201
|
Alrefai RH, Beecham EJ, Bohr VA, Gearhart PJ. Less repair of pyrimidine dimers and single-strand breaks in genes by scid cells. Biochem Biophys Res Commun 1999; 264:878-82. [PMID: 10544024 DOI: 10.1006/bbrc.1999.1608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Severe combined immunodeficient (Scid) mice have a mutation in the catalytic subunit of the DNA binding protein kinase that is involved in repair of double-strand breaks in DNA. To determine if the protein also influences repair of single-strand breaks, we examined the ability of Scid cells to repair lesions introduced by ultraviolet light and gamma-ray irradiation. DNA repair was measured both in total genomic DNA and in specific genes from murine Scid and wildtype fibroblast cell lines. The removal of pyrimidine dimers and repair of strand breaks in genes was measured using quantitative Southern blot analyses. After ultraviolet irradiation, there was no significant difference in the repair of photoproducts in bulk DNA between Scid and wildtype cells, as measured by cellular survival and unscheduled DNA synthesis. However, deficient repair was evident in genes, where Scid cells had 25-50% less repair in the c-myc and dihydrofolate reductase genes. After gamma-irradiation, Scid fibroblasts had 20-35% less repair of DNA breaks in immunoglobulin kappa and heavy constant genes than wildtype cells. The data suggest that intact DNA-PK enzyme is needed for the efficient operation of cellular repair of pyrimidine dimers and single-strand breaks in genes, as well as in its established role in rejoining double-strand breaks.
Collapse
Affiliation(s)
- R H Alrefai
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland, 21224, USA
| | | | | | | |
Collapse
|
202
|
Björk-Eriksson T, West C, Nilsson A, Magnusson B, Svensson M, Karlsson E, Slevin N, Lewensohn R, Mercke C. The immunohistochemical expression of DNA-PKCS and Ku (p70/p80) in head and neck cancers: relationships with radiosensitivity. Int J Radiat Oncol Biol Phys 1999; 45:1005-10. [PMID: 10571209 DOI: 10.1016/s0360-3016(99)00268-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The DNA-PK complex is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. This study evaluated the relationship between the immunohistochemical expression of the individual components of DNA-PK and cellular radiosensitivity in head and neck cancers. METHODS AND MATERIALS Biopsies from patients with previously untreated squamous cell carcinomas of the head and neck were assessed for inherent tumor radiosensitivity measured as the surviving fraction at 2 Gy (SF2) using a soft agar clonogenic assay. Paraffin-embedded tumor material from 64 successfully grown specimens was immunohistochemically stained for expression of DNA-PKcs and Ku (p70/p80). The same tumor material was previously analyzed for the immunohistochemical expression of p53. RESULTS A significant correlation was found between the degree of expression of DNA-PKcs and Ku (p70/p80) (r = 0.55, p<0.001). There were no overall significant differences in the levels of expression of DNA-PKcs and Ku (p70/p80) in tumors from patients of either sex, different sites, histologies, and stages. No relationship was found between SF2 and the expression of either DNA-PKcs (r = 0.22, p = 0.081) or Ku (p70/p80) (r = 0.064, p = 0.62). Comparison with previous immunohistochemical characterization showed no significant correlations between the expression levels of p53 and either DNA-PKcs (r = 0.093, p = 0.46) or Ku (p70/p80) (r = -0.17, p = 0.17). CONCLUSIONS This study suggests that determining the immunohistochemical expression of DNA-PK in head and neck cancers from multiple sites does not have a role as a predictive assay of tumor in vitro radiosensitivity.
Collapse
Affiliation(s)
- T Björk-Eriksson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 1999; 12:583-611. [PMID: 10515904 PMCID: PMC88926 DOI: 10.1128/cmr.12.4.583] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent evolutionary studies reveal that microorganisms including yeasts and fungi are more closely related to mammals than was previously appreciated. Possibly as a consequence, many natural-product toxins that have antimicrobial activity are also toxic to mammalian cells. While this makes it difficult to discover antifungal agents without toxic side effects, it also has enabled detailed studies of drug action in simple genetic model systems. We review here studies on the antifungal actions of antineoplasmic agents. Topics covered include the mechanisms of action of inhibitors of topoisomerases I and II; the immunosuppressants rapamycin, cyclosporin A, and FK506; the phosphatidylinositol 3-kinase inhibitor wortmannin; the angiogenesis inhibitors fumagillin and ovalicin; the HSP90 inhibitor geldanamycin; and agents that inhibit sphingolipid metabolism. In general, these natural products inhibit target proteins conserved from microorganisms to humans. These studies highlight the potential of microorganisms as screening tools to elucidate the mechanisms of action of novel pharmacological agents with unique effects against specific mammalian cell types, including neoplastic cells. In addition, this analysis suggests that antineoplastic agents and derivatives might find novel indications in the treatment of fungal infections, for which few agents are presently available, toxicity remains a serious concern, and drug resistance is emerging.
Collapse
Affiliation(s)
- M E Cardenas
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
204
|
Hölscher C, Hasch G, Joswig N, Stauffer U, Müller U, Mossmann H. Long term substitution and specific immune responses after transfer of bovine peripheral blood lymphocytes into severe combined immunodeficient mice. Vet Immunol Immunopathol 1999; 70:67-83. [PMID: 10507288 DOI: 10.1016/s0165-2427(99)00065-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The long term immune responsiveness of bovine peripheral blood lymphocytes engrafted into severe combined immunodeficient mice (bovine PBL SCID mice) was analyzed. After intraperitoneal transfer (i.p.) of 2x10(7) bovine PBL into SCID mice, FACS analysis revealed successful engraftment of bovine CD4 and CD8+ T cells in the peritoneal cavity, the peripheral blood, spleen, lymph nodes, bone marrow, and thymus of reconstituted mice for up to 13 weeks. As shown by immunocytochemistry in sections of spleens from SCID mice 16 weeks after substitution, bovine T and B cells were localized perivasculary forming pseudofollicular structures. Nevertheless, histopathology of spleen and liver from bovine PBL SCID mice revealed pathological alterations indicating rejection of xenogenic cells or graft versus host disease (GVHD). On the functional level, i.p. transfer of bovine PBL into SCID mice induced increasing levels of bovine IgM and IgG in the sera of recipients. Bovine Ig could be detected up to 20 weeks. Immunization of SCID mice reconstituted with PBL of normal donors with dinitrophenol (DNP)-edestin induced a weak specific bovine antibody response in recipient mice. In contrast, a secondary specific bovine IgG response was observed after antigen restimulation of SCID mice reconstituted with PBL from calves preimmunized either with DNP-edestin or keyhole limpet hemocyanin (KLH) showing functional T cell-independent and -dependent antibody responses of bovine PBL SCID mice. Our data demonstrate that transfer of bovine PBL into SCID mice leads to a long term engraftment of bovine cells in lymphatic and non-lymphatic organs inducing a functional substitution of T and B cell immune response of SCID mice. Therefore, bovine PBL SCID chimera can serve as a small animal model for the analysis of bovine lymphopoiesis and infectious diseases of cattle.
Collapse
Affiliation(s)
- C Hölscher
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
205
|
Eaton KA, Ringler SR, Danon SJ. Murine splenocytes induce severe gastritis and delayed-type hypersensitivity and suppress bacterial colonization in Helicobacter pylori-infected SCID mice. Infect Immun 1999; 67:4594-602. [PMID: 10456905 PMCID: PMC96783 DOI: 10.1128/iai.67.9.4594-4602.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The goal of this study was to evaluate the role of host immunity in gastritis and epithelial damage due to Helicobacter pylori. Splenocytes from H. pylori-infected and uninfected C57BL/6 mice were adoptively transferred to H. pylori-infected and uninfected severe combined immunodeficient (SCID) mice. Transfer was verified by flow cytometry, and all mice were evaluated for the presence of delayed-type hypersensitivity (DTH) by footpad inoculation with sterile H. pylori sonicate and for humoral immunity by enzyme-linked immunosorbent assay. The severity of gastritis and gastric epithelial damage was quantified histologically, epithelial proliferation was determined by proliferating cell nuclear antigen staining, and colonization was quantified by culture. C57BL/6 mice, but not nonrecipient SCID mice, developed moderate gastritis in response to H. pylori. In contrast, recipient SCID mice developed severe gastritis involving 50 to 100% of the gastric mucosa and strong DTH responses not present in C57BL/6 mice. DTH, but not serum anti-H. pylori immunoglobulin G, correlated with adoptive transfer, gastritis, and bacterial clearance. Severe gastritis, but not bacterial colonization, was associated with epithelial metaplasia, erosions, and an elevated labeling index. This study demonstrates that (i) adaptive immunity is essential for development of gastritis due to H. pylori in mice, (ii) T-cell-enriched lymphocytes in SCID mice induce DTH and gastritis, which is more severe than donor gastritis, and (iii) the host inflammatory response, not direct bacterial contact, causes epithelial damage. The greater severity of gastritis in recipient SCID mice than in donor C57BL/6 mice suggests that gastritis is due to specific T-cell subsets and/or the absence of regulatory cell subsets in the transferred splenocytes.
