201
|
Doornekamp L, Goetgebuer RL, Schmitz KS, Goeijenbier M, van der Woude CJ, Fouchier R, van Gorp EC, de Vries AC. High Immunogenicity to Influenza Vaccination in Crohn's Disease Patients Treated with Ustekinumab. Vaccines (Basel) 2020; 8:E455. [PMID: 32824111 PMCID: PMC7565576 DOI: 10.3390/vaccines8030455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza vaccination can be less effective in patients treated with immunosuppressive therapy. However, little is known about the effects of ustekinumab; an anti-IL-12/23 agent used to treat Crohn's disease (CD), on vaccination response. In this prospective study, we assessed immune responses to seasonal influenza vaccination in CD patients treated with ustekinumab compared to CD patients treated with anti-TNFα therapy (adalimumab) and healthy controls. Humoral responses were assessed with hemagglutinin inhibition (HI) assays. Influenza-specific total CD3+, CD3+CD4+, and CD3+CD8+ T-cell responses were measured with flow cytometry. Fifteen patients treated with ustekinumab; 12 with adalimumab and 20 healthy controls were vaccinated for seasonal influenza in September 2018. Seroprotection rates against all vaccine strains in the ustekinumab group were high and comparable to healthy controls. Seroconversion rates were comparable, and for A/H3N2 highest in the ustekinumab group. HI titers were significantly higher in the ustekinumab group and healthy controls than in the adalimumab group for the B/Victoria strain. Post-vaccination T-cell responses in the ustekinumab group were similar to healthy controls. One-month post-vaccination proliferation of CD3+CD8+ T-cells was highest in the ustekinumab group. In conclusion, ustekinumab does not impair immune responses to inactivated influenza vaccination. Therefore, CD patients treated with ustekinumab can be effectively vaccinated for seasonal influenza.
Collapse
Affiliation(s)
- Laura Doornekamp
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands; (L.D.); (K.S.S.); (M.G.); (R.F.)
- Vaccination and Travel Clinic, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Rogier L. Goetgebuer
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (R.L.G.); (C.J.v.d.W.); (A.C.d.V.)
| | - Katharina S. Schmitz
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands; (L.D.); (K.S.S.); (M.G.); (R.F.)
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands; (L.D.); (K.S.S.); (M.G.); (R.F.)
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - C. Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (R.L.G.); (C.J.v.d.W.); (A.C.d.V.)
| | - Ron Fouchier
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands; (L.D.); (K.S.S.); (M.G.); (R.F.)
| | - Eric C.M. van Gorp
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands; (L.D.); (K.S.S.); (M.G.); (R.F.)
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (R.L.G.); (C.J.v.d.W.); (A.C.d.V.)
| |
Collapse
|
202
|
Young B, Sadarangani S, Haur SY, Yung CF, Barr I, Connolly J, Chen M, Wilder-Smith A. Semiannual Versus Annual Influenza Vaccination in Older Adults in the Tropics: An Observer-blind, Active-comparator-controlled, Randomized Superiority Trial. Clin Infect Dis 2020; 69:121-129. [PMID: 30277500 DOI: 10.1093/cid/ciy836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Antibody titres and vaccine effectiveness decline within 6 months after influenza vaccination in older adults. Biannual vaccination may be necessary to provide year-round protection in the tropics, where influenza circulates throughout the year. METHODS Tropical Influenza Control Strategies (TROPICS1) was a single-center, 1:1 randomized, observer-blinded, active-comparator-controlled, superiority study in 200 community-resident adults aged ≥65 years. Participants received a standard-dose trivalent inactivated influenza vaccination (IIV3) at enrollment, and either tetanus-diphtheria-pertussis vaccination or IIV3 6 months later. The primary outcome was the proportion of participants with haemagglutination-inhibition (HI) geometric mean titre (GMT) ≥1:40 1 month after the second vaccination (month 7). Secondary outcomes included GMTs to month 12, the incidence of influenza-like illness (ILI), and adverse reactions after vaccination. RESULTS At month 7, the proportion of participants with an HI tire ≥1:40 against A/H1N1 increased by 21.4% (95% confidence interval [CI] 8.6-33.4) in the semiannual vaccination group. This proportion was not significantly higher for A/H3N2 (4.3, 95% CI -1.1-10.8) or B (2.1, 95% CI -2.0-7.3). Semiannual vaccination significantly increased GMTs against A/H1N1 and A/H3N2, but not B, at month 7. Participants receiving a repeat vaccination of IIV3 reported a significantly lower incidence of ILI in the 6 months after the second vaccination (relative vaccine effectiveness 57.1%, 95% CI 0.6-81.5). The frequency of adverse events was similar after the first and second influenza vaccinations. CONCLUSIONS Semiannual influenza vaccination in older residents of tropical countries has the potential to improve serological measures of protection against infection. Alternative vaccination strategies should also be studied. CLINICAL TRIALS REGISTRATION NCT02655874.
Collapse
Affiliation(s)
- Barnaby Young
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Sapna Sadarangani
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Sen Yew Haur
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital
| | - Chee Fu Yung
- Infectious Disease Service, KK Women's and Children's Hospital, Singapore
| | - Ian Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Melbourne.,Department of Microbiology and Immunology, The University of Melbourne, Parkville.,Faculty of Science and Technology, Federation University Australia, Gippsland Campus, Churchill, Victoria, Australia
| | - John Connolly
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Molecular and Cellular Biology, Proteos
| | - Mark Chen
- National Centre for Infectious Diseases.,Tan Tock Seng Hospital.,Saw Swee Hock School of Public Health, Tahir Foundation Building, National University of Singapore, Singapore
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University.,Institute of Public Health, University of Heidelberg, Germany
| |
Collapse
|
203
|
Wang W, Chen Q, Ford-Siltz LA, Katzelnick LC, Parra GI, Song HS, Vassell R, Weiss CD. Neutralizing Antibody Responses to Homologous and Heterologous H1 and H3 Influenza A Strains After Vaccination With Inactivated Trivalent Influenza Vaccine Vary With Age and Prior-year Vaccination. Clin Infect Dis 2020; 68:2067-2078. [PMID: 30256912 DOI: 10.1093/cid/ciy818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prior influenza immunity influences the homologous neutralizing antibody responses elicited by inactivated influenza vaccines (IIV), but neutralizing antibody responses to heterologous strains have not been extensively characterized. METHODS We analyzed neutralizing antibody titers in individuals aged 1-88 who received the 2009-2010 season IIV before infection by or vaccination against the 2009 pandemic H1N1 virus. Neutralization titers to homologous and heterologous past, recent, and advanced H1 and H3 strains, as well as H2, H5, and H7 strains, were measured using influenza hemagglutinin pseudoviruses. We performed exploratory analyses based on age, prior-year IIV, and prevaccination titer, without controlling for Type I errors. RESULTS IIV elicited neutralizing antibodies to past and advanced H1 and H3 strains, as well as to an H2 strain in individuals who were likely infected early in life. The neutralization of avian subtype viruses was rare, and there was no imprinting of neutralization responses to novel avian subtype viruses based on the influenza group. Compared to adults, children had higher seroresponse rates to homologous and heterologous strains, and their sera generated larger antigenic distances among strains. Seroresponse rates to homologous and heterologous strains were lower in subjects vaccinated with prior-year IIV, though postimmunization titers were generally high. CONCLUSIONS IIV elicited neutralizing antibodies to heterologous H1 and H3 strains in all ages groups, but titers and seroresponse rates were usually higher in children. Prior-year vaccination with the same strains tended to blunt IIV neutralization responses to all strains in young and old age groups, yet postimmunization titers were high.
Collapse
Affiliation(s)
- Wei Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Qiong Chen
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Lauren A Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Gabriel I Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Hyo Sook Song
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Russell Vassell
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Carol D Weiss
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
204
|
Skarlupka AL, Handel A, Ross TM. Influenza hemagglutinin antigenic distance measures capture trends in HAI differences and infection outcomes, but are not suitable predictive tools. Vaccine 2020; 38:5822-5830. [PMID: 32682618 DOI: 10.1016/j.vaccine.2020.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023]
Abstract
Vaccination is the most effective method to combat influenza. Vaccine effectiveness is influenced by the antigenic distance between the vaccine strain and the actual circulating virus. Amino acid sequence based methods of quantifying the antigenic distance were designed to predict influenza vaccine effectiveness in humans. The use of these antigenic distance measures has been proposed as an additive method for seasonal vaccine selection. In this report, several antigenic distance measures were evaluated as predictors of hemagglutination inhibition titer differences and clinical outcomes following influenza vaccination or infection in mice or ferrets. The antigenic distance measures described the increasing trend in the change of HAI titer, lung viral titer and percent weight loss in mice and ferrets. However, the variability of outcome variables produced wide prediction intervals for any given antigenic distance value. The amino acid substitution based antigenic distance measures were no better predictors of viral load and weight loss than HAI titer differences, the current predictive measure of immunological correlate of protection for clinical signs after challenge.
