201
|
Sriram V, Willard CA, Liu J, Brutkiewicz RR. Importance of N-linked glycosylation in the functional expression of murine CD1d1. Immunology 2007; 123:272-81. [PMID: 17725604 PMCID: PMC2433293 DOI: 10.1111/j.1365-2567.2007.02696.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mouse CD1d1 glycoprotein is specialized in presenting lipid antigens to a novel class of T cells called natural killer T (NKT) cells. CD1d1 is predicted to contain five potential N-linked glycosylation sites (asparagine residues at positions 25, 38, 60, 128, and 183). Glycosylation has been shown to invariably affect the molecular and functional properties of various glycoproteins, and in the current report it was found that a conservative change of the individual endogenous asparagine residues in CD1d1 to glutamine differentially affected its functional expression. Although the maturation rate of the glycosylation mutants was comparable to that of wild type, they differed in their relative levels of surface expression and in their ability to stimulate NKT cells. Mutating all five glycosylation residues resulted in the absence of detectable CD1d1 expression, with a concomitant lack of NKT cell activation. Therefore, these results demonstrate that glycosylation plays a significant role in the functional expression of CD1d1.
Collapse
Affiliation(s)
- Venkataraman Sriram
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
202
|
Dougan SK, Kaser A, Blumberg RS. CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 2007; 314:113-41. [PMID: 17593659 DOI: 10.1007/978-3-540-69511-0_5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD1 proteins present self and microbial glycolipids to CD 1-restricted T cells, or in the case of CD1d, to NKT cells. The CD1 family in humans consists of group I proteins CDla, CDlb, CDlc, and CDle and the group II protein CDld. Rodents express only CDld, but as CD1d is broadly expressed and traffics to all endosomal compartments, this single CD1 family member is thereby able to acquire antigens in many subcellular compartments. A complete understanding of the CD 1 family requires an appreciation of which cells express CD1 and how CD1 contributes to the unique function of each cell type. While group I CD 1 expression is limited to thymocytes and professional APCs, CD1d has a wider tissue distribution and can be found on many nonhematopoietic cells. The expression and regulation of CD1 are presented here with particular emphasis on the function of CD1 in thymocytes, B cells, monocytes and macrophages, dendritic cells (DCs), and intestinal epithelial cells (IECs). Altered expression of CD 1 in cancer, autoimmunity, and infectious disease is well documented, and the implication of CD 1 expression in these diseases is discussed.
Collapse
Affiliation(s)
- S K Dougan
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital,75 Francis St, Thorn 1415, Boston, MA 02115, USA
| | | | | |
Collapse
|
203
|
Chung JL, Wang W, Bourne PE. High-throughput identification of interacting protein-protein binding sites. BMC Bioinformatics 2007; 8:223. [PMID: 17594507 PMCID: PMC1925121 DOI: 10.1186/1471-2105-8-223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/27/2007] [Indexed: 11/23/2022] Open
Abstract
Background With the advent of increasing sequence and structural data, a number of methods have been proposed to locate putative protein binding sites from protein surfaces. Therefore, methods that are able to identify whether these binding sites interact are needed. Results We have developed a new method using a machine learning approach to detect if protein binding sites, once identified, interact with each other. The method exploits information relating to sequence and structural complementary across protein interfaces and has been tested on a non-redundant data set consisting of 584 homo-dimers and 198 hetero-dimers extracted from the PDB. Results indicate 87.4% of the interacting binding sites and 68.6% non-interacting binding sites were correctly identified. Furthermore, we built a pipeline that links this method to a modified version of our previously developed method that predicts the location of binding sites. Conclusion We have demonstrated that this high-throughput pipeline is capable of identifying binding sites for proteins, their interacting binding sites and, ultimately, their binding partners on a large scale.
Collapse
Affiliation(s)
- Jo-Lan Chung
- Department of Chemistry and Biochemistry, University of California, San Diego, Gilman Drive, La Jolla, CA 92093-0743, USA
- San Diego Supercomputer Center, University of California, San Diego, Gilman Drive, La Jolla, CA 92093-0743, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, Gilman Drive, La Jolla, CA 92093-0743, USA
| | - Philip E Bourne
- Department of Pharmacology, University of California, San Diego, Gilman Drive, La Jolla, CA 92093-0743, USA
- San Diego Supercomputer Center, University of California, San Diego, Gilman Drive, La Jolla, CA 92093-0743, USA
| |
Collapse
|
204
|
Adams EJ, Juo ZS, Venook RT, Boulanger MJ, Arase H, Lanier LL, Garcia KC. Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc Natl Acad Sci U S A 2007; 104:10128-33. [PMID: 17537914 PMCID: PMC1891256 DOI: 10.1073/pnas.0703735104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells express activating and inhibitory receptors that, in concert, survey cells for proper expression of cell surface major histocompatibility complex (MHC) class I molecules. The mouse cytomegalovirus encodes an MHC-like protein, m157, which is the only known viral antigen to date capable of engaging both activating (Ly49H) and inhibitory (Ly49I) NK cell receptors. We have determined the 3D structure of m157 and studied its biochemical and cellular interactions with the Ly49H and Ly49I receptors. m157 has a characteristic MHC-fold, yet possesses several unique structural features not found in other MHC class I-like molecules. m157 does not bind peptides or other small ligands, nor does it associate with beta(2)-microglobulin. Instead, m157 engages in extensive intra- and intermolecular interactions within and between its domains to generate a compact minimal MHC-like molecule. m157's binding affinity for Ly49I (K(d) approximately 0.2 microM) is significantly higher than that of classical inhibitory Ly49-MHC interactions. Analysis of viral escape mutations on m157 that render it resistant to NK killing reveals that it is likely to be recognized by Ly49H in a binding mode that differs from Ly49/MHC-I. In addition, Ly49H+ NK cells can efficiently lyse RMA cells expressing m157, despite the presence of native MHC class I. Collectively, our results show that m157 represents a structurally divergent form of MHC class I-like proteins that directly engage Ly49 receptors with appreciable affinity in a noncanonical fashion.
Collapse
MESH Headings
- Animals
- Antigens, Ly/chemistry
- Baculoviridae/genetics
- Binding Sites
- Cell Line, Tumor
- Crystallography, X-Ray
- Disulfides/chemistry
- Histocompatibility Antigens Class I/immunology
- Hydrogen Bonding
- Killer Cells, Natural/immunology
- Lectins, C-Type/chemistry
- Ligands
- Lymphoma, T-Cell/pathology
- Mice
- Models, Molecular
- Muromegalovirus/immunology
- NK Cell Lectin-Like Receptor Subfamily A
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, NK Cell Lectin-Like
Collapse
Affiliation(s)
- Erin J. Adams
- *Departments of Molecular and Cellular Physiology and Structural Biology
| | - Z. Sean Juo
- *Departments of Molecular and Cellular Physiology and Structural Biology
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Rayna Takaki Venook
- Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program, and the Cancer Research Institute, University of California, San Francisco, CA 94143
| | | | - Hisashi Arase
- Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program, and the Cancer Research Institute, University of California, San Francisco, CA 94143
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program, and the Cancer Research Institute, University of California, San Francisco, CA 94143
| | - K. Christopher Garcia
- *Departments of Molecular and Cellular Physiology and Structural Biology
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
205
|
McCarthy C, Shepherd D, Fleire S, Stronge VS, Koch M, Illarionov PA, Bossi G, Salio M, Denkberg G, Reddington F, Tarlton A, Reddy BG, Schmidt RR, Reiter Y, Griffiths GM, van der Merwe PA, Besra GS, Jones EY, Batista FD, Cerundolo V. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 2007; 204:1131-44. [PMID: 17485514 PMCID: PMC2118584 DOI: 10.1084/jem.20062342] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 03/28/2007] [Indexed: 11/04/2022] Open
Abstract
CD1d-restricted lymphocytes recognize a broad lipid range. However, how CD1d-restricted lymphocytes translate T cell receptor (TCR) recognition of lipids with similar group heads into distinct biological responses remains unclear. Using a soluble invariant NKT (iNKT) TCR and a newly engineered antibody specific for alpha-galactosylceramide (alpha-GalCer)-human CD1d (hCD1d) complexes, we measured the affinity of binding of iNKT TCR to hCD1d molecules loaded with a panel of alpha-GalCer analogues and assessed the rate of dissociation of alpha-GalCer and alpha-GalCer analogues from hCD1d molecules. We extended this analysis by studying iNKT cell synapse formation and iNKT cell activation by the same panel of alpha-GalCer analogues. Our results indicate the unique role of the lipid chain occupying the hCD1d F' channel in modulating TCR binding affinity to hCD1d-lipid complexes, the formation of stable immunological synapse, and cell activation. These data are consistent with previously described conformational changes between empty and loaded hCD1d molecules (Koch, M., V.S. Stronge, D. Shepherd, S.D. Gadola, B. Mathew, G. Ritter, A.R. Fersht, G.S. Besra, R.R. Schmidt, E.Y. Jones, and V. Cerundolo. 2005. Nat. Immunol 6:819-826), suggesting that incomplete occupation of the hCD1d F' channel results in conformational differences at the TCR recognition surface. This indirect effect provides a general mechanism by which lipid-specific lymphocytes are capable of recognizing both the group head and the length of lipid antigens, ensuring greater specificity of antigen recognition.
