201
|
Kjøller C, Diemer NH. GluR2 protein synthesis and metabolism in rat hippocampus following transient ischemia and ischemic tolerance induction. Neurochem Int 2000; 37:7-15. [PMID: 10781841 DOI: 10.1016/s0197-0186(00)00008-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we have determined the metabolic half-life, protein synthesis and expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR2 in the hippocampus of the living rat. Synthesized proteins were pulse labeled in vivo using intracarotid infusion or intrahippocampal injection of L-[(35)S] labeled amino acids, and the GluR2 protein immunoprecipitated in order to measure the tracer incorporation at different survival time-points. A limited time course study suggested a metabolic half-life of 144 and 108 h in the CA1 region in control animals following carotid artery infusion and intrahippocampal injection, respectively. Twenty-four hours following a moderate ischemic insult, GluR2 protein synthesis was decreased significantly in both the CA1 and DG/CA3 region, whereas the total protein synthesis was decreased significantly only in the CA1 region. Twenty-four hours following ischemic tolerance induction, a significant increase in GluR2 expression was found in the CA1 region using quantitative Western blotting, while no change was found in the dentate gyrus (DG)/CA3 or in expression of GluR1 protein. Data from labeling experiments did not reveal the reason for the increased amount of GluR2 in the CA1 region of the tolerant animals. This study shows that following global ischemia the GluR2 synthesis is decreased both in the CA1 and DG/CA3, which, together with the found GluR2 metabolic half-life, contradict a selective loss of GluR2 protein as a triggering mechanism for the delayed CA1 pyramidal cell death. Twenty-four hours following tolerance induction, we found an increased GluR2 expression in the CA1 region, suggesting that GluR2 plays a role in the acquisition of ischemic tolerance. Our study suggests the ability of neurons to regulate the AMPA receptor subunit expression through changes in protein synthesis and stability.
Collapse
Affiliation(s)
- C Kjøller
- Laboratory of Neuropathology, Institute of Molecular Pathology, University of Copenhagen, Denmark.
| | | |
Collapse
|
202
|
Abstract
Immunohistochemical techniques were used to investigate the expression of glutamate receptor (GluR) subunits in samples of brain resected from children with and without tuberous sclerosis, using antibody to an epitope common to GluR subunits 2 and 3 [2(3)]. Our purpose was to characterize the phenotype of balloon cells in cortical tubers and tumor cells in subependymal giant-cell tumors. In cortical tubers, GluR 2(3) was expressed in the processes and cell bodies of balloon cells, demonstrating consistent immunoreactivity to vimentin. In subependymal giant-cell tumors, tumor cells also exhibited consistent immunoreactivity to vimentin but only faint immunoreactivity to GluR 2(3). The reason for the expression of subunit 2(3) in tubers but not in subependymal giant-cell tumors remains unknown. However, if one assumes that the presence of subunit 2 substantially reduces calcium conductance through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid channel and maintains intracellular calcium homeostasis, one could speculate that downregulation of subunit 2(3) in tumor cells could result in increased calcium flux into these cells, causing tumorigenesis. Another explanation may be that receptor subunits cannot be produced sufficiently in tumor cells. Moreover, the pathogenetic pathways between balloon and giant-cells are distinctly different, despite the similarity in their phenotypical pathologic features.
Collapse
Affiliation(s)
- Y Arai
- Department of Clinical Laboratory, National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | |
Collapse
|
203
|
Kessler M, Rogers G, Arai A. The norbornenyl moiety of cyclothiazide determines the preference for flip-flop variants of AMPA receptor subunits. Neurosci Lett 2000; 287:161-5. [PMID: 10854736 DOI: 10.1016/s0304-3940(00)01180-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclothiazide and two analogs in which the norbornenyl part was replaced with a cyclohexyl or a cyclohexenyl moiety were examined with regard to their preference for flop vs. flip splice variants of the (+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunits GluR2, 3 and 4. The studies were carried out by measuring the effects of the drugs on the binding of [(3)H]AMPA or [(3)H]fluorowillardiine to membranes from HEK293 cells that stably express the AMPA receptor subunits. Cyclothiazide had four to nine times lower EC(50) values at flip than at flop receptors, as previously reported. In contrast, the two analogs showed little discrimination for GluR3 or GluR4 splice variants and a clear preference for the flop variant in the case of GluR2. These results indicate that it is the norbornenyl component of cyclothiazide which confers the selectivity vis-a-vis flip-flop variants.
Collapse
Affiliation(s)
- M Kessler
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62702, USA.
| | | | | |
Collapse
|
204
|
Abstract
The neurotoxins kainic acid and domoic acid are potent agonists at the kainate and alphaamino-5-methyl-3-hydroxyisoxazolone-4-propionate (AMPA) subclasses of ionotropic glutamate receptors. Although it is well established that AMPA receptors mediate fast excitatory synaptic transmission at most excitatory synapses in the central nervous system, the role of the high affinity kainate receptors in synaptic transmission and neurotoxicity is not entirely clear. Kainate and domoate differ from the natural transmitter, L-glutamate, in their mode of activation of glutamate receptors; glutamate elicits rapidly desensitizing responses while the two neurotoxins elicit non-desensitizing or slowly desensitizing responses at AMPA receptors and some kainate receptors. The inability to produce desensitizing currents and the high affinity for AMPA and kainate receptors are undoubtedly important factors in kainate and domoate-mediated neurotoxicity. Mutagenesis studies on cloned glutamate receptors have provided insight into the molecular mechanisms responsible for these unique properties of kainate and domoate.
Collapse
Affiliation(s)
- D R Hampson
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
205
|
Itoh T, Reddy UR, Stern JL, Chen M, Itoh A, Pleasure D. Diminished calcium homeostasis and increased susceptibility to excitotoxicity of JS 3/16 progenitor cells after differentiation to oligodendroglia. Glia 2000. [DOI: 10.1002/1098-1136(200008)31:2<165::aid-glia80>3.0.co;2-#] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Itoh
- Neurology Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Usha R. Reddy
- Neurology Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Janet L. Stern
- Neurology Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mei Chen
- Neurology Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Aki Itoh
- Neurology Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Pleasure
- Neurology Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
206
|
Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 2000. [PMID: 10777787 DOI: 10.1523/jneurosci.20-09-03221.2000] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been postulated to be a key signaling molecule in regulating synaptic strength and overall circuit activity. In this context, we have found that BDNF dramatically increases the frequency of spontaneously initiated action potentials in hippocampal neurons in dissociated culture. Using analysis of unitary synaptic transmission and immunocytochemical methods, we determined that chronic treatment with BDNF potentiates both excitatory and inhibitory transmission, but that it does so via different mechanisms. BDNF strengthens excitation primarily by augmenting the amplitude of AMPA receptor-mediated miniature EPSCs (mEPSCs) but enhances inhibition by increasing the frequency of mIPSC and increasing the size of GABAergic synaptic terminals. In contrast to observations in other systems, BDNF-mediated increases in AMPA-receptor mediated mEPSC amplitudes did not require activity, because blocking action potentials with tetrodotoxin for the entire duration of BDNF treatment had no effect on the magnitude of this enhancement. These forms of synaptic regulations appear to be a selective action of BDNF because intrinsic excitability, synapse number, and neuronal survival are not affected in these cultures. Thus, although BDNF induces a net increase in overall circuit activity, this results from potentiation of both excitatory and inhibitory synaptic drive through distinct and selective physiological mechanisms.
Collapse
|
207
|
Black MD, Wotanis J, Schilp DE, Hanak SE, Sorensen SM, Wettstein JG. Effect of AMPA receptor modulators on hippocampal and cortical function. Eur J Pharmacol 2000; 394:85-90. [PMID: 10771038 DOI: 10.1016/s0014-2999(00)00120-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attention has focused on drugs that modulate AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) receptors because of their potential for enhancing memory and treating certain pathologies that involve glutamatergic neurotransmission. The aim of this study was to compare and contrast the functionality of positive allosteric modulators of AMPA receptors in the hippocampus and medial prefrontal cortex. Electrically stimulated EPSPs (excitatory postsynaptic potential) in the hippocampus were augmented by CX516 [(1-quinoxaline-6-ylcarbonyl)piperidine], aniracetam and 1-BCP [(1-(1,3-benzodioxol-5-ylcarbonyl)piperidine] and not by cyclothiazide. Using grease gap electrophysiology, it was found that the mode of application dramatically altered the effect of the modulators of AMPA-induced depolarization. When added simultaneously with AMPA, aniracetam, 1-BCP and CX516 augmented the response in the frontal cortex. However, in the hippocampus, only aniracetam and cyclothiazide augmented the response when simultaneously added to AMPA. Therefore, in addition to regional variations, there appears to be differences in modulator response dependent upon whether a response is generated endogenously or exogenously by AMPA.