Collapse
Affiliation(s)
- Amanda L Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
205
|
Qiu T, Qiu J, Yang Y, Zhang L, Mao T, Zhang X, Xu J, Cao Z. A benchmark dataset of protein antigens for antigenicity measurement. Sci Data 2020; 7:212. [PMID: 32632108 PMCID: PMC7338539 DOI: 10.1038/s41597-020-0555-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/12/2020] [Indexed: 01/03/2023] Open
Abstract
Antigenicity measurement plays a fundamental role in vaccine design, which requires antigen selection from a large number of mutants. To augment traditional cross-reactivity experiments, computational approaches for predicting the antigenic distance between multiple protein antigens are highly valuable. The performance of in silico models relies heavily on large-scale benchmark datasets, which are scattered among public databases and published articles or reports. Here, we present the first benchmark dataset of protein antigens with experimental evidence to guide in silico antigenicity calculations. This dataset includes (1) standard haemagglutination-inhibition (HI) tests for 3,867 influenza A/H3N2 strain pairs, (2) standard HI tests for 559 influenza virus B strain pairs, and (3) neutralization titres derived from 1,073 Dengue virus strain pairs. All of these datasets were collated and annotated with experimentally validated antigenicity relationships as well as sequence information for the corresponding protein antigens. We anticipate that this work will provide a benchmark dataset for in silico antigenicity prediction that could be further used to assist in epidemic surveillance and therapeutic vaccine design for viruses with variable antigenicity.
Collapse
Affiliation(s)
- Tianyi Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
- Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiyan Yang
- Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lu Zhang
- Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Tiantian Mao
- Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| | - Zhiwei Cao
- Shanghai 10th People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
206
|
Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies. Proc Natl Acad Sci U S A 2020; 117:17221-17227. [PMID: 32631992 DOI: 10.1073/pnas.1920321117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunity to influenza viruses can be long-lived, but reinfections with antigenically distinct viral strains and subtypes are common. Reinfections can boost antibody responses against viral strains first encountered in childhood through a process termed "original antigenic sin." It is unknown how initial childhood exposures affect the induction of antibodies against the hemagglutinin (HA) stalk domain of influenza viruses. This is an important consideration since broadly reactive HA stalk antibodies can protect against infection, and universal vaccine platforms are being developed to induce these antibodies. Here we show that experimentally infected ferrets and naturally infected humans establish strong "immunological imprints" against HA stalk antigens first encountered during primary influenza virus infections. We found that HA stalk antibodies are surprisingly boosted upon subsequent infections with antigenically distinct influenza A virus subtypes. Paradoxically, these heterosubtypic-boosted HA stalk antibodies do not bind efficiently to the boosting influenza virus strain. Our results demonstrate that an individual's HA stalk antibody response is dependent on the specific subtype of influenza virus that they first encounter early in life. We propose that humans are susceptible to heterosubtypic influenza virus infections later in life since these viruses boost HA stalk antibodies that do not bind efficiently to the boosting antigen.
Collapse
|
207
|
Yang B, Lessler J, Zhu H, Jiang CQ, Read JM, Hay JA, Kwok KO, Shen R, Guan Y, Riley S, Cummings DAT. Life course exposures continually shape antibody profiles and risk of seroconversion to influenza. PLoS Pathog 2020; 16:e1008635. [PMID: 32702069 PMCID: PMC7377380 DOI: 10.1371/journal.ppat.1008635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Complex exposure histories and immune mediated interactions between influenza strains contribute to the life course of human immunity to influenza. Antibody profiles can be generated by characterizing immune responses to multiple antigenically variant strains, but how these profiles vary across individuals and determine future responses is unclear. We used hemagglutination inhibition titers from 21 H3N2 strains to construct 777 paired antibody profiles from people aged 2 to 86, and developed novel metrics to capture features of these profiles. Total antibody titer per potential influenza exposure increases in early life, then decreases in middle age. Increased titers to one or more strains were seen in 97.8% of participants during a roughly four-year interval, suggesting widespread influenza exposure. While titer changes were seen to all strains, recently circulating strains exhibited the greatest titer rise. Higher pre-existing, homologous titers at baseline reduced the risk of seroconversion to recent strains. After adjusting for homologous titer, we also found an increased frequency of seroconversion against recent strains among those with higher immunity to older previously exposed strains. Including immunity to previously exposures also improved the deviance explained by the models. Our results suggest that a comprehensive quantitative description of immunity encompassing past exposures could lead to improved correlates of risk of influenza infection.
Collapse
Affiliation(s)
- Bingyi Yang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University–The University of Hong Kong), Shantou University, Shantou, Guangdong, China
| | | | - Jonathan M. Read
- Centre for Health Informatics Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Kin On Kwok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ruiyin Shen
- Guangzhou No.12 Hospital, Guangzhou, Guangdong, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University–The University of Hong Kong), Shantou University, Shantou, Guangdong, China
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
208
|
Anderson CS, Sangster MY, Yang H, Mariani TJ, Chaudhury S, Topham DJ. Implementing sequence-based antigenic distance calculation into immunological shape space model. BMC Bioinformatics 2020; 21:256. [PMID: 32560624 PMCID: PMC7303933 DOI: 10.1186/s12859-020-03594-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2009, a novel influenza vaccine was distributed worldwide to combat the H1N1 influenza "swine flu" pandemic. However, antibodies induced by the vaccine display differences in their specificity and cross-reactivity dependent on pre-existing immunity. Here, we present a computational model that can capture the effect of pre-existing immunity on influenza vaccine responses. The model predicts the region of the virus hemagglutinin (HA) protein targeted by antibodies after vaccination as well as the level of cross-reactivity induced by the vaccine. We tested our model by simulating a scenario similar to the 2009 pandemic vaccine and compared the results to antibody binding data obtained from human subjects vaccinated with the monovalent 2009 H1N1 influenza vaccine. RESULTS We found that both specificity and cross-reactivity of the antibodies induced by the 2009 H1N1 influenza HA protein were affected by the viral strain the individual was originally exposed. Specifically, the level of antigenic relatedness between the original exposure HA antigen and the 2009 HA protein affected antigenic-site immunodominance. Moreover, antibody cross-reactivity was increased when the individual's pre-existing immunity was specific to an HA protein antigenically distinct from the 2009 pandemic strain. Comparison of simulation data with antibody binding data from human serum samples demonstrated qualitative and quantitative similarities between the model and real-life immune responses to the 2009 vaccine. CONCLUSION We provide a novel method to evaluate expected outcomes in antibody specificity and cross-reactivity after influenza vaccination in individuals with different influenza HA antigen exposure histories. The model produced similar outcomes as what has been previously reported in humans after receiving the 2009 influenza pandemic vaccine. Our results suggest that differences in cross-reactivity after influenza vaccination should be expected in individuals with different exposure histories.
Collapse
Affiliation(s)
- Christopher S Anderson
- Department of Pediatrics, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Mark Y Sangster
- New York Influenza Center of Excellence at David Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sidhartha Chaudhury
- Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - David J Topham
- New York Influenza Center of Excellence at David Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
209
|
Zhang Y, Leung K, Perera RAPM, Lee CK, Peiris JSM, Wu JT. Harnessing the potential of blood donation archives for influenza surveillance and control. PLoS One 2020; 15:e0233605. [PMID: 32470010 PMCID: PMC7259782 DOI: 10.1371/journal.pone.0233605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/10/2020] [Indexed: 02/04/2023] Open
Abstract
Many blood donation services around the globe maintain large archives of serum and/or plasma specimens of blood donations which could potentially be used for serologic surveillance and risk assessment of influenza. Harnessing this potential requires robust evidence that the outcomes of influenza serology in plasma, which is rarely used, is consistent with that in serum, which is the conventional choice of specimens for influenza serology. We harvested EDTA-plasma specimens from the blood donation archives of Hong Kong Red Cross Transfusion Services, where EDTA is the type of anticoagulant used for plasma collection, compared their antibody titers and responses to that in serum. Influenza A/H1N1/California/7/2009 and A/H3N2/Victoria/208/2009 were the test strains. Our results showed that antibody titers in 609 matched serum/EDTA-plasma specimens (i.e. obtained from the same donor at the same time) had good agreement inferred by Intraclass Correlation Coefficient, the value of which was 0.82 (95% CI: 0.77-0.86) for hemagglutination inhibition assay and 0.95 (95% CI: 0.93-0.96) for microneutralization assay; seroconversion rates (based on hemagglutination inhibition titers) during the 2010 and 2011 influenza seasons in Hong Kong inferred from paired EDTA-plasma were similar to that inferred from paired sera. Our study provided the proof-of-concept that blood donation archives could be leveraged as a valuable source of longitudinal blood specimens for the surveillance, control and risk assessment of both pandemic and seasonal influenza.