Collapse
Affiliation(s)
- Corinna McCarthy
- Tumour Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
The CD1 family of glycosylated cell surface receptors binds and presents lipid antigens for T cell recognition and activation. Crystal structures of CD1-lipid complexes reveal differences in the mode of presentation of lipids by CD1 group 1 (CDla, CDlb, and CDlc) and group 2 isoforms (CDld). For group 1, especially CDla and CD1b, the lipid backbone is anchored inside the hydrophobic binding grooves (lipid anchoring), whereas, for group 2 CDld, a precise hydrogen-bonding network positions the polar ligand headgroups in well-defined orientation at the T cell recognition surface (headgroup positioning). In addition, small, but important, structural changes occur on the surface of CDld upon binding of the potent invariant NKT cell agonist alpha-galactosylceramide due to increased polar interaction with the alphal and alpha2 helices. No such ligand-induced, conformational changes have yet been reported for any group 1 CD1 complexes, even upon binding of chemically diverse antigens, such as dual alkyl chain sphingolipids vs single alkyl chain lipopeptides. These structural data have already been successfully translated into the design of enhanced lipid activators of NKT cells and will likely continue for design of other chemotherapeutic agents or immunostimulatory compounds for a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- D M Zajonc
- Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
207
|
Abstract
Populations of unconventional T lymphocytes that express alpha beta T cell antigen receptors (TCRs) have been characterized, including T cells reactive to glycolipids presented by CD1 molecules. The CD1 molecules have a structure broadly similar to major histocompatibility complex (MHC) class I and class II proteins, but because the antigens CD 1 presents are so different from peptides, it is possible that glycolipid reactive TCRs have properties that distinguish them from TCRs expressed by conventional T cells. Consistent with this possibility, CD1-reactive T cells have an unrestrained pattern of co-receptor expression, as they include CD4+, CD8+, and double-negative cells. Furthermore, unlike peptide-reactive T cells, there are populations of glycolipid-reactive T cells with invariant alpha chain TCRs that are conserved across species. There are also glycolipid reactive populations with more variable TCRs, however, suggesting that it may be difficult to make categorical generalizations about glycolipid reactive TCRs. Among the glycolipid reactive TCRs, the invariant TCR expressed by CD1d reactive NKT cells has been by far the most thoroughly studied, and in this article we emphasize the unique features of this antigen recognition system, including repertoire formation, fine specificity, TCR affinity, and TCR structure.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/metabolism
- Glycolipids/chemistry
- Glycolipids/metabolism
- Humans
- Killer Cells, Natural/immunology
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- B A Sullivan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
208
|
Toba T, Murata K, Nakanishi K, Takahashi B, Takemoto N, Akabane M, Nakatsuka T, Imajo S, Yamamura T, Miyake S, Annoura H. Minimum structure requirement of immunomodulatory glycolipids for predominant Th2 cytokine induction and the discovery of non-linear phytosphingosine analogs. Bioorg Med Chem Lett 2007; 17:2781-4. [PMID: 17419054 DOI: 10.1016/j.bmcl.2007.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Analogs of immunomodulatory glycolipid OCH (2) were prepared and minimum structure requirement to exhibit equivalent profiles was disclosed. Analogs bearing non-linear hydrocarbon chain in the phytosphingosine moiety (18, 19) were shown for the first time to possess comparable cytokine inducing profile to 2. Molecular modeling of 2/hCD1d complex based on the crystal structure of alpha-GalCer (1)/hCD1d complex is also described.
Collapse
Affiliation(s)
- Tetsuya Toba
- Biomedical Research Laboratories, Daiichi Asubio Pharma Co., Ltd, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Thedrez A, de Lalla C, Allain S, Zaccagnino L, Sidobre S, Garavaglia C, Borsellino G, Dellabona P, Bonneville M, Scotet E, Casorati G. CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood 2007; 110:251-8. [PMID: 17363727 DOI: 10.1182/blood-2007-01-066217] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CD4 coreceptor is crucial in the activation of major histocompatibility complex (MHC) class II restricted CD4 (+) T lymphocytes by binding the same MHC class as the T-cell receptor (TCR) and by potentiating TCR-dependent signaling. CD4 is also expressed by invariant natural killer T cells (iNKT), which recognize natural and synthetic lipid antigens, such as alpha-galactosyl ceramide (alpha-GalCer), in association with the MHC class I-like CD1d molecule. Human iNKT cells can be divided into 2 major subsets depending on CD4 expression: CD4 (+) iNKT preferentially produce T-helper (Th)0/Th2 cytokines, whereas CD4(-) iNKT cells produce Th1 cytokines after antigenic activation. Cytokines produced by iNKT may have immunomodulatory roles in various physiopathologic contexts, but their mode of regulation by iNKT cells remains ill-defined. Using blocking reagents neutralizing CD4 binding, experimental systems where MHC class II molecules are absent and recombinant alpha-GalCer/CD1d complexes, we show that CD4 potentiates human iNKT cell activation by engaging CD1d molecules. These results indicate that the CD4 coreceptors may contribute to the fine tuning of iNKT cells reactivity.
Collapse
Affiliation(s)
- Aurelie Thedrez
- Institute Nationale Scientifique et Recherche Medicale, Nantes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Al Dulayymi JR, Baird MS, Roberts E, Deysel M, Verschoor J. The first syntheses of single enantiomers of the major methoxymycolic acid of Mycobacterium tuberculosis. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
211
|
Perera L, Shao L, Patel A, Evans K, Meresse B, Blumberg R, Geraghty D, Groh V, Spies T, Jabri B, Mayer L. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm Bowel Dis 2007; 13:298-307. [PMID: 17238179 DOI: 10.1002/ibd.20026] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well recognized that the nature of the immune response is different in the intestinal tract than in peripheral lymphoid organs. The immunologic tone of the gut-associated lymphoid tissue is one of suppression rather than active immunity, distinguishing pathogens from normal flora. Failure to control mucosal immune responses may lead to inflammatory diseases such as Crohn's disease (CD) and ulcerative colitis (UC) and celiac disease. It has been suggested that this normally immunosuppressed state may relate to unique antigen-presenting cells and unique T-cell populations. The intestinal epithelial cell (IEC) has been proposed to act as a nonprofessional antigen-presenting cell (APC). Previous studies have suggested that antigens presented by IECs result in the activation a CD8(+) regulatory T-cell subset in a nonclassical MHC I molecule restricted manner. We therefore analyzed the expression of nonclassical MHC I molecules by normal IECs and compared this to those expressed by inflammatory bowel disease (IBD) IECs. Normal surface IEC from the colon and, to a much lesser extent, the small bowel express nonclassical MHC I molecules on their surface. In contrast, mRNA is expressed in all intestinal epithelial cells. Surface IEC express CD1d, MICA/B, and HLA-E protein. In contrast, crypt IECs express less or no nonclassical MHC I molecules but do express mRNA for these molecules. Furthermore, the regulation of expression of distinct nonclassical class I molecules is different depending on the molecule analyzed. Interestingly, IECs derived from patients with UC fail to express any nonclassical MHC I molecules (protein and HLA-E mRNA). IECs from CD patients express HLA-E and MICA/B comparable to that seen in normal controls but fail to express CD1d. Thus, in UC there may be a failure to activate any nonclassical MHC I molecule restricted regulatory T cells that may result in unopposed active inflammatory responses. In CD only the CD1d-regulated T cells would be affected.
Collapse
Affiliation(s)
- Lilani Perera
- Immunobiology Center, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Caines MEC, Vaughan MD, Tarling CA, Hancock SM, Warren RAJ, Withers SG, Strynadka NCJ. Structural and mechanistic analyses of endo-glycoceramidase II, a membrane-associated family 5 glycosidase in the Apo and GM3 ganglioside-bound forms. J Biol Chem 2007; 282:14300-8. [PMID: 17329247 DOI: 10.1074/jbc.m611455200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
endo-Glycoceramidase, a membrane-associated family 5 glycosidase, deviates from the typical polysaccharide substrate specificity of other soluble members of the family, preferentially hydrolyzing glycosidic linkages between the oligosaccharide and ceramide moieties of gangliosides. Here we report the first x-ray crystal structures of an endo-glycoceramidase from Rhodococcus sp., in the apo form, in complex with the ganglioside G(M3) (Svennerholm ganglioside nomenclature (Svennerholm, L. (1964) J. Lipid Res. 5, 145-155)), and trapped as a glycosyl-enzyme intermediate. These snapshots provide the first molecular insight into enzyme recognition and association with gangliosides, revealing the structural adaptations necessary for glycosidase-catalyzed hydrolysis and detailing a novel ganglioside binding topology. Consistent with the chemical duality of the substrate, the active site of endo-glycoceramidase is split into a wide, polar cavity to bind the polyhydroxylated oligosaccharide moiety and a narrow, hydrophobic tunnel to bind the ceramide lipid chains. The specific interactions with the ceramide polar head group manifest a surprising aglycone specificity, an observation substantiated by our kinetic analyses. Collectively, the reported structural and kinetic data provide insight toward rational redesign of the synthetic glycosynthase mutant of endo-glycoceramidase to enable facile synthesis of nonnatural, therapeutically useful gangliosides.