Collapse
Affiliation(s)
- M D Black
- CNS Research, Aventis Pharmaceuticals, Bridgewater, NJ 08807, USA.
| | | | | | | | | | | |
Collapse
|
208
|
Abstract
Dendrodendritic synapses between mitral (or tufted) and granule cells of the olfactory bulb play a major role in the processes of odor discrimination and olfactory learning. Release of glutamate at these synapses activates postsynaptic receptors on the dendritic spines of granule cells, as well as presynaptic NMDA receptors in the mitral cell membrane. However, immunocytochemical studies have failed to demonstrate the presence of ionotropic glutamate receptors in granule cell dendrites. By using a postembedding immunogold procedure, we describe here the precise organization of neurotransmitter receptors at dendrodendritic synapses. We show that there is a selective localization of glutamate and GABA receptors at asymmetric and symmetric synaptic junctions, respectively. In addition, we demonstrate that NMDA and AMPA receptors are clustered at postsynaptic specializations on granule cell spines and that they are extensively colocalized. Conversely, glutamate receptors do not appear to be concentrated in clusters on mitral cell dendrites, suggesting that the presynaptic effects of glutamate are mediated by a small complement of extrasynaptic receptors. By analyzing the subsynaptic distribution of the NR1 and GluR2/3 subunits, we show that they are distributed along the entire extent of the postsynaptic specialization, indicating that both NMDA and AMPA receptors are available for dendrodendritic signaling between mitral and granule cells. These results indicate that the principles recently found to underlie the organization of glutamate receptors at axospinous synapses also apply to dendrodendritic synapses.
Collapse
|
209
|
Abstract
The four subunits of the AMPA-type glutamate receptor (GluR1-GluR4 or GluR-A-GluR-D) exist in two distinct forms, flip and flop, generated by alternative splicing of a 115 bp region. The GluR2 subunit plays a key role in determining the functional properties of the AMPA receptor channel. In this study, we examined the differences in kinetic properties between the flip and flop splice variants of the GluR2 subunit expressed in Xenopus oocytes using fast agonist application techniques. Glutamate was applied to outside-out patches from oocytes with piezo-driven double-barreled application pipettes. Because homomeric receptor channels composed of the edited form of GluR2 (GluR2R) produce no appreciable current responses, we expressed the unedited form of GluR2 (GluR2Q) in oocytes, which produced large current responses sufficient for analysis of the kinetic properties. The time constant for desensitization during application of 1 mM glutamate was 5.89 +/- 0. 17 msec (n = 50) in flip and 1.18 +/- 0.05 msec (n = 37) in flop. The deactivation time constant was 0.62 +/- 0.06 msec (n = 10) in flip and 0.54 +/- 0.05 msec (n = 10) in flop. The steady-state nondesensitizing current was 6.8 +/- 0.4% (n = 53) of the peak current in flip, whereas it was almost negligible in flop, being only 1.1 +/- 0.1% (n = 36). The slower desensitization kinetics and larger steady-state current responses in the flip variant were also observed in heteromeric receptors assembled from GluR2Q/GluR2R. Thus, desensitization occurred much more prominently in the flop variant in the recombinant GluR2 receptor channels.
Collapse
|
210
|
Mogensen HS, Jorgensen OS. AMPA receptor subunit mRNAs and intracellular [Ca(2+)] in cultured mouse and rat cerebellar granule cells. Int J Dev Neurosci 2000; 18:61-8. [PMID: 10708907 DOI: 10.1016/s0736-5748(99)00105-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Cultured mouse cerebellar granule cells differ from their rat counterparts in that they survive well when grown in non-depolarising medium (5 mM K(+)). However, when chronically stimulated by added glutamate agonists, including (RS)alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), rat cerebellar granule cells also survive well in non-depolarising medium. We hypothesised that the relatively good survival of mouse cerebellar granule cells in the absence of added glutamate agonists might reflect AMPA receptors resistant to desensitisation. These receptors might be stimulated by endogenous glutamate. We tested this hypothesis by comparing cultured mouse and rat cerebellar granule cells grown in depolarising (25 mM K(+)) and non-depolarising (5 mM K(+)) medium. We studied the AMPA-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), using the fluorescent Ca(2+) chelator, Fluo-3, and the relative concentrations of mRNAs for the four AMPA receptor subunits, GluR1-4. GluR1-4 mRNAs were measured by restriction enzyme analysis of a PCR product containing cDNA with a composition proportional to the four subunit mRNAs. We found that the [Ca(2+)](i)-response to AMPA receptor activation in cultured cerebellar granule cells is determined mainly by the desensitisation properties of the AMPA receptors rather than by their ion permeability. We also found that mouse cerebellar granule cells express AMPA receptors which are more resistant to desensitisation than the corresponding rat AMPA receptors. Thus, relatively slow AMPA receptor desensitisation kinetics may contribute to the survival of mouse cerebellar granule cells in non-depolarising medium.
Collapse
Affiliation(s)
- H S Mogensen
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen, Rigshospitalet-6102, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
211
|
Abstract
Modulation of postsynaptic AMPA receptors in the brain by phosphorylation may play a role in the expression of synaptic plasticity at central excitatory synapses. It is known from biochemical studies that GluR1 AMPA receptor subunits can be phosphorylated within their C terminal by cAMP-dependent protein kinase A (PKA), which is colocalized with the phosphatase calcineurin (i.e., phosphatase 2B). We have examined the effect of PKA and calcineurin on the time course, peak open probability (P(O, PEAK)), and single-channel properties of glutamateevoked responses for neuronal AMPA receptors and homomeric GluR1(flip) receptors recorded in outside-out patches. Inclusion of purified catalytic subunit Calpha-PKA in the pipette solution increased neuronal AMPA receptor P(O,PEAK) (0.92) compared with recordings made with calcineurin included in the pipette (P(O,PEAK) 0.39). Similarly, Calpha-PKA increased P(O,PEAK) for recombinant GluR1 receptors (0. 78) compared with patches excised from cells cotransfected with a cDNA encoding the PKA peptide inhibitor PKI (P(O,PEAK) 0.50) or patches with calcineurin included in the pipette (P(O,PEAK) 0.42). Neither PKA nor calcineurin altered the amplitude of single-channel subconductance levels, weighted mean unitary current, mean channel open period, burst length, or macroscopic response waveform for recombinant GluR1 receptors. Substitution of an amino acid at the PKA phosphorylation site (S845A) on GluR1 eliminated the PKA-induced increase in P(O,PEAK), whereas the mutation of a Ca(2+), calmodulin-dependent kinase II and PKC phosphorylation site (S831A) was without effect. These results suggest that AMPA receptor peak response open probability can be increased by PKA through phosphorylation of GluR1 Ser845.
Collapse
|
212
|
Wisden W, Seeburg P, Monyer H. Chapter IV AMPA, kainate and NMDA ionotropic glutamate receptor expression—an in situ hybridization atlas. GLUTAMATE 2000. [DOI: 10.1016/s0924-8196(00)80045-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
213
|
Herman JP, Eyigor O, Ziegler DR, Jennes L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000703)422:3<352::aid-cne3>3.0.co;2-f] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
214
|
Thalhammer A, Morth T, Strutz N, Hollmann M. A desensitization-inhibiting mutation in the glutamate binding site of rat alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is dominant in heteromultimeric complexes. Neurosci Lett 1999; 277:161-4. [PMID: 10626838 DOI: 10.1016/s0304-3940(99)00885-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, it has been shown that a single leucine-to-tyrosine mutation in the agonist binding domains of the homomerically expressed alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors GluR3 and GluR1 is sufficient to completely block receptor desensitization. In the present study we tested heteromeric subunit combinations of AMPA receptors to demonstrate that the block of desensitization afforded by this mutation is dominant in heteromeric subunit complexes containing the leucine-to-tyrosine mutation in at least one of the subunits. In addition, by comparing mutated, desensitization-deficient forms of unedited GluR1 and GluR1 edited at the Q/R-site of the ion pore we demonstrate that the desensitization properties of AMPA receptors are not linked to the editing state of the ion pore domain and thus are independent of the permeability properties of the ion channel.
Collapse
Affiliation(s)
- A Thalhammer
- Glutamate Receptor Laboratory, Max-Planck-lnstitute for Experimental Medicine, Göttingen, Germany
| | | | | | | |
Collapse
|
215
|
Guthmann A, Herbert H. In situ hybridization analysis of flip/flop splice variants of AMPA-type glutamate receptor subunits in the rat parabrachial and Kölliker-Fuse nuclei. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:145-57. [PMID: 10640685 DOI: 10.1016/s0169-328x(99)00281-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to analyze the occurrence and distribution of flip/flop splice variants of AMPA-type glutamate receptors (GluRA-D) in the rat parabrachial and Kölliker-Fuse nuclei (PB/KF). We performed in situ hybridization experiments on sections through different rostro-caudal levels of the PB/KF and analyzed the subunit expression semiquantitatively by means of grain counts for each probe in eight PB nuclei and in the KF. Our experiments revealed that the splice variants of the AMPA receptor subunit mRNAs are expressed differentially in the distinct nuclei of the PB/KF. The flip splice variants were predominantly expressed (GluRB-D flip) while the flop splice variants (GluRA flop and C flop) were expressed considerably weaker. Within the PB/KF, several nuclei expressed transcripts of GluRB flip (superior, central, dorsal, external, and ventral lateral PB, waist area, medial PB, KF) and GluRC flip (internal, superior, central, dorsal, external, and ventral lateral PB, waist area, KF). GluRB transcripts were not found in neurons of the internal lateral PB and in only 50% of the neurons in the KF. A more restricted expression in the PB/KF was observed for the GluRD flip (internal lateral PB), GluRA flop (medial PB, KF) and GluRC flop mRNA (superior lateral PB, KF). The present data demonstrate that the nuclei of the PB/KF show a differential expression of AMPA receptor subunits. This suggests that the anatomically and functionally distinct nuclei might make use of AMPA-type glutamate receptors with different physiological properties and ion selectivities.