Collapse
Affiliation(s)
- K A Eaton
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
206
|
Yu W, Misulovin Z, Suh H, Hardy RR, Jankovic M, Yannoutsos N, Nussenzweig MC. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5' of RAG2. Science 1999; 285:1080-4. [PMID: 10446057 DOI: 10.1126/science.285.5430.1080] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RAG1 and RAG2 are essential for V(D)J recombination and lymphocyte development. These genes are thought to encode a transposase derived from a mobile genetic element that was inserted into the vertebrate genome 450 million years ago. The regulation of RAG1 and RAG2 was investigated in vivo with bacterial artificial chromosome (BAC) transgenes containing a fluorescent indicator. Coordinate expression of RAG1 and RAG2 in B and T cells was found to be regulated by distinct genetic elements found on the 5' side of the RAG2 gene. This observation suggests a mechanism by which asymmetrically disposed cis DNA elements could influence the expression of the primordial transposon and thereby capture RAGs for vertebrate evolution.
Collapse
Affiliation(s)
- W Yu
- Laboratory of Molecular Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Ariumi Y, Masutani M, Copeland TD, Mimori T, Sugimura T, Shimotohno K, Ueda K, Hatanaka M, Noda M. Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro. Oncogene 1999; 18:4616-25. [PMID: 10467406 DOI: 10.1038/sj.onc.1202823] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been suggested that DNA-dependent protein kinase (DNA-PK) is a central component of DNA double-strand-break repair. The mechanism of DNA-PK action, however, has not been fully understood. Poly(ADP-ribose) polymerase (PARP) is another nuclear enzyme which has high affinity to DNA ends. In this study, we analysed the interaction between these two enzymes. First, DNA-PK was found to suppress the PARP activity and alters the pattern of poly(ADP-ribosyl)ation. Although DNA-PK phosphorylates PARP in a DNA-dependent manner, this modification is unlikely to be responsible for the suppression of PARP activity, since this suppression occurs even in the absence of ATP. Conversely, PARP was found to ADP-ribosylate DNA-PK in vitro. However, the auto-phosphorylation activity of DNA-PK was not influenced by this modification. In a competitive electrophoretic mobility shift assay, Ku 70/80 complex, the DNA binding component of DNA-PK, was found to have higher affinity to a short fragment of DNA than does PARP. Furthermore, co-immunoprecipitation analysis suggested direct or close association between Ku and PARP. Thus, DNA-PK suppresses PARP activity, probably through direct binding and/or sequestration of DNA-ends which serve as an important stimulator for both enzymes.
Collapse
Affiliation(s)
- Y Ariumi
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Wang Y, Zhou XY, Wang H, Huq MS, Iliakis G. Roles of replication protein A and DNA-dependent protein kinase in the regulation of DNA replication following DNA damage. J Biol Chem 1999; 274:22060-4. [PMID: 10419533 DOI: 10.1074/jbc.274.31.22060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of mammalian cells to DNA damage-inducing agents (DDIA) inhibits ongoing DNA replication. The molecular mechanism of this inhibition remains to be elucidated. We employed a simian virus 40 (SV40) based in vitro DNA replication assay to study biochemical aspects of this inhibition. We report here that the reduced DNA replication activity in extracts of DDIA-treated cells is partly caused by a reduction in the amount of replication protein A (RPA). We also report that the dominant inhibitory effect is caused by the DNA-dependent protein kinase (DNA-PK) which inactivates SV40 T antigen (TAg) by phosphorylation. The results demonstrate that RPA and DNA-PK are involved in the regulation of viral DNA replication after DNA damage and suggest that analogous processes regulate cellular DNA replication with the DNA-PK targeting the functional homologues of TAg.
Collapse
Affiliation(s)
- Y Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
209
|
Abstract
The critical role of cellular immunity in resistance to infectious diseases is glaringly revealed by life-threatening infections if T cell function is disrupted by an inherited or acquired immunodeficiency. Although treatment has historically focused on infectious complications, understanding of the cellular and molecular basis of immunodeficiency and technologies useful for enhancing cellular immunity have both been rapidly evolving. A new era of molecular and cellular therapy is emerging as approaches to correct abnormal genes, the loss of T cell subpopulations, and aberrant T cell homeostasis make the transition from bench to bedside.
Collapse
Affiliation(s)
- P D Greenberg
- Fred Hutchinson Cancer Research Center and Departments of Medicine and Immunology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
210
|
Mickelsen S, Snyder C, Trujillo K, Bogue M, Roth DB, Meek K. Modulation of Terminal Deoxynucleotidyltransferase Activity by the DNA-Dependent Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Rare Ig and TCR coding joints can be isolated from mice that have a targeted deletion in the gene encoding the 86-kDa subunit of the Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). However in the coding joints isolated from Ku86−/− animals, there is an extreme paucity of N regions (the random nucleotides added during V(D)J recombination by the enzyme TdT). This finding is consistent with a decreased frequency of coding joints containing N regions isolated from C.B-17 SCID mice that express a truncated form of the catalytic subunit of the DNA-PK (DNA-PKCS). This finding suggests an unexpected role for DNA-PK in addition of N nucleotides to coding ends during V(D)J recombination. In this report, we establish that TdT forms a stable complex with DNA-PK. Furthermore, we show that DNA-PK modulates TdT activity in vitro by limiting both the length and composition of nucleotide additions.
Collapse
Affiliation(s)
- Scott Mickelsen
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Carolyn Snyder
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Kelly Trujillo
- †Department of Molecular Medicine, Institute for Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245; and
| | - Molly Bogue
- ‡Department of Microbiology and Immunology and
| | - David B. Roth
- ‡Department of Microbiology and Immunology and
- §Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Katheryn Meek
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
211
|
Ishii Y, Ikushima T. Involvement of G2-dependent DNA double-strand break repair in the formation of ultraviolet light B-induced chromosomal aberrations. Mutat Res 1999; 427:99-103. [PMID: 10393264 DOI: 10.1016/s0027-5107(99)00093-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wortmannin, an inhibitor of DNA double-strand break (DSB) repair added 19 h before harvest enhanced the incidence of ultraviolet light B (UVB)-induced chromatid aberrations in Chinese hamster V79 cells. Posttreatment with wortmannin for last 3 h of culture also enhanced the yield of breakage-type chromatid aberrations and suppressed the yield of exchange-type chromatid aberrations almost completely. Thus, the inhibition of DSB repair in the G2 phase stimulated the breakage-type aberration formation, while suppressing the exchange-type aberration formation. We propose the model of UVB-induced chromatid-type aberration formation which might be fully related to G2-dependent DSB repair pathway.
