role of the thymus in maintaining naive repertoire diversity. Furthermore, a decline in repertoire diversity generally correlated with impaired responses to heterosubtypic challenge. This study formally demonstrates in a mouse infection model that naturally occurring contraction of the naive T cell repertoire can result in impaired CD8 T cell responses to known immunodominant epitopes and decline in heterosubtypic immunity. These observations have important implications for the design of vaccine strategies for the elderly.
Collapse
Affiliation(s)
- Eric J Yager
- The Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | |
Collapse
|
203
|
Boudinot P, Marriotti-Ferrandiz ME, Pasquier LD, Benmansour A, Cazenave PA, Six A. New perspectives for large-scale repertoire analysis of immune receptors. Mol Immunol 2008; 45:2437-45. [PMID: 18279958 DOI: 10.1016/j.molimm.2007.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
Abstract
In vertebrates, the world of antigenic motifs is matched to large populations of lymphocytes through specific recognition of an epitope by a given receptor unique to a lymphocyte clone. The concept of immune repertoire was proposed to describe this diversity of lymphocyte receptors - Ig and TCR - required by the network of interactions. The immune repertoires became useful tools to describe lymphocyte and receptor populations through the development of the immune system and in pathological situations. Recently, the development of mass technologies made possible a comprehensive survey of immune repertoires at the genome, transcript and protein levels, and some of these techniques have been already adapted to TCR and Ig repertoire analyses. Such approaches generate very big datasets, which necessitates complex and multi-parametric annotations in dedicated databases. They also require new analysis methods, leading to the integration of structure and dynamics of the immune repertoires, at different time scales (immune response, development of the individual, evolution of the species). Such methods may be extended to the analysis of new classes of adaptive-like receptors, which were recently discovered in different invertebrates and in agnathans. Ultimately, they may allow a parallel monitoring of pathogen and immune repertoires addressing the reciprocal influences that decide for the host survival or death. In this review, we first study the characteristics of Ig and TCR repertoires, and we examine several systematic approaches developed for the analysis of these "classical" immune repertoires at different levels. We then consider examples of the recent developments of modeling and statistical analysis, and we discuss their relevance and their importance for the study of the immune diversity. An extended view of immune repertoires is proposed, integrating the diversity of other receptors involved in immune recognition. Also, we discuss how repertoire studies could link pathogen variation and immune diversity to reveal regulatory patterns and rules driving their co-diversification race.
Collapse
Affiliation(s)
- Pierre Boudinot
- Institut National de la Recherche Agronomique Unité de Virologie et Immunologie Moléculaires 78352, Jouy-en-Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
204
|
Kedzierska K, La Gruta NL, Stambas J, Turner SJ, Doherty PC. Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Mol Immunol 2008; 45:607-18. [PMID: 17719639 PMCID: PMC2237887 DOI: 10.1016/j.molimm.2006.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/15/2006] [Indexed: 02/03/2023]
Abstract
Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRbeta chains. Such skewing is also observed, though less commonly, in TCRalpha chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVbeta and/or TCRValpha CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of "high" versus "low" avidity, or "central" versus "effector" memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
205
|
Epitope-specific TCRbeta repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. Proc Natl Acad Sci U S A 2008; 105:2034-9. [PMID: 18238896 DOI: 10.1073/pnas.0711682102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TCR repertoire diversity has been convincingly shown to facilitate responsiveness of CD8+ T cell populations to mutant virus peptides, thereby safeguarding against viral escape. However, the impact of repertoire diversity on the functionality of the CD8+ T cell response to cognate peptide-MHC class I complex (pMHC) recognition remains unclear. Here, we have compared TCRbeta chain repertoires of three influenza A epitope-specific CD8+ T cell responses in C57BL/6 (B6) mice: D(b)NP(366-374), D(b)PA(224-233), and a recently described epitope derived from the +1 reading frame of the influenza viral polymerase B subunit (residues 62-70) (D(b)PB1-F2(62)). Corresponding to the relative antigenicity of the respective pMHCs, and irrespective of the location of prominent residues, the D(b)PA(224)- and D(b)PB1-F2(62)-specific repertoires were similarly diverse, whereas the D(b)NP(366) population was substantially narrower. Importantly, parallel analysis of response magnitude, cytotoxicity, TCR avidity, and cytokine production for the three epitope-specific responses revealed no obvious functional advantage conferred by increased T cell repertoire diversity. Thus, whereas a diverse repertoire may be important for recognition of epitope variants, its effect on the response to cognate pMHC recognition appears minimal.
Collapse
|
206
|
|
207
|
Abstract
Inbreeding is typically detrimental to fitness. However, some animal populations are reported to inbreed without incurring inbreeding depression, ostensibly due to past “purging” of deleterious alleles. Challenging this is the position that purging can, at best, only adapt a population to a particular environment; novel selective regimes will always uncover additional inbreeding load. We consider this in a prominent test case: the eusocial naked mole‐rat (Heterocephalus glaber), one of the most inbred of all free‐living mammals. We investigated factors affecting mortality in a population of naked mole‐rats struck by a spontaneous, lethal coronavirus outbreak. In a multivariate model, inbreeding coefficient strongly predicted mortality, with closely inbred mole‐rats (F≥ 0.25) over 300% more likely to die than their outbred counterparts. We demonstrate that, contrary to common assertions, strong inbreeding depression is evident in this species. Our results suggest that loss of genetic diversity through inbreeding may render populations vulnerable to local extinction from emerging infectious diseases even when other inbreeding depression symptoms are absent.
Collapse
Affiliation(s)
- Adin Ross-Gillespie
- Department of Zoology, University of Cape Town, Rondebosch 7700, South Africa.
| | | | | |
Collapse
|
208
|
Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, Hewitt HS, Linde CH, Kavanagh DG, Woodberry T, Henry LM, Faircloth K, Listgarten J, Kadie C, Jojic N, Sango K, Brown NV, Pae E, Zaman MT, Bihl F, Khatri A, John M, Mallal S, Marincola FM, Walker BD, Sette A, Heckerman D, Korber BT, Brander C. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol 2007; 37:2419-33. [PMID: 17705138 PMCID: PMC2628559 DOI: 10.1002/eji.200737365] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I-restricted antigen presentation and vaccine development.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Karina Yusim
- Theoretical Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - Todd J. Suscovich
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | | | - John Sidney
- La Jolla Institute of Allergy and Immunology, Redmond, WA
| | - Peter Hraber
- Theoretical Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| | - Hannah S. Hewitt
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Caitlyn H. Linde
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Daniel G. Kavanagh
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Tonia Woodberry
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Leah M. Henry
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Kellie Faircloth
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | | | | | | | - Kaori Sango
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Nancy V. Brown
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Eunice Pae
- Fenway Community Health Center, Boston, MA
| | | | - Florian Bihl
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | - Mina John
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia
| | - Simon Mallal
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia
| | | | - Bruce D. Walker
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| | | | | | - Bette T. Korber
- Theoretical Biophysics, Los Alamos National Laboratory, Los Alamos, NM
- Santa Fe Institute, Santa Fe, NM, USA
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA
| |
Collapse
|
209
|
Zhong W, Dixit SB, Mallis RJ, Arthanari H, Lugovskoy AA, Beveridge DL, Wagner G, Reinherz EL. CTL Recognition of a Protective Immunodominant Influenza A Virus Nucleoprotein Epitope Utilizes a Highly Restricted Vβ but Diverse Vα Repertoire: Functional and Structural Implications. J Mol Biol 2007; 372:535-48. [PMID: 17658550 DOI: 10.1016/j.jmb.2007.06.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/13/2007] [Accepted: 06/18/2007] [Indexed: 11/26/2022]
Abstract
To investigate protective immunity conferred by CTL against viral pathogens, we have analyzed CD8(+) T cell responses to the immunodominant nucleoprotein epitope (NP(366-374)) of influenza A virus in B6 mice during primary and secondary infections in vivo. Unlike the highly biased TCR Vbeta repertoire, the associated Valpha repertoire specific for the NP(366-374)/D(b) ligand is quite diverse. Nonetheless, certain public and conserved CDR3alpha clonotypes with distinct molecular signatures were identified. Pairing of public Valpha and Vbeta domains creates an alphabeta TCR heterodimer that binds efficiently to the NP(366-374)/D(b) ligand and stimulates T cell activation. In contrast, private TCRs, each comprising a distinct alpha chain paired with the same public beta chain, interact very differently. Molecular dynamics simulation reveals that the conformation and mobility of the shared Vbeta CDR loops are governed largely by the associated Valpha domains. These results provide insight into molecular principles regarding public versus private TCRs linked to immune surveillance after infection with influenza A virus.