Collapse
Affiliation(s)
- A Guthmann
- Department of Animal Physiology, University of Tübingen, D-72076, Tübingen, Germany
| | | |
Collapse
|
216
|
Kessler JP, Baude A. Distribution of AMPA receptor subunits GluR1-4 in the dorsal vagal complex of the rat: a light and electron microscope immunocytochemical study. Synapse 1999; 34:55-67. [PMID: 10459172 DOI: 10.1002/(sici)1098-2396(199910)34:1<55::aid-syn7>3.0.co;2-b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dorsal vagal complex, localized in the dorsomedial medulla, includes the nucleus tractus solitarii (NTS), the dorsal motor nucleus of the vagus nerve (DMN) and the area postrema (AP). The distribution of AMPA-preferring glutamate receptors (AMPA receptors) within this region was investigated using immunohistochemistry and antibodies recognizing either one (GluR1 or GluR4) or two (GluR2 and GluR3) AMPA receptors subunits. The distribution of GluR1 immunoreactivity showed high contrast of staining between strongly and lightly labeled areas. Labeling was intense in the AP and weak in the NTS, except for its medial and dorsalmost parts which exhibited moderate staining. Almost no GluR1 immunoreactivity was found in the DMN. GluR2/3 immunolabeling was present in the entire dorsal vagal complex. This labeling was strong in the AP, the DMN and the medial half of the NTS and moderate in the lateral half of the NTS, except for the interstitial subdivision which exhibited intense staining. Labeling induced by the GluR4 antibody was very weak throughout the dorsal vagal complex. Ultrastructural examination showed that GluR1 and GluR2/3 immunoreactivity was localized in neuronal cell bodies and dendrites. No labeled axon terminal or glial cell body was found. Immunoperoxidase staining in labeled cell bodies and dendrites was associated with intracellular organelles (microtubules, mitochondria, cisternae of the endoplasmic reticulum,.) and/or parts of the plasma membrane. Plasma membrane labeling was often associated with asymmetrical synaptic differentiations. No labeled symmetrical synapse was found using either GluR1 or GluR2/3 antibody. The present results show that AMPA receptors have a widespread distribution in neuronal perikarya and dendrites of the rat dorsal vagal complex. They suggest differences in subunit composition between AMPA receptors localized in the NTS, the DMN and the AP. Ultrastructural data are consistent with the fact that AMPA receptors associated with the plasma membrane are mostly synaptic receptors. However, they also suggest the existence of a large intracellular pool of receptor subunits in neuronal soma and dendrites.
Collapse
Affiliation(s)
- J P Kessler
- Laboratoire de Neurobiologie, UPR 9024, Centre national de la recherche scientifique, 31, chem Joseph-Aiguier, F13402 Marseille cx 20, France.
| | | |
Collapse
|
217
|
Rosa ML, Jefferys JG, Sanders MW, Pearson RC. Expression of mRNAs encoding flip isoforms of GluR1 and GluR2 glutamate receptors is increased in rat hippocampus in epilepsy induced by tetanus toxin. Epilepsy Res 1999; 36:243-51. [PMID: 10515169 DOI: 10.1016/s0920-1211(99)00055-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The messenger RNAs encoding the flip and flop isoforms of the glutamate receptor subunits GluR1 and GluR2 were detected and quantified by in situ hybridization in the hippocampal formation of rats following intrahippocampal injection of tetanus on one side. The mRNAs encoding the flip isoforms of both GluR1 and GluR2 were significantly increased 4 weeks after injection. The GluR1 flip mRNA was significantly elevated only in the dentate gyrus, whereas significant increases in the GluR2 flip mRNA were seen in all hippocampal subfields examined. There were no significant changes in the mRNA encoding the flop isoforms of either GluR1 or GluR2. The significant changes in flip isoform mRNAs occurred on both sides.
Collapse
Affiliation(s)
- M L Rosa
- Department of Biomedical Science, University of Sheffield, UK
| | | | | | | |
Collapse
|
218
|
Affiliation(s)
- M B Kennedy
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|
219
|
Abstract
The spontaneous recessive mutant mouse stargazer (stg) begins to show ataxia around postnatal day 14 and display a severe impairment in the acquisition of classical eyeblink conditioning in adulthood. These abnormalities have been attributed to the specific reduction in brain-derived neurotrophic factor (BDNF) and the subsequent defect in TrkB receptor signaling in cerebellar granule cells (GCs). In the stg mutant cerebellum, we found that EPSCs at mossy fiber (MF) to GC synapses are devoid of the fast component mediated by AMPA-type glutamate receptors despite the normal slow component mediated by NMDA receptors. The sensitivity of stg mutant GCs to exogenously applied AMPA was greatly reduced, whereas that to NMDA was unchanged. Glutamate release from MF terminals during synaptic transmission to GCs appeared normal. By contrast, AMPA receptor-mediated EPSCs were normal in CA1 pyramidal cells of the stg mutant hippocampus. Thus, postsynaptic AMPA receptor function was selectively impaired in stg mutant GCs, although the transcription of four AMPA receptor subunit genes in the stg GC was comparable to the wild-type GC. We also examined the cerebellum of BDNF knockout mice and found that their MF-GC synapses had a normal AMPA receptor-mediated EPSC component. Thus, the impaired AMPA receptor function in the stg mutant GC is not likely to result from the reduced BDNF-TrkB signaling. These results suggest that the defect in MF to GC synaptic transmission is a major factor that causes the cerebellar dysfunction in the stg mutant mouse.
Collapse
|
220
|
Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 1999; 518 ( Pt 3):667-80. [PMID: 10420005 PMCID: PMC2269473 DOI: 10.1111/j.1469-7793.1999.0667p.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The present study was designed to determine which glutamate (Glu) receptors are involved in excitatory neurotransmission at the first auditory synapse between the inner hair cells and the spiral ganglion neurons. 2. The Glu receptors present at the membrane level were investigated on isolated spiral ganglion neuron somata from guinea-pigs by whole-cell voltage-clamp measurements. Glu and AMPA induced a fast onset inward current that was rapidly desensitized, while kainate induced only a non-desensitizing, steady-state current. NMDA induced no detectable current. 3. To further discriminate between the AMPA and kainate receptors present, we used the receptor-specific desensitization blockers, cyclothiazide and concanavalin A. While no effect was observed with concanavalin A, cyclothiazide greatly enhanced the Glu-, AMPA- and kainate-induced steady-state currents and potentiated Glu-induced membrane depolarization. 4. To extrapolate the results obtained from the somata to the events occurring in situ at the dendrites, the effects of these drugs were evaluated in vivo. Cyclothiazide reversibly increased spontaneous activity of single auditory nerve fibres, while concanavalin A had no effect, suggesting that the functional Glu receptors on the somata may be the same as those at the dendrites. 5. The combination of a moderate-level sound together with cyclothiazide increased and subsequently abolished the spontaneous and the sound-evoked activity of the auditory nerve fibres. Histological examination revealed destruction of the dendrites, suggesting that cyclothiazide potentiates sound-induced Glu excitotoxicity via AMPA receptors. 6. Our results reveal that fast synaptic transmission in the cochlea is mainly mediated by desensitizing AMPA receptors.
Collapse
Affiliation(s)
- J Ruel
- Department of Otorhinolaryngology, Louisiana State University Medical Center, 2020 Gravier Street, Suite A, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
221
|
Yin HZ, Sensi SL, Carriedo SG, Weiss JH. Dendritic localization of Ca2+-permeable AMPA/kainate channels in hippocampal pyramidal neurons. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990628)409:2<250::aid-cne6>3.0.co;2-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
222
|
Leuschner WD, Hoch W. Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is mediated by their n-terminal domains. J Biol Chem 1999; 274:16907-16. [PMID: 10358037 DOI: 10.1074/jbc.274.24.16907] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate receptors (GluR) are oligomeric protein complexes formed by the assembly of four or perhaps five subunits. The rules that govern the selectivity of this process are not well understood. Here, we expressed combinations of subunits from two related GluR subfamilies in COS7 cells, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors. By co-immunoprecipitation experiments, we assessed the ability of AMPA receptor subunits to assemble into multimeric complexes. Subunits GluR1-4 associated with indistinguishable efficiency with each other, whereas the kainate receptor subunits GluR6 and 7 showed a much lower degree of association with GluR1. Using chimeric receptors and truncation fragments of subunits, we show that this assembly specificity is determined by N-terminal regions of these subunits and that the most N-terminal domain of GluR2 together with a membrane anchor efficiently associates with GluR1.