Collapse
Affiliation(s)
- Matthew E C Caines
- Departments of Biochemistry and Molecular Biology, Chemistry, and Microbiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
213
|
Willcox BE, Willcox CR, Dover LG, Besra G. Structures and functions of microbial lipid antigens presented by CD1. Curr Top Microbiol Immunol 2007; 314:73-110. [PMID: 17593658 DOI: 10.1007/978-3-540-69511-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The CD1 family of proteins has evolved to bind a range of endogenous and foreign lipids and present these at the cell surface for antigen-specific recognition by T cells. The distinct intracellular trafficking pathways of CD 1 molecules indicate that collectively, they have the potential to survey the endocytic system widely for antigen, consistent with a role in the presentation of lipids derived from intracellular microbial pathogens. In keeping with this idea, CDla, CDlb, CDlc and CDld have now been shown to present foreign lipid antigens derived from mycobacteria, Gram-negative bacteria and also protozoan species to T cells. These antigens are extremely diverse chemically, and include naturally occurring lipopeptide, glycolipid and phospholipid structures that are distinct from mammalian lipids. CD1-restricted mycobacterial lipids defined to date derive from the highly complex microbial cell envelope. They play a variety of physiological roles for the microbe, including formation of the plasma membrane and protective cell wall and as metabolic intermediates in iron-scavenging pathways. In each case, alkyl chains of CD 1-restricted lipid antigens are accommodated within a deep hydrophobic groove in the membrane-distal alphal-alpha2 domains of the CD1 molecule, with hydrophilic elements solvent-exposed and accessible for recognition by the T cell receptor. Variation in the number, length and saturation of alkyl chains, and the precise chemistry and chirality of the lipid headgroup, clearly exert dominant influences on antigenicity, mediated by effects on CD1 binding and T cell receptor recognition. In the context of structural studies of CD1-lipid complexes, these data suggest that the CD1 isoforms have evolved binding specificities for different classes of foreign lipids, and strongly support a model for antigen recognition involving fine discrimination of lipid headgroup components by the alpha beta T cell receptor. In this review, we summarise our current knowledge of foreign lipid antigens bound by CD 1, focusing on the roles their distinct structural features play in presentation and T cell antigen recognition, and their likely function in antimicrobial T cell responses.
Collapse
Affiliation(s)
- B E Willcox
- CRUK Institute for Cancer Studies, Edgbaston, B 15 2TT Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
214
|
Paduraru C, Spiridon L, Yuan W, Bricard G, Valencia X, Porcelli SA, Illarionov PA, Besra GS, Petrescu SM, Petrescu AJ, Cresswell P. An N-linked glycan modulates the interaction between the CD1d heavy chain and beta 2-microglobulin. J Biol Chem 2006; 281:40369-78. [PMID: 17071611 DOI: 10.1074/jbc.m608518200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human CD1d molecules consist of a transmembrane CD1 (cluster of differentiation 1) heavy chain in association with beta(2)-microglobulin (beta(2)m). Assembly occurs in the endoplasmic reticulum (ER) and involves the initial glycan-dependent association of the free heavy chain with calreticulin and calnexin and the thiol oxidoreductase ERp57. Folding and disulfide bond formation within the heavy chain occurs prior to beta(2)m binding. There are four N-linked glycans on the CD1d heavy chain, and we mutated them individually to ascertain their importance for the assembly and function of CD1d-beta(2)m heterodimers. None of the four were indispensable for assembly or the ability to bind alpha-galactosyl ceramide and to present it to human NKT cells. Nor were any required for the CD1d molecule to bind and present alpha-galactosyl ceramide after lysosomal processing of a precursor lipid, galactosyl-(alpha1-2)-galactosyl ceramide. However, one glycan, glycan 2 at Asn-42, proved to be of particular importance for the stability of the CD1d-beta(2)m heterodimer. A mutant CD1d heavy chain lacking glycan 2 assembled with beta(2)m and transported from the ER more rapidly than wild-type CD1d and dissociated more readily from beta(2)m upon exposure to detergents. A mutant expressing only glycan 1 dissociated completely from beta(2)m upon exposure to the detergent Triton X-100, whereas a mutant expressing only glycan 2 at Asn-42 was more stable. In addition, glycan 2 was not processed efficiently to the complex form in mature wild-type CD1d molecules. Modeling the glycans on the published structure indicated that glycan 2 interacts significantly with both the CD1d heavy chain and beta(2)m, which may explain these unusual properties.
Collapse
Affiliation(s)
- Crina Paduraru
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Shi MQ, Wang CR, Wei GJ, Pan WL, Appleyard G, Tabel H. Experimental African trypanosomiasis: lack of effective CD1d-restricted antigen presentation. Parasite Immunol 2006; 28:643-7. [PMID: 17096643 DOI: 10.1111/j.1365-3024.2006.00898.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BALB/c mice are highly susceptible to African trypanosomiasis, whereas C57BL/6 mice are relatively resistant. Other investigators have reported that the synthesis of IgG antibodies to purified membrane form of variant surface glycoprotein (mfVSG) of Trypanosoma brucei is CD1 restricted. In this study, we examine the role of the CD1d/NKT cell pathway in susceptibility and resistance of mice to infection by African trypanosomes. Administration of anti-CD1d antibodies to Trypanosoma congolense-infected BALB/c mice neither affects the parasitemia nor the survival time. Correspondingly, CD1d(-/-) and CD1d(+/+) BALB/c mice infected with T. congolense or T. brucei show no differences in either parasitaemia or survival time. The course of disease in relative resistant C57BL/6 mice infected with T. congolense is also not affected by the absence of CD1d. Parasitaemia, survival time, and plasma levels of IgG2a and IgG3 parasite-specific antibodies in infected CD1d(-/-) C57BL/6 are not different from those of infected CD1d(+/+) C57BL/6 mice. We conclude that CD1d-restricted immune responses do not play an important role in susceptibility/resistance of mice infected with virulent African trypanosomes. We speculate that virulent trypanosomes have an evasion mechanism that prevents the induction of a parasite-specific, CD1d-restricted immune response by the host.
Collapse
Affiliation(s)
- M Q Shi
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
216
|
Eguchi-Ogawa T, Morozumi T, Tanaka M, Shinkai H, Okumura N, Suzuki K, Awata T, Uenishi H. Analysis of the genomic structure of the porcine CD1 gene cluster. Genomics 2006; 89:248-61. [PMID: 17112699 DOI: 10.1016/j.ygeno.2006.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 09/04/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
CD1 is an MHC class I-like protein that presents lipid antigens to T cell receptors. We determined 470,187 bp of the genomic sequence encompassing the region encoding porcine CD1 genes. We identified 16 genes in this region and newly identified CD1A2, CD1B, CD1C, CD1D, and CD1E. Porcine CD1 genes were located in clusters between KIRREL and olfactory receptor (OR) genes, as observed in humans, although they were divided into two regions by a region encoding OR genes. Comparison of the genomic sequences of CD1 gene loci in pigs with other mammals showed that separation of the CD1 gene cluster by ORs was observed only in pigs. CD1A duplication in the porcine genome was estimated to have occurred after the divergence of the human and porcine. This analysis of the genomic sequence of the porcine CD1 family will contribute to our understanding of the evolution of mammalian CD1 genes.