Collapse
MESH Headings
- Animals
- Conserved Sequence
- Female
- Immunodominant Epitopes/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/chemistry
- Influenza A virus/immunology
- Interleukin-2/biosynthesis
- Ligands
- Lymphocyte Activation
- Mice
- Models, Molecular
- Nucleocapsid Proteins
- Nucleoproteins/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Protein Conformation
- RNA-Binding Proteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Weimin Zhong
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Day EB, Zeng W, Doherty PC, Jackson DC, Kedzierska K, Turner SJ. The Context of Epitope Presentation Can Influence Functional Quality of Recalled Influenza A Virus-Specific Memory CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2187-94. [PMID: 17675478 DOI: 10.4049/jimmunol.179.4.2187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipopeptide constructs offer a novel strategy for eliciting effective cellular and humoral immunity by directly targeting the vaccine Ag to dendritic cells. Importantly, it is not known how closely immunity generated after lipopeptide vaccination mimics that generated after natural infection. We have used a novel lipopeptide vaccine strategy to analyze both the quantity and quality of CD8(+) T cell immunity to an influenza A virus epitope derived from the acidic polymerase protein (PA(224)) in B6 mice. Vaccination with the PA(224) lipopeptide resulted in accelerated viral clearance after subsequent influenza virus infection. The lipopeptide was also effective at recalling secondary D(b)PA(224) responses in the lung. Lipopeptide recalled D(b)PA(224)-specific CTL produced lower levels of IFN-gamma and TNF-alpha, but produced similar levels of IL-2 when compared with D(b)PA(224)-specific CTL recalled after virus infection. Furthermore, lipopeptide- and virus-recalled CTL demonstrated similar TCR avidity. Interestingly, lipopeptide administration resulted in expansion of D(b)PA(224)-specific CTL using a normally subdominant TCRBV gene segment. Overall, these results demonstrate that protective CTL responses elicited by lipopeptide vaccines can be correlated with TCR avidity, IL-2 production, and broad TCR repertoire diversity. Furthermore, factors that impact the quality of immunity are discussed. These factors are important considerations when evaluating the efficacy of novel vaccine strategies that target dendritic cells for eliciting cellular immunity.
Collapse
Affiliation(s)
- E Bridie Day
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
211
|
Yang H, Dong T, Turnbull E, Ranasinghe S, Ondondo B, Goonetilleke N, Winstone N, di Gleria K, Bowness P, Conlon C, Borrow P, Hanke T, McMichael A, Dorrell L. Broad TCR usage in functional HIV-1-specific CD8+ T cell expansions driven by vaccination during highly active antiretroviral therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:597-606. [PMID: 17579081 DOI: 10.4049/jimmunol.179.1.597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During chronic HIV-1 infection, continuing viral replication is associated with impaired proliferative capacity of virus-specific CD8+ T cells and with the expansion and persistence of oligoclonal T cell populations. TCR usage may significantly influence CD8+ T cell-mediated control of AIDS viruses; however, the potential to modulate the repertoire of functional virus-specific T cells by immunotherapy has not been explored. To investigate this, we analyzed the TCR Vbeta usage of CD8+ T cells populations which were expanded following vaccination with modified vaccinia virus Ankara expressing a HIV-1 gag/multiepitope immunogen (MVA.HIVA) in HIV-1-infected patients receiving highly active antiretroviral therapy. Vaccinations induced the re-expansion of HIV-1-specific CD8+ T cells and these showed broad TCR Vbeta usage which was maintained for at least 1 year in some individuals. By contrast, virus-specific CD8+ T cell populations in the same donors which failed to expand after vaccination and in unvaccinated controls were oligoclonal. Simultaneously, we observed that CD8+ T cells recognizing vaccine-derived HIV-1 epitopes displayed enhanced capacity to proliferate and to inhibit HIV-1 replication in vitro, following MVA.HIVA immunizations. Taken together, these data indicate that an attenuated viral-vectored vaccine can modulate adaptive CD8+ T cell responses to HIV-1 and improve their antiviral functional capacity. The potential therapeutic benefit of this vaccination approach warrants further investigation.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Antiretroviral Therapy, Highly Active
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Proliferation
- Chronic Disease
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genes, T-Cell Receptor beta
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/growth & development
- HIV-1/immunology
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Hongbing Yang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Burrows JM, Wynn KK, Tynan FE, Archbold J, Miles JJ, Bell MJ, Brennan RM, Walker S, McCluskey J, Rossjohn J, Khanna R, Burrows SR. The impact of HLA-B micropolymorphism outside primary peptide anchor pockets on the CTL response to CMV. Eur J Immunol 2007; 37:946-53. [PMID: 17357107 DOI: 10.1002/eji.200636588] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The factors controlling epitope selection in the T cell response to persistent viruses are not fully understood, and we have examined this issue in the context of four HLA-B*35-binding peptides from the pp65 antigen of human cytomegalovirus, two of which are previously undescribed. Striking differences in the hierarchy of immunodominance between these four epitopes were observed in healthy virus carriers expressing HLA-B*3501 versus B*3508, two HLA-B allotypes that differ by a single amino acid at position 156 (HLA-B*3501, (156)Leucine; HLA-B*3508, (156)Arginine) that projects from the alpha2 helix into the centre of the peptide-binding groove. While HLA-B*3501(+) individuals responded most strongly to the (123)IPSINVHHY(131) and (366)HPTFTSQY(373) epitopes, HLA-B*3508(+) individuals responded preferentially to (103)CPSQEPMSIYVY(114) and (188)FPTKDVAL(195). By comparing peptide-MHC association and disassociation rates with peptide immunogenicity, it was clear that dissociation rates correlate more closely with the hierarchy of immunodominance among the four pp65 peptides. These findings demonstrate that MHC micropolymorphism at positions outside the primary anchor residue binding pockets can have a major impact on determinant selection in antiviral T cell responses. Such influences may provide the evolutionary pressure that maintains closely related MHC molecules in diverse human populations.