Collapse
Affiliation(s)
- W D Leuschner
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | |
Collapse
|
223
|
Park HT, Jeon ES, Bae KW. Postnatal development of detergent-insoluble properties of NMDA and AMPA receptor subunits in the rat brain synaptic membrane. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 115:83-7. [PMID: 10366705 DOI: 10.1016/s0165-3806(99)00049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the developmental changes of detergent-insoluble characteristics of NMDA and AMPA receptor subunits in the synaptic membranes prepared from the rat cerebral cortex. At postnatal day (PND) 1, the majority of NMDAR1 and NMDAR2B subunits of NMDA receptors in the synaptic membranes were insoluble to the treatment of 1% Triton X-100. The detergent-insoluble properties of both subunits were not significantly changed during postnatal development. At PND 1, about 45% of GluR1 and 10% of GluR2/3 subunits of AMPA receptors in the synaptic membrane were insoluble to Triton X-100, whereas 70% of GluR1 and 56% of GluR2/3 subunits were insoluble at PND 22. These findings indicate that the postsynaptic clustering of NMDA and AMPA receptors during development seems to be differentially regulated in vivo.
Collapse
Affiliation(s)
- H T Park
- Department of Anatomy, College of Medicine, Inje University, 633-165, Gaegum-dong, Pusanjin-Gu, Pusan, 614-735, South Korea.
| | | | | |
Collapse
|
224
|
Churchill L, Swanson CJ, Urbina M, Kalivas PW. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J Neurochem 1999; 72:2397-403. [PMID: 10349849 DOI: 10.1046/j.1471-4159.1999.0722397.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased glutamate transmission in the nucleus accumbens and ventral tegmental area has been proposed as a mechanism underlying sensitized behavioral responses to repeated cocaine administration. GluR1, GluR2/3, and NMDAR1 subunits of glutamate receptors were quantified from immunoblots in these brain nuclei in rats at 24 h and 3 weeks after discontinuing 1 week of daily cocaine injections. Motor behavior was monitored after the first and last injections of daily cocaine, and those rats that showed >20% increase in motor activity after the last compared with the first injection were considered to have developed behavioral sensitization. The subjects that developed behavioral sensitization showed a significant increase in GluR1 levels in the nucleus accumbens at 3 weeks but not at 24 h of withdrawal. Conversely, sensitized animals showed a significant increase in NMDAR1 and GluR1 levels in the ventral tegmental area at 1 day but not at 3 weeks of withdrawal. None of these increases occurred in the rats exposed to daily cocaine that did not develop behavioral sensitization (<20% increase in motor activity), and no changes were measured in the level of GluR2/3 in any treatment group. The functional importance of the increases in glutamate receptor subunit levels is suggested by the fact that the changes were present only in rats that developed behavioral sensitization to repeated cocaine administration.
Collapse
Affiliation(s)
- L Churchill
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, USA
| | | | | | | |
Collapse
|
225
|
Yen JC, Chan JY, Chan SH. Differential roles of NMDA and non-NMDA receptors in synaptic responses of neurons in nucleus tractus solitarii of the rat. J Neurophysiol 1999; 81:3034-43. [PMID: 10368418 DOI: 10.1152/jn.1999.81.6.3034] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative role of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in synaptic responses of neurons in caudal nucleus tractus solitarii (cNTS) was delineated by immunohistochemical and electrophysiologic experiments in rats. Double immunohistochemical staining in in vivo experiments revealed that approximately 80% of cNTS neurons that showed Fos-like immunoreactivity induced by baroreceptor activation were generally also immunoreactive to non-NMDA receptor subunits GluR1 or GluR2. On the other hand, only 20% of Fos-labeled cNTS neurons showed immunoreactivity to NMDA receptor subunits NMDAR1 or NMDAR2. Stimulation of the ipsilateral solitary tract at suprathreshold intensity in slice preparations induced Fos expression in the cNTS and evoked either a single action potential or a complex synaptic response consisting of an initial action potential followed by a secondary slow depolarization. In a majority (70%) of cNTS neurons that exhibited the complex synaptic response, both the initial and secondary components were eliminated reversibly by 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). This non-NMDA antagonist also inhibited the single action potential manifested by the other population of cNTS neurons. On the other hand, only the secondary slow depolarization was blocked by D(-)-2-amino-5-phosphonopentanoic acid (250 microM) or potentiated by NMDA (1.7 microM). Our results suggested that NMDA and non-NMDA receptors are involved differentially in the synaptic responses of cNTS neurons. Non-NMDA receptors may be distributed predominantly on a majority of the second-order cNTS neurons that may receive primary baroreceptor afferent inputs. On the other hand, NMDA receptors are located primarily on higher-order neurons, which may be connected reciprocally with the second-order cNTS neurons.
Collapse
Affiliation(s)
- J C Yen
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | |
Collapse
|
226
|
Perkinton MS, Sihra TS. A high-affinity presynaptic kainate-type glutamate receptor facilitates glutamate exocytosis from cerebral cortex nerve terminals (synaptosomes). Neuroscience 1999; 90:1281-92. [PMID: 10338297 DOI: 10.1016/s0306-4522(98)00573-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ionotropic glutamate receptor agonists, kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and domoate, all facilitated 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes). The non-selective, non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked kainate facilitation of glutamate release. AMPA responses were non-desensitizing and insensitive to the AMPA receptor desensitization inhibitor, cyclothiazide. The AMPA receptor antagonist GYKI 52466 failed to block ionotropic glutamate receptor-mediated facilitation, but the ionotropic glutamate receptor 6 kainate receptor subunit antagonist NS-102 was a potent blocker. Furthermore, kainate and AMPA responses were not additive. Taken together, our results indicate that, in the cerebral cortex, both kainate and AMPA may be facilitating glutamate release through the activation of a high-affinity kainate receptor containing glutamate receptor 6 kainate subunits. Kainate enhanced 4-aminopyridine-evoked depolarization of the synaptosomal plasma membrane potential, indicating that a ligand-gated ion channel that conducts cations may underlie the mechanism by which kainate mediates facilitation of glutamate release. While the facilitatory effect of kainate on glutamate release is consistent with a classical ionotropic action of ionotropic glutamate receptors, our observation that kainate inhibits GABA release suggests that alternative presynaptic mechanisms may operate in cerebrocortical nerve terminals to mediate the ionotropic glutamate receptor modulation of glutamate and GABA release. We conclude that high-affinity kainate-type glutamate autoreceptors represent a positive feed-forward system for potentiating the release of glutamate from cerebrocortical nerve terminals.
Collapse
Affiliation(s)
- M S Perkinton
- Department of Pharmacology, University College London, UK
| | | |
Collapse
|
227
|
Muñoz A, Woods TM, Jones EG. Laminar and cellular distribution of AMPA, kainate, and NMDA receptor subunits in monkey sensory-motor cortex. J Comp Neurol 1999; 407:472-90. [PMID: 10235640 DOI: 10.1002/(sici)1096-9861(19990517)407:4<472::aid-cne2>3.0.co;2-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In situ hybridization histochemistry and immunocytochemistry were used to examine lamina- and cell-specific expression of glutamate receptor (GluR) mRNAs and polypeptide subunits in motor and somatosensory cortex of macaque monkeys. Radioactive complementary RNA (cRNA) probes were prepared from cDNAs specific for alpha-amino-3-hydroxy-5-methylisoxozolepropionate (AMPA)/kainate (GluR1-GluR4), kainate (GluR5-GluR7), and N-methyl-D-aspartate (NMDA; NR1, NR2A-NR2D) receptor subunits. AMPA/kainate and NR1, NR2A, and NR2B receptor transcripts show higher expression than other transcripts. All transcripts show lamina-specific patterns of distribution. GluR2 and GluR4 mRNAs show higher expression than do GluR1 and GluR3 mRNAs. GluR6 transcript expression is higher than that of GluR5 and GluR7. NR1 mRNA expression is much higher than that of NR2 mRNAs. NR2C subunit expression is very low except for a very distinct band of high expression in layer IV of area 3b. Immunocytochemistry, using subunit-specific antisera and double labeling for calbindin, parvalbumin, or alpha type II Ca2+/calmodulin-dependent protein kinase (CaMKII-alpha), allowed identification of cell types expressing different subunit genes. GluR1 and GluR5/6/7 immunoreactivity is found in both pyramidal cells and gamma-amino butyric acid (GABA) cells; GluR2/3 immunoreactivity is preferentially found in pyramidal cells, whereas GluR4 immunoreactivity is largely restricted to GABA cells; NMDA receptor subunit immunoreactivity is far greater in excitatory cells than in GABA cells. The density of expression of AMPA/kainate, kainate, and NMDA receptor subunit mRNAs differed within and across the architectonic fields of sensory-motor cortex. This finding and the lamina- and cell-specific patterns of expression suggest assembly of functional receptors from different arrangements of available subunits in specific neuronal populations.