Collapse
Affiliation(s)
- Yanyu Zhang
- School of Public Health, WHO Collaborating Center for Infectious Disease Epidemiology and Control, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathy Leung
- School of Public Health, WHO Collaborating Center for Infectious Disease Epidemiology and Control, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A. P. M. Perera
- Center of Influenza Research and School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong Special Administrative Region, China
| | - J. S. Malik Peiris
- Center of Influenza Research and School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Joseph T. Wu
- School of Public Health, WHO Collaborating Center for Infectious Disease Epidemiology and Control, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
210
|
Bajic G, Maron MJ, Caradonna TM, Tian M, Mermelstein A, Fera D, Kelsoe G, Kuraoka M, Schmidt AG. Structure-Guided Molecular Grafting of a Complex Broadly Neutralizing Viral Epitope. ACS Infect Dis 2020; 6:1182-1191. [PMID: 32267676 DOI: 10.1021/acsinfecdis.0c00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antigenic variation and viral evolution have thwarted traditional influenza vaccination strategies. The broad protection afforded by a "universal" influenza vaccine may come from immunogens that elicit humoral immune responses targeting conserved epitopes on the viral hemagglutinin (HA), such as the receptor-binding site (RBS). Here, we engineered candidate immunogens that use noncirculating, avian influenza HAs as molecular scaffolds to present the broadly neutralizing RBS epitope from historical, circulating H1 influenzas. These "resurfaced" HAs (rsHAs) remove epitopes potentially targeted by strain-specific responses in immune-experienced individuals. Through structure-guided optimization, we improved two antigenically different scaffolds to bind a diverse panel of pan-H1 and H1/H3 cross-reactive bnAbs with high affinity. Subsequent serological and single germinal center B cell analyses from murine prime-boost immunizations show that the rsHAs are both immunogenic and can augment the quality of elicited RBS-directed antibodies. Our structure-guided, RBS grafting approach provides candidate immunogens for selectively presenting a conserved viral epitope.
Collapse
Affiliation(s)
- Goran Bajic
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Max J. Maron
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Caradonna
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Adam Mermelstein
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, United States
- Department of Immunology, Duke University, Durham, North Carolina 27710, United States
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, North Carolina 27710, United States
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
211
|
Hay JA, Minter A, Ainslie KEC, Lessler J, Yang B, Cummings DAT, Kucharski AJ, Riley S. An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver. PLoS Comput Biol 2020; 16:e1007840. [PMID: 32365062 PMCID: PMC7241836 DOI: 10.1371/journal.pcbi.1007840] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on multiple unobserved prior infections that produce cross-reactive antibody responses. We provide a general modelling framework to jointly infer infection histories and describe immune responses generated by these infections using antibody titres against current and historical strains. We do this by linking latent infection dynamics with a mechanistic model of antibody kinetics that generates expected antibody titres over time. Our aim is to provide a flexible package to identify infection histories that can be applied to a range of pathogens. We present two case studies to illustrate how our model can infer key immunological parameters, such as antibody titre boosting, waning and cross-reaction, as well as latent epidemiological processes such as attack rates and age-stratified infection risk.
Collapse
Affiliation(s)
- James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Amanda Minter
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kylie E. C. Ainslie
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bingyi Yang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Adam J. Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
212
|
Kubo M, Miyauchi K. Breadth of Antibody Responses during Influenza Virus Infection and Vaccination. Trends Immunol 2020; 41:394-405. [PMID: 32265127 DOI: 10.1016/j.it.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Influenza viruses are a major public health problem, causing severe respiratory diseases. Vaccines offer the effective protective strategy against influenza virus infection. However, the systemic and adaptive immune responses to infection and vaccination are quite different. Inactivated vaccines are the best available countermeasure to induce effective antibodies against the emerged virus, but the response is narrow compared with potential breadth of virus infection. There is solid evidence to indicate that antibody responses to natural infection are relatively broad and exhibit quite different immunodominance patterns. Furthermore, T follicular helper cells (TFH) and germinal center (GC) responses play a central role in generating broad protective antibodies. In this review, we discuss recent advances on the contribution of TFH and GC responses to the breadth of antibody responses.
Collapse
Affiliation(s)
- Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan.
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
213
|
Duehr J, McMahon M, Williamson B, Amanat F, Durbin A, Hawman DW, Noack D, Uhl S, Tan GS, Feldmann H, Krammer F. Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model. mBio 2020; 11:e00028-20. [PMID: 32209676 PMCID: PMC7157512 DOI: 10.1128/mbio.00028-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023] Open
Abstract
Hantaviruses are the etiological agent of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The latter is associated with case fatality rates ranging from 30% to 50%. HCPS cases are rare, with approximately 300 recorded annually in the Americas. Recently, an HCPS outbreak of unprecedented size has been occurring in and around Epuyén, in the southwestern Argentinian state of Chubut. Since November of 2018, at least 29 cases have been laboratory confirmed, and human-to-human transmission is suspected. Despite posing a significant threat to public health, no treatment or vaccine is available for hantaviral disease. Here, we describe an effort to identify, characterize, and develop neutralizing and protective antibodies against the glycoprotein complex (Gn and Gc) of Andes virus (ANDV), the causative agent of the Epuyén outbreak. Using murine hybridoma technology, we generated 19 distinct monoclonal antibodies (MAbs) against ANDV GnGc. When tested for neutralization against a recombinant vesicular stomatitis virus expressing the Andes glycoprotein (GP) (VSV-ANDV), 12 MAbs showed potent neutralization and 8 showed activity in an antibody-dependent cellular cytotoxicity reporter assay. Escape mutant analysis revealed that neutralizing MAbs targeted both the Gn and the Gc. Four MAbs that bound different epitopes were selected for preclinical studies and were found to be 100% protective against lethality in a Syrian hamster model of ANDV infection. These data suggest the existence of a wide array of neutralizing antibody epitopes on hantavirus GnGc with unique properties and mechanisms of action.IMPORTANCE Infections with New World hantaviruses are associated with high case fatality rates, and no specific vaccine or treatment options exist. Furthermore, the biology of the hantaviral GnGc complex, its antigenicity, and its fusion machinery are poorly understood. Protective monoclonal antibodies against GnGc have the potential to be developed into therapeutics against hantaviral disease and are also great tools to elucidate the biology of the glycoprotein complex.
Collapse
Affiliation(s)
- James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brandi Williamson
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alan Durbin
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Danny Noack
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
214
|
Wong SS, Waite B, Ralston J, Wood T, Reynolds GE, Seeds R, Newbern EC, Thompson MG, Huang QS, Webby RJ. Hemagglutinin and Neuraminidase Antibodies Are Induced in an Age- and Subtype-Dependent Manner after Influenza Virus Infection. J Virol 2020; 94:e01385-19. [PMID: 31941786 PMCID: PMC7081922 DOI: 10.1128/jvi.01385-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Despite evidence that antibodies targeting the influenza virus neuraminidase (NA) protein can be protective and are broadly cross-reactive, the immune response to NA during infection is poorly understood compared to the response to hemagglutinin (HA) protein. As such, we compared the antibody profile to HA and NA in two naturally infected human cohorts in Auckland, New Zealand: (i) a serosurvey cohort, consisting of pre- and post-influenza season sera from PCR-confirmed influenza cases (n = 50), and (ii) an immunology cohort, consisting of paired sera collected after PCR-confirmation of infection (n = 94). The induction of both HA and NA antibodies in these cohorts was influenced by age and subtype. Seroconversion to HA was more frequent in those <20 years old (yo) for influenza A (serosurvey, P = 0.01; immunology, P = 0.02) but not influenza B virus infection. Seroconversion to NA was not influenced by age or virus type. Adults ≥20 yo infected with influenza A viruses were more likely to show NA-only seroconversion compared to children (56% versus 14% [5 to 19 yo] and 0% [0 to 4 yo], respectively). Conversely, children infected with influenza B viruses were more likely than adults to show NA-only seroconversion (88% [0 to 4 yo] and 75% [5 to 19 yo] versus 40% [≥20 yo]). These data indicate a potential role for immunological memory in the dynamics of HA and NA antibody responses. A better mechanistic understanding of this phenomenon will be critical for any future vaccines aimed at eliciting NA immunity.IMPORTANCE Data on the immunologic responses to neuraminidase (NA) is lacking compared to what is available on hemagglutinin (HA) responses, despite growing evidence that NA immunity can be protective and broadly cross-reactive. Understanding these NA responses during natural infection is key to exploiting these properties for improving influenza vaccines. Using two community-acquired influenza cohorts, we showed that the induction of both HA and NA antibodies after infection is influenced by age and subtypes. Such response dynamics suggest the influence of immunological memory, and understanding how this process is regulated will be critical to any vaccine effort targeting NA immunity.
Collapse
Affiliation(s)
- Sook-San Wong
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, People’s Republic of China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ben Waite
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Jacqui Ralston
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Tim Wood
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - G. Edwin Reynolds
- Immunisation Advisory Centre (IMAC), University Services, University of Auckland, Auckland, New Zealand
| | - Ruth Seeds
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - E. Claire Newbern
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Mark G. Thompson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Q. Sue Huang
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
215
|
Redlberger-Fritz M, Kundi M, Popow-Kraupp T. Heterogeneity of Circulating Influenza Viruses and Their Impact on Influenza Virus Vaccine Effectiveness During the Influenza Seasons 2016/17 to 2018/19 in Austria. Front Immunol 2020; 11:434. [PMID: 32256493 PMCID: PMC7092378 DOI: 10.3389/fimmu.2020.00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
The constantly changing pattern in the dominance of viral strains and their evolving subclades during the seasons substantially influences influenza vaccine effectiveness (IVE). In order to further substantiate the importance of detailed data of genetic virus characterization for IVE estimates during the seasons, we performed influenza virus type and subtype specific IVE estimates. IVE estimates were assessed using a test-negative case-control design, in the context of the intraseasonal changes of the heterogeneous mix of circulating influenza virus strains for three influenza seasons (2016/17 to 2018/19) in Austria. Adjusted overall IVE over the three seasons 2016/17, 2017/18, and 2018/19 were -26, 39, and 63%, respectively. In accordance with the changing pattern of the circulating strains a broad range of overall and subtype specific IVEs was obtained: A(H3N2) specific IVE ranged between -26% for season 2016/17 to 58% in season 2018/19, A(H1N1)pdm09 specific IVE was 25% for the season 2017/18 and 65% for the season 2018/19 and Influenza B specific IVE for season 2017/18 was 45%. The results obtained in our study over the three seasons demonstrate the increasingly complex dynamic of the ever changing genetic pattern of the circulating influenza viruses and their influence on IVE estimates. This emphasizes the importance of detailed genetic virus surveillance for reliable IVE estimates.