Collapse
Affiliation(s)
- Jacqueline M Burrows
- Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Kroger CJ, Alexander-Miller MA. Dose-dependent modulation of CD8 and functional avidity as a result of peptide encounter. Immunology 2007; 122:167-78. [PMID: 17484768 PMCID: PMC2266002 DOI: 10.1111/j.1365-2567.2007.02622.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The generation of an optimal CD8(+) cytotoxic T lymphocyte (CTL) response is critical for the clearance of many intracellular pathogens. Previous studies suggest that one contributor to an optimal immune response is the presence of CD8(+) cells exhibiting high functional avidity. In this regard, CD8 expression has been shown to contribute to peptide sensitivity. Here, we investigated the ability of naive splenocytes to modulate CD8 expression according to the concentration of stimulatory peptide antigen. Our results showed that the level of CD8 expressed was inversely correlated with the amount of peptide used for the primary stimulation, with higher concentrations of antigen resulting in lower expression of both CD8alpha and CD8beta. Importantly the ensuing CD8(low) and CD8(high) CTL populations were not the result of the selective outgrowth of naive CD8(+) T-cell subpopulations expressing distinct levels of CD8. Subsequent encounter with peptide antigen resulted in continued modulation of both the absolute level and the isoform of CD8 expressed and in the functional avidity of the responding cells. We propose that CD8 cell surface expression is not a static property, but can be modulated to 'fine tune' the sensitivity of responding CTL to a defined concentration of antigen.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
214
|
Graefe SEB, Streichert T, Budde BS, Nürnberg P, Steeg C, Müller-Myhsok B, Fleischer B. Genes from Chagas susceptibility loci that are differentially expressed in T. cruzi-resistant mice are candidates accounting for impaired immunity. PLoS One 2006; 1:e57. [PMID: 17183687 PMCID: PMC1762350 DOI: 10.1371/journal.pone.0000057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 10/20/2006] [Indexed: 11/19/2022] Open
Abstract
Variation between inbred mice of susceptibility to experimental Trypanosoma cruzi infection has frequently been described, but the immunogenetic background is poorly understood. The outcross of the susceptible parental mouse strains C57BL/6 (B6) and DBA/2 (D2), B6D2F1 (F1) mice, is highly resistant to this parasite. In the present study we show by quantitative PCR that the increase of tissue parasitism during the early phase of infection is comparable up to day 11 between susceptible B6 and resistant F1 mice. A reduction of splenic parasite burdens occurs thereafter in both strains but is comparatively retarded in susceptible mice. Splenic microarchitecture is progressively disrupted with loss of follicles and B lymphocytes in B6 mice, but not in F1 mice. By genotyping of additional backcross offspring we corroborate our earlier findings that susceptibility maps to three loci on Chromosomes 5, 13 and 17. Analysis of gene expression of spleen cells from infected B6 and F1 mice with microarrays identifies about 0.3% of transcripts that are differentially expressed. Assuming that differential susceptibility is mediated by altered gene expression, we propose that the following differentially expressed transcripts from these loci are strong candidates for the observed phenotypic variation: H2-Eα, H2-D1, Ng23, Msh5 and Tubb5 from Chromosome 17; and Cxcl11, Bmp2k and Spp1 from Chromosome 5. Our results indicate that innate mechanisms are not of primary relevance to resistance of F1 mice to T. cruzi infection, and that differential susceptibility to experimental infection with this protozoan pathogen is not paralleled by extensive variation of the transcriptome.
Collapse
Affiliation(s)
- Sebastian E B Graefe
- Institute for Immunology, University Hospital Eppendorf, Hamburg, Germany; Department for Medical Microbiology and Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
215
|
Messaoudi I, Warner J, Fischer M, Park B, Hill B, Mattison J, Lane MA, Roth GS, Ingram DK, Picker LJ, Douek DC, Mori M, Nikolich-Žugich J. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 2006; 103:19448-53. [PMID: 17159149 PMCID: PMC1748246 DOI: 10.1073/pnas.0606661103] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decreases mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. In rodents, CR was reported to delay the aging of the immune system (immune senescence), which is believed to be largely responsible for a dramatic increase in age-related susceptibility to infectious diseases. However, it is unclear whether CR can exert similar effects in long-lived organisms. Previous studies involving 2- to 4-year CR treatment of long-lived primates failed to find a CR effect or reported effects on the immune system opposite to those seen in CR-treated rodents. Here we show that long-term CR delays the adverse effects of aging on nonhuman primate T cells. CR effected a marked improvement in the maintenance and/or production of naïve T cells and the consequent preservation of T cell receptor repertoire diversity. Furthermore, CR also improved T cell function and reduced production of inflammatory cytokines by memory T cells. Our results provide evidence that CR can delay immune senescence in nonhuman primates, potentially contributing to an extended lifespan by reducing susceptibility to infectious disease.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Jessica Warner
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Miranda Fischer
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Buyng Park
- Biostatistics Shared Resource, Oregon Cancer Institute, Oregon Health and Science University, Portland, OR 97201
| | - Brenna Hill
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie Mattison
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Mark A. Lane
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | | | - Donald K. Ingram
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Louis J. Picker
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Motomi Mori
- Biostatistics Shared Resource, Oregon Cancer Institute, Oregon Health and Science University, Portland, OR 97201
| | - Janko Nikolich-Žugich
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
- **To whom correspondence should be addressed at:
Vaccine and Gene Therapy Institute, Oregon Health and Science University, West Campus, 505 Northwest 185th Avenue, Beaverton, OR 97006. E-mail:
| |
Collapse
|
216
|
Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006; 6:883-94. [PMID: 17110956 DOI: 10.1038/nri1977] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
217
|
Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 2006; 25:533-43. [PMID: 17046682 DOI: 10.1016/j.immuni.2006.09.005] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiviral CD8(+) T cells respond to only a minute fraction of the potential peptide determinants encoded by viral genomes. Immunogenic determinants can be ordered into highly reproducible hierarchies based on the magnitude of cognate CD8(+) T cell responses. Until recently, this phenomenon, termed immunodominance, was largely defined and characterized in model systems utilizing a few strains of inbred mice infected with a handful of viruses with limited coding capacity. Here, I review work that has extended immunodominance studies to viruses of greater complexity and to the real world of human antiviral immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
| |
Collapse
|
218
|
Kedzierska K, Day EB, Pi J, Heard SB, Doherty PC, Turner SJ, Perlman S. Quantification of Repertoire Diversity of Influenza-Specific Epitopes with Predominant Public or Private TCR Usage. THE JOURNAL OF IMMUNOLOGY 2006; 177:6705-12. [PMID: 17082583 DOI: 10.4049/jimmunol.177.10.6705] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The H-2Db-restricted CD8 T cell immune response to influenza A is directed at two well-described epitopes, nucleoprotein 366 (NP366) and acid polymerase 224 (PA224). The responses to the two epitopes are very different. The epitope NP366-specific response is dominated by TCR clonotypes that are public (shared by most mice), whereas the epitope PA224-specific response is private (unique within each infected animal). In addition to being public, the NP366-specific response is dominated by a few clonotypes, when T cell clonotypes expressing the Vbeta8.3 element are analyzed. Herein, we show that this response is similarly public when the NP366+Vbeta4+ CD8 T cell response is analyzed. Furthermore, to determine whether these features resulted in differences in total TCR diversity in the NP366+ and PA224+ responses, we quantified the number of different CD8 T clonotypes responding to each epitope. We calculated that 50-550 clonotypes recognized each epitope in individual mice. Thus, although the character of the response to the two epitopes appeared to be different (private and diverse vs public and dominated by a few clonotypes), similar numbers of precursor cells responded to both epitopes and this number was of similar magnitude to that previously reported for other viral CD8 T cell epitopes. Therefore, even in CD8 T cell responses that appear to be oligoclonotypic, the total response is highly diverse.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line
- Clone Cells
- Dogs
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/metabolism
- Female
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/immunology
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Murine hepatitis virus/immunology
- Nucleocapsid Proteins
- Nucleoproteins/immunology
- RNA-Binding Proteins/immunology
- RNA-Dependent RNA Polymerase/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, Parkeville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
219
|
Madsen T, Ujvari B. MHC class I variation associates with parasite resistance and longevity in tropical pythons. J Evol Biol 2006; 19:1973-8. [PMID: 17040395 DOI: 10.1111/j.1420-9101.2006.01158.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using restriction fragment length polymorphism (RFLP) we identified 26 unique major histocompatibility complex (MHC) genotypes in 104 water pythons. We observed a significant independent association between reduced blood parasite load (Hepatozoon sp.) and python body length/age, presence of a specific RFLP fragment (C-fragment) and the overall number of fragments. The parasite has a negative impact on several python life-history traits such as growth, nutritional status and longevity. Thus, the C-fragment could be considered a 'good gene' (a fitness-enhancing genetic element). However, while the number of fragments affected parasite load, the association between level of parasitaemia and fragment number was not linear, and, hence, minimum parasite infection level was achieved at an intermediate number of fragments. Intermediate MHC fragment numbers were also observed among the largest/oldest pythons, suggesting that both a specific fragment and intermediate levels of MHC polymorphism enhanced python longevity. Thus, our results suggest python MHC is subject to both frequency-dependent and balancing selection.