Collapse
Affiliation(s)
- Tomoko Eguchi-Ogawa
- Animal Genome Research Program, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Zajonc DM, Ainge GD, Painter GF, Severn WB, Wilson IA. Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. THE JOURNAL OF IMMUNOLOGY 2006; 177:4577-83. [PMID: 16982895 DOI: 10.4049/jimmunol.177.7.4577] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterial phosphatidylinositol tetramannosides (PIM4) are agonists for a distinct population of invariant human (Valpha24) and mouse (Valpha14) NKT cells, when presented by CD1d. We determined the crystal structure at 2.6-A resolution of mouse CD1d bound to a synthetic dipalmitoyl-PIM2. Natural PIM2, which differs in its fatty acid composition is a biosynthetic precursor of PIM4, PIM6, lipomannan, and lipoarabinomannan. The PIM2 headgroup (inositol-dimannoside) is the most complex to date among all the crystallized CD1d ligands and is remarkably ordered in the CD1d binding groove. A specific hydrogen-bonding network between PIM2 and CD1d orients the headgroup in the center of the binding groove and above the A' pocket. A central cluster of hydrophilic CD1d residues (Asp(153), Thr(156), Ser(76), Arg(79)) interacts with the phosphate, inositol, and alpha1-alpha6-linked mannose of the headgroup, whereas additional specificity for the alpha1- and alpha2-linked mannose is conferred by Thr(159). The additional two mannoses in PIM4, relative to PIM2, are located at the distal 6' carbon of the alpha1-alpha6-linked mannose and would project away from the CD1d binding groove for interaction with the TCR. Compared with other CD1d-sphingolipid structures, PIM2 has an increased number of polar interactions between its headgroup and CD1, but reduced specificity for the diacylglycerol backbone. Thus, novel NKT cell agonists can be designed that focus on substitutions of the headgroup rather than on reducing lipid chain length, as in OCH and PBS-25, two potent variants of the highly stimulatory invariant NKT cell agonist alpha-galactosylceramide.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
218
|
Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together - a series of hypotheses on the etiology and pathogenesis of type 1 diabetes. Med Hypotheses 2006; 68:607-19. [PMID: 17045415 DOI: 10.1016/j.mehy.2006.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 01/09/2023]
Abstract
This paper presents a series of 10 hypotheses on the etiology of type 1 diabetes. We begin with the hypothesis that wheat gluten is one of the elusive environmental triggers in type 1 diabetes. Habitual consumption of wheat gluten increases the intestinal synthesis of dipeptidyl peptidase IV. This enzyme helps to shape the repertoire of peptides released into the small intestine following the ingestion of wheat gluten by catalyzing the release of X-Pro dipeptides from the N-terminus of the proline-rich glutenins and gliadins in wheat gluten. The release of gluten-derived peptides causes the tight junctions of the small intestine to open through a zonulin-dependent mechanism, which allows these peptides to enter the lamina propria where they get presented as antigens by HLA-DQ, -DR and CD1d molecules. Binding of one or more gluten peptides by CD1d leads to abrogation of oral tolerance, and a marked increase in peripheral immune responses to wheat proteins. Furthermore, it is our contention, that in response to beta cell apoptosis during normal remodeling of the pancreas and CCL19/CCL21 expression within the pancreatic lymph nodes (PLNs), gluten-loaded dendritic cells migrate from the small intestine to the PLNs. These dendritic cells present gluten-derived antigens on the surface of the PLNs, which leads to migration of CD4(-)CD8(-) gammadelta and CD4(-)CD8(+) alphabeta T cells to the pancreas where they mediate Fas and perforin dependent cytotoxicity. We also hypothesize that at least one of the type 1 diabetes associated HLA-DR molecules that bind and present wheat-derived peptide(s) also bind and present an islet cell antigen(s), activating plasma cell synthesis of islet cell autoantibodies and irrevocable, complement-dependent destruction of islet cells. Our final two hypotheses state that type 1 diabetes morbidity is reduced in those areas of globe where genetically susceptible individuals get adequate amounts of vitamin D, in the diet and/or through exposure to sunlight, and in areas where people are exposed to bacterial, viral, or parasitic infections in early childhood.
Collapse
Affiliation(s)
- William E Barbeau
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), 327 Wallace Hall, Blacksburg, VA 24061-0430, USA.
| | | | | |
Collapse
|
219
|
Wingender G, Kronenberg M. Invariant natural killer T cells in the response to bacteria: the advent of specific antigens. Future Microbiol 2006; 1:325-40. [PMID: 17661645 DOI: 10.2217/17460913.1.3.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in diverse immune reactions, ranging from self-tolerance and development of autoimmunity to responses to pathogens and tumors. Although some degree of autoreactivity of iNKT cells has been shown, it remained controversial whether the T-cell antigen receptor expressed by these cells could recognize microbial antigens, hampering the investigation of their physiological role during tolerance and immunity. Several recent publications have now defined natural antigens for the majority of iNKT cells in some Proteobacteria and in Borrelia burgdorferi, demonstrating specificity of these cells for microbes in addition to self-reactivity. The characterization of natural antigens from bacteria, and the iNKT cell response to bacteria containing them, are decisive steps toward the clarification of the natural role of iNKT cells in host defense against pathogens, and will likely spur numerous findings in the near future.
Collapse
MESH Headings
- Animals
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Bacteria/immunology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Models, Immunological
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy & Immunology (LIAI), Division of Developmental Immunology, San Diego, CA 92037, USA.
| | | |
Collapse
|
220
|
Abstract
CD1-restricted T cells can be activated by diverse lipids derived from mammals, bacteria and protozoa. Certain lipids function as antigens, which bind to CD1 proteins and contact T cell antigen receptors. Other lipids activate CD1-restricted T cells by functioning as adjuvants. By stimulating Toll-like receptors on antigen-presenting cells, these adjuvants alter cytokine secretion, lipid antigen synthesis and CD1 protein translation. Delineation of the separate mechanisms by which adjuvants and antigens activate CD1-restricted T cells is leading to new hypotheses about the functions of individual CD1 proteins during the transition from innate to acquired immune responses.
Collapse
Affiliation(s)
- D Branch Moody
- Division of Rheumatology, Immunology & Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
221
|
De Libero G, Mori L. How T lymphocytes recognize lipid antigens. FEBS Lett 2006; 580:5580-7. [PMID: 16949584 DOI: 10.1016/j.febslet.2006.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/15/2006] [Accepted: 08/15/2006] [Indexed: 11/18/2022]
Abstract
Recognition of lipid antigens by T lymphocytes is well established. Lipids are recognized by T cells when presented in association with CD1 antigen-presenting molecules. Both microbial and self lipids stimulate specific T lymphocytes, thus participating in immune reactions during infections and autoimmune diseases. The immune system uses a variety of strategies to solubilise lipid antigens, to facilitate their internalization, processing, and loading on CD1 molecules. Recent studies in the field of lipid antigen presentation have revealed new mechanisms which allow the immune system to sense lipids as stimulatory antigens.
Collapse
Affiliation(s)
- Gennaro De Libero
- Experimental Immunology, Department of Research, University Hospital, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | | |
Collapse
|
222
|
Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MREI, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 2006; 7:978-86. [PMID: 16921381 DOI: 10.1038/ni1380] [Citation(s) in RCA: 500] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 07/25/2006] [Indexed: 11/09/2022]
Abstract
Natural killer T (NKT) cells recognize glycosphingolipids presented by CD1d molecules and have been linked to defense against microbial infections. Previously defined foreign glycosphingolipids recognized by NKT cells are uniquely found in nonpathogenic sphingomonas bacteria. Here we show that mouse and human NKT cells also recognized glycolipids, specifically a diacylglycerol, from Borrelia burgdorferi, which causes Lyme disease. The B. burgdorferi-derived, glycolipid-induced NKT cell proliferation and cytokine production and the antigenic potency of this glycolipid was dependent on acyl chain length and saturation. These data indicate that NKT cells recognize categories of glycolipids beyond those in sphingomonas and suggest that NKT cell responses driven by T cell receptor-mediated glycolipid recognition may provide protection against diverse pathogens.
Collapse
Affiliation(s)
- Yuki Kinjo
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
The MHC class I-like CD1d glycoprotein is a member of the CD1 family of Ag-presenting molecules and is responsible for the selection of NKT cells. A number of ligands that can be presented by CD1d to NKT or other CD1d-restricted T cells have been identified. These include glycolipids from a marine sponge, bacterial glycolipids, normal endogenous glycolipids, tumor-derived phospholipids and glycolipids, and nonlipidic molecules. The presentation of many of these molecules can have immunopotentiating effects, such as serving as an adjuvant against malaria or resulting in a more rapid clearance of certain virus infections. They can also be protective in autoimmune diseases or cancer or can be deleterious. This review will highlight these ligands in a discussion of their potential use against (and role in the pathogenesis of) these diseases.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
224
|
Abstract
Invariant natural killer T (iNKT) cells are a small but powerful subset of regulatory T cells involved in the modulation of a variety of normal and pathological immune responses. In contrast to conventional or other types of regulatory T cells, they are activated by glycolipid and phospholipid ligands that are presented to them by the non-polymorphic, major histocompatibility complex class I-like molecule CD1d. The in-depth understanding of their function has resulted in successful, iNKT cell-centred experimental therapeutic interventions including prevention of graft-versus-host disease and anti-leukaemia effects. Extending these successes into the clinical arena will require better understanding of their contribution to the pathogenesis of human, including haematological, diseases.