Collapse
Affiliation(s)
| | - Michael Kundi
- Department of Environmental Health, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
216
|
Plant EP, Manukyan H, Sanchez JL, Laassri M, Ye Z. Immune Pressure on Polymorphous Influenza B Populations Results in Diverse Hemagglutinin Escape Mutants and Lineage Switching. Vaccines (Basel) 2020; 8:vaccines8010125. [PMID: 32168968 PMCID: PMC7157493 DOI: 10.3390/vaccines8010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mutations arise in the genomes of progeny viruses during infection. Mutations that occur in epitopes targeted by host antibodies allow the progeny virus to escape the host adaptive, B-cell mediated antibody immune response. Major epitopes have been identified in influenza B virus (IBV) hemagglutinin (HA) protein. However, IBV strains maintain a seasonal presence in the human population and changes in IBV genomes in response to immune pressure are not well characterized. There are two lineages of IBV that have circulated in the human population since the 1980s, B-Victoria and B-Yamagata. It is hypothesized that early exposure to one influenza subtype leads to immunodominance. Subsequent seasonal vaccination or exposure to new subtypes may modify subsequent immune responses, which, in turn, results in selection of escape mutations in the viral genome. Here we show that while some mutations do occur in known epitopes suggesting antibody escape, many mutations occur in other parts of the HA protein. Analysis of mutations outside of the known epitopes revealed that these mutations occurred at the same amino acid position in viruses from each of the two IBV lineages. Interestingly, where the amino acid sequence differed between viruses from each lineage, reciprocal amino acid changes were observed. That is, the virus from the Yamagata lineage become more like the Victoria lineage virus and vice versa. Our results suggest that some IBV HA sequences are constrained to specific amino acid codons when viruses are cultured in the presence of antibodies. Some changes to the known antigenic regions may also be restricted in a lineage-dependent manner. Questions remain regarding the mechanisms underlying these results. The presence of amino acid residues that are constrained within the HA may provide a new target for universal vaccines for IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
- Correspondence: ; Tel.: +1-240-402-7319
| | - Hasmik Manukyan
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Jose L. Sanchez
- Armed Forces Health Surveillance Branch, Public Health Division, Assistant Director for Combat Support (AD-CS), Defense Health Agency, Silver Spring, MD 20904, USA;
| | - Majid Laassri
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| |
Collapse
|
217
|
Matrajt L, Halloran ME, Antia R. Successes and Failures of the Live-attenuated Influenza Vaccine: Can We Do Better? Clin Infect Dis 2020; 70:1029-1037. [PMID: 31056675 PMCID: PMC7319054 DOI: 10.1093/cid/ciz358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The effectiveness of the live-attenuated influenza vaccine (LAIV) can vary widely, ranging from 0% to 50%. The reasons for these discrepancies remain largely unclear. METHODS We use mathematical models to explore how the efficacy of LAIV is affected by the degree of mismatch with the currently circulating influenza strain and interference with pre-existing immunity. The models incorporate 3 key antigenic distances: the distances between the vaccine strain, pre-existing immunity, and the challenge strain. RESULTS Our models show that an LAIV that is matched with the currently circulating strain is likely to have only modest efficacy. Our results suggest that the efficacy of the vaccine would be increased (optimized) if, rather than being matched to the circulating strain, it is antigenically slightly further from pre-existing immunity than the circulating strain. The models also suggest 2 regimes in which LAIV that is matched to circulating strains may be protective: in children before they have built immunity to circulating strains and in response to novel strains (such as antigenic shifts) which are at substantial antigenic distance from previously circulating strains. We provide an explanation for the variation in vaccine effectiveness between studies and countries of vaccine effectiveness observed during the 2014-2015 influenza season. CONCLUSIONS LAIV is offered to children across the world; however, its effectiveness significantly varies between studies. Here, we propose a mechanistic explanation to understand these differences. We further propose a way to select the LAIV strain that would have a higher chance of being protective.
Collapse
Affiliation(s)
- Laura Matrajt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - M Elizabeth Halloran
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Department of Biostatistics, University of Washington, Seattle
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
218
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
219
|
Early prediction of antigenic transitions for influenza A/H3N2. PLoS Comput Biol 2020; 16:e1007683. [PMID: 32069282 PMCID: PMC7048310 DOI: 10.1371/journal.pcbi.1007683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/28/2020] [Accepted: 01/26/2020] [Indexed: 11/20/2022] Open
Abstract
Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we identified indicators of future evolutionary success for an emerging antigenic cluster and quantified fundamental trade-offs in our ability to make such predictions. The eventual fate of a new cluster depends on its initial epidemiological growth rate––which is a function of mutational load and population susceptibility to the cluster––along with the variance in growth rate across co-circulating viruses. Logistic regression can predict whether a cluster at 5% relative frequency will eventually succeed with ~80% sensitivity, providing up to eight months advance warning. As a cluster expands, the predictions improve while the lead-time for vaccine development and other interventions decreases. However, attempts to make comparable predictions from 12 years of empirical influenza surveillance data, which are far sparser and more coarse-grained, achieve only 56% sensitivity. By expanding influenza surveillance to obtain more granular estimates of the frequencies of and population-wide susceptibility to emerging viruses, we can better anticipate major antigenic transitions. This provides added incentives for accelerating the vaccine production cycle to reduce the lead time required for strain selection. The efficacy of annual seasonal influenza vaccines depends on selecting the strain that best matches circulating viruses. This selection takes place 9–12 months prior to the influenza season. To advise this decision, we used an influenza A/H3N2 phylodynamic simulation to explore how reliably and how far in advance can we identify strains that will dominate future influenza seasons? What data should we collect to accelerate and improve the accuracy of such forecasts? And importantly, what is the gap between the theoretical limit of prediction and prediction based on current influenza surveillance? Our results suggest that even with detailed virological information, the tight race between the antigenic turnover dynamics and the vaccine development timeline limits early detection of emerging viruses. Predictions based on current influenza surveillance do not achieve the theoretical limit and thus our results provide impetus for denser sampling and the development of rapid methods for estimating viral fitness.
Collapse
|
220
|
Meade P, Kuan G, Strohmeier S, Maier HE, Amanat F, Balmaseda A, Ito K, Kirkpatrick E, Javier A, Gresh L, Nachbagauer R, Gordon A, Krammer F. Influenza Virus Infection Induces a Narrow Antibody Response in Children but a Broad Recall Response in Adults. mBio 2020; 11:e03243-19. [PMID: 31964741 PMCID: PMC6974575 DOI: 10.1128/mbio.03243-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
In contrast to influenza virus vaccination, natural infection induces long-lived and relatively broad immune responses. However, many aspects of the antibody response to natural infection are not well understood. Here, we assessed the immune response after H1N1 influenza virus infection in children and adults in a Nicaraguan household transmission study using an influenza virus protein microarray (IVPM). This technology allows us to simultaneously measure IgG and IgA antibody responses to hemagglutinins of many different virus strains and subtypes quantitatively with a high throughput. We found that children under 6 years of age responded to natural infection with a relatively narrow response that targeted mostly the hemagglutinin of the strain that caused the infection. Adults, however, have a much broader response, including a boost in antibodies to many group 1 subtype hemagglutinins. Also, a strong recall response against historic H1 hemagglutinins that share the K133 epitope with the pandemic H1N1 virus was observed. Of note, some children, while responding narrowly within H1 and group 1 hemagglutinins, induced a boost to H3 and other group 2 hemagglutinins when infected with H1N1 when they had experienced an H3N2 infection earlier in life. This is an interesting phenomenon providing evidence for immune imprinting and a significant new insight which might be leveraged in future universal influenza virus vaccine strategies. Finally, preexisting immunity to pandemic H1 hemagglutinins was significantly associated with protection from infection in both children and adults. In adults, preexisting immunity to non-H1 group 1 hemagglutinins was also significantly associated with protection from infection.IMPORTANCE It is known since Thomas Francis, Jr. published his first paper on original antigenic sin in 1960 that the first infection(s) with influenza virus leaves a special immunological imprint which shapes immune responses to future infections with antigenically related influenza virus strains. Imprinting has been implicated in both protective effects as well as blunting of the immune response to vaccines. Despite the fact that this phenomenon was already described almost 60 years ago, we have very little detailed knowledge of the characteristics and breadth of the immune response to the first exposure(s) to influenza virus in life and how this compares to later exposure as adults. Here, we investigate these immune responses in detail using an influenza virus protein microarray. While our findings are mostly descriptive in nature and based on a small sample size, they provide a strong basis for future large-scale studies to better understand imprinting effects.