Collapse
Affiliation(s)
- T Madsen
- School of Biological Sciences, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
220
|
Brander C, Frahm N, Walker BD. The challenges of host and viral diversity in HIV vaccine design. Curr Opin Immunol 2006; 18:430-7. [PMID: 16777397 DOI: 10.1016/j.coi.2006.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/31/2006] [Indexed: 02/03/2023]
Abstract
Rational HIV vaccine design is crucially dependent on a number of factors, including a detailed understanding of the immune responses that control infection in individuals that have non-progressing disease, the impact of host genetics on these responses, and the degree of immunological cross-reactivity between the vaccine immunogen and the encountered virus antigens. Significant progress has been made in a number of these areas over the past five years, which might help in the generation of a more effective immunogen design and will provide opportunities for novel vaccine delivery options. However, the understanding of immune response(s) that can mediate protection from infection or, if infection ensues, that slow the rate of HIV disease progression is still incomplete and will require detailed studies in unprecedentedly large populations infected with different HIV clades, combining advances in virology, immunology, human host genetics and bioinformatics analyses for the optimal design of vaccine immunogens.
Collapse
Affiliation(s)
- Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School Charlestown, 02192, USA.
| | | | | |
Collapse
|
221
|
Guevara-Patiño JA, Engelhorn ME, Turk MJ, Liu C, Duan F, Rizzuto G, Cohen AD, Merghoub T, Wolchok JD, Houghton AN. Optimization of a self antigen for presentation of multiple epitopes in cancer immunity. J Clin Invest 2006; 116:1382-90. [PMID: 16614758 PMCID: PMC1435720 DOI: 10.1172/jci25591] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 02/21/2006] [Indexed: 02/06/2023] Open
Abstract
T cells recognizing self antigens expressed by cancer cells are prevalent in the immune repertoire. However, activation of these autoreactive T cells is limited by weak signals that are incapable of fully priming naive T cells, creating a state of tolerance or ignorance. Even if T cell activation occurs, immunity can be further restricted by a dominant response directed at only a single epitope. Enhanced antigen presentation of multiple epitopes was investigated as a strategy to overcome these barriers. Specific point mutations that create altered peptide ligands were introduced into the gene encoding a nonimmunogenic tissue self antigen expressed by melanoma, tyrosinase-related protein-1 (Tyrp1). Deficient asparagine-linked glycosylation, which was caused by additional mutations, produced altered protein trafficking and fate that increased antigen processing. Immunization of mice with mutated Tyrp1 DNA elicited cross-reactive CD8(+) T cell responses against multiple nonmutated epitopes of syngeneic Tyrp1 and against melanoma cells. These multi-specific anti-Tyrp1 CD8(+) T cell responses led to rejection of poorly immunogenic melanoma and prolonged survival when immunization was started after tumor challenge. These studies demonstrate how rationally designed DNA vaccines directed against self antigens for enhanced antigen processing and presentation reveal novel self epitopes and elicit multi-specific T cell responses to nonimmunogenic, nonmutated self antigens, enhancing immunity against cancer self antigens.
Collapse
Affiliation(s)
- José A Guevara-Patiño
- Swim Across America Laboratory of Tumor Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Bihl F, Frahm N, Di Giammarino L, Sidney J, John M, Yusim K, Woodberry T, Sango K, Hewitt HS, Henry L, Linde CH, Chisholm JV, Zaman TM, Pae E, Mallal S, Walker BD, Sette A, Korber BT, Heckerman D, Brander C. Impact of HLA-B Alleles, Epitope Binding Affinity, Functional Avidity, and Viral Coinfection on the Immunodominance of Virus-Specific CTL Responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:4094-101. [PMID: 16547245 DOI: 10.4049/jimmunol.176.7.4094] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.
Collapse
Affiliation(s)
- Florian Bihl
- Partners AIDS Research Center, Massachusetts General Hospital, Charlestown, 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Meyer-Olson D, Brady KW, Bartman MT, O'Sullivan KM, Simons BC, Conrad JA, Duncan CB, Lorey S, Siddique A, Draenert R, Addo M, Altfeld M, Rosenberg E, Allen TM, Walker BD, Kalams SA. Fluctuations of functionally distinct CD8+ T-cell clonotypes demonstrate flexibility of the HIV-specific TCR repertoire. Blood 2006; 107:2373-83. [PMID: 16322475 PMCID: PMC1895729 DOI: 10.1182/blood-2005-04-1636] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 10/27/2005] [Indexed: 01/30/2023] Open
Abstract
T-cell receptor (TCR) diversity of virus-specific CD8+ T cells likely helps prevent escape mutations in chronic viral infections. To understand the dynamics of the virus-specific T cells in more detail, we followed the evolution of the TCR repertoire specific for a dominant HLA-B*08-restricted epitope in Nef (FLKEKGGL) in a cohort of subjects infected with HIV. Epitope-specific CD8+ T cells used structurally diverse TCR repertoires, with different TCRbeta variable regions and with high amino acid diversity within antigen recognition sites. In a longitudinal study, distinct Vbeta populations within the HIV-specific TCR repertoire expanded simultaneously with changes in plasma viremia, whereas other Vbeta populations remained stable or even decreased. Despite antigenic variation in some subjects, all subjects had the consensus sequence present during the study period. Functional analysis of distinct Vbeta populations revealed differences in HIV-specific IFN-gamma secretion ex vivo as well as differences in tetramer binding, indicating functional heterogeneity among these populations. This contrasts with findings in a subject on antiretroviral therapy with suppression of viremia to less than 50 copies/mL, where we observed long-term persistence of a single clonotype. Our findings illustrate the flexibility of a heterogeneous HIV-1-specific CD8+ TCR repertoire in subjects with partial control of viremia.
Collapse
Affiliation(s)
- Dirk Meyer-Olson
- Infectious Diseases Unit, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Aldridge BM, Bowen L, Smith BR, Antonelis GA, Gulland F, Stott JL. Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population. Immunogenetics 2006; 58:203-15. [PMID: 16528500 DOI: 10.1007/s00251-005-0069-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 11/21/2005] [Indexed: 10/24/2022]
Abstract
The Hawaiian monk seal population has experienced precipitous declines in the last 50 years. In this study, we provide evidence that individuals from remaining endangered population exhibit alarming uniformity in class I major histocompatibility (MHC) genes. The peripheral blood leukocyte-derived mRNA of six captive animals rescued from a stranding incident on the French frigate shoals in the Hawaiian archipelago was used to characterize genes in the monk seal class I MHC gene family, from which techniques for genotyping the broader population were designed using degenerate primers designed for the three major established human MHC class I loci (HLA-A, HLA-B, and HLA-C), and by sequencing multiple clones, six unique full-length classical MHC class I gene transcripts were identified among the six animals, three of which were only found in single individuals. Since The low degree of sequence variation between these transcripts and the similarity of genotype between individuals provided preliminary evidence for low class I MHC variability in the population. The sequence information from the class I transcripts from these six animals was used to design several primer sets for examining the extent of MHC variability in the remaining population using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). Several DGGE assays, each one amplifying subtly different class I MHC gene combinations, were designed to compare exons encoding the highly polymorphic domains of the putative peptide-binding region of MHC class I. In combination, these assays failed to show interindividual variability at any of the class I MHC gene loci examined in either the six captive seals or in 80 free-ranging animals ( approximately 6.7% of the estimated population) representing all six major subpopulations of Hawaiian monk seal.