Collapse
Affiliation(s)
- A Muñoz
- Department of Anatomy and Neurobiology, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
228
|
He Y, Janssen WG, Morrison JH. Differential synaptic distribution of the AMPA-GluR2 subunit on GABAergic and non-GABAergic neurons in the basolateral amygdala. Brain Res 1999; 827:51-62. [PMID: 10320693 DOI: 10.1016/s0006-8993(99)01264-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cellular and ultrastructural distribution patterns of the AMPA glutamate receptor subunit, GluR2, were determined in the rat basolateral amygdala. GluR2 immunoreactivity was widely and uniformly distributed in the basolateral nucleus, with both pyramidal and non-pyramidal neurons labelled. In fact, double label immunohistochemical analyses demonstrated that over 90% of the GABAergic interneurons were labelled for GluR2. Electron microscopic analyses further confirmed the presence of GluR2 in the soma and dendrites of GABAergic interneurons as well as in the soma, spines and dendritic shafts of pyramidal cells. As in our parallel study in the rat hippocampus, immunogold analyses revealed that GluR2 immunoreactivity was frequently preferentially located at asymmetric synapses on both pyramidal cell spines and shafts, as well as the dendritic processes and soma of GABAergic interneurons. However, the number of immunogold particles per labelled synapse on GABAergic neurons was significantly lower than at similar labelled asymmetric synapses on spines of presumed pyramidal cells. Given that the presence of GluR2 within the AMPA receptor complex decreases calcium flux, these data indicate that GABAergic local circuit neurons might possess AMPA receptors with higher calcium permeability on average than pyramidal cells, as has been suggested for hippocampus. Such cell class-specific differences in the subunit representation and resultant channel properties of AMPA receptors have implications for response properties as well as selective vulnerability of neurons within the basolateral nucleus of the amygdala.
Collapse
Affiliation(s)
- Y He
- Fishberg Research Center for Neurobiology and Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
229
|
Dev KK, Nishimune A, Henley JM, Nakanishi S. The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 1999; 38:635-44. [PMID: 10340301 DOI: 10.1016/s0028-3908(98)00230-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report an interaction between AMPA receptor subunits and a single PDZ domain-containing protein called PICK1 which is known to bind protein kinase C alpha (PKC alpha). The interaction occurs within the last ten amino acid residues containing a novel PDZ binding motif (E S V/I K I) of the short C-terminal alternative splice variants of AMPA receptor subunits. No interaction occurs with the corresponding long splice variants which do not contain the E S V/I K I motif. The PDZ domain of PICK1 is required for the interaction and the mutation of a single amino acid in this region (Lys-27 to Glu) prevents interaction between PICK1 and GluR2 in the yeast two-hybrid assay. A similar mutation has been reported to prevent the binding of PICK1 to PKC alpha indicating that the same domain of PICK1 binds both PKC alpha and GluRs. Flag-tagged PICK1 is retained by a glutathione S-transferase (GST) fusion of the C-terminal of GluR2 (GST-ct-GluR2; short splice variant) but not by GST-ct-GluR1 (long splice variant). Recombinant full length GluR2 is coimmunoprecipitated with flag-PICK1 using an anti-flag antibody and flag-PICK1 is coimmunoprecipitated with an N-terminal directed anti-GluR2 antibody. Transient expression of both proteins in COS cells reveals colocalization and an altered pattern of distribution for each protein from when they are expressed individually. This novel interaction provides a possible regulatory mechanism to specifically modulate distinct splice variants and may be involved in targeting the phosphorylation of short form GluRs by PKC alpha.
Collapse
Affiliation(s)
- K K Dev
- Department of Biological Sciences, Kyoto University, Faculty of Medicine, Japan
| | | | | | | |
Collapse
|
230
|
Lu W, Wolf ME. Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 1999; 32:119-31. [PMID: 10231131 DOI: 10.1002/(sici)1098-2396(199905)32:2<119::aid-syn5>3.0.co;2-f] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutamate is critical for the induction and maintenance of behavioral sensitization and associated neuroadaptations in the mesocorticolimbic dopamine (DA) system. We have shown previously [Lu et al. (1997) Synapse 26:269-280] that repeated amphetamine administration alters AMPA receptor subunit mRNA levels in rat nucleus accumbens (NAc) and medial prefrontal cortex (PFC). The present study determined if amphetamine elicits corresponding changes in AMPA receptor subunit immunolabeling. Rats were injected with amphetamine sulphate (5 mg/kg/day) or saline for 5 days and perfused 3 or 14 days after the last injection. AMPA receptor subunit immunolabeling was quantified using autoradiographic immunocytochemistry. In the NAc, GluR1 and GluR2 immunolabeling were unchanged after 3 days of withdrawal, but both were decreased significantly after 14 days of withdrawal (GluR1, 85.5+/-2.6% of control group, P<0.01; GluR2, 79.2+/-3.2%, P<0.01). Analysis of core and shell subregions at the 14-day withdrawal time indicated that GluR1 immunolabeling decreased significantly in shell, while GluR2 immunolabeling decreased significantly in both core and shell. No changes in GluR2/3, GluR2/4, or GluR4 immunolabeling in NAc were found at either withdrawal time. In the PFC, GluR1 immunolabeling increased after 3 days of withdrawal (115.3+/-7.0%, P<0.01) but returned to control levels after 14 days. The present results correspond well with our previous findings at the mRNA level. These alterations in AMPA receptor expression may account for previously described changes in the electrophysiological responsiveness of NAc and PFC neurons to glutamate and AMPA. Along with alterations in DA function, they may contribute to drug-induced dysregulation of reward-related neurotransmission.
Collapse
Affiliation(s)
- W Lu
- Department of Neuroscience, Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
231
|
Miyamae T, Goshima Y, Shimizu M, Shibata T, Kawashima K, Ohshima E, Suzuki F, Misu Y. Some interactions of L-DOPA and its related compounds with glutamate receptors. Life Sci 1999; 64:1045-54. [PMID: 10210287 DOI: 10.1016/s0024-3205(99)00031-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-DOPA is probably a transmitter and/or modulator in the central nervous system (1). L-DOPA methyl ester (DOPA ME) is a competitive L-DOPA antagonist. However, it remains to be clarified whether there exist L-DOPAergic receptors. In Xenopus laevis oocytes injected with rat brain poly(A)+ RNA, L-DOPA induced small inward currents with ED50 of 2.2 mM at a holding potential of -70 mV. The currents were abolished by kynurenic acid or CNQX. Similar L-DOPA-currents were seen in oocytes co-injected with AMPA receptors, GluRs1,2,3 and 4. In brain membrane preparations, L-DOPA inhibited specific binding of [3H]-AMPA with IC50 of 260 microM. This inhibition was not modified by 200 microM ascorbic acid, an antioxidant. L-DOPA did not inhibit binding of [3H]-ligands of MK-801, kainate, DCKA and CGP39653. DOPA ME and L-DOPA cyclohexyl ester, a novel, potent and competitive antagonist (2), inhibited specific binding of [3H]-MK-801 with respective IC50 of 1 and 0.68 mM, but elicited no effect on that of the other [3H]-ligands. With low affinities, L-DOPA acts on AMPA receptors, while competitive antagonists act on NMDA ion channel domain. L-DOPAergic agonist and antagonist may not interact on ionotropic glutamate receptors. DOPA ME-sensitive L-DOPA recognition sites (1) seem to differ from glutamate receptors.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Li Z, Wo ZG, Oswald RE. Goldfish brain GluR2: multiple forms, RNA editing, and alternative splicing. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:211-20. [PMID: 10216219 DOI: 10.1016/s0169-328x(99)00054-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
cDNA coding for a full-length goldfish alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit, GluR2, was cloned by screening unidirectional and bidirectional goldfish brain cDNA libraries. The clone has an open reading frame of 2679 bp, encoding a protein of 893 amino acids. Partial cDNA clones for three other GluR2 subunits were identified. GluR2 from goldfish brain exhibits RNA editing and alternative splicing. RNA editing occurred at the two sites demonstrated for mammalian GluR2 (Q/R and R/G). Unlike rat GluR2, GFGluR2a has a long (68 amino acids) C-terminal tail. Analysis of genomic DNA suggests that an alternatively spliced shorter C-terminal tail can be produced, similar to the rat protein. Thus, in goldfish brain, GluR2 exhibits diversity arising from multiple subtypes, RNA editing, and alternative splicing.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
233
|
Nishizaki T, Matsuoka T, Nomura T, Enikolopov G, Sumikawa K. Arachidonic acid potentiates currents through Ca2+-permeable AMPA receptors by interacting with a CaMKII pathway. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:184-9. [PMID: 10101246 DOI: 10.1016/s0169-328x(99)00042-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study investigated the effect of arachidonic acid on the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, presumably heteromeric receptors formed of GluR1, GluR2, and GluR3, expressed in Xenopus oocytes. Arachidonic acid (10 microM) potentiated currents through receptors expressing GluR1 and 3 (GluR1,3) to 170% of basal level during initial 20 min following application, being still evident at 60-min washing-out of the drug, while it never or little enhanced currents through receptors expressing GluR1 and 2 (GluR1,2) or GluR1, 2, and 3 (GluR1,2,3) (110% 30 min after treatment). The effect of arachidonic acid on GluR1,3 currents was not observed in Ca2+-free extracellular solution, and the potentiation was blocked by either KN-93, a selective Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, or NP217, an active CaMKII inhibitor peptide, when co-expressed with the receptors. In contrast, the protein synthesis inhibitor, cycloheximide, the selective inhibitor of cAMP-dependent protein kinase (PKA), H-89, the selective inhibitors of protein kinase C (PKC), PKCI and GF109203X, the mitogen-activated protein (MAP) kinase kinase inhibitor, PD98059, or the inactive CaMKII inhibitors, KN-92 and NP218, had no effect on the currents. In the assay of intracellular calcium mobilizations, Ca2+ influx in response to receptor activation was greatest with receptors formed in oocytes expressing GluR1,3. The results of the present study indicate that arachidonic acid induces a long-lasting potentiation of GluR1,3 currents, possibly as a result of the interaction with a CaMKII pathway.