Collapse
Affiliation(s)
- Y Ishii
- Department of Radiation Biology, B4, Faculty of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
212
|
Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci U S A 1999; 96:7376-81. [PMID: 10377422 PMCID: PMC22093 DOI: 10.1073/pnas.96.13.7376] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mre11/Rad50 protein complex functions in diverse aspects of the cellular response to double-strand breaks (DSBs), including the detection of DNA damage, the activation of cell cycle checkpoints, and DSB repair. Whereas genetic analyses in Saccharomyces cerevisiae have provided insight regarding DSB repair functions of this highly conserved complex, the implication of the human complex in Nijmegen breakage syndrome reveals its role in cell cycle checkpoint functions. We established mRad50 mutant mice to examine the role of the mammalian Mre11/Rad50 protein complex in the DNA damage response. Early embryonic cells deficient in mRad50 are hypersensitive to ionizing radiation, consistent with a role for this complex in the repair of ionizing radiation-induced DSBs. However, the null mrad50 mutation is lethal in cultured embryonic stem cells and in early developing embryos, indicating that the mammalian Mre11/Rad50 protein complex mediates functions in normally growing cells that are essential for viability.
Collapse
Affiliation(s)
- G Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Vanasse GJ, Halbrook J, Thomas S, Burgess A, Hoekstra MF, Disteche CM, Willerford DM. Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J Clin Invest 1999; 103:1669-75. [PMID: 10377173 PMCID: PMC408389 DOI: 10.1172/jci6658] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromosome translocations involving antigen receptor loci are a genetic hallmark of non-Hodgkin's lymphomas in humans. Most commonly, these translocations result in juxtaposition of the immunoglobulin heavy-chain (IgH) locus with one of several cellular proto-oncogenes, leading to deregulated oncogene expression. The V(D)J recombinase, which mediates physiologic rearrangements of antigen receptor genes, may play a mechanistic role in some lymphoma translocations, although evidence is indirect. A high incidence of B-lineage lymphomas has been observed in mice with severe combined immunodeficiency (SCID) and p53-null mutations. We show that these tumors are characteristic of the pro-B-cell stage of development and that they harbor recurrent translocations involving chromosomes 12 and 15. Fluorescence in situ hybridization (FISH) shows retention of IgH sequences on the derivative chromosome 12, implying that breakpoints involve the IgH locus. Pro-B-cell lymphomas were suppressed in SCID p53(-/-) mice by a Rag-2-null mutation, demonstrating that DNA breaks generated during V(D)J recombination are required for oncogenic transformation, and suggesting that t(12;15) arise during attempted IgH rearrangement in pro-B cells. These studies indicate that the oncogenic potential inherent in antigen receptor diversification is controlled in vivo by efficient rejoining of DNA ends generated during V(D)J recombination and an intact cellular response to DNA damage.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- DNA Nucleotidyltransferases/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Immunoglobulin Heavy Chains/genetics
- Immunophenotyping
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Mice, SCID
- Receptors, Antigen, B-Cell/genetics
- Stem Cells/immunology
- Translocation, Genetic/immunology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
- VDJ Recombinases
Collapse
Affiliation(s)
- G J Vanasse
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Matsumoto Y, Umeda N, Suzuki N, Sakai K, Hirano K. A gel-electrophoretic analysis for improved sensitivity and specificity of DNA-dependent protein kinase activity. JOURNAL OF RADIATION RESEARCH 1999; 40:183-196. [PMID: 10494149 DOI: 10.1269/jrr.40.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) is considered a critical enzyme in the repair and/or signal transduction of DNA double-strand breaks. DNA-PK activity has been mostly measured through "DNA-plus-minus" or "DNA-pull-down" procedures using synthetic peptide as substrate followed by filter-binding analysis, i.e. liquid scintillation counting of acid-insoluble radioactivity bound to phosphocellulose filter. Considering that non-specific phosphorylation of other cellular proteins in filter-bound acid-insoluble count could interfere with the detection of specific phosphorylation of peptide substrate, we examined the specificity and characteristics of these assay procedures by SDS gel-electrophoresis of the reaction mixture. The electrophoretic pattern showed phosphorylation in wide range of non-specific protein bands other than the specific substrate. The very low DNA-PK activity shown by murine L5178Y or FSA1233 cells was unambiguously detectable as the count in substrate band. Even following DNA-pull-down procedure, which would separate DNA-PK from most of other protein kinases, substantial amount of phosphorylation of other cellular proteins were still contaminated. Thus by selectively counting the particular bands, small amount of specific phosphorylation of peptide substrate was reliably quantified. These results indicated that the DNA-PK activity through filter-binding analysis was, as suspected, contaminated by non-specific phosphorylation of other cellular proteins and also that the gel-electrophoretic analysis would improve detectability of specific phosphorylation by DNA-PK of synthetic peptide substrate and, therefore, would improve the kinase assay in both sensitivity and specificity.
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Radiation Oncology, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
215
|
Ristevski S, Purcell DF, Marshall J, Campagna D, Nouri S, Fenton SP, McPhee DA, Kannourakis G. Novel endogenous type D retroviral particles expressed at high levels in a SCID mouse thymic lymphoma. J Virol 1999; 73:4662-9. [PMID: 10233925 PMCID: PMC112507 DOI: 10.1128/jvi.73.6.4662-4669.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1998] [Accepted: 02/19/1999] [Indexed: 11/20/2022] Open
Abstract
A xenograft model of the human disease Langerhans cell histiocytosis (LCH) was investigated with severe combined immunodeficiency (SCID) mice. Transplantation of human LCH biopsy material into SCID mice resulted in the generation of mouse tumors resembling lymphomas. A thymoma cell line (ThyE1M6) was generated from one of these mice and found to display significant levels of Mg2+-dependent reverse transcriptase activity. Electron microscopy revealed particles with type D retroviral morphology budding from ThyE1M6 cells at a high frequency, whereas control cultures were negative. Reverse transcription-PCR of virion RNA with degenerate primers for conserved regions of various mouse, human, and primate retroviruses amplified novel sequences related to primate type D retroviruses, murine intracisternal A particles, Jaagsiekte sheep retrovirus, and murine long interspersed nuclear elements but not other retroviral classes. We demonstrate that these sequences represent a novel group of endogenous retroviruses expressed at low levels in mice but expressed at high levels in the ThyE1M6 cell line. Furthermore, we propose that the activation of endogenous retroviral elements may be associated with a high incidence of thymomas in SCID mice.
Collapse
Affiliation(s)
- S Ristevski
- L.A.R.C.H. Cancer Research Unit, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Sun T, Ezekiel UR, Erskine L, Agulo R, Bozek G, Roth D, Storb U. Signal joint formation is inhibited in murine scid preB cells and fibroblasts in substrates with homopolymeric coding ends. Mol Immunol 1999; 36:551-8. [PMID: 10475610 DOI: 10.1016/s0161-5890(99)00053-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During B and T lymphocyte development, immunoglobulin and T cell receptor genes are assembled from the germline V, (D) and J gene segments (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). These DNA rearrangements, responsible for immune system diversity, are mediated by a site specific recombination machinery via recognition signal sequences (RSSs) composed of conserved heptamers and nonamers separated by spacers of 12 or 23 nucleotides (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). Recombination occurs only between a RSS with a 12mer spacer and a RSS with a 23mer spacer (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). RAG1 and RAG2 proteins cleave precisely at the RSS-coding sequence border leading to flush signal ends and coding ends with a hairpin structure (Eastman, M., Leu, T., Schatz, D., 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380, 85-88; Roth, D.B., Menetski, J.P., Nakajima, P.B., Bosma, M.J., Gellert, M., 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 983-991: Roth, D.B., Zhu, C., Gellert. M., 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90, 10,788-10,792; van Gent, D., McBlane, J.. Sadofsky, M., Hesse, J., Gellert, M., 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81, 925-934). Signal ends join, forming a signal joint. The hairpin coding ends are opened by a yet unknown endonuclease, and are further processed to form the coding joint (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Ad. Immunol. 56, 27-150.) The murine scid mutation has been shown to affect coding joints, but much less signal joint formation. In this study we demonstrate that the murine scid mutation inhibits correct signal joint formation when both coding ends contain homopolymeric sequences. We suggest that this finding may be due to the function of the SCID protein as an assembly component in V(D)J recombination.
Collapse
Affiliation(s)
- T Sun
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Giffin W, Gong W, Schild-Poulter C, Haché RJ. Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. Mol Cell Biol 1999; 19:4065-78. [PMID: 10330147 PMCID: PMC104366 DOI: 10.1128/mcb.19.6.4065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku-DNA-PKcs. Remarkably, the truncated element was recognized by Ku-DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku-DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.