Collapse
|
225
|
Compostella F, Ronchi S, Panza L, Mariotti S, Mori L, De Libero G, Ronchetti F. Synthesis of Sulfated Galactocerebrosides from an Orthogonal β-D-Galactosylceramide Scaffold for the Study of CD1–Antigen Interactions. Chemistry 2006; 12:5587-95. [PMID: 16637081 DOI: 10.1002/chem.200501586] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD1a protein binds sulfatide (3-O-sulfo-beta-D-galactosylceramide) to form an antigen complex that interacts with T cell receptors and activates T cells. To assess the role of the position of the sulfate in T cell activation, the synthesis of three beta-D-galactosylceramides, variously bearing a sulfate at position 2, 4, or 6 of galactose, has been planned and carried out. The compounds were synthesized by an orthogonal sulfation strategy from a common beta-D-galactosylceramide scaffold, which was in turn obtained through an efficient glycosylation reaction between a fully orthogonally protected galactosyl imidate and 3-O-benzoylazidosphingosine. Immunological evaluation of the three sulfated compounds in CD1a-mediated T cell activation, in comparison with natural sulfatide, provided evidence of the influence of the sulfate position in the recognition event between the antigen, the CD1 protein and the T cell receptor.
Collapse
Affiliation(s)
- Federica Compostella
- Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina, Università di Milano, Via Saldini 50, 20133-Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
226
|
Cheng TY, Relloso M, Van Rhijn I, Young DC, Besra GS, Briken V, Zajonc DM, Wilson IA, Porcelli S, Moody DB. Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO J 2006; 25:2989-99. [PMID: 16794581 PMCID: PMC1500985 DOI: 10.1038/sj.emboj.7601185] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 05/16/2006] [Indexed: 01/27/2023] Open
Abstract
Cellular CD1 proteins bind lipids that differ in length (C(12-80)), including antigens that exceed the capacity of the CD1 groove. This could be accomplished by trimming lipids to a uniform length before loading or by inserting each lipid so that it penetrates the groove to a varying extent. New assays to detect antigen fragments generated within human dendritic cells showed that bacterial antigens remained intact, even after delivery to lysosomes, where control lipids were cleaved. Further, recombinant CD1b proteins could bind and present C(80) lipid antigens using a mechanism that did not involve cellular enzymes or lipid cleavage, but was regulated by pH in the physiologic range. We conclude that endosomal acidification acts directly, rather than through enzymatic trimming, to insert lipids into CD1b. Lipids are loaded in an intact form, so that they likely protrude through a portal near the bottom of the groove, which represents an escape hatch for long lipids from mycobacterial pathogens.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Miguel Relloso
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Department of Infection and Immunity, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - David C Young
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gurdyal S Besra
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, UK
| | - Volker Briken
- Department of Immunology and Microbiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dirk M Zajonc
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven Porcelli
- Department of Immunology and Microbiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
227
|
Caporale CM, Papola F, Fioroni MA, Aureli A, Giovannini A, Notturno F, Adorno D, Caporale V, Uncini A. Susceptibility to Guillain-Barré syndrome is associated to polymorphisms of CD1 genes. J Neuroimmunol 2006; 177:112-8. [PMID: 16820217 DOI: 10.1016/j.jneuroim.2006.05.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 11/18/2022]
Abstract
Guillain-Barré syndrome (GBS) is the prototype of a postinfectious autoimmune neuropathy. Molecular mimicry between glycolipid antigens expressed by an infective antigen such as Campylobacter jejuni and the human peripheral nerve has been hypothesized to be the causative mechanism of GBS. However, only 1/1000 of C. jejuni enteritis develops GBS. This emphasizes the importance of host-related factors in the development of the disease. HLA studies in GBS failed to show an association or gave conflicting results but MHC class I and II process and present peptides to T lymphocytes making unlikely that the HLA system plays a role in GBS with autoantibodies against self-gangliosides. CD1 molecules are MCH-like glycoproteins specialized in capturing and presenting a variety of glycolipid to antigen-specific T cells. There are five closely linked CD1 genes in humans located in chromosome 1 (named CD1A, B, C, D, and E) all showing limited polymorphism in exon 2 which codifies for the alpha1 domain of CD1 molecules. The nucleotide substitutions in CD1B and CD1C are rare and reported to be silent. In 100 controls and 65 GBS patients (21 with a recent C. jejuni infection and 35 with anti-glycolipid antibodies) we used direct sequencing by polymerase chain reaction to genotype exon 2 of CD1A, CD1D and CD1E genes. CD1D is monomorphic in both controls and patients whereas CD1A and CD1E are biallelic in exon 2. Subjects with CD1E*01/01 genotype are 2.5 times more likely to develop GBS, whereas subjects with CD1A*01/02 or CD1E*01/02 have a reduced relative risk by 3.6 and 2.3 times respectively. The combination of CD1A*01/02 and CD1E*01/02 reduces by 5 times the risk of developing GBS. Although a correlation between CD1E*01/01 genotype and recent C. jejuni infection or presence of antiganglioside antibodies was not found the overall findings indicate that susceptibility to develop GBS is associated with polymorphisms of CD1E and CD1A genes.
Collapse
Affiliation(s)
- Christina M Caporale
- Department of Oncology and Neurosciences and Institute of Aging (Ce.S.I), Foundation University G. d'Annunzio, Chieti-Pescara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Huber SA. CD1d expression on hemopoietic cells promotes CD4+ Th1 response in coxsackievirus B3 induced myocarditis. Virology 2006; 352:226-36. [PMID: 16730774 DOI: 10.1016/j.virol.2006.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/22/2006] [Accepted: 04/08/2006] [Indexed: 11/25/2022]
Abstract
Coxsackievirus B3 induced murine myocarditis depends upon CD1d expression and upon a population of CD1d-restricted Vgamma4+ T cells. Infection upregulates CD1d expression in CD4+ T cells. Bone marrow chimeras were made between BALB/c and BALB/c CD1d-/- mice and showed that CD1d expression in either hemopoietic and non-hemopoietic cells induces myocarditis, although CD1d expression on hemopoietic cells was more effective in increasing Vgamma4+ cell numbers and activation, and CD4+ IFNgamma+ cell response than CD1d expression on non-hemopoietic cells. Co-culture of enriched CD4+ cells from infected CD1d-/- and BALB/c mice with Vgamma4+ T cells demonstrated that the Vgamma4+ cells bias the CD4+ cell response to the Th1 phenotype through CD1d. Anti-CD1d antibody effectively blocked promotion of IFNgamma expression by the CD4+ cell population. These results show that Vgamma4+ cells modulate developing adaptive immunity through recognition of CD1d on CD4+ T cells, and that this interaction, more than Vgamma4+ cell interaction with infected cardiocytes, determines pathogenicity.
Collapse
Affiliation(s)
- S A Huber
- University of Vermont, Department of Pathology, 208 South Park Drive, Suite #2, Burlington, VT 05446, USA.
| |
Collapse
|
229
|
|
230
|
Abstract
An emerging area of investigation is the role of lipids as immunological antigens. CD1 glycoproteins comprise a family of molecules that are specialized for presenting lipids, glycolipids and lipopeptides to T lymphocytes. Variations in the cytoplasmic tail sequences of CD1 isoforms lead to differential association with adaptor proteins and consequently divergent routes of intracellular trafficking, resulting in surveillance of distinct cellular sites for binding lipid antigens. CD1 molecules efficiently gain access to lipids from intracellular microbial pathogens in endosomal compartments, and the trafficking and lipid-binding specialization of CD1 isoforms may correlate with the endosomal segregation of structurally distinct lipids. Endosomal trafficking is also critical for CD1d molecules to load antigenic self-lipids that are presented to autoreactive CD1d-restricted natural killer (NK)T cells and is required for the positive selection of these unique T cells. Recent studies reveal a key role for accessory proteins that facilitate the uptake of lipid antigens by CD1 molecules. These include lysosomal lipid-transfer proteins, such as the saposins, and apolipoprotein E, the major serum factor that binds and delivers extracellular lipids to antigen-presenting cells. These advances in understanding the CD1 lipid antigen presentation system raise new considerations about the role of the immune response in lipid-related diseases.
Collapse
Affiliation(s)
- Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, 53706, USA,
| |
Collapse
|
231
|
Abstract
The most well-known molecular paradigm of antigen recognition by T cells involves partial digestion of proteins to generate small peptides, which bind to major histocompatibility complex (MHC) proteins. Recent studies of CD1, an MHC class I homolog encoded outside the MHC, have revealed that it presents diverse glycolipids to T cells. The molecular mechanism for lipid antigen recognition involves insertion of the lipid portion of antigens into a hydrophobic groove to form CD1-lipid complexes, which contact T-cell receptors (TCRs). Here, we examine the known antigen structures presented by CD1, the majority of which have sugar moieties that are capable of interacting with TCRs. Recognition of carbohydrate epitopes is precise, and lipid-reactive T cells alter systemic immune responses in models of infectious and autoimmune disease. These findings provide a previously unrecognized mechanism by which the cellular immune system can recognize alterations in many types of carbohydrate structures.