Collapse
Affiliation(s)
- T Nishizaki
- Department of Physiology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | |
Collapse
|
234
|
Devaud LL, Morrow AL. Gender-selective effects of ethanol dependence on NMDA receptor subunit expression in cerebral cortex, hippocampus and hypothalamus. Eur J Pharmacol 1999; 369:331-4. [PMID: 10225371 DOI: 10.1016/s0014-2999(99)00103-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous investigations have shown subunit-selective alterations in NMDA receptors in ethanol dependent male rats. In the present study, we found pronounced gender differences in the effects of ethanol dependence on NMDA receptor subunit expression in all brain regions investigated. Ethanol dependent female rats exhibited increased NR1 subunit levels in cerebral cortex and hypothalamus, whereas males displayed increased NR1 levels only in hippocampus. NR2A subunit levels were significantly increased only in hippocampus from ethanol dependent male rats, whereas NR2B subunit levels significantly increased in cerebral cortex of both female and male rats. These findings suggest that gender influences neuroadaptations elicited by ethanol dependence at the level of NMDA receptor subunit expression.
Collapse
Affiliation(s)
- L L Devaud
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello 83209-8334, USA.
| | | |
Collapse
|
235
|
Sudo M, Okado H, Iino M, Tsuzuki K, Miwa A, Kanegae Y, Saito I, Ozawa S. Postsynaptic expression of Ca2+-permeable AMPA-type glutamate receptor channels by viral-mediated gene transfer. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:176-85. [PMID: 10064888 DOI: 10.1016/s0169-328x(98)00348-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability to artificially express a particular receptor protein in the postsynaptic sites of neurons in the central nervous system (CNS) would be useful for the study of synaptic function of cloned receptor genes as well as for gene therapy of neurological disorders caused by dysfunction of postsynaptic receptors. In this study, we aimed to express the cDNA of unedited GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor that forms inwardly rectifying and Ca2+-permeable channel in CNS neurons by using adenoviral-mediated gene transfer. For this purpose, we have constructed a recombinant adenovirus bearing an expression-switching unit, where the unedited GluR2 cDNA can be activated by the Cre recombinase-mediated excisional deletion of a stuffer DNA interposed between the promotor and the coding region. When PC12 cells were infected with this recombinant adenovirus together with an adenovirus expressing Cre recombinase, the inwardly rectifying and Ca2+-permeable AMPA receptor channels were expressed in nearly 100% of infected cells. Two days after co-infection of cultured rat hippocampal neurons with these adenoviruses, fast excitatory neurotransmission in the glutamatergic synapse was mediated predominantly by the inwardly rectifying and Ca2+-permeable AMPA receptor channels. This indicates that the native AMPA receptors in the postsynaptic sites of the glutamatergic synapse are replaced rapidly with recombinant receptors newly produced by the viral-mediated gene transfer.
Collapse
Affiliation(s)
- M Sudo
- Department of Physiology, Gunma University School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Glutamic acid is the principal excitatory neurotransmitter in the mammalian central nervous system. Glutamic acid binds to a variety of excitatory amino acid receptors, which are ligand-gated ion channels. It is activation of these receptors that leads to depolarisation and neuronal excitation. In normal synaptic functioning, activation of excitatory amino acid receptors is transitory. However, if, for any reason, receptor activation becomes excessive or prolonged, the target neurones become damaged and eventually die. This process of neuronal death is called excitotoxicity and appears to involve sustained elevations of intracellular calcium levels. Impairment of neuronal energy metabolism may sensitise neurones to excitotoxic cell death. The principle of excitotoxicity has been well-established experimentally, both in in vitro systems and in vivo, following administration of excitatory amino acids into the nervous system. A role for excitotoxicity in the aetiology or progression of several human neurodegenerative diseases has been proposed, which has stimulated much research recently. This has led to the hope that compounds that interfere with glutamatergic neurotransmission may be of clinical benefit in treating such diseases. However, except in the case of a few very rare conditions, direct evidence for a pathogenic role for excitotoxicity in neurological disease is missing. Much attention has been directed at obtaining evidence for a role for excitotoxicity in the neurological sequelae of stroke, and there now seems to be little doubt that such a process is indeed a determining factor in the extent of the lesions observed. Several clinical trials have evaluated the potential of antiglutamate drugs to improve outcome following acute ischaemic stroke, but to date, the results of these have been disappointing. In amyotrophic lateral sclerosis, neurolathyrism, and human immunodeficiency virus dementia complex, several lines of circumstantial evidence suggest that excitotoxicity may contribute to the pathogenic process. An antiglutamate drug, riluzole, recently has been shown to provide some therapeutic benefit in the treatment of amyotrophic lateral sclerosis. Parkinson's disease and Huntington's disease are examples of neurodegenerative diseases where mitochondrial dysfunction may sensitise specific populations of neurones to excitotoxicity from synaptic glutamic acid. The first clinical trials aimed at providing neuroprotection with antiglutamate drugs are currently in progress for these two diseases.
Collapse
Affiliation(s)
- A Doble
- Neuroscience Dept. Rhŏne-Poulenc Rorer S.A., Antony, France
| |
Collapse
|
237
|
Sinnarajah S, Suppiramaniam V, Kumar KP, Hall RA, Bahr BA, Vodyanoy V. Heparin modulates the single channel kinetics of reconstituted AMPA receptors from rat brain. Synapse 1999; 31:203-9. [PMID: 10029238 DOI: 10.1002/(sici)1098-2396(19990301)31:3<203::aid-syn5>3.0.co;2-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate receptors specifically activated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) have been reported to interact with the highly sulfated glycosaminoglycan, heparin, and to subsequently express lower binding affinity for [3H]AMPA. The present study examined whether heparin also modifies the kinetic properties of single channel activity expressed by isolated AMPA receptors from rat forebrain. Upon application of 280 nM AMPA, the partially purified receptors reconstituted in lipid bilayers expressed bursting channel activity that was inhibited by dinitroquinoxaline-2-3,-dione (DNQX). Treating the receptors with heparin (10 microg/ml) produced no change in conductance but the mean burst length for 280 nM AMPA was nearly doubled. Heparin also prolonged the lifetime of open states of the individual ion channels 3-5-fold, perhaps by causing a decrease in the closing rate constant for channel gating. Heparin had no effect on the lifetime of the closed state or on the amplitude of currents. The single channel open time was voltage-dependent and an increase of applied voltage caused a decrease in the heparin effect on channel open times. While the lifetime of the open channel was increased 3-4 times by heparin at 20 mV, there was no significant change induced at 43 mV. The equivalent electric charge of the channel gate was increased by 40%. The heparin effects were specific as another polysaccharide, dextran, and a monomeric constituent of heparin, glucosamine 2,3-disulfate, failed to have any effect on the receptors. These findings suggest that heparin-containing extracellular matrix components can interact with AMPA receptors and influence their functional properties.
Collapse
Affiliation(s)
- S Sinnarajah
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Alabama 36849, USA
| | | | | | | | | | | |
Collapse
|
238
|
Liu Y, Samuel CE. Editing of glutamate receptor subunit B pre-mRNA by splice-site variants of interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J Biol Chem 1999; 274:5070-7. [PMID: 9988754 DOI: 10.1074/jbc.274.8.5070] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-inducible RNA-specific adenosine deaminase (ADAR1) is an RNA-editing enzyme that catalyzes the deamination of adenosine in double-stranded RNA structures. Three alternative splice-site variants of ADAR1 (ADAR1-a, -b, and -c) occur that possess functionally distinct double-stranded RNA-binding motifs as measured with synthetic double-stranded RNA substrates. The pre-mRNA transcript encoding the B subunit of glutamate receptor (GluR-B) has two functionally important editing sites (Q/R and R/G sites) that undergo selective A-to-I conversions. We have examined the ability of the three ADAR1 splice-site variants to catalyze the editing of GluR-B pre-mRNA at the Q/R and R/G sites as well as an intron hotspot (+60) of unknown function. Measurement of GluR-B pre-mRNA editing in vitro revealed different site-specific deamination catalyzed by the three ADAR1 variants. The ADAR1-a, -b, and -c splice variants all efficiently edited the R/G site and the intron +60 hotspot but exhibited little editing activity at the Q/R site. ADAR1-b and -c showed higher editing activity than ADAR1-a for the R/G site, whereas the intron +60 site was edited with comparable efficiency by all three ADAR1 splice variants. Mutational analysis revealed that the functional importance of each of the three RNA-binding motifs of ADAR1 varied with the specific target editing site in GluR-B RNA. Quantitative reverse transcription-polymerase chain reaction analyses of GluR-B RNA from dissected regions of rat brain showed significant expression and editing at the R/G site in all brain regions examined except the choroid plexus. The relative levels of the alternatively spliced flip and flop isoforms of GluR-B RNA varied among the choroid plexus, cortex, hippocampus, olfactory bulb, and striatum, but in all regions of rat brain the editing of the flip isoform was greater than that of the flop isoform.