Collapse
Affiliation(s)
- W Giffin
- Departments of Medicine, Microbiology and Immunology, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
218
|
Abstract
The Ku protein binds to DNA ends and other types of discontinuity in double-stranded DNA. It is a tightly associated heterodimer of approximately 70 kDa and approximately 80 kDa subunits that together with the approximately 470 kDa catalytic subunit, DNA-PKcs, form the DNA-dependent protein kinase. This enzyme is involved in repairing DNA double-strand breaks (DSBs) caused, for example, by physiological oxidation reactions, V(D)J recombination, ionizing radiation and certain chemotherapeutic drugs. The Ku-dependent repair process, called illegitimate recombination or nonhomologous end joining (NHEJ), appears to be the main DNA DSB repair mechanism in mammalian cells. Ku itself is probably involved in stabilizing broken DNA ends, bringing them together and preparing them for ligation. Ku also recruits DNA-PKcs to the DSB, activating its kinase function. Targeted disruption of the genes encoding Ku70 and Ku80 has identified significant differences between Ku-deficient mice and DNA-PKcs-deficient mice. Although all three gene products are clearly involved in repairing ionizing radiation-induced damage and in V(D)J recombination, Ku-knockout mice are small, and their cells fail to proliferate in culture and show signs of premature senescence. Recent findings have implicated yeast Ku in telomeric structure in addition to NHEJ. Some of the phenotypes of the Ku-knockout mice may indicate a similar role for Ku at mammalian telomeres.
Collapse
Affiliation(s)
- C Featherstone
- Wellcome/Cancer Research Campaign Institute, Cambridge University, UK.
| | | |
Collapse
|
219
|
Kachnic LA, Wu B, Wunsch H, Mekeel KL, DeFrank JS, Tang W, Powell SN. The ability of p53 to activate downstream genes p21(WAF1/cip1) and MDM2, and cell cycle arrest following DNA damage is delayed and attenuated in scid cells deficient in the DNA-dependent protein kinase. J Biol Chem 1999; 274:13111-7. [PMID: 10224064 DOI: 10.1074/jbc.274.19.13111] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
scid mouse embryonic fibroblasts are deficient in DNA-dependent protein kinase activity due to a mutation in the C-terminal domain of the catalytic subunit (DNA-PKcs). When exposed to ionizing radiation, the increase in levels of p53 was the same as in normal mouse embryonic fibroblasts. However, the rise in p21(WAF1/cip1) and mdm2 was found to be delayed and attenuated, which correlated in time with delayed onset of G1/S arrest by flow cytometric analysis. The p53-dependent G1 checkpoint was not eliminated: inactivation of p53 by the E6 protein in scid cells resulted in the complete loss of detectable G1/S arrest after DNA damage. Immunofluorescence analysis of normal cells revealed p53 to be localized predominantly within the cytoplasm prior to irradiation and then translocate to the nucleus after irradiation. In contrast, scid cells show abnormal accumulation of p53 in the nucleus independent of irradiation, which was confirmed by immunoblot analysis of nuclear lysates. Taken together, these data suggest that loss of DNA-PK activity appears to attenuate the kinetics of p53 to activate downstream genes, implying that DNA-PK plays a role in post-translational modification of p53, without affecting the increase in levels of p53 in response to DNA damage.
Collapse
Affiliation(s)
- L A Kachnic
- Laboratory of Molecular and Cellular Radiation Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
PURPOSE Four apparently unique disorders are known among the Southwestern Athabasan Amerindians, i.e., the Navajo and Apache; they are Athabaskan severe combined immunodeficiency, Navajo neuropathy, Navajo poikiloderma, and Athabaskan brainstem dysgenesis. This study reviews background information on Athabaskan groups and clinical descriptions of these recessive disorders. METHODS The major clinical findings of these four disorders are reviewed. In addition, the findings of epidemiological surveys are included where available. RESULTS Although the importance of genetic bottlenecks in increasing the frequency of rare, sometimes unique, autosomal recessive disorders is known for a number of populations, similar phenomena among Native Americans seem to be less well known. CONCLUSION As many more Native Americans move off the Reservation, the awareness of susceptibility to particular genetic diseases needs to be more widely disseminated.
Collapse
Affiliation(s)
- R P Erickson
- Steele Memorial Children's Research Center, Department of Pediatrics, University of Arizona College of Medicine, Tucson, USA.
| |
Collapse
|
221
|
Kurimasa A, Kumano S, Boubnov NV, Story MD, Tung CS, Peterson SR, Chen DJ. Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining. Mol Cell Biol 1999; 19:3877-84. [PMID: 10207111 PMCID: PMC84245 DOI: 10.1128/mcb.19.5.3877] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs.
Collapse
Affiliation(s)
- A Kurimasa
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Kuruvilla FG, Schreiber SL. The PIK-related kinases intercept conventional signaling pathways. CHEMISTRY & BIOLOGY 1999; 6:R129-36. [PMID: 10322127 DOI: 10.1016/s1074-5521(99)80070-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early efforts to place the first cloned mammalian PIK-related kinase, FRAP, into a conventional membrane to nuclear pathway met with little success. More recent data suggest that members of the family of PIK-related kinases act as intracellular sensors that govern radial and horizontal pathways. These pathways can impinge upon classical membrane to nuclear pathways, as well as components of the cell-cycle machinery.
Collapse
Affiliation(s)
- F G Kuruvilla
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
223
|
Abstract
Retroviral DNA integration is catalyzed by the viral protein integrase. Here, it is shown that DNA-dependent protein kinase (DNA-PK), a host cell protein, also participates in the reaction. DNA-PK-deficient murine scid cells infected with three different retroviruses showed a substantial reduction in retroviral DNA integration and died by apoptosis. Scid cell killing was not observed after infection with an integrase-defective virus, suggesting that abortive integration is the trigger for death in these DNA repair-deficient cells. These results suggest that the initial events in retroviral integration are detected as DNA damage by the host cell and that completion of the integration process requires the DNA-PK-mediated repair pathway.
Collapse
Affiliation(s)
- R Daniel
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
224
|
Abstract
An extract from activated Xenopus eggs joins both matching and nonmatching ends of exogenous linear DNA substrates with high efficiency and fidelity (P. Pfeiffer and W. Vielmetter, Nucleic Acids Res. 16:907-924, 1988). In mammalian cells, such nonhomologous end joining (NHEJ) is known to require the Ku heterodimer, a component of DNA-dependent protein kinase. Here I investigated whether Ku is also required for the in vitro reaction in the egg extract. Immunological assays indicate that Ku is very abundant in the extract. I found that all NHEJ was inhibited by autoantibodies against Ku and that NHEJ between certain combinations of DNA ends was also decreased after immunodepletion of Ku from the extract. The formation of a joint between a DNA end with a 5'-protruding single strand (PSS) and an end with a 3'-PSS, between two ends with 3'-PSS, and between two blunt ends was most Ku dependent. On the other hand, NHEJ between two DNA ends bearing 5'-PSS was Ku independent. These results show that the Xenopus cell-free system will be useful to biochemically dissect the role of Ku in eukaryotic NHEJ.
Collapse
Affiliation(s)
- P Labhart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
225
|
Ruiz MT, Matheos D, Price GB, Zannis-Hadjopoulos M. OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol Biol Cell 1999; 10:567-80. [PMID: 10069804 PMCID: PMC25188 DOI: 10.1091/mbc.10.3.567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1998] [Accepted: 12/29/1998] [Indexed: 12/21/2022] Open
Abstract
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4-OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of approximately 92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.
Collapse
Affiliation(s)
- M T Ruiz
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
226
|
Hande P, Slijepcevic P, Silver A, Bouffler S, van Buul P, Bryant P, Lansdorp P. Elongated telomeres in scid mice. Genomics 1999; 56:221-3. [PMID: 10051409 DOI: 10.1006/geno.1998.5668] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Severe combined immunodeficiency (scid) mice are deficient in the enzyme DNA-PK (DNA-dependent protein kinase) as a result of the mutation in the gene encoding the catalytic subunit (DNA-PKcs) of this enzyme. DNA-PKcs is a member of the phosphatidylinositol 3-kinase superfamily, which includes the human protein ATM (ataxia telangiectasia mutated) and the yeast protein Tel1. Using Q-FISH (quantitative fluorescence in situ hybridization), we show here that scid mice from four different genetic backgrounds have, on average, 1.5-2 times longer telomeres than those of corresponding wild-type mice. Our results point to the possibility that DNA-PKcs may, directly or indirectly, be involved in telomere length regulation in mammalian cells.