Collapse
Affiliation(s)
- Brian M Aldridge
- Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL97TA, UK.
| | | | | | | | | | | |
Collapse
|
225
|
Olver S, Groves P, Buttigieg K, Morris ES, Janas ML, Kelso A, Kienzle N. Tumor-Derived Interleukin-4 Reduces Tumor Clearance and Deviates the Cytokine and Granzyme Profile of Tumor-Induced CD8+ T Cells. Cancer Res 2006; 66:571-80. [PMID: 16397274 DOI: 10.1158/0008-5472.can-05-1362] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An interleukin (IL)-4-containing tumor environment is reported to be beneficial for immune clearance of tumor cells in vivo; however, the effect of IL-4 on the effector CD8+ T cells contributing to tumor clearance is not well defined. We have used the immunogenic HLA-CW3-expressing P815 (P.CW3) mastocytoma and investigated whether IL-4 expression by the tumor affects tumor clearance and, if so, whether it alters the tumor-induced Vbeta10+ CD8+ T-cell response. P.CW3 were stably transfected with IL-4 or the empty control vector, and independent cell lines were injected i.p. into syngeneic DBA/2 mice. After apparent clearance of primary tumors over 12 to 15 days, secondary tumors arose that lacked surface expression and H-2-restricted antigen presentation of CW3 in part due to the loss of the HLA-CW3 expression cassette. Surprisingly, mice that received IL-4-producing tumor cells showed delayed primary tumor clearance and were significantly more prone to develop secondary tumors compared with mice receiving control tumor cells. Tumor clearance was dependent on CD8+ T cells. The IL-4-secreting P.CW3 tumor cells led to markedly higher mRNA expression of IL-4 and granzyme A and B but no differences in IFN-gamma and IL-2 production, cell proliferation, or ex vivo CTL activity in primary Vbeta10+ CD8+ T cells when compared with the control tumor cells. We concluded that tumor-derived IL-4 selectively changed the quality of the tumor-induced CD8+ T-cell response and resulted in unexpected negative effects on tumor clearance. These data bring into question the delivery of IL-4 to the tumor environment for improving tumor immunotherapy.
Collapse
Affiliation(s)
- Stuart Olver
- Cooperative Research Centre for Vaccine Technology, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
226
|
Tynan FE, Elhassen D, Purcell AW, Burrows JM, Borg NA, Miles JJ, Williamson NA, Green KJ, Tellam J, Kjer-Nielsen L, McCluskey J, Rossjohn J, Burrows SR. The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation. ACTA ACUST UNITED AC 2006; 202:1249-60. [PMID: 16275762 PMCID: PMC2213230 DOI: 10.1084/jem.20050864] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Thousands of potentially antigenic peptides are encoded by an infecting pathogen; however, only a small proportion induce measurable CD8(+) T cell responses. To investigate the factors that control peptide immunogenicity, we have examined the cytotoxic T lymphocyte (CTL) response to a previously undefined epitope ((77)APQPAPENAY(86)) from the BZLF1 protein of Epstein-Barr virus (EBV). This peptide binds well to two human histocompatibility leukocyte antigen (HLA) allotypes, HLA-B*3501 and HLA-B*3508, which differ by a single amino acid at position 156 ((156)Leucine vs. (156)Arginine, respectively). Surprisingly, only individuals expressing HLA-B*3508 show evidence of a CTL response to the (77)APQPAPENAY(86) epitope even though EBV-infected cells expressing HLA-B*3501 process and present similar amounts of peptide for CTL recognition, suggesting that factors other than peptide presentation levels are influencing immunogenicity. Functional and structural analysis revealed marked conformational differences in the peptide, when bound to each HLA-B35 allotype, that are dictated by the polymorphic HLA residue 156 and that directly affected T cell receptor recognition. These data indicate that the immunogenicity of an antigenic peptide is influenced not only by how well the peptide binds to major histocompatibility complex (MHC) molecules but also by its bound conformation. It also illustrates a novel mechanism through which MHC polymorphism can further diversify the immune response to infecting pathogens.
Collapse
Affiliation(s)
- Fleur E Tynan
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Frahm N, Kiepiela P, Adams S, Linde CH, Hewitt HS, Sango K, Feeney ME, Addo MM, Lichterfeld M, Lahaie MP, Pae E, Wurcel AG, Roach T, St John MA, Altfeld M, Marincola FM, Moore C, Mallal S, Carrington M, Heckerman D, Allen TM, Mullins JI, Korber BT, Goulder PJR, Walker BD, Brander C. Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nat Immunol 2005; 7:173-8. [PMID: 16369537 DOI: 10.1038/ni1281] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/19/2005] [Indexed: 11/09/2022]
Abstract
Despite limited data supporting the superiority of dominant over subdominant responses, immunodominant epitopes represent the preferred vaccine candidates. To address the function of subdominant responses in human immunodeficiency virus infection, we analyzed cytotoxic T lymphocyte responses restricted by HLA-B*1503, a rare allele in a cohort infected with clade B, although common in one infected with clade C. HLA-B*1503 was associated with reduced viral loads in the clade B cohort but not the clade C cohort, although both shared the immunodominant response. Clade B viral control was associated with responses to several subdominant cytotoxic T lymphocyte epitopes, whereas their clade C variants were less well recognized. These data suggest that subdominant responses can contribute to in vivo viral control and that high HLA allele frequencies may drive the elimination of subdominant yet effective epitopes from circulating viral populations.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE, Burrows JM, Purcell AW, Kjer-Nielsen L, Rossjohn J, Burrows SR, McCluskey J. CTL recognition of a bulged viral peptide involves biased TCR selection. THE JOURNAL OF IMMUNOLOGY 2005; 175:3826-34. [PMID: 16148129 DOI: 10.4049/jimmunol.175.6.3826] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alphabeta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.
Collapse
Affiliation(s)
- John J Miles
- Cellular Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Miltiadou D, Ballingall KT, Ellis SA, Russell GC, McKeever DJ. Haplotype characterization of transcribed ovine major histocompatibility complex (MHC) class I genes. Immunogenetics 2005; 57:499-509. [PMID: 16028041 DOI: 10.1007/s00251-005-0008-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
The ovine major histocompatibility complex (MHC) remains poorly characterized compared with those of other livestock species. Molecular genetic analysis of the bovine MHC has revealed considerable haplotype and allelic diversity that earlier serological analysis had not detected. To develop cellular and molecular tools to support development of vaccines against intracellular pathogens of sheep, we have undertaken a molecular genetic analysis of four distinct ovine MHC haplotypes carried by two heterozygous Blackface rams. We have identified 12 novel class I transcripts and used a class I sequence-specific genotyping system to assign each of these transcripts to individual haplotypes. Using a combination of phylogenetic analysis, haplotype and transcript expression data, we identified at least four distinct polymorphic class I MHC loci, three of which appear together in a number of combinations in individual haplotypes. The haplotypes were further characterized at the highly polymorphic Ovar-DRB1 locus, allowing selection of the progeny of the two founder rams for the establishment of an MHC-defined resource population.
Collapse
Affiliation(s)
- Despoina Miltiadou
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | | | | | | | | |
Collapse
|
230
|
Vukmanović S, Santori FR. Self-peptide/MHC and TCR antagonism: physiological role and therapeutic potential. Cell Immunol 2005; 233:75-84. [PMID: 15950208 DOI: 10.1016/j.cellimm.2005.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
TCR antagonists are peptides that bind MHC molecules and can specifically inhibit T cell activation induced by antigens. Studying TCR antagonism has taken an important place in immunology for both theoretical and practical reasons. Deciphering the mechanism(s) of action of TCR antagonists can yield important information about interactions of the TCR with ligands, T cell development, and TCR signaling. Moreover, microorganisms may employ TCR antagonism to elude the attention of the immune system. Finally, specificity of inhibition makes TCR antagonists an ideal tool to seek antigen-specific immunomodulation. Present state of knowledge on these topics is reviewed.