Collapse
Affiliation(s)
- David C Young
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Smith Building Room 514, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| | | |
Collapse
|
232
|
Abstract
Since the first crystal structure determinations of alphabeta T cell receptors (TCRs) bound to class I MHC-peptide (pMHC) antigens in 1996, a sizable database of 24 class I and class II TCR/pMHC complexes has been accumulated that now defines a substantial degree of structural variability in TCR/pMHC recognition. Recent determination of free and bound gammadelta TCR structures has enabled comparisons of the modes of antigen recognition by alphabeta and gammadelta T cells and antibodies. Crystal structures of TCR accessory (CD4, CD8) and coreceptor molecules (CD3epsilondelta, CD3epsilongamma) have further advanced our structural understanding of most of the components that constitute the TCR signaling complex. Despite all these efforts, the structural basis for MHC restriction and signaling remains elusive as no structural features that define a common binding mode or signaling mechanism have yet been gleaned from the current set of TCR/pMHC complexes. Notwithstanding, the impressive array of self, foreign (microbial), and autoimmune TCR complexes have uncovered the diverse ways in which antigens can be specifically recognized by TCRs.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Structural Biology, University of Göttingen, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
233
|
Gadola SD, Koch M, Marles-Wright J, Lissin NM, Shepherd D, Matulis G, Harlos K, Villiger PM, Stuart DI, Jakobsen BK, Cerundolo V, Jones EY. Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors. J Exp Med 2006; 203:699-710. [PMID: 16520393 PMCID: PMC2118257 DOI: 10.1084/jem.20052369] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/02/2006] [Indexed: 01/05/2023] Open
Abstract
Invariant human TCR Valpha24-Jalpha18+/Vbeta11+ NKT cells (iNKT) are restricted by CD1d-alpha-glycosylceramides. We analyzed crystal structures and binding characteristics for an iNKT TCR plus two CD1d-alpha-GalCer-specific Vbeta11+ TCRs that use different TCR Valpha chains. The results were similar to those previously reported for MHC-peptide-specific TCRs, illustrating the versatility of the TCR platform. Docking TCR and CD1d-alpha-GalCer structures provided plausible insights into their interaction. The model supports a diagonal orientation of TCR on CD1d and suggests that complementarity determining region (CDR)3alpha, CDR3beta, and CDR1beta interact with ligands presented by CD1d, whereas CDR2beta binds to the CD1d alpha1 helix. This docking provides an explanation for the dominant usage of Vbeta11 and Vbeta8.2 chains by human and mouse iNKT cells, respectively, for recognition of CD1d-alpha-GalCer.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1d
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/immunology
- Crystallography, X-Ray
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Humans
- Killer Cells, Natural/immunology
- Mice
- Models, Molecular
- Protein Binding/immunology
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Structure-Activity Relationship
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Stephan D Gadola
- Department of Rheumathology and Clinical Immunology, University of Bern, Inselspital, Berne CH-3010, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH. Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 2006; 103:3972-7. [PMID: 16537470 PMCID: PMC1449630 DOI: 10.1073/pnas.0600285103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer T (NKT) cells provide an innate-type immune response upon T cell receptor interaction with CD1d-presented antigens. We demonstrate through equilibrium tetramer binding and antigen presentation assays with Valpha14i-positive NKT cell hybridomas that the Sphingomonas glycolipid alpha-galacturonosyl ceramide (GalA-GSL) is a NKT cell agonist that is significantly weaker than alpha-galactosylceramide (alpha-GalCer), the most potent known NKT agonist. For GalA-GSL, a shorter fatty acyl chain, an absence of the 4-OH on the sphingosine tail and a 6'-COOH group on the galactose moiety account for its observed antigenic potency. We further determined the crystal structure of mCD1d in complex with GalA-GSL at 1.8-A resolution. The overall binding mode of GalA-GSL to mCD1d is similar to that of the short-chain alpha-GalCer ligand PBS-25, but its sphinganine chain is more deeply inserted into the F' pocket due to alternate hydrogen-bonding interactions between the sphinganine 3-OH with Asp-80. Subsequently, a slight lateral shift (>1 A) of the galacturonosyl head group is noted at the CD1 surface compared with the galactose of alpha-GalCer. Because the relatively short C(14) fatty acid of GalA-GSL does not fully occupy the A' pocket, a spacer lipid is found that stabilizes this pocket. The lipid spacer was identified by GC/MS as a mixture of saturated and monounsaturated palmitic acid (C(16)). Comparison of available crystal structures of alpha-anomeric glycosphingolipids now sheds light on the structural basis of their differential antigenic potency and has led to the design and synthesis of NKT cell agonists with enhanced cell-based stimulatory activities compared with alpha-GalCer.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | | | - Barbara A. Sullivan
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121
| | - Yuki Kinjo
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121
| | - Ian A. Wilson
- Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | | |
Collapse
|
235
|
Dijkstra JM, Kiryu I, Yoshiura Y, Kumánovics A, Kohara M, Hayashi N, Ototake M. Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2006; 58:152-67. [PMID: 16518622 DOI: 10.1007/s00251-006-0086-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022]
Abstract
As part of an ongoing elucidation of rainbow trout major histocompatibility complex (MHC) class I, the polymorphism of two MHC class Ib loci was analyzed. These loci, Onmy-UCA and Onmy-UDA, are situated head-to-tail and share more than 89% nucleotide identity in their open reading frames. They share 80% identity with some trout Ia alleles. The deduced amino acid sequences suggest that the UCA and UDA molecules are transported to endosomal compartments and may bind peptides in their binding groove. Our survey revealed seven UCA and eight UDA alleles. Similarity indices overlap when comparing within and between UCA and UDA alleles and some cross-locus motif variation is observed. In most trout both UCA and UDA transcripts were found. However, there probably is functional redundancy, because some trout lacked transcription of one of the two loci. Furthermore, for some UCA and UDA alleles, splicing deficiencies, early stop codons, and upstream start codons were found, which may interfere with efficient protein expression. The present study is the first extensive report on MHC class Ib polymorphism assigned to locus in ectotherm species.
Collapse
Affiliation(s)
- Johannes Martinus Dijkstra
- Inland Station, Fisheries Research Agency, National Research Institute of Aquaculture, Tamaki, Mie 519-0423, Japan.
| | | | | | | | | | | | | |
Collapse
|
236
|
Adly MA, Adley MA, Assaf HA, Hussein M. Expression of CD1d in human scalp skin and hair follicles: hair cycle related alterations. J Clin Pathol 2006; 58:1278-82. [PMID: 16311347 PMCID: PMC1770800 DOI: 10.1136/jcp.2005.027383] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND CD1d belongs to a family of antigen presenting molecules that are structurally and distantly related to the classic major histocompatibility complex class I (MHC I) proteins. However, unlike MHC I molecules, which bind protein antigens, CD1d binds to lipid and glycolipid antigens. CD1d is expressed by cells of lymphoid and myeloid origin, and by cells outside of the lymphoid and myeloid lineages, such as human keratinocytes of psoriatic skin. AIMS To investigate whether CD1d is also expressed in sun exposed skin and in the immuno-privileged anagen hair follicle. MATERIALS/METHODS CD1d immunoreactivity was studied in human scalp skin and hair follicles of healthy women in situ by immunofluorescent and light microscopic immunohistology. Skin biopsies were obtained from normal human scalp containing mainly anagen VI hair follicles from women (age, 53-57 years) undergoing elective plastic surgery. RESULTS CD1d showed strong immunostaining in human scalp skin epidermis, pilosebaceous units, and eccrine glands. In the epidermis, CD1d was strongly expressed by basal and granular keratinocytes. In hair follicles, CD1d was expressed in the epithelial compartment and showed hair cycle related alterations, with an increase in the anagen and a reduction in the catagen and telogen phases. CONCLUSIONS These results suggest that CD1d plays a role in human scalp skin immunology and protection against lipid antigen rich infectious microbes. They also raise the question of whether keratinocytes of the immuno-privileged anagen hair follicle can present lipid antigens to natural killer T cells. These data could help provide new strategies for the manipulation of hair related disorders.
Collapse
Affiliation(s)
- M A Adly
- Department of Zoology, Sohag Faculty of Science, South Valley University, Sohage, 44106 Egypt
| | | | | | | |
Collapse
|
237
|
Chen N, McCarthy C, Drakesmith H, Li D, Cerundolo V, McMichael AJ, Screaton GR, Xu XN. HIV-1 down-regulates the expression of CD1d via Nef. Eur J Immunol 2006; 36:278-86. [PMID: 16385629 DOI: 10.1002/eji.200535487] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HIV-1 has evolved several strategies to subvert host immune responses to the infected cells. One is to inhibit CTL recognition by HIV-1 Nef-mediated down-regulation of MHC-I expression on the surface of infected cells. Here we report that Nef also reduces the expression of the non-classical MHC-I like CD1d molecule, a third lineage of antigen-presenting molecule, which presents lipid antigens. Nef achieves this by increasing internalization of CD1d molecules from the cell surface and retaining CD1d in the trans-Golgi-network (TGN). This effect depends on a tyrosine-based motif present in CD1 cytoplasmic tail as well as the actions of four Nef motifs, which are known to be involved in the down-regulation of MHC-I or CD4. These results suggest that Nef regulates intracellular trafficking of CD1d via a distinct but shared pathway with MHC-I and CD4. Thus, HIV-1 reduces the visibility of its infected cells not only to MHC-I-restricted T cells but also to CD1d-restricted NKT cells. Given that CD1d-restricted T cells have unique effector and regulatory functions in innate and adapted immune responses as compared with their counterpart MHC-restricted T cells, our data provide additional new insights into molecular basis of HIV-1-mediated damage to the immune system.