Collapse
Affiliation(s)
- P Hande
- The Terry Fox Laboratory, British Columbia Cancer Research Center, 601 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | | | | | | | |
Collapse
|
227
|
Chakravarthy BR, Walker T, Rasquinha I, Hill IE, MacManus JP. Activation of DNA-dependent protein kinase may play a role in apoptosis of human neuroblastoma cells. J Neurochem 1999; 72:933-42. [PMID: 10037464 DOI: 10.1046/j.1471-4159.1999.0720933.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Treating SH-SY5Y human neuroblastoma cells with 1 microM staurosporine resulted in a three- to fourfold higher DNA-dependent protein kinase (DNA-PK) activity compared with untreated cells. Time course studies revealed a biphasic effect of staurosporine on DNA-PK activity: an initial increase that peaked by 4 h and a rapid decline that reached approximately 5-10% that of untreated cells by 24 h of treatment. Staurosporine induced apoptosis in these cells as determined by the appearance of internucleosomal DNA fragmentation and punctate nuclear morphology. The maximal stimulation of DNA-PK activity preceded significant morphological changes that occurred between 4 and 8 h (40% of total number of cells) and increased with time, reaching 70% by 48 h. Staurosporine had no effect on caspase-1 activity but stimulated caspase-3 activity by 10-15-fold in a time-dependent manner, similar to morphological changes. Similar time-dependent changes in DNA-PK activity, morphology, and DNA fragmentation occurred when the cells were exposed to either 100 microM ceramide or UV radiation. In all these cases the increase in DNA-PK activity preceded the appearance of apoptotic markers, whereas the loss in activity was coincident with cell death. A cell-permeable inhibitor of DNA-PK, OK-1035, significantly reduced staurosporine-induced punctate nuclear morphology and DNA fragmentation. Collectively, these results suggest an intriguing possibility that activation of DNA-PK may be involved with the induction of apoptotic cell death.
Collapse
Affiliation(s)
- B R Chakravarthy
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|
228
|
Leuther KK, Hammarsten O, Kornberg RD, Chu G. Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J 1999; 18:1114-23. [PMID: 10064579 PMCID: PMC1171203 DOI: 10.1093/emboj/18.5.1114] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks are created by ionizing radiation or during V(D)J recombination, the process that generates immunological diversity. Breaks are repaired by an end-joining reaction that requires DNA-PKCS, the catalytic subunit of DNA-dependent protein kinase. DNA-PKCS is a 460 kDa serine-threonine kinase that is activated by direct interaction with DNA. Here we report its structure at 22 A resolution, as determined by electron crystallography. The structure contains an open channel, similar to those seen in other double-stranded DNA-binding proteins, and an enclosed cavity with three openings large enough to accommodate single-stranded DNA, with one opening adjacent to the open channel. Based on these structural features, we performed biochemical experiments to examine the interactions of DNA-PKCS with different DNA molecules. Efficient kinase activation required DNA longer than 12 bp, the minimal length of the open channel. Competition experiments demonstrated that DNA-PKCS binds to double- and single-stranded DNA via separate but interacting sites. Addition of unpaired single strands to a double-stranded DNA fragment stimulated kinase activation. These results suggest that activation of the kinase involves interactions with both double- and single-stranded DNA, as suggested by the structure. A model for how the kinase is regulated by DNA is described.
Collapse
Affiliation(s)
- K K Leuther
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
229
|
Kurimasa A, Ouyang H, Dong LJ, Wang S, Li X, Cordon-Cardo C, Chen DJ, Li GC. Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Acad Sci U S A 1999; 96:1403-8. [PMID: 9990036 PMCID: PMC15475 DOI: 10.1073/pnas.96.4.1403] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) consists of a heterodimer DNA-binding complex, Ku70 and Ku80, and a large catalytic subunit, DNA-PKcs. To examine the role of DNA-PKcs in lymphocyte development, radiation sensitivity, and tumorigenesis, we disrupted the mouse DNA-PKcs by homologous recombination. DNA-PKcs-null mice exhibit neither growth retardation nor a high frequency of T cell lymphoma development, but show severe immunodeficiency and radiation hypersensitivity. In contrast to the Ku70-/- and Ku80-/- phenotype, DNA-PKcs-null mice are blocked for V(D)J coding but not for signal-end joint formation. Furthermore, inactivation of DNA-PKcs leads to hyperplasia and dysplasia of the intestinal mucosa and production of aberrant crypt foci, suggesting a novel role of DNA-PKcs in tumor suppression.
Collapse
Affiliation(s)
- A Kurimasa
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Affiliation(s)
- M F Lavin
- Queensland Institute of Medical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
231
|
Kosugi S, Miyazawa T, Chou D, Saito Y, Shinbo T, Matsuki A, Okano H, Miyaji C, Watanabe H, Hatakeyama K, Niwa O, Kominami R. Mutations in the p53 and scid genes do not cooperate in lymphomagenesis in doubly heterozygous mice. Biochem Biophys Res Commun 1999; 255:99-103. [PMID: 10082662 DOI: 10.1006/bbrc.1999.0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis of double mutant mice of the p53 and scid genes, which have a combination of cell cycle checkpoint/apoptosis and DNA repair defects, shows that the latter defect synergistically enhances lymphoma development with loss of the former function. These mice lack the ability to eliminate lymphocytes predisposed to neoplastic transformation resulting from faulty antigen receptor gene rearrangement. Here we examine the cooperativity in double heterozygotes of p53 and scid in which normal development of lymphocytes is not impaired. MSM mice carrying a p53-knockout allele were crossed with BALB/c mice heterozygous for the scid locus and 129 offspring were obtained. They were subjected to gamma-ray irradiation, 84 thymic lymphomas being generated. The tumors and host mice were genotyped of p53 and scid. Among 42 mice developing p53-deficient lymphomas, scid/+ and +/+ genotypes did not provide difference in onset and latency. Besides, allelic loss of the Scid gene occurred at a high frequency in those lymphomas but the loss exhibited no allelic bias. The results suggest that the scid/+ genotype is not a modifier of loss of p53 function in the double heterozygotes.
Collapse
Affiliation(s)
- S Kosugi
- First Department of Biochemistry, First Department of Surgery, Department of Immunology, Niigata University School of Medicine, Asahimachi 1-757, Niigata, 951-8122, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Gallo-Hendrikx E, Percy D, Copps J, McKeown B, Quinton M, McMillan I, Croy BA, Wildeman AG. Evaluation of three lines of immunodeficient mice for the study of spontaneous metastatic tumors. APMIS 1999; 107:245-56. [PMID: 10225324 DOI: 10.1111/j.1699-0463.1999.tb01551.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various immunodeficient animals have been used as transplantation recipients for studying the growth of human tumors. We have been assessing the value of immunodeficiencies for the study of naturally arising tumors, using a model system of transgenic mice that spontaneously develop cancer of the pancreas as a result of elastase promoter-driven expression of the large tumor antigen gene of simian virus 40. We previously reported the establishment of transgenic mice that carried the SCID and/or beige mutations, eliminating B- and T-cell function and reducing lytic NK cell activity, respectively. In SCID beige animals, metastasis rates and target organs for metastases were similar to those observed in humans with pancreatic cancer. We describe here analysis of subsequent more highly inbred generations of these mice. The data show that inbreeding has almost negated the value of these immunodeficiencies for enhancing disease progression, and we observe high rates of metastasis even in immunocompetent animals. The data suggest that SCID and beige immunodeficiencies may not always have the same value for the modeling of spontaneous tumors as they do for the study of xenografts.