Collapse
Affiliation(s)
- Stanislav Vukmanović
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970, USA.
| | | |
Collapse
|
231
|
Frahm N, Adams S, Kiepiela P, Linde CH, Hewitt HS, Lichterfeld M, Sango K, Brown NV, Pae E, Wurcel AG, Altfeld M, Feeney ME, Allen TM, Roach T, St John MA, Daar ES, Rosenberg E, Korber B, Marincola F, Walker BD, Goulder PJR, Brander C. HLA-B63 presents HLA-B57/B58-restricted cytotoxic T-lymphocyte epitopes and is associated with low human immunodeficiency virus load. J Virol 2005; 79:10218-25. [PMID: 16051815 PMCID: PMC1182636 DOI: 10.1128/jvi.79.16.10218-10225.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several HLA class I alleles have been associated with slow human immunodeficiency virus (HIV) disease progression, supporting the important role HLA class I-restricted cytotoxic T lymphocytes (CTL) play in controlling HIV infection. HLA-B63, the serological marker for the closely related HLA-B*1516 and HLA-B*1517 alleles, shares the epitope binding motif of HLA-B57 and HLA-B58, two alleles that have been associated with slow HIV disease progression. We investigated whether HIV-infected individuals who express HLA-B63 generate CTL responses that are comparable in breadth and specificity to those of HLA-B57/58-positive subjects and whether HLA-B63-positive individuals would also present with lower viral set points than the general population. The data show that HLA-B63-positive individuals indeed mounted responses to previously identified HLA-B57-restricted epitopes as well as towards novel, HLA-B63-restricted CTL targets that, in turn, can be presented by HLA-B57 and HLA-B58. HLA-B63-positive subjects generated these responses early in acute HIV infection and were able to control HIV replication in the absence of antiretroviral treatment with a median viral load of 3,280 RNA copies/ml. The data support an important role of the presented epitope in mediating relative control of HIV replication and help to better define immune correlates of controlled HIV infection.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, No. 5214, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Posnett DN, Engelhorn ME, Houghton AN. Antiviral T cell responses: phalanx or multipronged attack? ACTA ACUST UNITED AC 2005; 201:1881-4. [PMID: 15967819 PMCID: PMC2212042 DOI: 10.1084/jem.20050928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Around 700 BCE, a new military formation called the phalanx was established in ancient Greece: a tight column of heavy infantry carrying long spears, or pikes, used in a single prong of attack. Later, in the battle of Marathon described by Herodotus, the Greeks learned the advantages of multipronged attacks, a strategy still used in modern warfare. Is the immune system similar in its approach to combating pathogens or tumors?
Collapse
Affiliation(s)
- David N Posnett
- Department of Medicine, Division of Hematology-Oncology, Weill Medical College, Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
233
|
Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann B, Möwes B, Jülke K, Romagnani C, Thiel A. Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol 2005; 35:1987-94. [PMID: 15909312 DOI: 10.1002/eji.200526181] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In spite of thymic involution early in life, the numbers of naive CD4(+) T cells only slowly decline in ageing humans implying peripheral post-thymic naive CD4(+) T cell expansion. This proliferation may compensate for continuous activation and death of naive CD4(+) T cells but may also have negative consequences for protective immunity. Here we show that naive CD4(+) T cells that have proliferated in the periphery are characterized by a highly restricted oligoclonal TCR repertoire. Additionally these cells, which constitute the majority of naive CD4(+) T cells in the elderly, display signatures of recent TCR engagement. Our results demonstrate for the first time that peripheral post-thymic proliferation of naive CD4(+) T cells in healthy human individuals causes a significant contraction of the peripheral TCR repertoire. This age-dependent deterioration of CD4(+) T cell immunity could entail ageing-associated autoimmunity, increased susceptibility to infection or cancer and decreased efficiency of vaccination.
Collapse
Affiliation(s)
- Siegfried Kohler
- German Rheumatism Research Centre, Clinical Immunology, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Tynan FE, Borg NA, Miles JJ, Beddoe T, El-Hassen D, Silins SL, van Zuylen WJM, Purcell AW, Kjer-Nielsen L, McCluskey J, Burrows SR, Rossjohn J. High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance. J Biol Chem 2005; 280:23900-9. [PMID: 15849183 DOI: 10.1074/jbc.m503060200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased T-cell response. Only the N-terminal face of the peptide bulge was critical for recognition by the dominant clonotype SB27. The SB27 public T-cell receptor (TcR) associated slowly onto the complex between the bulged peptide and the major histocompatibility complex, suggesting significant remodeling upon engagement. The broad antigen-binding cleft of HLA-B*3508 represents a critical feature for engagement of the public TcR, as the narrower binding cleft of HLA-B*3501(LPEPLPQGQLTAY), which differs from HLA-B*3508 by a single amino acid polymorphism (Arg156 --> Leu), interacted poorly with the dominant TcR. Biased TcR usage in this cytotoxic T lymphocyte response appears to reflect a dominant role of the prominent peptide x major histocompatibility complex class I surface.
Collapse
Affiliation(s)
- Fleur E Tynan
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Block MS, Mendez-Fernandez YV, Van Keulen VP, Hansen MJ, Allen KS, Taboas AL, Rodriguez M, Pease LR. Inability of bm14 mice to respond to Theiler's murine encephalomyelitis virus is caused by defective antigen presentation, not repertoire selection. THE JOURNAL OF IMMUNOLOGY 2005; 174:2756-62. [PMID: 15728484 DOI: 10.4049/jimmunol.174.5.2756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural selection drives diversification of MHC class I proteins, but the mechanism by which selection for polymorphism occurs is not known. New variant class I alleles differ from parental alleles both in the nature of the CD8 T cell repertoire formed and the ability to present pathogen-derived peptides. In the current study, we examined whether T cell repertoire differences, Ag presentation differences, or both account for differential viral resistance between mice bearing variant and parental alleles. We demonstrate that nonresponsive mice have inadequate presentation of viral Ag, but have T cell repertoires capable of mounting Ag-specific responses. Although previous work suggests a correlation between the ability to present an Ag and the ability to generate a repertoire responsive to that Ag, we show that the two functions of MHC class I are independent.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Norman PJ, Parham P. Complex interactions: The immunogenetics of human leukocyte antigen and killer cell immunoglobulin-like receptors. Semin Hematol 2005; 42:65-75. [PMID: 15846572 DOI: 10.1053/j.seminhematol.2005.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The killer cell immunoglobulin-like receptors (KIR) for human leukocyte antigen (HLA) modulate innate and adaptive immunity by controlling effector cells. HLA and KIR are encoded in genomic regions that have complex organization and exhibit exceptional diversity within and among human population groups. This diversity is likely to have arisen to combat a constantly evolving pathogen challenge. Numerous variations influence the expression level or function of KIR molecules and can affect their interaction with HLA, with important implications for the immune response. The functional variety of natural immune responses that are controlled by HLA and KIR interactions is genetically determined and maintained by natural selection.
Collapse
Affiliation(s)
- Paul J Norman
- Departments of Structural Biology and Microbiology, Stanford University School of Medicine, 299 Campus Drive West, Stanford, CA 94305, USA.
| | | |
Collapse
|
237
|
Roy-Proulx G, Baron C, Perreault C. CD8 T-cell ability to exert immunodomination correlates with T-cell receptor: Epitope association rate. Biol Blood Marrow Transplant 2005; 11:260-71. [PMID: 15812391 DOI: 10.1016/j.bbmt.2004.12.334] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When presented alone, H7 a and HY antigens elicit CD8 T-cell responses of similar amplitude, but H7 a totally abrogates the response to HY when both antigens are presented on the same antigen-presenting cell. We found that H7a- and HY-specific T-cell precursors had similar frequencies in nonimmune mice and expressed similar levels of CD5. The H7a -specific CD8 T-cell repertoire harvested at the time of primary response showed highly restricted T-cell receptor (TCR) diversity. Furthermore, T cells specific for H7a and HY expressed equivalent levels of CD8 and TCR and displayed similar tetramer decay rates. The key difference was that anti-H7a T cells exhibited a much more rapid TCR:epitope on-rate than anti-HY T cells. Coupled with evidence that primed CD8 T cells limit the duration of antigen presentation by killing or inactivating antigen-presenting cells, our data support a novel and simple model for immunodomination: the main feature of T cells that exert immunodomination is that, compared with other T cells, they are functionally primed after a shorter duration of antigen presentation.