Collapse
Affiliation(s)
- Nan Chen
- MRC Human Immunology Unit and Molecular Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Saito N, Takahashi M, Akahata W, Ido E, Hidaka C, Ibuki K, Miura T, Hayami M, Takahashi H. Analysis of evolutionary conservation in CD1d molecules among primates. ACTA ACUST UNITED AC 2006; 66:674-82. [PMID: 16305684 DOI: 10.1111/j.1399-0039.2005.00504.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The hereditary conservation in the genetically encoded CD1D sequences of various primates was analyzed. Genomic CD1D sequences of 17 rhesus macaques with distinct origins, eight Indian and nine Chinese, were examined and differences of only one or two nucleotides were detected and the consensus sequence of rhesus CD1D was determined. CD1D consensus sequences of three African green monkeys (AGMs) and the rhesus monkeys were then compared to study the evolutionary differences among interspecies. The CD1D consensus sequence determined from AGMs apparently differed by seven nucleotides from the rhesus consensus sequence, and nucleotide difference induced only three amino acid changes within Exon3, corresponding to the alpha2 domain of CD1d having a hydrophobic ligand-binding pocket. Such changes in the alpha2 domain may alter the characteristics of the SIV-derived glycolipid/lipid antigens presented by each CD1d molecule to innate natural killer T cells. In addition, the CD1D genomic sequences of three chimpanzees (chimps) were determined. To our surprise, although Exon2 and Exon3 reflecting antigen-binding alpha1 and alpha2 domains in chimps' CD1D were identical to that in humans except one amino acid, three amino acids within Exon4, reflecting alpha3 domain, were distinct from humans, and one of them was identical to those in rhesus and AGM CD1D. On the basis of the findings, the evolutionary relationship of the CD1d molecules among the various primates and their HIV-1/SIV susceptibility will be discussed.
Collapse
Affiliation(s)
- N Saito
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Male D, Brostoff J, Roth DB, Roitt I. T Cell Receptors and MHC Molecules. Immunology 2006. [DOI: 10.1016/b0-323-03399-7/50007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
240
|
Duprat E, Lefranc MP, Gascuel O. A simple method to predict protein-binding from aligned sequences--application to MHC superfamily and beta2-microglobulin. Bioinformatics 2005; 22:453-9. [PMID: 16352655 DOI: 10.1093/bioinformatics/bti826] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The MHC superfamily (MhcSF) consists of immune system MHC class I (MHC-I) proteins, along with proteins with a MHC-I-like structure that are involved in a large variety of biological processes. beta2-Microglobulin (B2M) non-covalent binding to MHC-I proteins is required for their surface expression and function, whereas MHC-I-like proteins interact, or not, with B2M. This study was designed to predict B2M binding (or non-binding) of newly identified MhcSF proteins, in order to decipher their function, understand the molecular recognition mechanisms and identify deleterious mutations. IMGT standardization of MhcSF protein domains provides a unique numbering of the multiple alignment positions, and conditions to develop such predictive tool. METHOD We combine a simple-Bayes classifier with IMGT unique numbering. Our method involves two steps: (1) selection of discriminant binary features, which associate an alignment position with an amino acid group; and (2) learning of the classifier by estimating the frequencies of selected features, conditionally to the B2M binding property. RESULTS Our dataset contains aligned sequences of 806 allelic forms of 47 MhcSF proteins, corresponding to 9 receptor types and 4 mammalian species. Eighteen discriminant features are selected, belonging to B2M contact sites, or stabilizing the molecular structure required for this contact. Three leave-one-out procedures are used to assess classifier performance, which corresponds to B2M binding prediction for: (1) new proteins, (2) species not represented in the dataset and (3) new receptor types. The prediction accuracy is high, i.e. 98, 94 and 70%, respectively. Application of our classifier to lower vertebrate MHC-I proteins indicates that these proteins bind to B2M and should then be expressed on the cellular surface by a process similar to that of mammalian MHC-I proteins. These results demonstrate the usefulness and accuracy of our (simple) approach, which should apply to other function or interaction prediction problems.
Collapse
Affiliation(s)
- Elodie Duprat
- Laboratoire d'ImmunoGénétique Moléculaire IGH (UPR CNRS 1142), 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | |
Collapse
|
241
|
Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K. Lipid-binding Proteins in Membrane Digestion, Antigen Presentation, and Antimicrobial Defense. J Biol Chem 2005; 280:41125-8. [PMID: 16230343 DOI: 10.1074/jbc.r500015200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie, D-53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
242
|
Linsen L, Somers V, Stinissen P. Immunoregulation of Autoimmunity by Natural Killer T Cells. Hum Immunol 2005; 66:1193-202. [PMID: 16690406 DOI: 10.1016/j.humimm.2006.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Indexed: 11/23/2022]
Abstract
Natural killer T (NKT) cells are a conserved subpopulation of lymphocytes that recognize glycolipid antigens in a CD1d context. Upon activation through their semi-invariant T cell receptor, these cells rapidly release large amounts of immunomodulating Th1 and Th2 cytokines. NKT cells have therefore been implicated in immune responses controlling various diseases, including infection, cancer, transplantation, and autoimmunity. Stimulation of the immunoregulatory capacity of NKT cells by the prototypical antigen alpha-galactosylceramide results in amelioration of disease in several animal models. This review will focus on the current knowledge of human NKT cells and their role in autoimmune diseases. The features of these cells and their importance in regulation of autoimmunity suggest that NKT cell-based therapies might be an interesting approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Loes Linsen
- Biomedical Research Institute, Hasselt University, and Transnationale Universiteit Limburg, School of Life Sciences, B-3590 Diepenbeek, Belgium
| | | | | |
Collapse
|
243
|
Kent SC, Chen Y, Clemmings SM, Viglietta V, Kenyon NS, Ricordi C, Hering B, Hafler DA. Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:4458-64. [PMID: 16177088 DOI: 10.4049/jimmunol.175.7.4458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Altered frequency and function of peripheral invariant NKT (iNKT) cells have been implicated in the regulation of murine and human type 1a diabetes. To examine regulatory cells from the site of drainage of autoinflammatory tissue and autoantigenic T cell priming in diabetes, we directly cloned iNKT cells from human pancreatic draining lymph nodes (PLN). From 451 T cell clones from control and diabetic PLN, we derived 55 iNKT cells by two methods and analyzed function by cytokine secretion. iNKT cell clones isolated from control PLN secreted IL-4 and IFN-gamma upon TCR stimulation. For type 1a diabetic subjects, PLN iNKT cell clones from three samples secreted IFN-gamma and no IL-4. In a rare recent onset diabetic sample with islet-infiltrating CD4+ T cells, the phenotype of PLN iNKT cell clones was mixed. From normal and diabetic PLN, one-third of CD1d tetramer+-sorted T cell clones were reactive with CD1d transfectants or proliferated/secreted cytokine in response to alpha-galactosylceramide-pulsed PBMCs; tetramer-staining T cell clones from diabetic PLN did not secrete IL-4. This is the first report directly examining iNKT cells from lymph nodes draining the site of autoimmunological attack in humans; iNKT cells were altered in cytokine secretion as previously reported for circulating iNKT cells in human type 1a diabetes.