Collapse
Affiliation(s)
- Philip Meade
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
| | - Hannah E Maier
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Fatima Amanat
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
| | - Angel Balmaseda
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Kimihito Ito
- Division of Bioinformatics, Hokkaido University Research Center for Zoonosis Control, Kitaku, Japan
| | - Ericka Kirkpatrick
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
| | - Andres Javier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lionel Gresh
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
| | - Aubree Gordon
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- St. Jude Center of Excellence for Influenza Research and Surveillance, Memphis, Tennessee, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
| |
Collapse
|
221
|
Roskin KM, Jackson KJL, Lee JY, Hoh RA, Joshi SA, Hwang KK, Bonsignori M, Pedroza-Pacheco I, Liao HX, Moody MA, Fire AZ, Borrow P, Haynes BF, Boyd SD. Aberrant B cell repertoire selection associated with HIV neutralizing antibody breadth. Nat Immunol 2020; 21:199-209. [PMID: 31959979 PMCID: PMC7223457 DOI: 10.1038/s41590-019-0581-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
A goal of HIV vaccine development is to elicit antibodies with neutralizing breadth. Broadly neutralizing antibodies (bNAbs) to HIV often have unusual sequences with long heavy-chain complementarity-determining region loops, high somatic mutation rates and polyreactivity. A subset of HIV-infected individuals develops such antibodies, but it is unclear whether this reflects systematic differences in their antibody repertoires or is a consequence of rare stochastic events involving individual clones. We sequenced antibody heavy-chain repertoires in a large cohort of HIV-infected individuals with bNAb responses or no neutralization breadth and uninfected controls, identifying consistent features of bNAb repertoires, encompassing thousands of B cell clones per individual, with correlated T cell phenotypes. These repertoire features were not observed during chronic cytomegalovirus infection in an independent cohort. Our data indicate that the development of numerous B cell lineages with antibody features associated with autoreactivity may be a key aspect in the development of HIV neutralizing antibody breadth.
Collapse
Affiliation(s)
- Krishna M Roskin
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine J L Jackson
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shilpa A Joshi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, CA, USA.,Department of Genetics, Stanford University, Stanford, CA, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, USA. .,Duke Global Health Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
222
|
Isakova-Sivak I, Grigorieva E, Rudenko L. Insights into current clinical research on the immunogenicity of live attenuated influenza vaccines. Expert Rev Vaccines 2020; 19:43-55. [PMID: 31903816 DOI: 10.1080/14760584.2020.1711056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Live attenuated influenza vaccines (LAIVs) have been in use for more than three decades and are now licensed in many countries. There is evidence that LAIVs can have greater efficacy than inactivated influenza vaccines, especially against mismatched influenza, however, in recent years, a number of trials have found a lack of LAIV efficacy, mainly in relation to the H1N1 virus.Areas covered: In this review, we summarize the results of clinical research published in the past 5 years on the immunogenicity of LAIVs, with special attention to the mechanisms of establishing protective immunity and some factors that may influence immunogenicity and efficacy.Expert opinion: A number of recent clinical studies confirmed that the immune responses to LAIVs are multifaceted, involving different immune mechanisms. These trials suggest that the intrinsic replicative properties of each LAIV component should be taken into account, and the precise effects of adding a fourth vaccine strain to trivalent LAIV formulations are still to be identified. In addition, new data are emerging regarding the impact of pre-vaccination conditions, such as preexisting immunity or concurrent asymptomatic viral and bacterial respiratory infections, on LAIV immunogenicity, suggesting the importance of monitoring them during clinical trials or vaccination campaigns.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Elena Grigorieva
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
223
|
Kaplan BS, Vincent AL. Detection and Titration of Influenza A Virus Neuraminidase Inhibiting (NAI) Antibodies Using an Enzyme-Linked Lectin Assay (ELLA). Methods Mol Biol 2020; 2123:335-344. [PMID: 32170699 DOI: 10.1007/978-1-0716-0346-8_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The neuraminidase (NA) of influenza A viruses (IAV) is a structurally and antigenically important envelope glycoprotein. There are eleven known subtypes of NA of which two, N1 and N2, circulate in swine. The sialidase activity of NA is required for the release of nascent virus particles from infected cell membranes and inhibition of NA enzymatic activity can significantly reduce virus titers and duration of infection. Efforts to improve IAV vaccine technology in humans have focused on the generation of neuraminidase inhibiting (NAI) antibodies and should be considered in swine as well. The enzyme-linked lectin assay (ELLA) conducted in 96-well plates has enabled high-throughput analysis of serum samples for NAI antibody titers. Through the use of reverse genetics, custom antigen panels and antisera can be generated to encompass the antigenically diverse population of NA that circulate in swine. The ELLA is a robust method to assess NAI antibody titers and characterize the antigenic difference between NA antigens.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agriculture Research Service, Ames, IA, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agriculture Research Service, Ames, IA, USA.
| |
Collapse
|
224
|
Wang J, Li D, Wiltse A, Emo J, Hilchey SP, Zand MS. Application of volumetric absorptive microsampling (VAMS) to measure multidimensional anti-influenza IgG antibodies by the mPlex-Flu assay. J Clin Transl Sci 2019; 3:332-343. [PMID: 31827907 PMCID: PMC6885997 DOI: 10.1017/cts.2019.410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Introduction: Recently, volumetric absorptive microsampling (VAMS) has been used for accurate sampling of a fixed peripheral blood volume (10 µL) on a volumetric swab, and long-term sample storage. The mPlex-Flu assay is a novel, high-throughput assay that simultaneously measures the concentration of antibodies against the hemagglutinin (HA) proteins from multiple influenza virus strains with ≤5 µL of serum. Here we describe combining these two methods to measure multidimensional anti-influenza IgG activity in whole blood samples collected by a finger stick and VAMS, with correction for serum volume based on simultaneous hemoglobin measurement. Methods: We compared capillary blood samples obtained from a finger stick using a VAMS device with serum samples collected by traditional phlebotomy from 20 subjects, with the influenza antibody profiles measured by the mPlex-Flu assay. Results: We found that results with the two sampling methods were highly correlated within subjects and across all influenza strains (mean R 2 = 0.9470). Adjustment for serum volume, based on hemaglobin measurement, was used to estimate serum volume of samples and improved the accuracy. IgG measurements were stable over 3 weeks when VAMS samples were stored at room temperature or transported using a variety of shipping methods. Additionally, when volunteers performed finger-stick VAMS at-home by themselves, the comparison results of anti-HA antibody concentrations were highly consistent with sampling performed by study personnel on-site (R 2 = 0.9496). Conclusions: This novel approach can provide a simple, accurate, and low-cost means for monitoring the IgG anti-influenza HA antibody responses in large population studies and clinical trials.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Wiltse
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason Emo
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shannon P. Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, USA
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
225
|
Quadrivalent Influenza Vaccine-Induced Antibody Response and Influencing Determinants in Patients ≥ 55 Years of Age in the 2018/2019 Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224489. [PMID: 31739554 PMCID: PMC6887788 DOI: 10.3390/ijerph16224489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
The effects of immunization with subunit inactivated quadrivalent influenza vaccine (QIV) are not generally well assessed in the elderly Polish population. Therefore, this study evaluated vaccine-induced antibody response and its determinants. Methods: Consecutive patients ≥ 55 years old, attending a Primary Care Clinic in Gryfino, Poland, received QIV (A/Michigan/ 45/2015(H1N1)pdm09, A/Singapore/INFIMH-16-0019/2016 (H3N2), B/Colorado/06/2017, B/Phuket/ 3073/2013) between October-December 2018. Hemagglutination inhibition assays measured antibody response to vaccine strains from pre/postvaccination serum samples. Geometric mean titer ratio (GMTR), protection rate (PR) and seroconversion rate (SR) were also calculated. Results: For 108 patients (54.6% males, mean age: 66.7 years) the highest GMTR (61.5-fold) was observed for A/H3N2/, then B/Colorado/06/2017 (10.3-fold), A/H1N1/pdm09 (8.4-fold) and B/Phuket/ 3073/2013 (3.0-fold). Most patients had post-vaccination protection for A/H3N2/ and B/Phuket/3073/ 2013 (64.8% and 70.4%, respectively); lower PRs were observed for A/H1N1/pdm09 (41.8%) and B/Colorado/06/ 2017 (57.4%). The SRs for A/H3N2/, A/H1N1/pdm09, B Victoria and B Yamagata were 64.8%, 38.0%, 46.8%, and 48.2%, respectively. Patients who received QIV vaccination in the previous season presented lower (p < 0.001 and p = 0.03, respectively) response to B Victoria and B Yamagata. Conclusions: QIV was immunogenic against the additional B lineage strain (B Victoria) without significantly compromising the immunogenicity of the other three vaccine strains, therefore, adding a second B lineage strain in QIV could broaden protection against influenza B infection in this age group. As the QIV immunogenicity differed regarding the four antigens, formulation adjustments to increase the antigen concentration of the serotypes that have lower immunogenicity could increase effectiveness. Prior season vaccination was associated with lower antibody response to a new vaccine, although not consistent through the vaccine strains.