Collapse
Affiliation(s)
- E Gallo-Hendrikx
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Ito A, Ito M. Human Taenia in severe combined immunodeficiency (SCID) mice. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:64-7. [PMID: 10234188 DOI: 10.1016/s0169-4758(98)01380-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A rodent model for the development of the larval stages of human taeniid tapeworms would help advance immunodiagnosis in human and domestic animals and vaccine development for cysticercosis cellulosae or bovis in domestic animals. Here, Akira Ito and Mamoru Ito review recent results demonstrating the potential of the severe combined immunodeficiency (SCID) mouse for supporting development of the larval stages of Taenia saginata asiatica, T. saginata and T. solium.
Collapse
Affiliation(s)
- A Ito
- Department of Parasitology, Asahikawa Medical College, Asahikawa, Japan.
| | | |
Collapse
|
234
|
Britten RA, Kuny S, Perdue S. Modification of non-conservative double-strand break (DSB) rejoining activity after the induction of cisplatin resistance in human tumour cells. Br J Cancer 1999; 79:843-9. [PMID: 10070879 PMCID: PMC2362674 DOI: 10.1038/sj.bjc.6690135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The induction of collateral radioresistance after the development of cisplatin resistance is a well-documented phenomenon; however, the exact processes that are responsible for the cisplatin-induced radioresistance remain to be elucidated. There was no obvious difference in the level of radiation-induced DNA double strand breaks (DSBs), in DSB rejoining rates, or the level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in the cisplatin- and radiation-sensitive 2780/WT and cisplatin-resistant 2780/CP cell lines. However, there was a significantly (P < 0.01) lower level of DSB misrejoining activity within nuclear protein extracts derived from the cisplatin- and radiation-sensitive 2780/WT and OAW42/WT tumour cell lines than in similar extracts from their cisplatin- (and radiation-) resistant 2780/CP and OAW42/CP counterparts. All of the DSB misrejoining events involved deletions of between 134 and 444 bp that arose through illegitimate recombination at short repetitive sequences, such as those that arise through non-homologous repair (NHR). These data further support the notion that the radiosensitivity of DSB repair proficient human tumour cell lines may be partly determined by the predisposition of these cell lines to activate non-conservative DSB rejoining pathways. Furthermore, our data suggest that the induction of acquired cisplatin resistance is associated with a two- to threefold decrease in the activity of a non-conservative DSB rejoining mechanism that appears to be a manifestation of NHR.
Collapse
Affiliation(s)
- R A Britten
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | | | | |
Collapse
|
235
|
Salles-Passador I, Fotedar A, Fotedar R. Cellular response to DNA damage. Link between p53 and DNA-PK. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:113-20. [PMID: 10196661 DOI: 10.1016/s0764-4469(99)80032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with PL-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation.
Collapse
|
236
|
Haruta H, Tachibana H, Yamada K. Serum starvation induced secondary V lambda J lambda rearrangement in a human plasma B cell line. Mol Immunol 1999; 36:177-85. [PMID: 10403483 DOI: 10.1016/s0161-5890(99)00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HB4C5 is a human antibody producing plasma B cell line that expresses the recombination activating gene-1 (RAG-1) and RAG-2 constitutively, but undergoes few secondary immunoglobulin gene rearrangements when cultured in fetal bovine serum-containing medium. Here, we found that depletion of serum from the culture media induces secondary VlambdaJlambda rearrangement in this cell line. To investigate the induction mechanism of secondary VlambdaJlambda rearrangement, we assessed the expression levels of RAG-1 and RAG-2 products, Vlambda germline transcription level and the amount of Vlambda signal broken ends (SBE) in HB4C5 cells cultured in serum-supplemented or serum-free medium. Western-blot analysis showed that the expression level for the RAG-1 and RAG-2 proteins was not affected by the serum depletion. Vlambda germline transcript was found to be constitutively expressed in HB4C5 cell line and this transcription level was not affected by the lack of serum. On the other hand, the amount of Vlambda SBE was shown to be increased in HB4C5 cells cultured in serum-free medium, suggesting that this increased formation of Vlambda SBE at least partly contributed to the enhanced occurrence of secondary VlambdaJlambda rearrangement in HB4C5 cells cultured in the serum-free condition. These results indicate that expression of RAG proteins and Vlambda germline transcription is not enough to undergo secondary VlambdaJlambda rearrangement in this cell line.
Collapse
Affiliation(s)
- H Haruta
- Graduate School of Bioresources and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
237
|
Jeggo P, Singleton B, Beamish H, Priestley A. Double strand break rejoining by the Ku-dependent mechanism of non-homologous end-joining. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:109-12. [PMID: 10196660 DOI: 10.1016/s0764-4469(99)80031-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA-dependent protein kinase functions in the repair of DNA double strand breaks (DSBs) and in V(D)J recombination. To gain insight into the function of DNA-PK in this process we have carried out a mutation analysis of Ku80 and DNA-PKcs. Mutations at multiple sites within the N-terminal two thirds of Ku80 result in loss of Ku70/80 interaction, loss of DNA end-binding activity and inability to complement Ku80 defective cell lines. In contrast, mutations in the carboxy terminal region of the protein do not impair DNA end-binding activity but decrease the ability of Ku to activate DNA-PK. To gain insight into important functional domains within DNA-PKcs, we have analysed defective mutants, including the mouse scid cell line, and the rodent mutants, irs-20 and V-3. Mutational changes in the carboxy terminal region have been identified in all cases. Our results strongly suggest that the C-terminus of DNA-PKcs is required for kinase activity.
Collapse
Affiliation(s)
- P Jeggo
- MRCCMU, University of Sussex, Brighton, East Sussex, UK
| | | | | | | |
Collapse
|
238
|
Barrington RA, Fasullo M, Knight KL. A Role for RAD51 in the Generation of Immunoglobulin Gene Diversity in Rabbits. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Ig VDJ genes in rabbit somatically diversify by both hyperpointmutation and gene conversion. To elucidate the mechanism of gene conversion of IgH genes, we cloned a rabbit homologue of RAD51, a gene involved in gene conversion in Saccharomyces cerevisiae (yeast), and tested whether it could complement a yeast rad51 mutant deficient in recombination repair. We found that rabbit RAD51 partially complemented the defect in switching mating types by gene conversion as well as in DNA double-strand break repair after γ-irradiation. Further, by Western blot analysis, we found that levels of Rad51 were higher in appendix-derived B lymphocytes of 6-wk-old rabbits, a time at which IgH genes diversify by somatic gene conversion. We suggest that Rad51 is involved in somatic gene conversion of rabbit Ig genes.
Collapse
Affiliation(s)
| | - Michael Fasullo
- †Radiotherapy, Loyola University of Chicago, Maywood, IL 60153
| | | |
Collapse
|
239
|
Chang Y, Brown ML. Formation of coding joints in V(D)J recombination-inducible severe combined immune deficient pre-B cell lines. Proc Natl Acad Sci U S A 1999; 96:191-6. [PMID: 9874794 PMCID: PMC15115 DOI: 10.1073/pnas.96.1.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Characterization of the severe combined immune deficient (scid) defect in the recombination process has provided many insights into the underlying mechanisms of variable (diversity) joining recombination. By using recombination-inducible scid pre-B cell lines transformed with the temperature-sensitive Abelson-murine leukemia virus, we show that large quantities of recombination intermediates can be generated, and their resolution can be followed during further cell culture. In this study, we demonstrate that the ability of these scid pre-B cell lines to resolve coding ends depends on the cell culture temperature. At the nonpermissive temperature of 39 degreesC, scid pre-B cell lines fail to form coding joints and contain mostly unresolved hairpin-coding ends. Once the cell culture is returned to the permissive temperature of 33 degreesC, these same cells make a significant amount of coding joints concomitant with the disappearance of hairpin-coding ends. Thus, the scid cells are capable of resolving coding ends under certain culture conditions. However, the majority of the recovered coding joints contains extensive deletions, indicating that the temperature-dependent resolution of coding ends is still scid-like. Our results suggest that the inability of scid cells to promptly nick hairpin-coding ends may lead to aberrant joining in these cells.