Collapse
Affiliation(s)
- Sally C Kent
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. ACTA ACUST UNITED AC 2005; 202:1517-26. [PMID: 16314439 PMCID: PMC2213337 DOI: 10.1084/jem.20051625] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sulfatide derived from the myelin stimulates a distinct population of CD1d-restricted natural killer T (NKT) cells. Cis-tetracosenoyl sulfatide is one of the immunodominant species in myelin as identified by proliferation, cytokine secretion, and CD1d tetramer staining. The crystal structure of mouse CD1d in complex with cis-tetracosenoyl sulfatide at 1.9 Å resolution reveals that the longer cis-tetracosenoyl fatty acid chain fully occupies the A′ pocket of the CD1d binding groove, whereas the sphingosine chain fills up the F′ pocket. A precise hydrogen bond network in the center of the binding groove orients and positions the ceramide backbone for insertion of the lipid tails in their respective pockets. The 3′-sulfated galactose headgroup is highly exposed for presentation to the T cell receptor and projects up and away from the binding pocket due to its β linkage, compared with the more intimate binding of the α-glactosyl ceramide headgroup to CD1d. These structure and binding data on sulfatide presentation by CD1d have important implications for the design of therapeutics that target T cells reactive for myelin glycolipids in autoimmune diseases of the central nervous system.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Buschard K, Blomqvist M, Osterbye T, Fredman P. Involvement of sulfatide in beta cells and type 1 and type 2 diabetes. Diabetologia 2005; 48:1957-62. [PMID: 16143863 DOI: 10.1007/s00125-005-1926-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 03/24/2005] [Indexed: 11/25/2022]
Abstract
Mammalian tissues express beta-isoforms of glycosphingolipids and, among these, sulfatide (sulphated galactosylceramide) is present in the beta cells, and it is here that the short fatty acid chain (C16) isoform is predominately found. In vitro studies have shown that sulfatide preserves insulin crystals and facilitates insulin monomerisation under certain biochemical conditions. It also activates beta cell potassium channels and moderates insulin secretion. Anti-sulfatide antibodies are seen in type 1 diabetes, and immunological presentation of glycosphingolipids by the non-classical CD1 molecules has recently been reported. It is via this mechanism that alpha-galactosylceramide and sulfatide are able to influence the innate immune system and inhibit autoimmunity, possibly through regulatory natural killer T cells. Administration of sulfatide substantially reduces the incidence of diabetes in non-obese diabetic mice and prevents antigen-induced experimental autoimmune encephalomyelitis in wild-type mice. Sulfatide has specific anti-inflammatory properties, increasing the number of CD3+CD25+ regulatory T cells and reducing production of several cytokines, including TNF-alpha. Patients with type 2 diabetes have low serum concentrations of sulfatide, and some animal models of type 2 diabetes have low pancreatic expression of C16:0 sulfatide; administration of this increases insulin secretion and improves first-phase insulin response in Zucker fatty rats. Glycosphingolipids in general, and sulfatide in particular, appear relevant to both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- K Buschard
- Bartholin Institute, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
246
|
Giabbai B, Sidobre S, Crispin MDM, Sanchez-Ruìz Y, Bachi A, Kronenberg M, Wilson IA, Degano M. Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:977-84. [PMID: 16002697 DOI: 10.4049/jimmunol.175.2.977] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NKT cells are immunoregulatory lymphocytes whose activation is triggered by the recognition of lipid Ags in the context of the CD1d molecules by the TCR. In this study we present the crystal structure to 2.8 A of mouse CD1d bound to phosphatidylcholine. The interactions between the ligand acyl chains and the CD1d molecule define the structural and chemical requirements for the binding of lipid Ags to CD1d. The orientation of the polar headgroup toward the C terminus of the alpha1 helix provides a rationale for the structural basis for the observed Valpha chain bias in invariant NKT cells. The contribution of the ligand to the protein surface suggests a likely mode of recognition of lipid Ags by the NKT cell TCR.
Collapse
MESH Headings
- Animals
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Cell Line
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Drosophila melanogaster
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Ligands
- Lymphocyte Activation/immunology
- Mice
- Models, Molecular
- Phosphatidylcholines/chemistry
- Phosphatidylcholines/immunology
- Phosphatidylcholines/metabolism
- Protein Binding/immunology
- Protein Isoforms/chemistry
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Surface Properties
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Barbara Giabbai
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Zhu X, Peng J, Chen D, Liu X, Ye L, Iijima H, Kadavil K, Lencer WI, Blumberg RS. Calnexin and ERp57 facilitate the assembly of the neonatal Fc receptor for IgG with beta 2-microglobulin in the endoplasmic reticulum. THE JOURNAL OF IMMUNOLOGY 2005; 175:967-76. [PMID: 16002696 DOI: 10.4049/jimmunol.175.2.967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neonatal FcR (FcRn) consists of an MHC class I-like H chain in noncovalent association with beta(2)-microglobulin (beta(2)m). The proper folding of FcRn in the endoplasmic reticulum is essential for FcRn function. Using a low stringency immunoprecipitation of human FcRn, we observed the coprecipitation of an 88-kDa band. Mass spectrometry analysis revealed that this band was identical with calnexin (CNX). This association was verified by Western blotting the CNX or FcRn immunoprecipitates with either an anti-FcRn or anti-CNX Ab. In the beta(2)m-null FO-1 cell transfected with FcRn H chain alone or both FcRn H chain and beta(2)m, CNX bound to the FcRn H chain before the FcRn H chain association with beta(2)m. However, calreticulin only bound to the FcRn H chain-beta(2)m complex. Furthermore, the thiol oxidoreductase ERp57 was detected in FcRn-CNX complexes, suggesting its role in disulfide bond formation of the FcRn H chain. Removal of the N-linked glycosylation site from the FcRn H chain resulted in a decreased association of the FcRn H chain for beta(2)m. However, the absence of CNX did not significantly affect FcRn assembly as defined by the ability of FcRn to bind IgG and exit to the cell surface. This suggests that other chaperones compensate for the function of CNX in FcRn assembly. In addition, we found that tapasin and TAP were not involved in FcRn assembly, as shown by coimmunoprecipitation in THP-1 cells and IgG-binding assays in 721.220 (tapasin-deficient) and 721.174 (TAP-deficient) cells transfected with FcRn. These findings show the importance of chaperones in FcRn assembly.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Maruoka T, Tanabe H, Chiba M, Kasahara M. Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 2005; 57:590-600. [PMID: 16133451 DOI: 10.1007/s00251-005-0016-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Mammals have several major histocompatibility complex (MHC) class-I-like genes. Although some of them are assumed to have originated before the emergence of mammals, the origin of class-I-like genes is poorly understood. We analyzed here the recently released chicken draft genome sequence and identified two families of class-I-like genes: CD1 and PROCR (the gene for the endothelial protein C receptor). Chickens have two CD1 genes, designated CD1.1 and CD1.2, located in tandem approximately 840 bp apart from each other. Chicken CD1.1 and CD1.2 are neither group 1- nor group 2-like, indicating that the two groups of CD1 emerged in a mammalian lineage. Although the database provides no information as to their chromosomal localization, we found that chicken CD1 genes are located adjacent to the previously characterized MHC B system contig on chromosome 16. We confirmed the linkage of CD1 to the B system by dual-color fluorescence in situ hybridization. Chickens have a single copy of PROCR. Among known class-I-like genes, PROCR is most closely related to CD1, indicating that CD1 and PROCR constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals.
Collapse
Affiliation(s)
- Takako Maruoka
- Department of Pathology, Division of Pathophysiological Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
249
|
Bilenki L, Wang S, Yang J, Fan Y, Joyee AG, Yang X. NK T Cell Activation PromotesChlamydia trachomatisInfection In Vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:3197-206. [PMID: 16116210 DOI: 10.4049/jimmunol.175.5.3197] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We used two approaches to examine the role of NK T cells (NKT) in an intracellular bacterial (Chlamydia trachomatis mouse pneumonitis (C. muridarum)) infection. One is to use CD1 gene knockout (KO) mice, which lack NKT, and the other is to activate NKT using alpha-galactosylceramide (alpha-GalCer), a natural ligand of these cells. The data showed a promoting effect of NKT activation on Chlamydia lung infection. Specifically, CD1 KO mice exhibited significantly lower levels of body weight loss, less severe pathological change and lower chlamydial in vivo growth than wild-type mice. Immunological analysis showed that CD1 KO mice exhibited significantly lower C. muridarum-specific IL-4 and serum IgE Ab responses as well as more pronounced delayed-type hypersensitivity response compared with wild-type controls. In line with the finding in KO mice, the in vivo stimulation of NKT using alpha-GalCer enhanced chlamydial growth in vivo, which were correlated with reduced delayed-type hypersensitivity response and increased C. muridarum-driven IL-4/IgE production. Moreover, neutralization of IL-4 activity in the alpha-GalCer-treated BALB/c mice significantly reduced the promoting effect of alpha-GalCer treatment on chlamydial growth in vivo. These data provide in vivo evidence for the involvement of NKT in a bacterial pathogenesis and its role in promoting Th2 responses during infection.
Collapse
Affiliation(s)
- Laura Bilenki
- Laboratory for Infection and Immunity, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
250
|
Lu J, Fraser-Reid B, Gowda C. A Strategy for Ready Preparation of Glycolipids for Multivalent Presentation. Org Lett 2005; 7:3841-3. [PMID: 16119912 DOI: 10.1021/ol0511981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The olefinic residue of n-pentenyl glycosides serves as the trigger for regioselective construction of higher saccharides and then for elaboration in multivalent glycolipids. [reaction: see text]
Collapse
Affiliation(s)
- Jun Lu
- Natural Products and Glycotechnology Research Institute, Inc., 595-F Weathersfield Road, Fearrington Post 595 F, Pittsboro, NC 27312, USA.
| | | | | |
Collapse
|