Collapse
|
226
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
227
|
Cowling BJ, Sullivan SG. The Value of Neuraminidase Inhibition Antibody Titers in Influenza Seroepidemiology. J Infect Dis 2019; 219:341-343. [PMID: 30011035 DOI: 10.1093/infdis/jiy446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Benjamin J Cowling
- World Health Organization (WHO) Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Sheena G Sullivan
- WHO Collaborating Center for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
228
|
Impact of Vaccination on Morbidity and Mortality in Adults Hospitalized With Influenza A, 2014–2015. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2019. [DOI: 10.1097/ipc.0000000000000777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
229
|
Abstract
Introduction: High variance is associated with influenza vaccine effectiveness (VE). Accumulating evidence suggests that preexisting influenza-specific immunity results in the variance in VE and skews overall immune response to vaccination. Nevertheless, the investigation of preexisting immunity is highly limited due to the lack of proper methodology to explore the complex individual immune history.Areas covered: Retrospective observational studies have shown that the preexisting influenza specific immunity influences on VE. To simplify a discussion, we summarized important findings from the observational studies based on the transition of the individual immune history: the first exposure to influenza virus, the first vaccination, and repetitive exposure throughout life. We also discussed the prospectus of pre-immunized animal models to investigate the interaction between preexisting immunity and vaccine efficacy.Expert opinion: A better understanding in the underlying mechanisms on preexisting immunity is critical to improve VE and to help develop novel vaccine strategies. Using animals pre-immunized with historical influenza strains is a promising approach to verify the underlying immunologic mechanism of interaction between preexisting immunity and vaccine antigen. Also, pre-immunized animal models will be better able to evaluate the efficacy of novel vaccine strategies than naïve animals.
Collapse
Affiliation(s)
- Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
230
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
231
|
Historical H1N1 Influenza Virus Imprinting Increases Vaccine Protection by Influencing the Activity and Sustained Production of Antibodies Elicited at Vaccination in Ferrets. Vaccines (Basel) 2019; 7:vaccines7040133. [PMID: 31569351 PMCID: PMC6963198 DOI: 10.3390/vaccines7040133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza virus imprinting is now understood to significantly influence the immune responses and clinical outcome of influenza virus infections that occur later in life. Due to the yearly cycling of influenza viruses, humans are imprinted with the circulating virus of their birth year and subsequently build a complex influenza virus immune history. Despite this knowledge, little is known about how the imprinting strain influences vaccine responses. To investigate the immune responses of the imprinted host to split-virion vaccination, we imprinted ferrets with a sublethal dose of the historical seasonal H1N1 strain A/USSR/90/1977. After a +60-day recovery period to build immune memory, ferrets were immunized and then challenged on Day 123. Antibody specificity and recall were investigated throughout the time course. At challenge, the imprinted vaccinated ferrets did not experience significant disease, while naïve-vaccinated ferrets had significant weight loss. Haemagglutination inhibition assays showed that imprinted ferrets had a more robust antibody response post vaccination and increased virus neutralization activity. Imprinted-vaccinated animals had increased virus-specific IgG antibodies compared to the other experimental groups, suggesting B-cell maturity and plasticity at vaccination. These results should be considered when designing the next generation of influenza vaccines.
Collapse
|
232
|
Role of Memory B Cells in Hemagglutinin-Specific Antibody Production Following Human Influenza A Virus Infection. Pathogens 2019; 8:pathogens8040167. [PMID: 31569328 PMCID: PMC6963758 DOI: 10.3390/pathogens8040167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
When influenza A virus infects an immune individual, preexisting memory B cell (MBC) activation and rapid anamnestic antibody production plays a key role in viral clearance. The most effective neutralizing antibodies target the antigenically variable head of the viral hemagglutinin (HA); antibodies against the conserved HA stalk provide broader but less potent protection. In this review, we provide a comprehensive picture of an adult's HA-specific antibody response to influenza virus infection. The process is followed from preexisting HA-specific MBC activation and rapid production of anti-HA antibodies, through to germinal center seeding and adaptation of the response to novel features of the HA. A major focus of the review is the role of competition between preexisting MBCs in determining the character of the HA-reactive antibody response. HA novelty modifies this competition and can shift the response from the immunodominant head to the stalk. We suggest that antibodies resulting from preexisting MBC activation are important regulators of anti-HA antibody production and play a role in positive selection of germinal center B cells reactive to novel HA epitopes. Our review also considers the role of MBCs in the effects of early-life imprinting on HA head- and stalk-specific antibody responses to influenza infection. An understanding of the processes described in this review will guide development of vaccination strategies that provide broadly effective protection.
Collapse
|
233
|
Yan L, Neher RA, Shraiman BI. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. eLife 2019; 8:e44205. [PMID: 31532393 PMCID: PMC6809594 DOI: 10.7554/elife.44205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/14/2019] [Indexed: 11/13/2022] Open
Abstract
Rapidly evolving pathogens like influenza viruses can persist by changing their antigenic properties fast enough to evade the adaptive immunity, yet they rarely split into diverging lineages. By mapping the multi-strain Susceptible-Infected-Recovered model onto the traveling wave model of adapting populations, we demonstrate that persistence of a rapidly evolving, Red-Queen-like state of the pathogen population requires long-ranged cross-immunity and sufficiently large population sizes. This state is unstable and the population goes extinct or 'speciates' into two pathogen strains with antigenic divergence beyond the range of cross-inhibition. However, in a certain range of evolutionary parameters, a single cross-inhibiting population can exist for times long compared to the time to the most recent common ancestor ([Formula: see text]) and gives rise to phylogenetic patterns typical of influenza virus. We demonstrate that the rate of speciation is related to fluctuations of [Formula: see text] and construct a 'phase diagram' identifying different phylodynamic regimes as a function of evolutionary parameters.
Collapse
Affiliation(s)
- Le Yan
- Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Richard A Neher
- BiozentrumUniversity of Basel, Swiss Institute for BioinformaticsBaselSwitzerland
| | - Boris I Shraiman
- Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
234
|
Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live Attenuated Influenza Vaccines. mBio 2019; 10:mBio.02180-19. [PMID: 31530680 PMCID: PMC6751066 DOI: 10.1128/mbio.02180-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current seasonal influenza vaccines are suboptimal and low in immunogenicity and do not provide long-lasting immunity and cross protection against influenza virus strains that have antigenically drifted. More-effective influenza vaccines which can induce both humoral immunity and T cell immunity are needed. The NS1 protein of influenza virus is a virulence element and the critical factor for regulation of the host immune response during virus infection. Deletion of the NS1 protein is a strategy to make an optimal LAIV vaccine. However, DelNS1 viruses are very difficult to grow in regular vaccine-producing systems, hampering the application of DelNS1 LAIV vaccines in humans. We have generated a panel of both influenza A and influenza B DelNS1 LAIVs which are able to grow in regular vaccine-producing cells. These DelNS1 LAIV vaccines are completely nonpathogenic, exhibit potent and long-lasting immunity, and can be used to express extra viral antigen to induce cross protective immunity against seasonal and emerging influenza. Nonstructural protein 1 (NS1) of influenza virus is a key virulence element with multifunctional roles in virus replication and a potent antagonist of host immune response. Deletion of NS1 (DelNS1) would create a safer and more extensively immunogenic live attenuated influenza virus (LAIV) vaccine. However, DelNS1 viruses are very difficult to grow in regular vaccine-producing systems, which has hampered the application of DelNS1 LAIV vaccines in humans. We have developed two master backbones of deleted-NS1 (DelNS1) viral genomes from influenza A or B viruses which contain novel adaptive mutations to support DelNS1-LAIV replication. These DelNS1-LAIVs are highly attenuated in human cells in vitro and nonpathogenic in mice but replicate well in vaccine-producing cells. Both influenza A and influenza B DelNS1 LAIVs grow better at 33°C than at 37 to 39°C. Vaccination with DelNS1 LAIV performed once is enough to provide potent protection against lethal challenge with homologous virus and strong long-lasting cross protection against heterosubtypic or antigenically distantly related influenza viruses in mice. Mechanistic investigations revealed that DelNS1-LAIVs induce cross protective neutralizing antibody and CD8+ and CD4+ T cell immunities. Importantly, it has been shown that DelNS1-LAIV can be used to enhance specific anti-influenza immunity through expression of additional antigens from the deleted-NS1 site. Generation of DelNS1 viruses which are nonpathogenic and able to grow in vaccine-producing systems is an important strategy for making highly immunogenic LAIV vaccines that induce broad cross protective immunity against seasonal and emerging influenza.