Collapse
Affiliation(s)
- Guillaume Roy-Proulx
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
238
|
Affiliation(s)
- David G Bowen
- Center for Vaccines and Immunity, Columbus Children's Research Institute, 700 Childrens Dr, Columbus, OH 43205, USA
| | | |
Collapse
|
239
|
Turner SJ, Kedzierska K, Komodromou H, La Gruta NL, Dunstone MA, Webb AI, Webby R, Walden H, Xie W, McCluskey J, Purcell AW, Rossjohn J, Doherty PC. Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nat Immunol 2005; 6:382-9. [PMID: 15735650 DOI: 10.1038/ni1175] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/31/2005] [Indexed: 11/08/2022]
Abstract
Using both 'reverse genetics' and structural analysis, we have examined the in vivo relationship between antigenicity and T cell receptor (TCR) repertoire diversity. Influenza A virus infection of C57BL/6 mice induces profoundly different TCR repertoires specific for the nucleoprotein peptide of amino acids 366-374 (NP366) and the acid polymerase peptide of amino acids 224-233 (PA224) presented by H-2D(b). Here we show the H-2D(b)-NP366 complex with a 'featureless' structure selected a limited TCR repertoire characterized by 'public' TCR usage. In contrast, the prominent H-2D(b)-PA224 complex selected diverse, individually 'private' TCR repertoires. Substitution of the arginine at position 7 of PA224 with an alanine reduced the accessible side chains of the epitope. Infection with an engineered virus containing a mutation at the site encoding the exposed arginine at position 7 of PA224 selected a restricted TCR repertoire similar in diversity to that of the H-2D(b)-NP366-specific response. Thus, the lack of prominent features in an antigenic complex of peptide and major histocompatibility complex class I is associated with a diminished spectrum of TCR usage.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Li H, Zhou M, Han J, Zhu X, Dong T, Gao GF, Tien P. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. THE JOURNAL OF IMMUNOLOGY 2005; 174:195-204. [PMID: 15611241 DOI: 10.4049/jimmunol.174.1.195] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we reported that a 7-mer HLA-A11-restricted peptide (YVNTNMG) of hepatitis B virus (HBV) core Ag (HBcAg(88-94)) was associated with heat shock protein (HSP) gp96 in liver tissues of patients with HBV-induced hepatocellular carcinoma (HCC). This peptide is highly homologous to a human HLA-A11-restricted 9-mer peptide (YVNVNMGLK) and to a mouse H-2-K(d)-restricted 9-mer peptide (SYVNTNMGL). To further characterize its immunogenicity, BALB/c mice were vaccinated with the HBV 7-mer peptide. It was found that a specific CTL response was induced by the 7-mer peptide, although the response was approximately 50% of that induced by the mouse H-2-K(d)-restricted 9-mer peptide, as detected by ELISPOT, tetramer, and (51)Cr release assays. To evaluate the adjuvant effect of HSP gp96, mice were coimmunized with gp96 and the 9-mer peptide, and a significant adjuvant effect was observed with gp96. To further determine whether the immune effect of gp96 was dependent on peptide binding, the N- and C-terminal fragments of gp96, which are believed to contain the putative peptide-binding domain, were cloned and expressed in Escherichia coli. CTL assays indicated that only the N-terminal fragment, but not the C-terminal fragment, was able to produce the adjuvant effect. These results clearly demonstrated the potential of using gp96 or its N-terminal fragment as a possible adjuvant to augment CTL response against HBV infection and HCC.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100-080, P.R. China
| | | | | | | | | | | | | |
Collapse
|
241
|
Miley MJ, Messaoudi I, Metzner BM, Wu Y, Nikolich-Zugich J, Fremont DH. Structural basis for the restoration of TCR recognition of an MHC allelic variant by peptide secondary anchor substitution. ACTA ACUST UNITED AC 2004; 200:1445-54. [PMID: 15557346 PMCID: PMC2211956 DOI: 10.1084/jem.20040217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Major histocompatibility complex (MHC) class I variants H-2Kb and H-2Kbm8 differ primarily in the B pocket of the peptide-binding groove, which serves to sequester the P2 secondary anchor residue. This polymorphism determines resistance to lethal herpes simplex virus (HSV-1) infection by modulating T cell responses to the immunodominant glycoprotein B498-505 epitope, HSV8. We studied the molecular basis of these effects and confirmed that T cell receptors raised against Kb–HSV8 cannot recognize H-2Kbm8–HSV8. However, substitution of SerP2 to GluP2 (peptide H2E) reversed T cell receptor (TCR) recognition; H-2Kbm8–H2E was recognized whereas H-2Kb–H2E was not. Insight into the structural basis of this discrimination was obtained by determining the crystal structures of all four MHC class I molecules in complex with bound peptide (pMHCs). Surprisingly, we find no concerted pMHC surface differences that can explain the differential TCR recognition. However, a correlation is apparent between the recognition data and the underlying peptide-binding groove chemistry of the B pocket, revealing that secondary anchor residues can profoundly affect TCR engagement through mechanisms distinct from the alteration of the resting state conformation of the pMHC surface.
Collapse
Affiliation(s)
- Michael J Miley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
242
|
Boudinot P, Bernard D, Boubekeur S, Thoulouze MI, Bremont M, Benmansour A. The glycoprotein of a fish rhabdovirus profiles the virus-specific T-cell repertoire in rainbow trout. J Gen Virol 2004; 85:3099-3108. [PMID: 15448373 DOI: 10.1099/vir.0.80135-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell responses to viruses are still poorly investigated in lower vertebrates. In rainbow trout, a specific clonal expansion of T cells in response to infection with viral haemorrhagic septicaemia virus (VHSV) was recently identified. Expanded T-cell clones expressed a unique 8 aa Vβ4-Jβ1 junction (SSGDSYSE) in different individuals, reminiscent of a typical public response. To get further insight into the nature of this response the modifications of the T-cell repertoire following immunization with plasmid expressing the VHSV external glycoprotein (G), which is the only protein involved in protective immunity, was analysed. After G-based DNA immunization, CDR3-length spectratypes were skewed for several Vβ-Jβ combinations, including Vβ4-Jβ1. In Vβ4-Jβ1, biases consisted of 6 and 8 aa junctions that were detected from day 52, and were still present 3 months after DNA immunization. Sequence analysis of the Vβ4-Jβ1 junctions showed that the 8 aa junction (SSGDSYSE) was clearly expanded, indicating that viral G protein was probably the target of the anti-VHSV public response. Additional 6 and 8 aa Vβ4-Jβ1 junctions were also expanded in G-DNA-vaccinated fish, showing that significant clonotypic diversity was selected in response to the plasmid-delivered G protein. This higher clonotypic diversity may be related to the demonstrated higher efficiency of G-based DNA vaccines over whole virus immunization. The use of infectious hematopietic necrosis virus (IHNV) recombinant viruses, expressing the VHSV G protein, further substantiated the VHSV G-protein specificity of the 8 aa Vβ4-Jβ1 response and designated the 6 aa Vβ4-Jβ1 response as potentially directed to a T-cell epitope common to VHSV and IHNV.
Collapse
Affiliation(s)
- Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - David Bernard
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Samira Boubekeur
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Maria-Isabel Thoulouze
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Michel Bremont
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| | - Abdenour Benmansour
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
243
|
Murray JL, Gillogly M, Kawano K, Efferson CL, Lee JE, Ross M, Wang X, Ferrone S, Ioannides CG. Fine specificity of high molecular weight-melanoma-associated antigen-specific cytotoxic T lymphocytes elicited by anti-idiotypic monoclonal antibodies in patients with melanoma. Cancer Res 2004; 64:5481-8. [PMID: 15289358 DOI: 10.1158/0008-5472.can-04-0517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HLA-A2-restricted CTLs, which lysed high molecular weight (HMW)-melanoma-associated antigen (MAA)(+) melanoma cells, were induced in patients with melanoma immunized with MELIMMUNE, a combination of the murine anti-idiotypic (anti-id) monoclonal antibodies (mAb) MEL-2 and MF11-30 (MW Pride et al., Clin Cancer Res 1998;4:2363.). In the present study we investigated whether CTL epitopes are present in anti-id mAb MF-11-30 and activate T cells to recognize HMW-MAA on melanoma cells. One candidate epitope in the mAb MF11-30 VH chain, VH (3-11), was selected based on the presence of HLA-A2 anchor residues and partial homology with the HMW-MAA epitope, HMW-MAA (76-84). Lymphocytes from HLA-A2(+)-immunized patients proliferated to VH (3-11) peptide and to a variant HMW-MAA peptide to a significantly greater extent than autologous lymphocytes stimulated with an irrelevant peptide and lymphocytes from nonimmunized patients. No proliferative response was detected to the wild-type HMW-MAA peptide (76-84). Significant increase in IFN-gamma production but not in interleukin 10 production in response to VH (3-11) and to variant HMW-MAA peptide (76-84) was observed in lymphocytes from the immunized patients. Stimulation of lymphocytes from HLA-A2(+) patients with the two peptides induced CTL, which lysed HMW-MAA(+)/HLA-A2(+) A375SM melanoma cells. This is the first report documenting the presence of immunogenic peptides in a murine anti-id mAb for a defined epitope expressed by a human melanoma-associated antigen. These results may be relevant for development of novel vaccines based on homology between anti-id mAb and tumor-associated antigen amino acid sequences.