Collapse
Affiliation(s)
- Y Chang
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ 85287-2701, USA.
| | | |
Collapse
|
240
|
Muller C, Calsou P, Frit P, Salles B. Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie 1999; 81:117-25. [PMID: 10214916 DOI: 10.1016/s0300-9084(99)80044-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a trimeric nuclear serine/threonine protein kinase consisting of a large catalytic sub-unit and the Ku heterodimer that regulates kinase activity by its association with DNA. DNA-PK is a major component of the DNA double strand break repair apparatus, and cells deficient in one of its component are hypersensitive to ionizing radiation. DNA-PK is also required to lymphoid V(D)J recombination and its absence confers in mice a severe combined immunodeficiency phenotype. The purpose of this review is to summarize the current knowledge on the mechanisms that contribute to regulate DNA-PK activity in vivo or in vitro and relates them to the role of DNA-PK in cellular functions. Finally, the studies devoted to drug-inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.
Collapse
Affiliation(s)
- C Muller
- Institut de Pharmacologie et de Biologie Structurale, CNRS, UPR 906, Toulouse, France
| | | | | | | |
Collapse
|
241
|
Thompson LH, Schild D. The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 1999; 81:87-105. [PMID: 10214914 DOI: 10.1016/s0300-9084(99)80042-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Although it is clear that mammalian somatic cells possess the enzymatic machinery to perform homologous recombination of DNA molecules, the importance of this process in mitigating DNA damage has been uncertain. An initial genetic framework for studying homologous recombinational repair (HRR) has come from identifying relevant genes by homology or by their ability to correct mutants whose phenotypes are suggestive of recombinational defects. While yeast has been an invaluable guide, higher eukaryotes diverge in the details and complexity of HRR. For eliminating DSBs, HRR and end-joining pathways share the burden, with HRR contributing critically during S and G2 phases. It is likely that the removal of interstrand cross-links is absolutely dependent on efficient HRR, as suggested by the extraordinary sensitivity of the ercc1, xpf/ercc4, xrcc2, and xrcc3 mutants to cross-linking chemicals. Similarly, chromosome stability in untreated cells requires intact HRR, which may eliminate DSBs arising during DNA replication and thereby prevent chromosome aberrations. Complex regulation of HRR by cell cycle checkpoint and surveillance functions is suggested not only by direct interactions between human Rad51 and p53, c-Abl, and BRCA2, but also by very high recombination rates in p53-deficient cells.
Collapse
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
| | | |
Collapse
|
242
|
Moreau S, Ferguson JR, Symington LS. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 1999; 19:556-66. [PMID: 9858579 PMCID: PMC83913 DOI: 10.1128/mcb.19.1.556] [Citation(s) in RCA: 349] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1998] [Accepted: 09/29/1998] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae MRE11 gene is required for the repair of ionizing radiation-induced DNA damage and for the initiation of meiotic recombination. Sequence analysis has revealed homology between Mre11 and SbcD, the catalytic subunit of an Escherichia coli enzyme with endo- and exonuclease activity, SbcCD. In this study, the purified Mre11 protein was found to have single-stranded endonuclease activity. This activity was absent from mutant proteins containing single amino acid substitutions in either one of two sequence motifs that are shared by Mre11 and SbcD. Mutants with allele mre11-D56N or mre11-H125N were partially sensitive to ionizing radiation but lacked the other mitotic phenotypes of poor vegetative growth, hyperrecombination, defective nonhomologous end joining, and shortened telomeres that are characteristic of the mre11 null mutant. Diploids homozygous for the mre11-H125N mutation failed to sporulate and accumulated unresected double-strand breaks (DSB) during meiosis. We propose that in mitotic cells DSBs can be processed by other nucleases that are partially redundant with Mre11, but these activities are unable to process Spo11-bound DSBs in meiotic cells.
Collapse
Affiliation(s)
- S Moreau
- Institute of Cancer Research and Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
243
|
Steinsvik TE, Aaberge IS, Gaarder PI, Løvik M. Interleukin-13 and human immunoglobulin E production in severe combined immunodeficiency mice transplanted with human peripheral blood lymphocytes. Scand J Immunol 1999; 49:67-72. [PMID: 10023859 DOI: 10.1046/j.1365-3083.1999.00476.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As normal mice do not respond to interleukin-13 (IL-13), we have used mice with severe combined immunodeficiency transplanted with human peripheral blood lymphocytes (hu-PBL-SCID mice) as an in vivo model for studying human IL-13. PBL from three donors (two allergic and one non-allergic) were prestimulated with IL-13 in vitro and thereafter transplanted into SCID mice. As evidenced by flow cytometry, IL-13 in the in vitro cell cultures was physiologically active and suppressed CD14 expression, while it enhanced the expression of CD23 on human monocytes. In the in vivo experiments, SCID mice transplanted with cells from both allergic donors produced twice as high maximum levels of IgE when the cells were preincubated with IL-13 in vitro before transplantation, as compared with mice receiving cells that had not been preincubated with IL-13. Two succeeding intraperitoneal (i.p.) injections of IL-13 resulted in a further increase of maximum IgE levels. Using cells from the non-allergic donor, no enhancing effect of IL-13 was observed. Transplanted human cells from one allergic donor examined were shown to migrate to the spleen and lungs of the recipient mice, while cells from the non-allergic donor were found only in the peritoneal cavity. Altogether, our results indicate that IL-13 enhances human IgE production in vivo and suggest that lymphocytes in allergic individuals are hyper-reactive to this cytokine. Furthermore, the allergic status of the cell donor may affect migration and engraftment of cells transplanted into SCID mice.
Collapse
Affiliation(s)
- T E Steinsvik
- Department of Environmental Medicine, National Institute of Public Health, Oslo, Norway
| | | | | | | |
Collapse
|
244
|
Abstract
The generation of mice designed to overexpress activated forms of oncogenes or carrying targeted mutations in tumour suppressor genes, has allowed scientists to causally link the function of these genes with specific tumour processes, such as proliferation, apoptosis, angiogenesis or metastasis. In addition, these mice have been interbred to assess the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of the multi-stage nature of tumourigenesis. The effect of genetic mutations is often influenced by the genetic background of the mouse and by analysing strain-dependent phenotypes, modifier loci have been identified. Although genetic mutations in mouse and humans do not always lead to the same tumour spectrum, the underlying molecular mechanisms are frequently relevant to both species. Furthermore, new technical approaches creating conditional mouse mutants which develop tumours in a tissue-specific manner, will allow the effect of mutation of certain genes to be studied in specific tissues, free from the fatal effects of the mutation in other clinically less relevant tissues. Several exising mouse strains have already been used to develop and test new therapies and conditional mutagenesis will undoubtedly increase the potential use of transgenic mice in understanding and treating cancer.
Collapse
Affiliation(s)
- K F Macleod
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital, Scotland, U.K.
| | | |
Collapse
|
245
|
Woodard RL, Anderson MG, Dynan WS. Nuclear extracts lacking DNA-dependent protein kinase are deficient in multiple round transcription. J Biol Chem 1999; 274:478-85. [PMID: 9867868 DOI: 10.1074/jbc.274.1.478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared levels of in vitro transcription in nuclear extracts from DNA-dependent protein kinase (DNA-PK)-deficient and DNA-PK-containing Chinese hamster ovary cell lines. DNA-PK-deficient cell lines are radiosensitive mutants lacking either the catalytic subunit or the 80-kDa subunit of the Ku protein regulatory component. Extracts from DNA-PK-deficient cell lines had a 2-7-fold decrease in the level of in vitro transcription when compared with matched controls. This decrease was observed with several promoters. Transcription could be restored to either of the deficient extracts by addition of small amounts of extract from the DNA-PK-containing cell lines. Transcription was not restored by addition of purified DNA-PK catalytic subunit, Ku protein, or individually purified general transcription factors. We conclude that extracts from DNA-PK-deficient cells lack a positively acting regulatory factor or a complex of factors not readily reconstituted with individual proteins. We have also investigated the mechanistic defect in the deficient extracts and have found that the observed differences in transcription levels between Ku-positive and Ku-negative cell lines can be attributed solely to a greater ability of the Ku-positive nuclear extracts to carry out secondary initiation events subsequent to the first round of transcription.