Collapse
Affiliation(s)
- Y Liu
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
239
|
Banke TG, Lambert JD. Novel potent AMPA analogues differentially affect desensitisation of AMPA receptors in cultured hippocampal neurons. Eur J Pharmacol 1999; 367:405-12. [PMID: 10079017 DOI: 10.1016/s0014-2999(98)00975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The agonist actions of two AMPA receptor analogues, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and (RS)-2-amino-3-(3-hydroxy-5-trfluoromethyl-4-isoxazolyl)prop ionic acid (Tri-F-AMPA) have been studied on cultured rat hippocampal neurons. Whole-cell recordings with semi-rapid application of the agonists were used to study steady-state (plateau) responses. ACPA was the most potent agonist (EC50, 1.2 microM), followed by AMPA (4.3 microM) and Tri-F-AMPA (4.6 microM), corresponding to a potency ratio of 4:1:1. Hill coefficients were close to 1 for AMPA and ACPA and close to 2 for Tri-F-AMPA, respectively. Plateau responses to maximal concentrations of the three agonists varied more than 2-fold. ACPA responses were 2.1 times greater and responses to Tri-F-AMPA were 1.6 times greater than responses to AMPA, respectively. Peak responses and desensitization were studied by using a fast piezoelectric device to apply agonists rapidly to outside-out patches. The time constants of desensitization were 8 ms for AMPA, 12 ms for Tri-F-AMPA and 17 ms for ACPA. There were no significant differences in the time-to-peak and 10-90% rise-time of the responses. The results indicate that of the three agonists tested, ACPA is the most potent at AMPA receptors expressed in cultured hippocampal neurons and that the maximum response to the agonists is inversely related to the rate of desensitization.
Collapse
Affiliation(s)
- T G Banke
- PharmaBiotec Research Center, Department of Physiology, University of Aarhus, Denmark
| | | |
Collapse
|
240
|
Shibata T, Watanabe M, Ichikawa R, Inoue Y, Koyanagi T. Different expressions of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptor subunit mRNAs between visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. J Comp Neurol 1999; 404:172-82. [PMID: 9934992 DOI: 10.1002/(sici)1096-9861(19990208)404:2<172::aid-cne3>3.0.co;2-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The glutamatergic transmission system plays a key role in afferent and efferent pathways involved in micturition. By in situ hybridization combined with retrograde Fast Blue labeling, expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR-A to -D) and N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2A-D) subunit mRNAs were examined in visceromotor and somatomotor neurons of the rat lumbosacral spinal cord. Parasympathetic preganglionic neurons (PGNs) in the intermediolateral nucleus highly expressed GluR-A and GluR-B subunit mRNAs, with very low levels for GluR-C and GluR-D subunits. As for the NMDA receptor, PGNs were associated with abundant signals for NR1 subunit mRNA, but without any NR2 subunit mRNAs. On the other hand, somatomotor neurons in the ventral horn (dorsolateral nucleus) express all four AMPA receptor subunit mRNAs, showing relatively abundant expressions of GluR-C and GluR-D subunit mRNA compared with PGNs. In addition to high levels of NR1 subunit mRNA, dorsolateral nucleus neurons moderately expressed NR2A and NR2B subunit mRNAs. These results suggest that molecular organization of both AMPA and NMDA receptor channels are distinct between PGNs and dorsolateral nucleus neurons. Considering that native NMDA receptors are heteromeric channels composed of NR1 and NR2 subunits, it seems likely that dorsolateral nucleus neurons, not PGNs, are provided with functional NMDA receptors, which could induce activity-dependent changes in synaptic transmission in the efferent pathway for the lower urinary tract.
Collapse
Affiliation(s)
- T Shibata
- Department of Urology, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
241
|
Wenthold RJ, Roche KW. The organization and regulation of non-NMDA receptors in neurons. PROGRESS IN BRAIN RESEARCH 1999; 116:133-52. [PMID: 9932375 DOI: 10.1016/s0079-6123(08)60435-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R J Wenthold
- Laboratory of Neurochemistry, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
242
|
Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M. Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 1999; 11:604-16. [PMID: 10051761 DOI: 10.1046/j.1460-9568.1999.00479.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kainate (KA) is a potent neuroexcitatory agent in several areas of the adult brain, with convulsant and excitotoxic properties that increase as ontogeny proceeds. Besides its depolarizing actions, KA may enhance intracellular accumulation of Ca2+ to promote selective neuronal damage. The effects of KA are mediated by specific receptors recently considered to be involved in fast neurotransmission and that can be activated synaptically. KA receptors, e.g. GluR5 and GluR6 have been characterized by molecular cloning. Structure-function relationships indicate that in the MII domain of these KA receptors, a glutamine (Q) or arginine (R) residue determines ion selectivity. The arginine stems from post-transcriptional editing of the GluR5 and GluR6 pre-RNAs, and the unedited and edited versions of GluR6 elicit distinct Ca2+ permeability. Using a PCR-based approach, we show that in vivo, Q/R editing in the GluR5 and GluR6 mRNAs is modulated during ontogeny and differs substantially in a variety of nervous tissues. GluR5 editing is highest in peripheral nervous tissue, e.g. the dorsal root ganglia, where GluR6 expression is barely detectable. In contrast, GluR6 editing is maximal in forebrain and cerebellar structures where GluR5 editing is lower. Intra-amygdaloid injections of KA provide a model of temporal lobe epilepsy, and we show that following seizures, the extent of GluR5 and GluR6 editing is altered in the hippocampus. However, in vitro, high levels of glutamate and potassium-induced depolarizations have no effect on GluR5 and GluR6 Q/R editing. GluR6 editing is rapidly enhanced to maximal levels in primary cultures of cerebellar granule neurons but not in cultured hippocampal pyramidal neurons. Finally, we show that cultured glial cells express partially edited GluR6 mRNAs. Our results indicate that Q/R editing of GluR5 and GluR6 mRNAs is structure-, cell type- and time-dependent, and suggest that editing of these mRNAs is not co-regulated.
Collapse
Affiliation(s)
- A Bernard
- Université René Descartes Paris V, INSERM Unité 29, Paris, France
| | | | | | | | | | | | | |
Collapse
|
243
|
Mahata SK, Mahata M, Parmer RJ, O'Connor DT. Desensitization of catecholamine release. The novel catecholamine release-inhibitory peptide catestatin (chromogranin a344-364) acts at the receptor to prevent nicotinic cholinergic tolerance. J Biol Chem 1999; 274:2920-8. [PMID: 9915830 DOI: 10.1074/jbc.274.5.2920] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic cholinergic receptors undergo desensitization upon repeated or prolonged exposure to agonist. We investigated the effects of a novel chromogranin A catecholamine release-inhibitory fragment, catestatin (chromogranin A344-364), on agonist-induced desensitization of catecholamine release from pheochromocytoma cells. In a dose-dependent fashion, the nicotinic antagonist catestatin blocked agonist desensitization of both catecholamine release (IC50 approximately 0.24 microM) and 22Na+ uptake (IC50 approximately 0.31 microM), the initial step in nicotinic cationic signal transduction; both secretion inhibition and blockade of desensitization were noncompetitive with agonist. Desensitizing effects of the nicotinic agonists nicotine and epibatidine were blocked. This antagonist action was specific to desensitization by nicotinic agonists, since catestatin did not block desensitization of catecholamine release induced by agents which bypass the nicotinic receptor. Hill plots with slopes near unity suggested noncooperativity for catestatin effects on both nicotinic responses (secretory antagonism and blockade of desensitization). Human, bovine, and rat catestatins (as well as substance P) had similar potencies. IC50 values for secretion inhibition and blockade of desensitization paralleled each other (r = 0.76, n = 10 antagonists, p = 0.01) for several noncompetitive nicotinic antagonists. Peptide nicotinic antagonists (catestatins, substance P) were far more potent inhibitors of both secretion (p = 0.019) and desensitization (p = 0.005) than nonpeptide antagonists (trimethaphan, hexamethonium, procaine, phencyclidine, cocaine, or clonidine), and the peptides displayed enhanced selectivity to block desensitization versus secretion (p = 0.003). We conclude that catestatin is a highly potent, dose-dependent, noncompetitive, noncooperative, specific inhibitor of nicotinic desensitization, an effect which may have implications for control of catecholamine release.