Collapse
Affiliation(s)
- James L Murray
- Department of Bioimmunotherapy, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Meyer-Olson D, Shoukry NH, Brady KW, Kim H, Olson DP, Hartman K, Shintani AK, Walker CM, Kalams SA. Limited T cell receptor diversity of HCV-specific T cell responses is associated with CTL escape. ACTA ACUST UNITED AC 2004; 200:307-19. [PMID: 15289502 PMCID: PMC2211982 DOI: 10.1084/jem.20040638] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Escape mutations are believed to be important contributors to immune evasion by rapidly evolving viruses such as hepatitis C virus (HCV). We show that the majority of HCV-specific cytotoxic T lymphocyte (CTL) responses directed against viral epitopes that escaped immune recognition in HCV-infected chimpanzees displayed a reduced CDR3 amino acid diversity when compared with responses in which no CTL epitope variation was detected during chronic infection or with those associated with protective immunity. Decreased T cell receptor (TCR) CDR3 amino acid diversity in chronic infection could be detected long before the appearance of viral escape mutations in the plasma. In both chronic and resolved infection, identical T cell receptor clonotypes were present in liver and peripheral blood. These findings provide a deeper understanding of the evolution of CTL epitope variations in chronic viral infections and highlight the importance of the generation and maintenance of a diverse TCR repertoire directed against individual epitopes.
Collapse
Affiliation(s)
- Dirk Meyer-Olson
- Partners AIDS Research Center, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Zernich D, Purcell AW, Macdonald WA, Kjer-Nielsen L, Ely LK, Laham N, Crockford T, Mifsud NA, Bharadwaj M, Chang L, Tait BD, Holdsworth R, Brooks AG, Bottomley SP, Beddoe T, Peh CA, Rossjohn J, McCluskey J. Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. ACTA ACUST UNITED AC 2004; 200:13-24. [PMID: 15226359 PMCID: PMC2213310 DOI: 10.1084/jem.20031680] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion.
Collapse
Affiliation(s)
- Danielle Zernich
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Webb AI, Borg NA, Dunstone MA, Kjer-Nielsen L, Beddoe T, McCluskey J, Carbone FR, Bottomley SP, Aguilar MI, Purcell AW, Rossjohn J. The Structure of H-2Kband Kbm8Complexed to a Herpes Simplex Virus Determinant: Evidence for a Conformational Switch That Governs T Cell Repertoire Selection and Viral Resistance. THE JOURNAL OF IMMUNOLOGY 2004; 173:402-9. [PMID: 15210799 DOI: 10.4049/jimmunol.173.1.402] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphism within the MHC not only affects peptide specificity but also has a critical influence on the T cell repertoire; for example, the CD8 T cell response toward an immunodominant HSV glycoprotein B peptide is more diverse and of higher avidity in H-2(bm8) compared with H-2(b) mice. We have examined the basis for the selection of these distinct antiviral T cell repertoires by comparing the high-resolution structures of K(b) and K(bm8), in complex with cognate peptide Ag. Although K(b) and K(bm8) differ by four residues within the Ag-binding cleft, the most striking difference in the two structures was the disparate conformation adopted by the shared residue, Arg(62). The altered dynamics of Arg(62), coupled with a small rigid-body movement in the alpha(1) helix encompassing this residue, correlated with biased Valpha usage in the B6 mice. Moreover, an analysis of all known TCR/MHC complexes reveals that Arg(62) invariably interacts with the TCR CDR1alpha loop. Accordingly, Arg(62) appears to function as a conformational switch that may govern T cell selection and protective immunity.
Collapse
Affiliation(s)
- Andrew I Webb
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4:123-32. [PMID: 15040585 DOI: 10.1038/nri1292] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-alphabeta gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and the Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
248
|
Block MS, Hansen MJ, Van Keulen VP, Pease LR. MHC class I gene conversion mutations alter the CD8 T cell repertoire. THE JOURNAL OF IMMUNOLOGY 2004; 171:4006-10. [PMID: 14530320 DOI: 10.4049/jimmunol.171.8.4006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I molecules are highly polymorphic within populations. This diversity is thought to be the result of selective maintenance of new class I alleles formed by gene conversion. It has been proposed that rare alleles are maintained by their ability to confer resistance to common pathogens. Investigation has focused on differences in the presentation of foreign Ags by class I alleles, but the majority of peptides presented by class I molecules are self peptides used in shaping the naive T cell repertoire. We propose that the key substrate for the natural selection of class I gene conversion variants is the diversity in immune potential formed by new alleles. We show that T cells compete with each other for niches in the thymus and spleen during development, and that competition between different clones is dramatically affected by class I mutations. We also show that peripheral naive T cells proliferate preferentially in the presence of the class I variant that directed T cell development. The data argue that class I gene conversion mutations dramatically affect both the development and the maintenance of the naive CD8 T cell repertoire.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Immunology, Mayo Medical and Graduate Schools, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
249
|
Macdonald WA, Purcell AW, Mifsud NA, Ely LK, Williams DS, Chang L, Gorman JJ, Clements CS, Kjer-Nielsen L, Koelle DM, Burrows SR, Tait BD, Holdsworth R, Brooks AG, Lovrecz GO, Lu L, Rossjohn J, McCluskey J. A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. J Exp Med 2003; 198:679-91. [PMID: 12939341 PMCID: PMC2194191 DOI: 10.1084/jem.20030066] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 06/10/2003] [Accepted: 06/10/2003] [Indexed: 11/04/2022] Open
Abstract
HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a high frequency in all human populations, and yet they only differ by one residue on the alpha2 helix (B*4402 Asp156-->B*4403 Leu156). CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphism at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B*4403 modifies both peptide repertoire and T cell recognition, and is reflected in the paradoxically powerful alloreactivity that occurs across this "minimal" mismatch. The findings suggest that these closely related class I genes are maintained in diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.
Collapse
Affiliation(s)
- Whitney A Macdonald
- Dept. of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Okazaki T, Pendleton CD, Lemonnier F, Berzofsky JA. Epitope-enhanced conserved HIV-1 peptide protects HLA-A2-transgenic mice against virus expressing HIV-1 antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2548-55. [PMID: 12928405 DOI: 10.4049/jimmunol.171.5.2548] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV epitopes may have developed to be poor immunogens. As a counterapproach HIV vaccine strategy, we used epitope enhancement of a conserved HIV reverse transcriptase (RT) epitope for induction of antiviral protection in HLA-A2-transgenic mice mediated by human HLA-A2-restricted CTLs. We designed two epitope-enhanced peptides based on affinity for HLA-A2, one substituted in anchor residues (RT-2L9V) and the other also with tyrosine at position 1 (RT-1Y2L9V), and examined the balance between HLA binding and T cell recognition. CTL lines and bulk cultures in two HLA-A2-transgenic mouse strains showed that RT-2L9V was more effective in inducing CTL reactive with wild-type Ag than RT-1Y2L9V, despite the higher affinity of the latter, because the 1Y substitution unexpectedly altered T cell recognition. Accordingly, RT-2L9V afforded the greatest protection in vivo against a surrogate virus expressing HIV-1 RT mediated by HLA-A2-restricted CTL in a mouse in which all CTL are restricted to only the human HLA molecule. Such antiviral protection has not been previously achieved with an HLA epitope-enhanced vaccine. These findings define a critical balance between MHC affinity and receptor cross-reactivity required for effective epitope enhancement and also demonstrate construction and efficacy of such a component of a new generation vaccine.
Collapse
Affiliation(s)
- Takahiro Okazaki
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 6B-12, Bethesda, MD 20892
| | | | | | | |
Collapse
|