Collapse
|
235
|
Liu F, Tzeng WP, Horner L, Kamal RP, Tatum HR, Blanchard EG, Xu X, York I, Tumpey TM, Katz JM, Lu X, Levine MZ. Influence of Immune Priming and Egg Adaptation in the Vaccine on Antibody Responses to Circulating A(H1N1)pdm09 Viruses After Influenza Vaccination in Adults. J Infect Dis 2019; 218:1571-1581. [PMID: 29931203 DOI: 10.1093/infdis/jiy376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/18/2018] [Indexed: 11/12/2022] Open
Abstract
Background Although ferret antisera used in influenza surveillance did not detect antigenic drift of A(H1N1)pdm09 viruses during the 2015-2016 season, low vaccine effectiveness was reported in adults. We investigated the immune basis of low responses to circulating A(H1N1)pdm09 viruses after vaccination. Methods Prevaccination and postvaccination serum samples collected from >300 adults (aged 18-49 years) in 6 seasons (2010-2011 to 2015-2016) were analyzed using hemagglutination inhibition assays to evaluate the antibody responses to 13 A(H1N1) viruses circulated from 1977 to 2016. Microneutralization and serum adsorption assays were used to verify the 163K and 223R specificity of antibodies. Results Individual antibody profiles to A(H1N1) viruses revealed 3 priming patterns: USSR/77, TW/86, or NC/99 priming. More than 20% of adults had reduced titers to cell-propagated circulating 6B.1 and 6B.2 A(H1N1)pdm09 viruses compared with the A/California/07/2009 vaccine virus X-179A. Significantly reduced antibody reactivity to circulating viruses bearing K163Q was observed only in the USSR/77-primed cohort, whereas significantly lower reactivity caused by egg-adapted Q223R change was detected across all 3 cohorts. Conclusion Both 163K specificity driven by immune priming and 223R specificity from egg-adapted changes in the vaccine contributed to low responses to circulating A(H1N1)pdm09 viruses after vaccination. Our study highlights the need to incorporate human serology in influenza surveillance and vaccine strain selection.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wen-Pin Tzeng
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lauren Horner
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia.,Battelle Memorial Institute, Atlanta, Georgia
| | - Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia.,Battelle Memorial Institute, Atlanta, Georgia
| | - Heather R Tatum
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia.,Battelle Memorial Institute, Atlanta, Georgia
| | | | - Xiyan Xu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xiuhua Lu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
236
|
Islam S, Zhou F, Lartey S, Mohn KGI, Krammer F, Cox RJ, Brokstad KA. Functional immune response to influenza H1N1 in children and adults after live attenuated influenza virus vaccination. Scand J Immunol 2019; 90:e12801. [PMID: 31269273 DOI: 10.1111/sji.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
Influenza virus is a major respiratory pathogen, and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) play important roles in limiting virus infection. The objective of this study was to dissect the influenza-specific antibody responses in children and adults, and T cell responses in children induced after LAIV immunization to the A/H1N1 virus. Blood samples were collected pre- and at 28 and 56 days post-vaccination from 20 children and 20 adults. No increase in micro-neutralization (MN) antibodies against A/H1N1 was observed after vaccination. A/H1N1 stalk-specific neutralizing and NA-inhibiting (NI) antibodies were boosted in children after LAIV. Interferon γ-producing T cells increased significantly in children, and antibody-dependent cellular-mediated cytotoxic (ADCC) cell activity increased slightly in children after vaccination, although this change was not significant. The results indicate that the NI assay is more sensitive to qualitative changes in serum antibodies after LAIV. There was a considerable difference in the immune response in children and adults after vaccination, which may be related to priming and previous influenza history. Our findings warrant further studies for evaluating LAIV vaccination immunogenicity.
Collapse
Affiliation(s)
- Shahinul Islam
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Sarah Lartey
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Kristin G I Mohn
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway.,Department of Research & Development, Haukeland University Hospital, Bergen, Norway
| | - Karl Albert Brokstad
- Department of Clinical Science, Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| |
Collapse
|
237
|
Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 2019; 8:e49324. [PMID: 31452511 PMCID: PMC6711711 DOI: 10.7554/elife.49324] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza's major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.
Collapse
Affiliation(s)
- Juhye M Lee
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Rachel Eguia
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Seth J Zost
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Saket Choudhary
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUnited States
| | - Patrick C Wilson
- Department of MedicineSection of Rheumatology, University of ChicagoChicagoUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Boeckh
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Seema S Lakdawala
- Department of Microbiology and Molecular GeneticsSchool of Medicine, University of PittsburghPittsburghUnited States
| | - Scott E Hensley
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jesse D Bloom
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
238
|
Hirotsu N, Saisho Y, Hasegawa T, Kitano M, Shishido T. Antibody dynamics in Japanese paediatric patients with influenza A infection treated with neuraminidase inhibitors in a randomised trial. Sci Rep 2019; 9:11891. [PMID: 31417163 PMCID: PMC6695405 DOI: 10.1038/s41598-019-47884-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) complement influenza virus infection management by helping to clear virus, alleviate symptoms, and reduce transmission. In a previous randomised study, we examined the effect of 4 NAIs on virus clearance and influenza symptoms in Japanese paediatric patients. In this second analysis, we examined the effects of NAI treatment on antibody responses and virus clearance, and the relationships between antibody responses and patients' infection histories (previous infection; asymptomatic infection via household members of same virus type/subtype; vaccination), and between infection histories and viral kinetics. Haemagglutination inhibition (HI) antibody responses produced HI titres ≥40 by Day 14 of NAI treatment, in parallel with virus clearance (trend test P = 0.001). Comparing patients with and without influenza infection histories (directly or asymptomatic infection via household members) showed that infection history had a marked positive effect on HI antibody responses in patients vaccinated before the current influenza season (before enrolment). Current virus clearance was significantly faster in patients previously infected with the same virus type/subtype than in those not previously infected, and clearance pattern depended on the NAI. Assessment of anti-influenza effects of antiviral drugs and vaccines should consider virus and antibody dynamics in response to vaccination and natural infection histories.
Collapse
|
239
|
Davis MM, Boyd SD. Recent progress in the analysis of αβT cell and B cell receptor repertoires. Curr Opin Immunol 2019; 59:109-114. [PMID: 31326777 PMCID: PMC7075470 DOI: 10.1016/j.coi.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023]
Abstract
T cell receptors (TCRs) and B cell receptors (BCRs) are vertebrate evolution's best answer to the threat of microbial pathogens that can evolve much faster than ourselves. These antigen receptors are generated during T cell or B cell development by combinatorial rearrangement of germline genome V, D and J gene segments, and with junctional residues capable of enormous diversity. For decades the complexity of these receptor repertoires has limited their analysis, but advances in DNA sequencing technology and an array of complementary tools have now made their study much more tractable, filling a major gap in our ability to understand immunology as a system. Here, we summarize the recent approaches and discoveries that are enabling these advances, with some suggestions as to what may lie ahead.
Collapse
Affiliation(s)
- Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; The Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Scott D Boyd
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; The Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
240
|
Hay JA, Laurie K, White M, Riley S. Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets. PLoS Comput Biol 2019; 15:e1007294. [PMID: 31425503 PMCID: PMC6715255 DOI: 10.1371/journal.pcbi.1007294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
The strength and breadth of an individual's antibody repertoire is an important predictor of their response to influenza infection or vaccination. Although progress has been made in understanding qualitatively how repeated exposures shape the antibody mediated immune response, quantitative understanding remains limited. We developed a set of mathematical models describing short-term antibody kinetics following influenza infection or vaccination and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or without adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit models with various immunological mechanisms that have been empirically observed but have not previously been included in mathematical models of antibody landscapes, including: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity. Based on the parameter estimates of the best supported models, we describe a number of key immunological features. We found quantifiable differences in the degree of homologous and cross-reactive antibody boosting elicited by different exposure types. Infection and adjuvanted vaccination generally resulted in strong, broadly reactive responses whereas unadjuvanted vaccination resulted in a weak, narrow response. We found that the order of exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the second dose of adjuvanted vaccination resulted in substantially greater antibody boosting than the first. Either antigenic seniority or a titre ceiling effect were included in the two best fitting models, suggesting a role for a mechanism describing diminishing antibody boosting with repeated exposures. Although there was considerable uncertainty in our estimates of antibody waning parameters, our results suggest that both short and long term waning were present and would be identifiable with a larger set of experiments. These results highlight the potential use of repeat exposure animal models in revealing short-term, strain-specific immune dynamics of influenza.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- Computational Biology
- Cross Reactions
- Disease Models, Animal
- Ferrets/immunology
- Humans
- Immunization, Secondary
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Kinetics
- Models, Immunological
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Vaccines, Inactivated/administration & dosage
Collapse
Affiliation(s)
- James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Seqirus, 63 Poplar Road, Parkville, Victoria, Australia
| | - Michael White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
241
|
Marchi J, Lässig M, Mora T, Walczak AM. Multi-Lineage Evolution in Viral Populations Driven by Host Immune Systems. Pathogens 2019; 8:E115. [PMID: 31362404 PMCID: PMC6789611 DOI: 10.3390/pathogens8030115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses evolve in the background of host immune systems that exert selective pressure and drive viral evolutionary trajectories. This interaction leads to different evolutionary patterns in antigenic space. Examples observed in nature include the effectively one-dimensional escape characteristic of influenza A and the prolonged coexistence of lineages in influenza B. Here, we use an evolutionary model for viruses in the presence of immune host systems with finite memory to obtain a phase diagram of evolutionary patterns in a two-dimensional antigenic space. We find that, for small effective mutation rates and mutation jump ranges, a single lineage is the only stable solution. Large effective mutation rates combined with large mutational jumps in antigenic space lead to multiple stably co-existing lineages over prolonged evolutionary periods. These results combined with observations from data constrain the parameter regimes for the adaptation of viruses, including influenza.
Collapse
Affiliation(s)
- Jacopo Marchi
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Michael Lässig
- Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France.