Collapse
Affiliation(s)
- S K Mahata
- Department of Medicine and Center for Molecular Genetics, University of California, and San Diego Veterans Administration Healthcare System, San Diego, California 92161, USA.
| | | | | | | |
Collapse
|
244
|
Huh KH, Wenthold RJ. Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J Biol Chem 1999; 274:151-7. [PMID: 9867823 DOI: 10.1074/jbc.274.1.151] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The number, composition, and location of receptors in neurons are critically important factors in determining the neuron's response to neurotransmitters. The functional expression of receptors appears to be regulated both generally, at the level of transcription or translation, and locally, at the level of the individual synapse. A key component in the regulation of any protein is its turnover rate, which, measured in half-lives, ranges from a few minutes to several days. In the present study, we measured the turnover rates of subunits of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, the two major ionotropic glutamate receptors, using cultured cerebellar granule cells. Turnover rates for NR1, NR2A/B, GluR2/3, and GluR4 subunits were determined by pulse-chase labeling of cells with [35S]methionine. Half-lives were found to be 18 +/- 5 h and 23 +/- 8 h for the AMPA receptor subunits GluR2/3 and GluR4, respectively, and 16 +/- 5 h for NR2A. The NR1 subunit showed a biphasic decay with half-lives of 2 and 34 h for the rapidly and slowly degraded populations, respectively. Splice variants of the NR1 subunit with different carboxyl-terminal cassettes, C2 and C2', showed similar biphasic degradation patterns. To further characterize the rapidly degraded pool of NR1, surface receptors were labeled by biotinylation, and half-lives of the biotinylated proteins were determined. All surface NR1 was slowly degraded with a pattern similar to that of NR2A, GluR2/3, and GluR4, suggesting that the rapidly degraded pool is confined to the cytoplasm and not assembled with NR2 subunits. A significant amount of NR1 was not immunoprecipitated by NR2 subunit-specific antibodies after solubilization with deoxycholate. This unassembled pool, but not the assembled one, was greatly diminished following treatment of cycloheximide for 5 h, indicating that the rapidly degraded pool of NR1 is not assembled with NR2. These results show that NMDA and AMPA receptors have similar turnover rates, but NMDA receptors have a separate pool of NR1 subunits that is rapidly degraded and accounts for most of the intracellular pool.
Collapse
Affiliation(s)
- K H Huh
- Laboratory of Neurochemistry, NIDCD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
245
|
Morrison BM, Morrison JH. Amyotrophic lateral sclerosis associated with mutations in superoxide dismutase: a putative mechanism of degeneration. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:121-35. [PMID: 9974153 DOI: 10.1016/s0165-0173(98)00049-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurologic disease that rapidly progresses from mild motor symptoms to severe motor paralysis and premature death. Until recently, there were few substantive studies conducted on the pathogenesis of the disease. With the genetic linkage of mutations in the superoxide dismutase (SOD-1) gene with familial ALS patients, new avenues for study have become available including transgenic mice and culture models. Although not yet providing a complete picture of the disease mechanism, studies utilizing these model systems have greatly advanced our understanding of the mechanism of degeneration and should eventually lead to putative therapeutic agents. In this review, we will present the important findings from these model systems, provide a framework in which to evaluate these findings, and speculate on the mechanism of degeneration initiated by the mutations in SOD-1.
Collapse
Affiliation(s)
- B M Morrison
- Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
246
|
Kuruma A, Hartzell HC. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C161-75. [PMID: 9886932 DOI: 10.1152/ajpcell.1999.276.1.c161] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca-activated Cl currents are widely expressed in many cell types and play diverse and important physiological roles. The Xenopus oocyte is a good model system for studying the regulation of these currents. We previously showed that inositol 1,4,5-trisphosphate (IP3) injection into Xenopus oocytes rapidly elicits a noninactivating outward Cl current (ICl1-S) followed several minutes later by the development of slow inward (ICl2) and transient outward (ICl1-T) Cl currents. In this paper, we investigate whether these three currents are mediated by the same or different Cl channels. Outward Cl currents were more sensitive to Ca than inward Cl currents, as shown by injection of different amounts of Ca or by Ca influx through a heterologously expressed ligand-gated Ca channel, the ionotropic glutamate receptor iGluR3. These data could be explained by two channels with different Ca affinities or one channel with a higher Ca affinity at depolarized potentials. To distinguish between these possibilities, we determined the anion selectivity of the three currents. The anion selectivity sequences for the three currents were the same (I > Br > Cl), but ICl1-S had an I-to-Cl permeability ratio more than twofold smaller than the other two currents. The different anion selectivities and instantaneous current-voltage relationships were consistent with at least two different channels mediating these currents. However, after consideration of possible errors, the hypothesis that a single type of Cl channel underlies the complex waveforms of the three different macroscopic Ca-activated Cl currents in Xenopus oocytes remains a viable alternative.
Collapse
Affiliation(s)
- A Kuruma
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | |
Collapse
|
247
|
Ambalavanar R, Ludlow C, Wenthold R, Tanaka Y, Damirjian M, Petralia R. Glutamate receptor subunits in the nucleus of the tractus solitarius and other regions of the medulla oblongata in the cat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981207)402:1<75::aid-cne6>3.0.co;2-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
248
|
Bernard V, Bolam JP. Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co-localization at synapses with the GluR2/3 subunit of the AMPA receptor. Eur J Neurosci 1998; 10:3721-36. [PMID: 9875351 DOI: 10.1046/j.1460-9568.1998.00380.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamatergic neurotransmission in the neostriatum and the globus pallidus is mediated through NMDA-type as well as other glutamate receptors and is critical in the expression of basal ganglia function. In order to characterize the cellular, subcellular and subsynaptic localization of NMDA receptors in the neostriatum and globus pallidus, multiple immunocytochemical techniques were applied using antibodies that recognize the NR1 subunit of the NMDA receptor. In order to determine the spatial relationship between NMDA receptors and AMPA receptors, double labelling was performed with the NR1 antibodies and an antibody that recognizes the GluR2 and 3 subunits of the AMPA receptor. In the neostriatum all neurons with characteristics of spiny projection neurons, some interneurons and many dendrites and spines were immunoreactive for NR1. In the globus pallidus most perikarya and many dendritic processes were immunopositive. Immunogold methods revealed that most NR1 labelling is associated with asymmetrical synapses and, like the labelling for GluR2/3, is evenly spread across the synapse. Double immunolabelling revealed that in neostriatum, over 80% of NR1-positive axospinous synapses are also positive for GluR2/3. In the globus pallidus most NR1-positive synapses are positive for GluR2/3. In both regions many synapses labelled only for GluR2/3 were also detected. These results, together with previous data, suggest that NMDA and AMPA receptor subunits are expressed by the same neurons in the neostriatum and globus pallidus and that NMDA and AMPA receptors are, at least in part, colocalized at individual asymmetrical synapses. The synaptic responses to glutamate in these regions are thus likely be mediated by both AMPA and NMDA receptors at the level of individual synapses.
Collapse
Affiliation(s)
- V Bernard
- Anatomical Neuropharmacology Unit, University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
249
|
Torres GE, Haines WR, Egan TM, Voigt MM. Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 1998; 54:989-93. [PMID: 9855626 DOI: 10.1124/mol.54.6.989] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2X receptors are a family of ion channels gated by extracellular ATP. Each member of the family can form functional homomeric channels, but only P2X2 and P2X3 have been shown to combine to form a unique heteromeric channel. Data from in situ hybridization studies suggest that P2X1 and P2X5 may also co-assemble. In this study, we tested this hypothesis by expressing recombinant P2X1 and P2X5 receptor subunits either individually or together in human embryonic kidney 293 cells. In cells expressing the homomeric P2X1 receptor, 30 microM alpha,beta-methylene ATP (alpha,beta-me-ATP) evoked robust currents that completely desensitized in less than 1 sec, whereas alpha,beta-me-ATP failed to evoke current in cells expressing the homomeric P2X5 receptor. By contrast, alpha, beta-me-ATP evoked biphasic currents with a pronounced nondesensitizing plateau phase in cells that co-expressed both subunits. Further, the EC50 for alpha,beta-me-ATP was greater in cells expressing both P2X1 and P2X5 than in cells expressing P2X1 alone (5 and 1.6 microM, respectively). Heteromeric assembly was confirmed using a co-immunoprecipitation assay of epitope-tagged P2X1 and P2X5 subunits. In summary, this study provides biochemical and functional evidence of a novel channel formed by P2X subunit heteropolymerization. This finding suggests that heteromeric subunit assembly constitutes an important mechanism for generating functional diversity of ATP-mediated responses.
Collapse
Affiliation(s)
- G E Torres
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
250
|
Nielsen BS, Banke TG, Schousboe A, Pickering DS. Pharmacological properties of homomeric and heteromeric GluR1o and GluR3o receptors. Eur J Pharmacol 1998; 360:227-38. [PMID: 9851590 DOI: 10.1016/s0014-2999(98)00668-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Homomeric and heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits GluR1o and GluR3o were expressed in Spodoptera frugiperda (Sf9) insect cells. Membranes containing the recombinant receptors showed a doublet of bands of the expected size (99-109 kDa) after western immunoblotting which was shifted to a single band upon deglycosylation. In (R,S)-[3H]AMPA binding experiments, high expression was seen (Bmax = 0.8-3.8 pmol/mg protein) along with high affinity binding to a single site (Kd, nM+/-S.D.): GluR1o, 32.5+/-2.7; GluR3o, 23.7+/-2.4; GluR1o + GluR3o, 18.1+/-2.9. The pharmacological profiles of these receptors resembled that of native rat brain AMPA receptors: AMPA analogues > L-glutamate > quinoxaline-2,3-diones > kainate. In the Xenopus oocyte expression system we had previously shown that the agonist (R,S)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionate (ACPA) exhibited an 11-fold selectivity for GluR3o vs. GluR1o. In this study, it was found that ACPA has 3-fold higher affinity at homomeric GluR3o and heteromeric receptors than at homomeric GluR1o, suggesting that its efficacy and/or desensitisation properties are different at GluR1o vs. GluR3o.
Collapse
Affiliation(s)
- B S Nielsen
- PharmaBiotec Research Center, Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen
| | | | | | | |
Collapse
|