Collapse
Affiliation(s)
- R L Woodard
- Institute of Molecular Medicine and Genetics, Program in Gene Regulation, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
246
|
Nohmi T, Suzuki M, Masumura K, Yamada M, Matsui K, Ueda O, Suzuki H, Katoh M, Ikeda H, Sofuni T. Spi(-) selection: An efficient method to detect gamma-ray-induced deletions in transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1999; 34:9-15. [PMID: 10462718 DOI: 10.1002/(sici)1098-2280(1999)34:1<9::aid-em2>3.0.co;2-e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the importance of genome rearrangement in the etiology of cancer and human genetic disease, deletion mutations are poorly detectable by transgenic rodent mutagenicity tests. To facilitate the detection and molecular analysis of deletion mutations in vivo, we established a transgenic mouse model harboring a lambdaEG10 shuttle vector that includes the red and gam genes for Spi(-) (sensitive to P2 interference) selection [Nohmi et al. (1996] Environ. Mol. Mutagen. 28:465-470]. This selection has a great advantage over other genetic systems, because phage deletion mutants can be preferentially selected as Spi(-) plaques, which can then be subjected to molecular analysis. Here, we show nucleotide sequences of 41 junctions of deletion mutations induced by gamma-irradiation. Unlike spontaneous deletion mutants, more than half of the large deletions occurred between short homologous sequences from one to eight bp. The remaining junctions had no such homologous sequences. Intriguingly, two Spi(-) mutants had P (palindrome)-like nucleotide additions at the breakpoints, which are frequently observed in the coding junctions of V(D)J recombination, suggesting that broken DNA molecules with hairpin structures can be intermediates in the repair of radiation-induced double-strand breaks. We conclude that Spi(-) selection is useful for the efficient detection of deletion mutations in vivo and that most rearrangements induced by gamma-rays in mice are mediated by illegitimate recombination through DNA end-joining.
Collapse
Affiliation(s)
- T Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Bogue MA, Jhappan C, Roth DB. Analysis of variable (diversity) joining recombination in DNAdependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc Natl Acad Sci U S A 1998; 95:15559-64. [PMID: 9861008 PMCID: PMC28082 DOI: 10.1073/pnas.95.26.15559] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested that ionizing radiation causes irreparable DNA double-strand breaks in mice and cell lines harboring mutations in any of the three subunits of DNA-dependent protein kinase (DNA-PK) (the catalytic subunit, DNA-PKcs, or one of the DNA-binding subunits, Ku70 or Ku86). In actuality, these mutants vary in their ability to resolve double-strand breaks generated during variable (diversity) joining [V(D)J] recombination. Mutant cell lines and mice with targeted deletions in Ku70 or Ku86 are severely compromised in their ability to form coding and signal joints, the products of V(D)J recombination. It is noteworthy, however, that severe combined immunodeficient (SCID) mice, which bear a nonnull mutation in DNA-PKcs, are substantially less impaired in forming signal joints than coding joints. The current view holds that the defective protein encoded by the murine SCID allele retains enough residual function to support signal joint formation. An alternative hypothesis proposes that DNA-PKcs and Ku perform different roles in V(D)J recombination, with DNA-PKcs required only for coding joint formation. To resolve this issue, we examined V(D)J recombination in DNA-PKcs-deficient (SLIP) mice. We found that the effects of this mutation on coding and signal joint formation are identical to the effects of the SCID mutation. Signal joints are formed at levels 10-fold lower than in wild type, and one-half of these joints are aberrant. These data are incompatible with the notion that signal joint formation in SCID mice results from residual DNA-PKcs function, and suggest a third possibility: that DNA-PKcs normally plays an important but nonessential role in signal joint formation.
Collapse
Affiliation(s)
- M A Bogue
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
248
|
Besmer E, Mansilla-Soto J, Cassard S, Sawchuk DJ, Brown G, Sadofsky M, Lewis SM, Nussenzweig MC, Cortes P. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol Cell 1998; 2:817-28. [PMID: 9885569 DOI: 10.1016/s1097-2765(00)80296-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the importance of hairpin opening in antigen receptor gene assembly, the molecular machinery that mediates this reaction has not been defined. Here, we show that RAG1 plus RAG2 can open DNA hairpins. Hairpin opening by RAGs is not sequence specific, but in Mg2+, hairpin opening occurs only in the context of a regulated cleavage complex. The chemical mechanism of hairpin opening by RAGs resembles RSS cleavage and 3' end processing by HIV integrase and Mu transposase in that these reactions can proceed through alcoholysis. Mutations in either RAG1 or RAG2 that interfere with RSS cleavage also interfere with hairpin opening, suggesting that RAGs have a single active site that catalyzes several distinct DNA cleavage reactions.
Collapse
Affiliation(s)
- E Besmer
- Laboratory of Molecular Immunology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Kubota N, Ozawa F, Okada S, Inada T, Komatsu K, Okayasu R. The phosphatidylinositol 3-kinase inhibitor wortmannin sensitizes quiescent but not proliferating MG-63 human osteosarcoma cells to radiation. Cancer Lett 1998; 133:161-7. [PMID: 10072165 DOI: 10.1016/s0304-3835(98)00221-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent genetic and biochemical studies indicate that DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (dsb) repair and V(D)J recombination. Since the catalytic subunit of DNA-PK (DNA-PKcs) has high sequence homology with phosphatidylinositol 3-kinase (PI 3-kinase), we examined the effect of wortmannin, a specific inhibitor of PI 3-kinase, on the survival of human tumor cells after X-irradiation. The present study demonstrates that wortmannin at 20 microM is an effective radiosensitizer of quiescent (Q), but not proliferating (P) cells. In addition, the rejoining of DNA dsb is significantly inhibited in Q, but not in P cells. Finally, we found that Q cell extracts have approximately five-fold less DNA-PK activity than those of P cells. After a 2 h exposure to wortmannin, the DNA-PK activity of Q cell extracts was considerably lower than that of P cells. This can explain why wortmannin sensitizes Q, but not P cells to radiation.
Collapse
Affiliation(s)
- N Kubota
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Japan.
| | | | | | | | | | | |
Collapse
|
250
|
Hosoi Y, Miyachi H, Matsumoto Y, Ikehata H, Komura J, Ishii K, Zhao HJ, Yoshida M, Takai Y, Yamada S, Suzuki N, Ono T. A phosphatidylinositol 3-kinase inhibitor wortmannin induces radioresistant DNA synthesis and sensitizes cells to bleomycin and ionizing radiation. Int J Cancer 1998; 78:642-7. [PMID: 9808536 DOI: 10.1002/(sici)1097-0215(19981123)78:5<642::aid-ijc19>3.0.co;2-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have been shown to have sequences homologous to the catalytic domains of mammalian phosphatidylinositol 3-kinase (PI3-kinase). In order to determine the contribution of ATM and DNA-PKcs to the increased sensitivity of cells to DNA-damaging agents observed in the presence of PI3-kinase inhibitors, we examined the effects of a PI3-kinase inhibitor, wortmannin, on cellular sensitivity to bleomycin (BLM), mitomycin C (MMC), X-irradiation and ultraviolet (UV)-irradiation using 2 human tumor cell lines (T98G and A172), a human fibroblast cell line (LM217), an ataxia telangiectasia (AT) cell line (AT3BISV), a scid murine cell line (SCF) and a control murine cell line (CBF). Wortmannin sensitized all of the cells, including AT3BISV and SCF, to BLM and X-irradiation, but not to MMC or UV-irradiation. Hypersensitivity to BLM and X-irradiation and normal sensitivity to MMC and UV-irradiation are characteristic phenotypes of both AT and scid mice. DNA-dependent protein kinase (DNA-PK) activity was suppressed by wortmannin to 45-65% of the control values in all of the cells except SCF, in which DNA-PK activity was not detected. Wortmannin also induced radioresistant DNA synthesis, which is a cellular phenotype of AT, in T98G and SCF cells, but did not change the DNA synthesis rates after X-irradiation in AT3BISV. Our data suggest that wortmannin decreases the activities of both the ATM protein and DNA-PK, indicating that it might be of use as a sensitizing agent for radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Y Hosoi
- Department of Radiation Research, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|