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France.
| |
Collapse
|
242
|
Fu X, Zhou Y, Wu J, Liu X, Ding C, Huang C, Zheng S, Vijaykrishna D, Chen Y, Li L, Yang S. Clinical characteristics and outcomes during a severe influenza season in China during 2017-2018. BMC Infect Dis 2019; 19:668. [PMID: 31357951 PMCID: PMC6664535 DOI: 10.1186/s12879-019-4181-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A severe seasonal influenza epidemic was observed during 2017-2018 in China, prompting questions on clinical characteristics and outcomes of severe cases with influenza. METHODS We retrospectively collected clinical data and outcomes of laboratory-confirmed hospitalized patients (severe to critical) during Jan-2011 to Feb-2018 from five hospitals, followed by a systematic analysis of cases from 2017 to 2018 (n = 289) and all previous epidemics during 2011-2017 (n = 169). RESULTS In-hospital fatality was over 5-folds higher during the 2017-2018 (p < 0.01) in which 19 patients died (6.6%), whereas only 2 mortalities (1.2%) were observed during 2011-2017. Of the 289 hospitalized in 2017-2018, 153 were confirmed with influenza B virus, 110 with A/H1N1pdm09, and 26 A/H3N2, whereas A/H1N1pdm09 was the predominant cause of hospitalization in previous seasons combined (45%). Fatal cases in 2017-2018 were exclusively associated with either influenza B or A/H1N1pdm09. Our results show that a significant lower proportion of patients aged 14 or greater were treated with oseltamivir, during the 2017-2018 epidemic, and exhibited higher levels of clinical severity. CONCLUSIONS In-hospital fatality rate might be significantly higher in the 2017-2018 season in China. A sufficient supply of oseltamivir and antiviral therapy within 48 h from onset could reduce fatality rates.
Collapse
Affiliation(s)
- Xiaofang Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yuqing Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Jie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Xiaoxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Chenyang Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Shufa Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Dhanasekaran Vijaykrishna
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne, VIC 3800 Australia
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
243
|
Auladell M, Jia X, Hensen L, Chua B, Fox A, Nguyen THO, Doherty PC, Kedzierska K. Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Front Immunol 2019; 10:1400. [PMID: 31312199 PMCID: PMC6614380 DOI: 10.3389/fimmu.2019.01400] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against “drifted” (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 “swine” flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such “memory” cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 “Spanish flu,” which killed more than 50 million people worldwide.
Collapse
Affiliation(s)
- Maria Auladell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
244
|
Rotem A, Serohijos AWR, Chang CB, Wolfe JT, Fischer AE, Mehoke TS, Zhang H, Tao Y, Lloyd Ung W, Choi JM, Rodrigues JV, Kolawole AO, Koehler SA, Wu S, Thielen PM, Cui N, Demirev PA, Giacobbi NS, Julian TR, Schwab K, Lin JS, Smith TJ, Pipas JM, Wobus CE, Feldman AB, Weitz DA, Shakhnovich EI. Evolution on the Biophysical Fitness Landscape of an RNA Virus. Mol Biol Evol 2019; 35:2390-2400. [PMID: 29955873 PMCID: PMC6188569 DOI: 10.1093/molbev/msy131] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.
Collapse
Affiliation(s)
- Assaf Rotem
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Adrian W R Serohijos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.,Département de Biochimie et Centre Robert-Cedergren en Bioinformatique et Génomique, Université de Montréal, Montréal, QC, Canada
| | - Connie B Chang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT
| | - Joshua T Wolfe
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Audrey E Fischer
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Thomas S Mehoke
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Huidan Zhang
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ye Tao
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - W Lloyd Ung
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Jeong-Mo Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephan A Koehler
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Susan Wu
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Peter M Thielen
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Naiwen Cui
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | | | - Timothy R Julian
- Environmental Health Sciences and the Hopkins Water Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Kellogg Schwab
- Environmental Health Sciences and the Hopkins Water Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey S Lin
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew B Feldman
- Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, MD
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | | |
Collapse
|
245
|
|
246
|
Möst J, Redlberger-Fritz M, Weiss G. Multiple Influenza Virus Infections in 4 Consecutive Epidemiological Seasons: A Retrospective Study in Children and Adolescents. Open Forum Infect Dis 2019; 6:ofz195. [PMID: 31223630 PMCID: PMC6579483 DOI: 10.1093/ofid/ofz195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/17/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent observations provide evidence for group-specific immunity toward influenza A infections and raise the question of how often we can get the flu. METHODS We retrospectively analyzed 2308 cases of children and adolescents with clinically manifested influenza and a positive PCR-test during the last 4 epidemiological seasons (2014-15 through 2017-18). RESULTS In the 2015-16 epidemiological season, almost 12% of patients had experienced an influenza infection during the previous season; in the 2016-17 season, more than 14% had at least 1 infection during the previous 2 seasons, and in 2017-18 season, over 18% had 1 or more infections during the previous 3 seasons. The majority of these repetitive infections occurred in children between 3-8 years of age. 29 patients experienced 3 or 4 infections during these seasons, whereas 38 children had 2 influenza episodes within the same season. Epidemiological pattern of circulating viral strains changed yearly; however, we identified 5 patients with confirmed influenza B infections during the 2014-15 and 2017-18 seasons, when only subtype Yamagata was circulating in Austria. CONCLUSIONS Repetitive influenza infections in consecutive epidemiological seasons occurred quite frequently in children and adolescents. Observations like ours contribute to a better understanding of the immunity against influenza virus infections and could have implications for future vaccination strategies.
Collapse
Affiliation(s)
- Johannes Möst
- MB-LAB—Clinical Microbiology Laboratory, Innsbruck, Austria
| | | | - Günter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology, and Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
247
|
Belongia EA, McLean HQ. Influenza Vaccine Effectiveness: Defining the H3N2 Problem. Clin Infect Dis 2019; 69:1817-1823. [DOI: 10.1093/cid/ciz411] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Observational studies have consistently shown that influenza vaccine effectiveness (VE) is lower for H3N2 relative to H1N1pdm09 and type B, and this is not entirely explained by antigenic match. The triad of virus, vaccine, and host immunity provides a framework to examine contributing factors. Antigenic evolution facilitates H3N2 immune escape, and increasing glycosylation of the hemagglutinin shields antigenic sites from antibody binding. Egg passage adaptation of vaccine viruses generates mutations that alter glycosylation, impair the neutralizing antibody response, and reduce VE. Complex host immune factors may also influence H3N2 VE, including early childhood imprinting and repeated vaccination, but their role is uncertain. Of the triad of contributing factors, only changes to the vaccine are readily achievable. However, it is unclear whether current licensed non–egg-based vaccines generate superior protection against H3N2. The optimal strategy remains to be defined, but newer vaccine technology platforms offer great potential.
Collapse
Affiliation(s)
- Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Wisconsin
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Wisconsin
| |
Collapse
|
248
|
Watanabe A, McCarthy KR, Kuraoka M, Schmidt AG, Adachi Y, Onodera T, Tonouchi K, Caradonna TM, Bajic G, Song S, McGee CE, Sempowski GD, Feng F, Urick P, Kepler TB, Takahashi Y, Harrison SC, Kelsoe G. Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism. Cell 2019; 177:1124-1135.e16. [PMID: 31100267 PMCID: PMC6825805 DOI: 10.1016/j.cell.2019.03.048] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular "breathing" of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in "universal" flu vaccines.
Collapse
Affiliation(s)
- Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Kevin R McCarthy
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Aaron G Schmidt
- Ragon Institute and Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keisuke Tonouchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Goran Bajic
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shengli Song
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Charles E McGee
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Department of Pathology, Duke University, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Feng Feng
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Patricia Urick
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
249
|
Arnott A, Carville K, Franklin L, Sullivan SG. Consecutive Influenza Infections in Both Adults and Children. J Infect Dis 2019; 215:658-659. [PMID: 28329041 DOI: 10.1093/infdis/jix016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alicia Arnott
- Communicable Diseases Epidemiology and Surveillance, Health Protection Branch, Victorian Department of Health and Human Services.,Epidemiology Unit, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute.,National Centre Epidemiology and Public Health, Australian National University, Canberra
| | - Kylie Carville
- Epidemiology Unit, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute
| | - Lucinda Franklin
- Communicable Diseases Epidemiology and Surveillance, Health Protection Branch, Victorian Department of Health and Human Services
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute, Melbourne.,School of Population and Global Health, University of Melbourne.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles
| |
Collapse
|
250
|
Continuous Readout versus Titer-Based Assays of Influenza Vaccine Trials: Sensitivity, Specificity, and False Discovery Rates. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:9287120. [PMID: 31205481 PMCID: PMC6530215 DOI: 10.1155/2019/9287120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
Abstract
The current gold standard for measuring antibody-based immunity to influenza viruses relies on the hemagglutinin inhibition assay (HAI), an 80-year-old technology, and the microneutralization assay (MN). Both assays use serial dilution to provide a discrete, ranked readout of 8-14 categorical titer values for each sample. In contrast to other methods of measuring vaccine antibody levels that produce a continuous readout (i.e., mPLEX-Flu and ELISA), titering methods introduce imprecision and increase false discovery rates (FDR). In this paper, we assess the degree of such statistical errors, first with simulation studies comparing continuous data with titer data in influenza vaccine study group comparison analyses and then by analyzing actual sample data from an influenza vaccine trial. Our results show the superiority of using continuous, rather than discrete, readout assays. Compared to continuous readout assays, titering assays have a lower statistical precision and a higher FDR. The results suggested that traditional titering assays could lead to increased Type-II errors in the comparison of different therapeutic arms of an influenza vaccine trial. These statistical issues are related to the mathematical nature of titer-based assays, which we examine in detail in the simulation studies. Continuous readout assays are free of this issue, and thus it is possible that comparisons of study groups could provide different results with these two methods as we have shown in our case study.
Collapse
|